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Abstract. When entering a system, an agent should be aware of
the obligations and prohibitions (collectively norms) that affect it.
Existing solutions to this norm identification problem make use of
observations of either norm compliant, or norm violating, behaviour.
Thus, they assume an extreme situation where norms are typically
violated, or complied with. In this paper we propose a Bayesian ap-
proach to norm identification which operates by learning from both
norm compliant and norm violating behaviour. We evaluate our ap-
proach’s effectiveness empirically and compare its accuracy to ex-
isting approaches. By utilising both types of behaviour, we not only
overcome a major limitation of such approaches, but also obtain im-
proved performance over the state of the art, allowing norms to be
learned with fewer observations.

1 Introduction

Norms, as instantiated through obligations, permissions and prohibi-
tions, are a popular approach to declarative behaviour specification
within multi-agent systems [25, 21, 7, 1]. Such norms describe the
expected behaviour of agents, but can be violated in exceptional cir-
cumstances. A large body of work exists on how agents should be-
have in the presence of norms [10, 3, 14, 15, 13]. Recently, work has
emerged addressing norm identification—how an agent can identify
norms already present in an environment. This problem is impor-
tant in open, dynamic multi-agent systems, where agents can enter
and leave the system at any time, and no assumption regarding norm
knowledge can be made. While it is often assumed that norms can
be communicated to agents when they enter a system [20], factors
such as limited bandwidth, implicit norms (in some systems), lack
of a shared ontology, malicious behaviour and changing norms can
invalidate this assumption, instead requiring that agents be able to
identify norms dynamically.

Previous work on dynamic norms often focuses on the conse-
quences of norm emergence to society [17], that is, evaluating what
happens to a society when norms change. However, only recently
have researchers started to investigate practical approaches to the
problem posed to individual agents of inferring new norms as they
emerge. Such work often makes a combination of assumptions re-
garding what available evidence can actually be used to identify new
norms. The work of Savarimuthu et al. [18, 19], is a typical example
of an existing approach to norm recognition, based on the detection
of a sanctioning signal—an action responding to an agent’s norm vi-
olation that may (possibly) be performed by a peer of the agent or an
institutional authority. Crucially, it is assumed that these signals may
be recognised as conveying some negative emotional or institutional
force, even before details of the specific norms in the society have
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been inferred5. By learning the situations in which such sanctioning
signals arise, agents are able to infer their triggering norms. How-
ever, while such an approach works well when sanctioning signals
are common, it is more difficult to apply in systems where agents
(largely) comply with norms.

To address this difficulty, Oren and Meneguzzi [16] introduced a
plan recognition based mechanism for norm identification. In their
approach, by observing the behaviour of agents, and identifying what
states these agents avoid or always achieve, prohibitions and obliga-
tions can be identified. However, in its simplest form, this approach
must assume fully norm-compliant behaviour. An adaptation sug-
gested by Oren and Meneguzzi overcomes this limitation, but is too
memory intensive to be practical in any reasonably sized domain.

There have been other works in the realm of norm identification
[6, 2, 11]. The work done in the EMIL project by Campenni et
al. [6] infers norms using observed behavioural patterns based on
a threshold-based approach, where the observations could be from a
range of sources: deontic commands, evaluative statements and as-
sertions made by agents that are being observed. Based on aggregat-
ing this information, an agent could infer potential norms. For ex-
ample if behaviour A is more prevalent than behaviour B in a given
context, then A is considered to be a norm. This work assumes that
an observer already knows how to interpret the normative statements,
and hence has an implicit notion of a norm. However, in real life an
observer new to a society may not have prior knowledge of what the
norms might be and why an agent is being sanctioned. The work of
Alrawagfeh et al. [2] aims to extract permission norms similarly to
that of Campenni et al. [6], and prohibitions similarly to the work
of Savarimuthu et al. [19, 18], thus suffering from the limitations of
these two approaches. Additionally, this work does not infer obliga-
tions. The work of Mahmoud et al. [11], like the work of Savarimuthu
et al. [19, 18], requires a sanctioning signal in order to function.

Existing work on norm identification therefore assumes that norms
are almost always either complied with or violated [11, 19, 18, 16, 2],
and is not appropriate in less extreme (and more realistic) cases. The
core contribution of this paper is an approach to norm identification
that operates well in domains where both norm compliance and vi-
olation can regularly occur. Thus we relax the strong assumptions
of all existing work and develop an algorithm that can infer norms
using a variety of possible sources of evidence. Our approach, de-
scribed in Section 2, uses Bayesian inference to compute for each
candidate norm the odds that it is an established norm, compared to
the null hypothesis that there are no norms, given observations of
other agents’ behaviour. To act in a norm compliant way, an agent
uses these odds to select which norms should be followed. We re-
port on an empirical evaluation of our approach in Section 3, which

5 For example, in human society, observing someone shouting or gesturing
angrily at another can be understood as a message of displeasure, even with-
out overhearing their conversation. Similarly, if we observe a policeman is-
suing an infringement notice to another, we are aware that a violation has
been detected, even if we do not know the details.
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shows two key results: first, that norm-compliant behaviour is pos-
sible after relatively few observations of the actions of others; and
second, that our approach outperforms existing approaches to norm
identification. Finally, we contextualise our work and point to future
research directions in Section 4.

An extended abstract of this paper has been published previ-
ously [8]. That did not provide details of the approach, and reported
on some preliminary experimental results. In this paper we provide
a full account of the models and algorithms used in the work, and
discuss a new experimental evaluation.

2 The Model and Approach

The first question that we must address is how our normative sys-
tem should be encoded. There is a long history of utilising transition
systems to model agents within a multi-agent system. These transi-
tion systems model the state space as nodes in a graph, and actions
are encoded as edges allowing transitions between nodes (states).
Therefore, following Oren and Meneguzzi [16], we consider an ab-
stract normative environment where norms govern motion through
such a graph, and seek to identify legal and illegal paths within this
graph. As in transition systems, nodes in the graph represent individ-
ual states, while edges represent transitions through the space due to
agent actions. However, unlike the graphs used in transition systems,
we abstract away from the interpretation function used to associate
values with variables in each state, and instead consider only motion
through the graph itself. Therefore, a path within such a graph repre-
sents the actions of an agent following a plan to transition from some
initial state (its start node) to a goal state (its destination node). One
such graph is shown in Figure 1.
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Figure 1: A sample graph

We conceptualise plans as sequences of nodes, and make no as-
sumptions about the source of those plans: they may be generated
dynamically given a goal and a set of possible actions, or they may
come from a plan library, such as a BDI agent program. Our norm
identification mechanism is based on the assumption that the ob-
served agents’ plan libraries (or available actions and planning mech-
anism) are known to the observing agent, at least at some level of
abstraction. This would be the case if all agents share the same plan
library, if their possible plans can be inferred from public knowledge
about the problem domain, e.g. public transport routes and timeta-
bles, or (as assumed by Oren and Meneguzzi [16]) if the observing
agent has a plan recognition mechanism. Alternatively, in the absence
of any other information, an agent may have no other option than to
simply assume that other agents are like itself, in order to gain some
traction on the norm identification problem. It is important to note
that for the purposes of norm identification, agents only need to in-
fer the plans of other agents that govern their publicly observable
behaviour.

Identifying norms then involves observing the movements of oth-
ers through the graph to identify their goals and the paths that cor-
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Figure 2: Overview of the approach

respond to plan executions. Given a set of norm hypotheses, we use
observations as evidence to compute the odds of each hypothesis be-
ing a norm compared to the null hypothesis that there are no norms.
In addition, we assume that when violations of norms occur, other
agents may choose to sanction the offending agents, that these sanc-
tioning actions can be recognised through sanctioning signals, and
that these actions are spontaneously performed by agents rather than
being generated by the plans they follow. These signals are another
source of evidence that can be used to update the odds of the norm
hypotheses.

Figure 2 illustrates our approach to norm identification. The left-
most boxes in the diagram illustrate the inputs of our approach. The
top left shows that, as discussed above, we must obtain an approx-
imation (at least) of the plans that observed agents use to generate
their publicly observable behaviour. We must also choose a set of
candidate norms, as shown at the bottom left of the diagram. These
are the hypotheses for which we iteratively compute their odds of be-
ing norms in the agent society (compared to the null hypothesis that
there are no norms), as observations of agent behaviour are made.
Section 2.1 describes our normative language and the instances of
this language that form our hypothesis set in the graph traversal do-
main.6 The middle left of Figure 2 shows one other requirement of
our approach. Our Bayesian approach to norm identification involves
computing the likelihood of observed behaviour, given each candi-
date norm and the null hypothesis. As we are assuming that agent
behaviour is generated by plans, we need a model explaining how
agents choose which plans to follow in the presence of norms. This
is discussed in Section 2.5. In addition, we assume that agents may
choose to sanction others if they have violated a norm, and that this
sanctioning behaviour is not part of the plan execution process, but
rather a reactive process that runs in parallel with plan execution. We
model this by the use of parameters specifying society-wide proba-
bilities of observing and then choosing to sanction norm violations.
We also consider the possibility of agents choosing to punish other
agents for their own (non-normative) reasons, and model the chance
of this occurring using another parameter. These parameters and their
use in computing the likelihood of observations are discussed in Sec-
tion 2.4.

6 The largest set of norm hypotheses arises if we consider all possible norm
formulas generated by the normative language, which is what we use for
our experiments.
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The right hand side of Figure 2 shows the run-time Bayesian in-
ference that updates the odds of the norm hypotheses as observations
are made of agent behaviour. These observations are traces of agent
movement on the graph, annotated with any sanctioning signals ob-
served (denoted ‘!’ in the figure). Given prior odds for each norm
hypothesis (we currently use a uniform prior distribution), Bayes’
Theorem explains how to update the odds for the norm hypotheses
after making a new observation, by computing the likelihood of the
observation under each hypothesis. This is discussed in Section 2.2.

2.1 Normative language

Our norm hypothesis space is defined by the following subset of lin-
ear temporal logic (LTL), where cn and n range over the labels of
nodes in the graph7, � denotes true , and and denote “eventu-
ally” and “in the next state”, respectively.

NORM = [¬] n | cn ∧ � → [¬] n

| cn ∧ � → [¬] n

These norms are interpreted as obligations or prohibitions constrain-
ing the agents’ motion through the graph.

These three norm types, with and without the optional nega-
tion, are abbreviated and interpreted as follows (in the order shown
above):

1. eventually(n) / never(n): These unconditional norms constrain
a plan execution to include or exclude node n, and correspond to
the obligation that n eventually occurs, or (respectively) that state
n is prohibited.

2. next(cn, n) / not next(cn, n): These are conditional obligations
and prohibitions, triggered whenever the agent reaches node cn
(we refer to this as the “condition node” for the norm) and the end
state has not been reached8. In this case the norm states that node n
must be (or, respectively, must not be) the next node reached. We
restrict our norm hypotheses to only include next and not next
formulae for which there is an edge from cn to n in the graph.

3. eventually(cn, n) / never(cn, n): These are also conditional
norms, expressing that beginning from the node after the condi-
tion node, node n must be eventually reached or (respectively)
never reached.

Since eventually and next norms are obligations and never and
not next are prohibitions, they could alternatively be expressed us-
ing explicit deontic modalities, with temporal logic semantics for
each modality that specify the traces in which future violations are
deemed to occur (e.g. see the approach of Broersen et al. [5]). How-
ever, for our purpose in this paper, the syntax above and the semantics
of violation given (later) in Table 1 are sufficient.

2.2 Bayesian updating

Bayesian approaches to machine learning make use of Bayes’ Theo-
rem, which in its diachronic interpretation states how the probability
of a hypothesis H should be updated in the light of new data D.

p(H|D) =
p(H)p(D|H)

p(D)

The probability p(H) is known as the prior probability of hypoth-
esis H , p(D|H) is the likelihood of the observed data D given the

7 Technically, cn and n are nominals from Hybrid Logic [4, p.435]: proposi-
tional symbols that are constrained to be true in exactly one state.

8 Formally, the end state of a trace can be identified as the one in which �
is false.

hypothesis, and p(H|D) is the posterior probability of H given D.
The denominator p(D) is the probability of the data being observed
under any hypothesis, and is a normalising term for the probabilities
p(H|D).

The calculation can be repeated as further data is observed by re-
placing the prior with the previously calculated posterior and using
Bayes’ Theorem again to compute an updated posterior. This process
is known as Bayesian updating.

If H is a mutually exclusive and collectively exhaustive set of hy-
potheses, the denominator can be expanded as follows.

p(H|D) =
p(H)p(D|H)∑

H′∈H p(H ′)p(D|H ′)

However, the hypotheses of interest in a problem domain may not
be mutually exclusive (independent of each other), and/or we may
not be able to enumerate a finite set of hypotheses. This is the case
when the hypotheses are norms that may hold in a society. Norms
may not be independent of each other, and this can depend on the
environment, for example, given the graph below and the goal of
travelling from node a to node d, a norm prohibiting movement to
node b after visiting node a has precisely the same effect as a norm
obliging travel to c after visiting a.

c

a

b

d

2.3 Updating the odds of norms

When the normalising term p(D) cannot be easily computed, e.g. be-
cause the hypotheses are not mutually exclusive and collectively ex-
haustive, an alternative approach to using Bayes’ Theorem is to work
with odds. The odds of hypothesis H1 over hypothesis H2, given
some observed data D, is denoted O(H1:H2|D) and is defined as
follows:

O(H1:H2|D) =
p(H1|D)

p(H2|D)
=

p(H1)p(D|H1)/p(D)

p(H2)p(D|H2)/p(D)

= O(H1:H2)
p(D|H1)

p(D|H2)

where O(H1:H2) = p(H1)
p(H2)

denotes the prior odds of H1 with re-
spect to H2.

In this formulation the normalising constant p(D) cancels out and
the odds of two competing hypotheses given new data can be com-
puted using only the prior odds and the likelihoods of the two hy-
potheses. The probabilities of all other hypotheses do not need to
be considered. In this paper we consider the odds of our hypotheses
of interest (norms) compared to a specific null hypothesis: the hy-
pothesis that there are no norms, written H∅. We write O∅(H) =
O(H:H∅) for the prior odds of H and O∅(H|D) = O(H:H∅|D)
for the posterior odds of H given D. By definition, O∅(H∅) = 1.
For other norm hypotheses we set the prior odds uniformly to an
arbitrary value less than one. The precise values of prior odds are
unimportant for our work as we are interested in finding the norms
with the maximum odds compared to the null hypothesis.

Whenever new data D is observed, we can then update the poste-
rior odds for each norm hypothesis H by multiplying them by the ra-
tio of the likelihoods of D given H and H∅. We consider two sources
of evidence for norms. For each observation, we separately compute
its likelihood based on (a) the observed sanctioning signals, and (b)
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procedure update-odds(p, s, g, P,H)
begin

likelihoodsig
H∅ = psig(p, s |H∅)

likelihoodplans
H∅ = pplans(p |H∅, g, P )

for n ∈ H
O∅(n) = O∅(n) ∗ psig(p, s |n) / likelihoodsig

H∅
O∅(n) = O∅(n) ∗ pplans(p |n, g, P ) / likelihoodplans

H∅
end

end

Figure 3: The procedure for updating odds

Table 1: Violation indices vn(p) for the six norm types, given the path
p = 〈p1, · · ·, p�〉

Norm type Violation indices

eventually(n) {�} if ∀i∈{1, · · ·, �} pi 
=n, else ∅

never(n) {i : pi = n}
next(cn, n) {i+1 : 1≤ i<� ∧ pi=cn ∧ pi+1 
=n}
not next(cn, n) {i+1 : 1≤ i<� ∧ pi=cn ∧ pi+1=n}
eventually(cn, n) {�} if ∃i∈{1, · · ·, �} (pi=cn ∧

∀j∈{i+1, · · ·, �} pj 
=n)
else ∅

never(cn, n) ∅ if ∀i∈{1, · · ·, �}, pi 
=n, else
{j : min({i : pi=cn})<j≤� ∧ pj =n}

a plan-based approach, and update the odds based on each of these.
Each observation consists of a path p and a set s of path indices at
which sanctioning signals were observed. For our norm hypotheses
we only consider a single norm at a time9, i.e., our hypothesis set H
consists of all norms from the language defined in Section 2.1.

The procedure for updating the odds10 for all norm hypotheses in
the hypothesis set H, given a new observation 〈p, s〉 is shown in Fig-
ure 3, where psig and pplans are as defined in the following sections.
The parameters passed to the update-odds function are the observed
path and sanctioning signals, a goal g and set P of plans used by the
plan-based likelihood computation, and the norm hypothesis set.

2.4 The likelihood of observed sanctions

We assume that agents may (sometimes) observe paths traversed by
other agents in the graph. The observed paths represent possibly par-
tial traversals of the graph by the other agents: they may be segments
of longer paths traversed, but there are no unobserved nodes internal
to the paths. Violations are detected through signalling actions (also
known as signals) that indicate sanctioning of the observed agent
[18, 19]. Such a signalling action could occur due to norm violation,
or due to the sanctioner sanctioning the observed agent improperly
(e.g., due to maliciousness, or a violation of the sanctioner’s per-
sonal values). We model the latter case by assuming there is a small
population-wide probability ppun of a non-normative punishment
signal being observed after any step of an observed path. We also as-
sume there are fixed probabilities of norm violations being observed
(pobs ) and of observed violations being sanctioned (psanc). We model
all signalling actions by a single symbol—we do not assume that
sanctions are specific to particular norms, nor that agents can distin-
guish normative sanctions from non-normative punishments.

9 Our approach can be extended to consider hypotheses that are non-singleton
norm sets, but we leave this for future work. If more than one norm can
hold, it is still useful to identify the norms with the highest individual rela-
tive odds, before considering which sets of norms to add to the hypothesis
space.

10 In our implementation, we work with log odds.

function choose-plan(goal, plans, norm)

1. poss-plans = plans(goal, plans)
2. Decide whether to be norm-compliant
3a. if norm-compliant

nvp = non-viol-plans(poss-plans, norm)
if nvp = ∅

return null
else

return random-weighted-choice(nvp)
3b. else

if poss-plans = ∅
return null

else
return random-weighted-choice(poss-plans)

Figure 4: Model for an agent’s choice of plan

Given an observed trace annotated with sanctioning actions, we
can compute the likelihood of this observation given a hypothesized
norm as follows.

Let p = 〈p1, · · · , p�〉 be an observed path and the set s be a record
of the indices of the path at which signals were observed.11 The sig-
nal is represented by including index i in set s. We define vn(p) as
the set of indices of the path p at which violations of the norm n
occurred, defined in Table 1. The occurrence of i ∈ vn(p) is inter-
preted as the violation occurring after the action to move to node pi,
and may be a result either of that move or of the path ending if the
destination node has been reached and an eventually norm is vio-
lated.

Given a norm hypothesis n, the likelihood of observing trace p=
〈p1, · · ·, p�〉, where set s contains the indices at which sanction or
punishment signals were observed, is then:

psig(p, s |n) =
∏

1≤i≤�

psigi (i ∈ vn(p), i ∈ s |n)

where psigi , which takes two Boolean arguments, denotes the likeli-
hood of the observation at path index i, as defined by the following
table.

i∈s i 
∈s

i∈vn(p)
ppun + ((1−ppun) (1−ppun) · (1−pobs .psanc)· pobs · psanc)

i 
∈vn(p) ppun 1−ppun

The first row of the table is for the case when a violation occurs at
index i. If a signal is observed at i, then this is either a non-normative
punishment or the violation was observed and sanctioned. If no sig-
nal is observed, then there is no punishment and the violation has not
been both observed and sanctioned. When there is no violation at i
(second row), a signal can only be a non-normative punishment, so
the likelihood of a signal occurring (or not) is the probability of the
punishment occurring (or not).

2.5 Likelihood using knowledge of agent plans

Following the approach of Oren and Meneguzzi [16] we can use
knowledge of agent plans (e.g. through plan recognition [22]) to
compute the likelihood of an observed path through the graph (ignor-
ing any sanction or punishment signals). We assume that all agents

11 We currently assume that sanctions are applied (if at all) immediately after
a movement to a node pi in the path causes a norm to be violated. Relaxing
this assumption would require a more complex likelihood function that
considers the possible matches of signals with possible past violations.
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pplans(o |n, g, P ) = pcomp

⎛
⎝ ∑

π∈non-viol-plans(plans(g,P ),n)

weight(π)∑
π′∈non-viol-plans(plans(g,P ),n) weight(π′)

p(o |π)
⎞
⎠

+ (1− pcomp)

⎛
⎝ ∑

π∈plans(g,P )

weight(π)∑
π′∈plans(g,P ) weight(π′)

p(o |π)
⎞
⎠

= pcomp

∑
π∈non-viol-plans(plans(g,P ),n)
∩ plans-containing(plans(g,P ),o)

weight(π)

∑
π∈non-viol-plans(plans(g,P ),n)

weight(π)
+ (1− pcomp)

∑
π∈plans(g,P )

∩ plans-containing(plans(g,P ),o)

weight(π)

∑
π∈plans(g,P )

weight(π)

Figure 5: Likelihood of an observed path using knowledge of agent plans

share the same set of possible plans (choices of paths in the graph),
and that the observing agent can infer the observed agent’s goal
(comprising starting and destination nodes).

To define the likelihood of an observed path given a norm hypoth-
esis, a goal and a plan library, we require a model for the decision-
making process of the observed agents, which must choose and exe-
cute plans to achieve their goals in the possible presence of a norm.
The analysis in this section is based on the decision-making model
shown in Figure 4.

In this model, the agent first generates all plans for the goal. The
returned plans may be weighted, (e.g., to indicate agent preferences
or execution costs), but our examples use equal weights for simplic-
ity. Next, the agent decides whether it it will act in a norm-compliant
manner. If so, it filters the possible plans to keep only those that do
not violate the norm, and chooses a plan using a random weighted
choice. Otherwise, it makes a random weighted choice from the full
set of plans for the goal. Note that this is intended to be a simple
abstract model for the purpose of defining a likelihood function in
the absence of any information about an observed agent. We do not
claim that this is, or should be, the exact control mechanism used in
any agent implementation.

We define the likelihood, based on knowledge of agent plans, of
an observed path o on the graph, given a norm hypothesis n, an in-
ferred goal g and a set of plans P , as shown in Figure 5. We write
pcomp for the rate of norm compliance in the society. The first two
lines of the figure multiply the probability of choosing a plan π and
the probability p(o |π) that the plan contains the observed path, for
the norm-compliance and non-norm-compliance cases. As p(o |π) is
either 1 or 0, the last two lines replace this factor with a union in the
limits of the sum. The function non-viol-plans filters out plans that
cause violations, using the violation indices function vn (Table 1).

There are two cases when the formula in Figure 5 cannot be eval-
uated due to zero values in the denominator of a fraction: when there
are no plans for the inferred goal, and when there are no norm-
compliant plans for the goal. The former case invalidates our assump-
tion that the observed behaviour is generated using a plan taken from
a known set of plans to fulfil the inferred goal, and we abandon the
odds update based on plan knowledge for the current observation. In
the latter case we replace the first addend in the last line of the figure
with 0. This represents the assumption that a norm compliant agent
would have abandoned its goal in this case.

3 Experiments

We have performed a set of experiments to validate and evaluate
our approach to norm detection. These experiments use a random
graph [9] containing 35 nodes, representing states in a state space,

and edges connecting these nodes represent actions available to an
agent. The algorithm we used to generate observations works ex-
actly like an agent randomly choosing possible plans to reach a goal
state, subject to the normative constraints, with a certain probability.
Table 2 summarises the parameters common to all experiments.

Table 2: Parameters used across experiments.

ppun 0.01 psanc 0.99
pobs 0.99 Prior odds O∅(n) 0.5

Here, we differentiate the norms used to generate the observations,
which we call Ng , from the norms inferred by our norm detection
approach, which we call Nd. Norm likelihood is estimated using log
odds against there being no norm (rather than a probability), and we
infer the norms from a set of observations by ranking the odds of
each norm (against no norm), and consider a given number of the
norms with the highest odds to be the norms in the society.

In the experiments, we ran an agent fully aware of the norms to
generate a random set of observations following the algorithm of
Figure 4 (i.e. random, but norm-compliant behaviour), while allow-
ing for the possibility of occasional non-compliant behaviour with a
probability set at 1% unless otherwise noted. Thus (1 − pcomp) =
0.01. We then applied our norm identification method to these obser-
vations in order to compute the odds of all possible norm hypotheses.
Our experiments consisted of submitting a sequence of 100 observa-
tions to an agent and measuring its ability to produce norm-compliant
behaviour after increasing numbers of observations. Each experiment
was repeated 50 times and the results were averaged to reduce the
impact of any particularly informative or uninformative sequence of
observations.

Our aim is to allow an agent to undertake norm-compliant be-
haviour, even without an exact model of the norms. One approach
to doing this is to consider the T most likely norms, even if they
are less likely than the null hypothesis (i.e., they may not exist since
they are less likely than there being no norm). In such a situation, the
agent can be thought of as acting conservatively, as it may avoid po-
tentially permitted courses of action. Another approach is to have the
agent consider only norms that are more likely than the null hypothe-
sis12. In the remainder of this work, we consider the functioning of an
agent utilising norm identification and acting using the conservative
approach, and evaluate its effectiveness in generating norm compli-
ant behaviour.

Our experiments measure precision and recall as a function of
the number of observations supplied to the detection mechanism.

12 However, this is dependent on the prior odds chosen.
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Figure 6: Inferred norms
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Figure 7: Inferred norms, with 30% violations

As norms may subsume each other, we measured precision and re-
call in terms of compliant behaviour rather than the exact norms in-
ferred. Thus, in our evaluation, precision means the fraction of norm-
compliant plan executions generated by an agent using a sample of
the inferred norms Nd to drive its behaviour, and recall is the frac-
tion of plans that are compliant with the true underlying norms Ng

that are sampled by the agent. Specifically, we compute precision by
updating the odds of each norm hypothesis after an observation and
choosing the set Nd with the top T norms.

Our experiments are illustrated in the graphs of Figures 6–8. Our
first set of experiments, illustrated in Figure 6, shows precision and
recall as a function of the number of observations with error bars de-
noting standard deviation for these measures. Each experiment was
conducted in the presence and absence of sanctioning actions—“SA”
in the figure legends indicate the use of sanctioning actions.13 The re-
sults indicate that precision varies from a starting point of around 55
without sanctioning actions and 60 with them. Precision and recall
increase rapidly in the first 10 observations and then tend to slowly
increase as more observations are taken into consideration, while
variance in precision diminishes as more observations are made.

Moreover, as we increase the amount of non-compliant behaviour
in the observations, illustrated in Figure 7, the effect of sanctioning
actions becomes more pronounced. Precision improves, while recall
gets worse, as potential norm compliant plans are filtered out (pos-
sibly due to non-normative punishment actions) while fewer non-
compliant plans are executed. Thus, as long as the agent has choices

13 Note that the values for the sanctioning action (SA) case are shifted two
points to the right to prevent error bars from overlapping.
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Figure 8: Precision and recall as a function of norms

available to itself with regards to plans which it can execute, sanc-
tioning actions appear to be beneficial. It is also important to note
that while recall is lower in the presence of sanctioning actions, it
still remains relatively high.

We also computed precision and recall as a function of the num-
ber of norms in the system. In this experiment, we randomly selected
elements of the power set P(Ng) of the set of seven norms in the
scenario and, for each size of subset of P(Ng), we determined preci-
sion and recall after 100 observations. The results, shown in Figure 8,
indicate a slight increase in precision and recall as more norms are in-
troduced into the system. However, the highly overlapping error bars
prevent us from asserting that the number of norms present in the
system has an impact on the ability of the approach to infer norms.

Finally, we ran experiments comparing the effectiveness of our
approach against the previous state-of-the-art approaches, each of
which makes different assumptions about the behaviour of the under-
lying agents. We compared the Bayesian approach to the approaches
of Savarimuthu et al. [18, 19], which assume that observed agents
generate non-compliant behaviour for norms to be inferred, and that
of Oren and Meneguzzi [16], which assumes that observed agents
mostly comply with the norms14. In all of these comparative exper-
iments we generated 20 observations and included sanctioning ac-
tions, since the approaches of Savarimuthu et al. relied on these sig-
nals. Like our previous experiment, we performed 50 repetitions to
smooth out random variations in the observations. Unlike our pre-
vious experiments, which used 100 observations, we stopped at 20
observations, since by the 20th observation precision and recall had
dropped to 0 for all comparable approaches. We conducted exper-
iments with compliance ranging from almost full (a 0.01% proba-
bility of violations) to none (a 100% probability of violations). The
results are presented in Table 3, which shows, for each approach,
the mean of the following measures after a given number of obser-
vations (indicated by the #Obs column) have been made: the num-
ber of norms inferred, precision and recall. Standard deviations for
each measure are shown in parentheses. Here, the Bayesian approach
clearly outperforms previous approaches after a very small number
of observations. For all competing approaches, precision and recall
tend to drop towards 0 as the number of observations increase. Since
these approaches infer norms more aggressively, they tend to over-
constrain the agent’s behaviour, inferring many more norms than the
Bayesian approach. As a result, the competing approaches tend to
generate no “true positive” plan evaluations, that is, for plans that are
compliant with the real underlying norms, these approaches tend to
erroneously evaluate them as being non-compliant.

14 In the comparison we describe, a threshold of 0.5 was used in Oren and
Meneguzzi’s second algorithm.
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Table 3: Comparison of the Bayesian approach with the data mining [19, 18] and plan recognition [16] approaches. In each line, the best results
are shown in bold.

#Obs #Norms (σ) Precision (σ) Recall (σ)
Bayesian Approach

Probability of violation=0.01
1 18.00 (0.00) 62.63 (27.50) 43.16 (28.08)
5 18.00 (0.00) 59.59 (15.91) 86.31 (12.81)
10 18.00 (0.00) 63.58 (8.94) 91.87 (7.22)
15 18.00 (0.00) 59.97 (11.64) 90.17 (12.48)
20 18.00 (0.00) 64.76 (12.24) 95.54 (7.16)

Probability of violation=0.3
1 18.00 (0.00) 40.43 (32.15) 31.48 (29.33)
5 18.00 (0.00) 52.59 (21.72) 77.94 (27.72)
10 18.00 (0.00) 60.50 (16.34) 88.92 (13.73)
15 18.00 (0.00) 62.42 (9.77) 92.37 (8.74)
20 17.95 (0.21) 67.36 (10.12) 85.14 (9.54)

Probability of violation=0.6
1 18.00 (0.00) 58.48 (34.09) 34.77 (30.56)
5 18.00 (0.00) 54.58 (14.59) 82.34 (15.77)
10 18.00 (0.00) 55.63 (11.26) 82.41 (16.93)
15 18.00 (0.00) 58.57 (13.48) 87.97 (9.58)
20 18.00 (0.00) 62.34 (10.90) 81.03 (12.50)

Probability of violation=1
1 18.00 (0.00) 35.13 (35.01) 22.97 (23.26)
5 17.95 (0.21) 61.71 (26.40) 50.87 (30.00)
10 18.00 (0.00) 52.05 (20.25) 69.37 (28.50)
15 18.00 (0.00) 63.59 (20.83) 73.97 (24.45)
20 17.95 (0.21) 56.83 (19.22) 74.22 (21.27)

#Obs #Norms (σ) Precision (σ) Recall (σ)
Data Mining Approach [19, 18]

Probability of violation=0.01
1 7.90 (2.14) 60.00 (48.98) 9.56 (9.60)
5 10.55 (2.97) 25.00 (43.30) 3.16 (5.88)
10 8.20 (2.42) 50.00 (50.00) 9.40 (11.07)
15 7.35 (1.15) 55.00 (49.74) 6.44 (6.28)
20 7.95 (2.29) 45.00 (49.74) 5.22 (6.47)

Probability of violation=0.3
1 7.30 (2.12) 30.00 (45.82) 5.22 (9.02)
5 11.75 (3.25) 15.00 (35.70) 1.37 (3.27)
10 13.45 (3.84) 10.00 (30.00) 1.26 (4.18)
15 15.20 (4.28) 5.00 (21.79) 0.38 (1.67)
20 16.45 (3.33) 5.00 (21.79) 0.90 (3.96)

Probability of violation=0.6
1 6.40 (2.53) 70.00 (45.82) 10.62 (9.87)
5 13.50 (3.78) 15.00 (35.70) 1.59 (3.95)
10 13.20 (3.52) 15.00 (35.70) 2.85 (8.91)
15 15.75 (4.49) 0.00 (0.00) 0.00 (0.00)
20 17.05 (4.42) 0.00 (0.00) 0.00 (0.00)

Probability of violation=1
1 6.10 (2.56) 45.00 (49.74) 8.80 (11.05)
5 11.40 (5.04) 5.00 (21.79) 0.38 (1.67)
10 12.15 (4.87) 0.00 (0.00) 0.00 (0.00)
15 17.25 (6.54) 0.00 (0.00) 0.00 (0.00)
20 16.90 (5.65) 0.00 (0.00) 0.00 (0.00)

#Obs #Norms (σ) Precision (σ) Recall (σ)
Plan Recognition Approach [16]

Probability of violation=0.01
1 30.00 (0.00) 60.00 (48.98) 11.43 (10.46)
5 28.25 (1.84) 0.00 (0.00) 0.00 (0.00)
10 27.95 (1.85) 0.00 (0.00) 0.00 (0.00)
15 27.50 (2.71) 0.00 (0.00) 0.00 (0.00)
20 27.00 (2.38) 0.00 (0.00) 0.00 (0.00)

Probability of violation=0.3
1 30.00 (0.00) 40.00 (48.98) 6.51 (10.20)
5 27.25 (2.38) 0.00 (0.00) 0.00 (0.00)
10 26.50 (2.01) 0.00 (0.00) 0.00 (0.00)
15 26.15 (2.72) 0.00 (0.00) 0.00 (0.00)
20 25.15 (2.39) 0.00 (0.00) 0.00 (0.00)

Probability of violation=0.6
1 30.00 (0.00) 80.00 (40.00) 14.82 (11.65)
5 27.20 (1.99) 0.00 (0.00) 0.00 (0.00)
10 27.35 (2.57) 0.00 (0.00) 0.00 (0.00)
15 26.45 (2.20) 0.00 (0.00) 0.00 (0.00)
20 25.70 (2.23) 0.00 (0.00) 0.00 (0.00)

Probability of violation=1
1 30.00 (0.00) 60.00 (48.98) 8.93 (9.38)
5 27.45 (1.59) 0.00 (0.00) 0.00 (0.00)
10 27.15 (1.45) 0.00 (0.00) 0.00 (0.00)
15 26.50 (1.96) 0.00 (0.00) 0.00 (0.00)
20 26.15 (1.98) 0.00 (0.00) 0.00 (0.00)

We note that, given the different expressivity of the competing ap-
proaches, and the fact that our experiments used norms expressed in
the temporal modalities used in our approach, there may be a mis-
match in the detection capabilities within the experiments. Neverthe-
less, since our experiments measured precision and recall in terms of
compliant behaviours rather than the specific norms, we believe that
our analysis is valid.

4 Discussion and Conclusions

The Bayesian approach presented in this paper combines ideas from
the sanctioning action observation [19, 18] and plan recognition [16]
norm identification approaches to create a powerful new mechanism.
As our experiments indicate, we generate norm-compliant behaviour
in a norm-identifying agent approximately 60% of the time across a
range of violation likelihoods, and show that the presence of sanc-
tioning actions substantially improves recall.

As mentioned in Section 2, we assume that we can determine an
agent’s starting point and goal. If we consider AgentSpeak(L) style
agents, then the identification of a plan, and from this its context and
guard conditions, would allow an agent to determine the observed
agent’s start point in many situations. Furthermore, once a plan has
been identified, its goal can be trivially determined. While we assume
that sanctioning actions (signals) are observable, we do not assume
that it is possible to associate specific norms with specific signals. We
also assume that one cannot differentiate between sanction and pun-
ishment signals. Lifting such restrictions would improve the learning
rate, but is not realistic.

We intend to pursue several avenues of future work. First, while
our model permits it, we have not evaluated the effects of conflict-
ing norms on the norm identification process or on the conserva-
tive strategy described in this paper, and we intend to investigate
what additional mechanisms must be created to function in such do-
mains. Given that norms can subsume others, we believe the use of a
subsumption-based norm conflict resolution mechanism [24] would
result in an agent with an enhanced ability to identify norms and act
in a norm compliant manner. We also plan to investigate weighting
mechanisms and their effects on norm identification. Such mecha-
nisms could, for example, originate from a trust and reputation model
[12]. Here, highly trusted agents could be assumed to (normally) act
in a norm-compliant manner, while less trustworthy agents would be
expected to trigger more sanctioning actions. The addition of trust
information could allow us to consider which agents are performing

the sanctioning actions. An agent often signalling that a trustworthy
agent is acting in a norm-violating manner could have its opinion
discounted, while those signalling that untrustworthy agents are vi-
olating norms could have their opinion strengthened. The addition
of such a mechanism should improve the performance of our model,
and given the Bayesian underpinnings of many trust systems [23],
should be a relatively straightforward addition.

Another source of weightings we could exploit within the model
originates from the plans themselves. In this work, we assumed that
all plans to achieve some goal are equally likely to be used by
an agent. However, some of these plans could be more expensive
(e.g. from a resource utilisation point of view) than others, and a
utility maximising agent would be expected to select cheaper plans
(subject to normative constraints). We believe that the use of such
weights would increase the rate at which norms are identified, and
also increase the precision and recall of our approach.
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