HIGH-DIMENSIONAL Z-STABLE AH ALGEBRAS
AARON TIKUISIS

ABSTRACT. It is shown that a C*-algebra of the form C(X,U),
where U is a UHF algebra, is not an inductive limit of subho-
mogeneous C*-algebras of topological dimension less than that of
X. This is in sharp contrast to dimension-reduction phenomenon
in (i) simple inductive limits of such algebras, where classification
implies low-dimensional approximations, and (ii) when dimension
is measured using decomposition rank, as the author and Winter
proved that dr(C(X,U)) < 2.

1. INTRODUCTION

Consider C*-algebras that take the form of a direct sum of algebras of
continuous functions from a topological space to a matrix algebra; call
this class C. Now consider the class AC of algebras that are inductive
limits of algebras in C. Such algebras, including AF, AI, AT, and
(some) AH algebras, have arisen naturally, for instance, as crossed
products of the Cantor set or the circle by minimal homeomorphisms.
However, the present purpose of considering this class of C*-algebras is
as a test case for phenomena among the broader, less-understood class
of finite nuclear C*-algebras.

A mixture of classification and other arguments has shown that there
is a dichotomy amongst the simple C*-algebras in AC, dividing them
into algebras of low and high topological dimension. Classification
arguments, on the one hand, show that for a simple algebra in AC, if it
is an inductive limit of building blocks (in C) with bounded topological
dimension (or even “slow dimension growth”), or if it is Z-stable, then
it is an inductive limit of algebras in C with topological dimension at
most three [4, [6, @]. (Note that one can show, without classification,
that slow dimension growth implies Z-stability; see [11, 12}, 16], so Z-
stability should be viewed as the weakest of these hypotheses.) By
a general Z-stability theorem of Winter [I6], it follows that this is
also the case for simple algebras in AC with finite nuclear dimension
(or decomposition rank). Villadsen first produced examples of simple
algebras in AC that don’t have bounded-dimension building blocks [14];
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these examples, and their high-dimensional properties, were further
analyzed by Toms and Winter [13].

The aforementioned dimension reductions (going from bounded di-
mension/slow dimension/Z-stability to dimension at most three) owes
itself to (i) simplicity and (ii) dimension-reducing effects of tensoring
with Z. Villadsen’s high-dimensional algebras show that simplicity
alone does not produce dimension reduction. Moreover, the author
and Winter showed that dimension-reduction, in terms of decomposi-
tion rank (and therefore also nuclear dimension), does occur even for
nonsimple, Z-stable algebras in AC: if A € AC then dr(A® Z) < 2
[T0]. This result has recently been extended, by the author and others,
to algebras A that are inductive limits of subhomogeneous algebras [3].

The main result here is that certain non-simple Z-stable algebras in
AC (namely, algebras of the form C(X,U) where U is a UHF algebra)
cannot be approximated by low-dimensional algebras in C—or even from
the significantly larger class of subhomogeneous C*-algebras. This re-
sult clarifies the role played by simplicity in classification results such as
[4, 16, @]. It also provides the first example of a Z-stable approximately
subhomogeneous algebra A which cannot be approximated by subho-
mogeneous algebras with bounded decomposition rank; it is expected
(and largely entailed by classification conjectures) that this phenome-
non cannot occur in the simple case.

In [1I], the author and others showed that many simple Z-stable
C*-algebras have decomposition rank 1, including a number of approx-
imately subhomogeneous algebras that cannot be approximated by sub-
homogeneous algebras with decomposition rank less than 2. This and
the present article give complementary accounts of the same phenome-
non: that decomposition rank does not produce the same K-theoretic
restrictions as subhomogeneous dimension.

In [§], Kirchberg and Rordam devised a way to show that for any
commutative C*-algebra C, C®1p, can be approximated within C® O,
by commutative C*-algebras with one-dimensional spectrum. They
use this result to show that a large swathe of strongly purely in-
finite, non-simple algebras are approximated by algebras in C with
one-dimensional spectrum; the result also plays a crucial role in the
dimension-reduction result of [10]. Kirchberg and Rgrdam’s result rests
mainly on the fact that O, has trivial K-theory, which is closely tied to
the existence of an Oy-relativized retract D? — S'; that is, a solution
to

C(SY) - 2= C(D?, 0,)

aoi |

C(St, 0,),
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It is not difficult to adapt their argument (as we do in Section [5) to
show that if A is a C*-algebra for which we can solve

(1.1) c(sm1 - 2 =c(Dm, A)

m ijf|sn1

C(S™1, A),

then for any n-dimensional space X, C'(X) ® 14 can be approximated
in C(X, A) by commutative C*-algebras with (n—1)-dimensional spec-
trum. Our main result arises by showing that the converse is true: if
C(X) ® 14 can be approximated in C(X,A) by (n — 1)-dimensional
commutative (or even subhomogeneous) algebras then there is an A-
relativized retract of D™ onto S™71, as in .

Let us introduce our notation precisely before clearly stating the
main result. For a C*-algebra A, a C*-subalgebra B, and a class S
of C*-algebras, we say that B is locally approximated in A by C*-
algebras in S if the following holds: for every finite subset F of B and
every € > 0, there exists a C*-subalgebra C' of A such that C' € S
and F C. C. Note that if A is an inductive limit of algebras in S (or
an inductive limit of inductive limits of algebras in S, etc.) then it is
locally approximated by algebras in S.

The topological dimension of a commutative C*-algebra C'(X)
means, naturally, the dimension of X. More generally, if A is sub-
homogeneous, then the value of its decomposition rank and nuclear
dimension coincide, and also agrees with a value obtained from the
primitive ideal space [I5] (see also [3, Corollary 3.18] for an alternate
proof); we continue to use the term topological dimension to refer to
this value.

In the sequel, we identify C'(X) with the subalgebra C(X,Cly) of
C(X,A).

Theorem 1.1. Let A be a unital C*-algebra and let n € N. The
following are equivalent.

(i) For every n-dimensional compact Hausdorff space X, C(X) is ap-
proximated in C(X, A) by commutative C*-algebras of topological
dimension at most n — 1;

(i1) For every n-dimensional compact Hausdorff space X, C(X) is
approzimated in C (X, A) by subhomogeneous C*-algebras of topo-
logical dimension at most n — 1;
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(iii) There exists a *-homomorphism ¢ : C(S"™') — C(D", A) such
that the diagram

C(sm1) —2 c(Dm, A)

e

C(S"1 A),

commutes, where v denotes the inclusion map andr : C(D", A) —
C(S™1 A) denotes the restriction map.

If A= A® A (using any tensor norm), then these are also equiva-
lent to statement (i) with the words ‘n-dimensional” removed; that is,
that for any Hausdorff space X, C(X) is approzimated in C(X, A) by

commutative C*-algebras of topological dimension at most n — 1.

Well-known topological arguments can be used to reformulate (fiii) as:
the inclusion map Co(R™"™!) — Cy(R™!, A) is nullhomotopic. When A
is the Jiang-Su algebra Z (which is KK-equivalent to C), the inclusion
¢ induces an isomorphism K,(C(S" ', 2)) &2 K, (C(S"™)) = Z?* (as
abelian groups), whereas K,(D", Z) = 7Z. This gives a straightforward
K-theoretic obstruction to (fiii). A similar computation yields a K-
theoretic obstructon to also in the case that A is a UHF algebra;
thus we obtain the following:

Corollary 1.2. Neither C(D",U) (where U is UHF) nor C(D", Z)
are locally approximated by subhomogeneous algebras of topological di-
mension less than n.

The remainder of the article is devoted to proving Theorem [I.1} In
Section , we derive from a covering-dimension-related condition,
that C'(X, A) contains arbitrarily fine, commuting n-colourable parti-
tions of unity, in the sense of [10, Proposition 3.2 (iv)] (this in particular
implies ({if)). A significant part of this argument is handling the sub-
homogeneous case, which is aided by [3, Theorem 2.15], which allows
us to work with noncommutative cell complexes in place of arbitrary
subhomogeneous approximants. In Section [} we use the commuting
partitions of unity from Section [3| to obtain the A-relativized retract
of D™ onto S™! (i.e. condition ; the main part of this argument is
showing that holds approximately. Finally, Section |5 shows that
implies ({if), which is essentially a reproduction of Kirchberg and
Rordam’s argument in the proof of [8, Proposition 3.5].

For elements a and b of a C*-algebra A, and a real number ¢ > 0, we
will use the notation a ~, b to mean ||a — b|| < e. If A is a C*-algebra
and a € A, then sp(a) denotes the spectrum of a. For a compact
topological space X, C'X denotes the cone

(1.2) CX = X x [0,1]/(X x {1}).
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2. SIMPLICIAL COMPLEXES

In this section we review some basic notions and results about sim-
plicial complexes for use in the sequel. For a more thorough treatment,
see [2, VIIL.5]. Let V be a finite set. Recall that an (abstract, finite)
simplicial complex on the vertex set V' is a subset N of the power set
of V', containing all singletons, and closed under taking subsets. If N
is a simplicial complex, each set in N is called a face or a simplex of V.
If N is a simplicial complex with vertex set V', we use |N| to denote its
geometric realization. Concretely, this can be realized as the subset of
[0, 1]V consisting of all (\,),ey such that:

(i) >, A =1; and
(ii) For any vy,...,v, € V,if {vy,..., 05} € N then

Ao+ Ay = 0.

For a vertex vy € V, Star(vg) denotes the star around vg, that is,
the open subset of |N| made up of the union of the interiors of the
realization of faces containing vy. With the above description of the
geometric realization, Star(v) is precisely all (\,)yey € |NV| such that
vy 7 0.

We say that N has dimension at most n if every face of N contains
at most n + 1 vertices. This is the same as saying that the covering
dimension of |N| is at most n.

Let N, N’ be simplicial complexes with vertex sets V, V' respectively.
A morphism from N to N’ is a map « : V — V' which takes each set
in NV to a set in N'. A morphism from N to N’ induces a continuous
map & : |N| to |N'| which takes the realization of a simplex o € N to
the realization of (o), namely

a((Ao)vev) = (o )vrev:
where i,y = 37 -1,y Av- In particular, &(Star(v)) = Star(a(v)) for
every v € V.
The following result follows almost immediately from the above de-
scription of the geometric realization of a simplicial complex.

Proposition 2.1. Let N be a simplicial complex with vertex set V.
Then C(|N|) can be canonically identified with the universal C*-algebra
with generator set {e, | v € V} and the following relations:

(i) Fach e, is a positive contraction;
(ii) The e,s commute;
(11i) For each vy, ...,vx €V, if {v1,...,0p} &€ N then

Cyy - €y, =0; and

(1) ey e0=1.

With this identification, for each vertexr v € V', we have
Star(v) = e, *((0, 1]).
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Given a commuting finite partition of unity (f;);e; in a C*-algebra
A (that is, a finite set of commuting positive elements that sum to 14),
we define the nerve of (f;);c; to be the following simplicial complex
N((fi)ie:) with vertex set I:

N((fi)ier) :== {{ih sk ST fiy oo fo # 0}-

By Proposition , we obtain a canonical map C(|N((f)ier)|) —
C*({fi | i € I}), sending e; to f;.

3. SUBHOMOGENEOUS APPROXIMATIONS AND COVERING
DIMENSION

In this section, we prove that conditions and of Theorem
[1.1) are equivalent, and are equivalent to another, somewhat technical,
covering-dimension-related condition.

We begin with a technical lemma, that will allow us to turn ap-
proximations in noncommutative cell complexes (defined in [3]) into
commutative approximations.

Lemma 3.1. Let X be a compact metric spaces, let Ay be a unital C*-
algebra, and let ¢ : Ay — C(X, My) be a x-homomorphism for some
k € N. Define A by the pullback diagram

A L oCX, M)

Al 1 F=flxx {0y

A -5 CX, M.
Let f1,..., fm € Ay and let € > 0. Suppose that By is a commutative
C*-subalgebra of Ao, 14, € By, and go, ..., gm € (Bo)+ are such that

sp(m(g:)) C [minsp(m(A(fi))) — €, maxsp(m(A(fi))) + €]
for all representations m of Ay and all © = 1,...,m. There exists a
commutative unital C*-subalgebra B of A and hq,...,h,, € B such
that A(h;) = g; and
(3.1) sp(m(h;)) C [minsp(n(f;)) — 26, maxsp(w(f;)) + 2€]
for all representations m of A and all v = 1,...,m. Moreover, the di-

mension of the spectrum of B is at most the maximum of the dimension
of CX and the dimension of the spectrum of By.

Remark 3.2. This lemma will be used in the case X = S"~!. Note that
for each n, there is an homeomorphism D™ = CS™~! which identifies
the boundary S"~! with S"~! x {0}.

Proof. Fix n > 0 such that

p(fi) (@, 1) =c p(fi)(x, s)
for all s,t € [0,n]. Define 6 : C(X x [0,7], By) — C(X x [0,n], My) by

0(c)(z,t) = o(c(,1))(x),
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and set D to be the image of . Evidently, D is commutative. Due
to the way 6 is defined, each irreducible representation of D factors
through a point evaluation at some unique point in X x [0,7], and
this provides a finite-to-one continuous map from the spectrum of D
to X x [0,n]. It follows by [5, Theorem 1.12.4] that the topological
dimension of D is at most the dimension of X x [0,7n] (which is the
same as the dimension of C'X). Set

B :={(c,d,b) € C(CX|jp1) ® D @ By
| c(x,m) = d(z,n) for all z € X and ¢(b) = d|xx{0}}-
B is evidently commutative, and it embeds into A in a pretty straight-
forward way: by sending (c,d, b) to (e,b) € C(CX, M) @ Ay where
e\cx‘[m =c¢ and €|CXI[0,,7] =d.
The spectrum of B is given by gluing together C'X|, 1}, the spectrum

of D, and the spectrum of By. Hence, the spectrum of B has dimension
at most

max{dim(CX), dim(spectrum of By)}.
Fori=1,...,m, define d; € C(X x [0, 7], By) by

t t
difw,t) = L lp(fi) (@ )l|Ls, + (1 = T)gs
for all (z,t) € X x [0,n]. Note that

0(d;)(z,m) = ||p(fi)(x,n)||, forall z e X,
0(d;)(x,0) = g;, forall x € X,
t

and that 60(d;)(z,t) is a convex combination of ||p(f;)(z,t)||1s, and
#(gi)(x) for all (x,t) € X x [0,n]. Define ¢; : C X1 — M, by

ci(x) = [|p(fi) (@)]]
Then evidently, h; := (¢;,6(d;),9;) € B and it is not hard to see that

(31) holds. O

Let X be a compact metric space and let A be a C*-algebra. Let U
be an open cover of X. Following [10, Proposition 3.2 (iv)], an (n+1)-
colourable partition of unity subordinate to I/ means positive
elements bg»l) e C(X,A) fori=0,...,n,j=1,...,r, such that:

(i) for each 7, the elements bgi), e b are pairwise orthogonal,
(ii) for each i, j, the support of by) is contained in some open set
in the given cover U, and
(i) S, b8 =1.
Proposition 3.3. Let X be a compact metric space, let n € N, and let
A be a unital C*-algebra. The following are equivalent:
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(a) C(X) is approximated in C(X,A) by subhomogeneous algebras of
topological dimension at most n;

(b) C(X) is approximated in C(X,A) by abelian C*-algebras whose
spectrum has dimension at most n;

(¢) For every open cover U of X, there exists a commuting (n + 1)-
colourable partition of unity subordinate to U.

Remark 3.4. In [I0, Proposition 3.2], it is shown that the existence
of (n + 1)-colourable approximate partitions of unity in C(X,A) is
equivalent to dr(C(X) Cc C(X,A)) < n. Condition is a notable
strengthening, in that the partition of unity is asked to be commuting.
(Note that the difference between approximate and exact commuting
partitions of unity is moot, since any commuting approximate partition
of unity can be turned into a commuting exact partition of unity by
functional calculus.) Corollary and [I0, Theorem 4.1] shows that
in many cases, is not equivalent to the weaker condition of non-
commuting approximate partitions of unity.

Proof. (o) = (b): Let F = {ai,...,an} C C(X) be a finite set
and let ¢ > 0. Without loss of generality, F consists of positive el-
ements. By [3, Theorem 2.15|, every subhomogeneous algebra is ap-
proximated by noncommutative cell complexes (defined in [3| Defini-
tion 2.1]: briefly, an iterated pullback where at each stage a C*-algebra
C(D*, M) is attached along boundary C(S*~1 M;)) of the same topo-
logical dimension. Therefore, this result and @ provide the existence
of a noncommutative cell complex B of dimension at most n, a *-
homomorphism ¢ : B — C(X, A), and elements by,...,b,, € B be
such that a; =2 ¢(b;) for i« = 1,...,m. By an inductive argument
with Lemma as the inductive step (see Remark , there exists a
commutative C*-subalgebra C' of B, whose spectrum has dimension at

most n, and ¢q,...,¢, € Cy such that, for every representation 7 of
B,
(32)  sp(r(e)) C [minsp(r(h)) — ¢/2, maxsp(r(b)) + ¢/2].

)
For each x € X, ¢(b;)(x) ~¢/2 a;(x) € C, so that

sp(0(bi) (2)) € (ai(x) — €/2, ai(x) + €/2).
Using this and with 7 = ¢(-)(z), this yields that

sp(¢(ci)(z)) € (ai(x) — € ai(x) +€),

and thus, ¢(¢;) =~ a;.

Hence, C and ¢y, ..., ¢, witness that (]ED holds.

@ = : Let F be a finite partition of unity such that, for each
f € F, there exists Uy € U such that supp f C Uy. Use to obtain
a space Y of dimension at most n and a *-homomorphism ¢ : C'(Y) —
C(X,A) such that F C. ¢(C(Y)) (for some sufficiently small € to be
defined). For each f € F, let gy € C'(Y) be such that f ~. ¢(gs). By
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functional calculus, we may assume that supp ¢(gy;) C Uy. Note that

L&yFe D per ¢(95)-
Set Y :={y € Y : Y crgr(y) = 1 —2|Fle}. It follows that

ker ¢ = Cy(Z) for some open set Z such that ZNY' =
Since Y has dimension at most n, let ( ) be an (n + 1) colourable
family of positive elements, that is subordlnate to {gf ((0,00)) : f €

F}, such that
> allyr =1y,
.3

Set
(@) ._ (@)
b;” = d(a;”).

This is (n+1)- colourable since (a( )) is. It is subordinate to U, since if

the support of a is contained in g ((O 00)) then the support of b(

is contained in Uy. Finally, 1 — > ) e Cy(Y\Y") C Cy(Z), and so
b =1.

6 @ This is clear, since the universal C*-algebra generated by

a commuting, (n + 1)-colourable partition of unity (by))izo’_“,n,jzlwr is

C(Z) where Z is the geometric realization of an n-dimensional simpli-

cial complex, see Proposition [2.1] U

Z]J

4. DISK-TO-SPHERE RETRACTS

In this section, we show that low-dimensional, commutative approx-
imations of C'(D") inside C(D", A) implies condition of Theorem
. Condition can be viewed as the existence of noncommutative
retracts D™ — S™"~! when D" is enriched by the space A. We first show
that we can (point-norm) approximately satisfy condition ({i), which
is the more difficult step, and then we use a semiprojectivity argument
(in the category of commutative C*-algebras) to obtain condition
exactly.

Given an open cover U of a topological space X, we define the n-
nerve of U to be the following simplicial complex on the vertex set

U:
U) = {{Ul,...,Uk}QU | E <n and Ulﬂ---ﬂUk#@}.
(That is, it is the (n — 1)-dimensional skeleton of the nerve of U.)

Lemma 4.1. Let U be an open cover of S"~1. Then there exists an
open cover V of D™ and a continuous map « : |[N,(V)| — S"7' such
that, for each V €V, if VNS #4 & then

(i) there exists U € U such that VN S"' C U; and
(ii) a(Star(V)) =V NSt
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Proof. Let N be a simplicial complex with vertex set X such that
|N| = S"~1 such that upon identifying these spaces, each star in N is
contained in some set in U.

View D" as CS"! (as in ((1.2))), so that the boundary S"~! is iden-
tified with S"~1 x {0}. Let w: S"~! x [0, 1] — D" be the quotient map.
For x € X, set

Vo(x) := m(Star(z) x [0,1/2)), Vi(z) := m(Star(x) x (0,1)).
Then define
Vi={Vi(z)|i=0,1,0 € X} U{r(S"* x (1/2,1])},

an open cover of D",

Note that Vo(z) N7(S™™! x (1/2,1]) = @, so that if {Wy,... , W} €
N, (V) then either:
(a) Each W; is of the form V;(z) for some ¢ = 0,1 and = € X; or
(b) Some W is equal to m(S™! x (1/2,1]) and for every other j, W

is of the form Vj(z) for some z € X.

Let N’ be the subcomplex of N, (V) consisting of simplices {W1, ..., Wy}
of the first type; then the map V;(z) — = induces a simplicial map
N’ — N, and thereby a continuous map

IN'| = |N| = ",

We set ||y to be this map. Then, since | N, (V)| is (n—1)-dimensional,
we may extend this map to all of | N, (V)|.

For V. e V, it VNS £ & then V = V(W) for some W € W.
In this case, Star(V') is contained entirely in |N'|, so that its image is
precisely W = V' N S""! so that (ii) holds. By our choice of W, (i)
also holds. g

The following proposition, making use of the covering dimension
result in the previous section, establishes that Theorem implies
an approximate version of Theorem .

Proposition 4.2. Let A be a unital C*-algebra and let n € N. If C(D")
is approximated in C(D™, A) by commutative C*-algebras whose spec-
trum has dimension at most (n — 1), then the following holds. For any
finite set F C C(S™Y) and any € > 0, there exists a x-homomorphism

¢:C(S" Y — C(D", A) such that
a = ¢(a)|sn
forall a € F;
Proof. Let F € C'(S™ ') and € > 0 be given. Let Uy be an open cover of
S~ such that for every a € F, U € Uy and z,y € U, ||a(x)—a(y)| < e

There exists an open cover U of S"~! such that, for every k and every
Vi,o..,2Ve e, it ViN---NV, # & then there exists U € Uy such that

Viu---uV, CU.
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(This can be done by taking a barycentric refinement of Uy, see eg. [2]
VIII.3]; alternatively, it is not hard to do by putting a metric on S™71.)

Let V be an open cover of D" and « : [N, (V)| — S™! be a continu-
ous map as prov1ded by Lemmal[4.1} By the hypothesis and Proposition

| let (b )Z 0....n: j=1,..r be an n-colourable commuting partition of
unity subordinate to V. For each 7, 7, let Vj(i) € V be a set containing
the support of bg.i).

As described in Section |2, let N be the nerve of (b ( ) (w1th {(4,7) |

i=0,...,n,7=1,...,7} as the set of vertices) and let (|N|)
C’*({bél)}) be the canonlcal x-homomorphism. If {b;lll), Ce Sk }is a

simplex in N then evidently & < n (by n-colourability), and
VNNV £e

Thus, (4,7) — Vj(i) induces a simplicial map from N to N,(V), and
thereby a continuous map 5 : |[N| — |N,(V)|.
Define ¢ : C'(S™!) — C(D", A) to be the following composition

o™ R cUn ) R N S ey € oo, ).

Let us now show that [[a — ¢(a)|sn-1]| < € for a € F, by showing that
lla(z) — ¢(a)(z)| < € for every x € S 1.

Therefore, fix x € S ! and @ € F. Let the kernel of ev, o ¢ be
Co(S™1\Y), where Y C 8™ ! is closed; thus, ev, o ¢ can be viewed as
a representation of C'(Y'). Using the fact that a(x) € C and ¢ is unital,
we see that |la(x) — ¢(a)(z)]| < sup,ey [|a(z) — a(y)||. We shall show
that Y is a subset of some open set in U, so that we may conclude that

la(z) = ¢(a)(2)]| < e
Let the kernel of ev, o1 be C’O(|N|\Z) so that Y C a(B(Z)) (by

the definition of ¢). Set T := {(i,j) | b ( ) # 0}. By the definition of
1, we can see that Z is contained in the union of stars about vertices
(1,7) € T. The definition of § then ensures that 3(Z) is contained in

the union of Stgrs abouﬁ vertices Vj(z), where (i,7) € T. By Lemma
(ii), a(Star(V”)) = VP 0§71 in $"1, so that

(4.1) YCaB2)c |J vi'ns

(4,5)€T

By definition of T, and since the support of bg-i) is contained in Vj(i),
we have

ve () Vi'ns

(3,5)€T
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By Lemma {.1] (i), Vj(i) N S™ ! is a subset of some U]@ € U. By our
choice of U, this implies that there exists U € U, such that

U v'nstcu
(4,9)€ET

Combined with (4.1)), we find that Y C U, as required. O

Our next task is to turn the approximate version of Theorem [I.1
(i) into an exact version, thus completing the proof of Theorem
(i) = . This will use a fact about ANRs, namely that nearby maps
into an ANR are homotopic [7, Theorem IV.1.1], applied to the ANR
Sn=1. We state (and use) this result in the language of commutative
C*-algebras.

Lemma 4.3. [7, Theorem IV.1.1] Let n € N. There is a finite set F C
C(S™1) and € > 0 such that the following holds: If A is a commutative
C*-algebra and ¢o, ¢ : C(S™1) — A are x-homomorphisms which
satisfy

$o(a) ~c ¢1(a)
foralla € F, then ¢g and ¢, are homotopic, i.e. there is a x-homomorphism

¢:C(S" Y — C([0,1], A) such that
¢; =ev;oQ
for1=0,1.

Proof of Theorem (@) = . Suppose that (i) holds, and thereby
so does the conclusion of Proposition 1.2, Let F C C(S"™!) and € > 0

be given by Lemma [4.3] Use the conclusion of Proposition to get a
x-homomorphism
¢o: C(S™1) — C(D", A)
such that ¢g(a)|sn-1 =~ a for all a € F. Note that
B = C*(C(S" ) U ¢o(C(S™ 1)) | gn-1)

is a commutative subalgebra of C'(S"1, A). Therefore by Lemma |4.3]
there exists ¢ : C(S"1) — C([0,1], B) such that

(42) evg O ¢ = ¢O|Sn71
and evy o 1 is equal to the trivial inclusion C'(S"7!) C B.

D" is homeomorphic to (D™ U [0, 1] x S"1)/ ~, where ~ identifies
each point of D™ = S"~! with the corresponding point of {0} x S"!.
This provides an identification of C(D™, A) with a subalgebra C' of

C(D",A) @ C([0,1] x S" 1 A),
and we see that (4.2) ensures that the image of the map ¢g @ ¢ :
C(S" 1) — C(D", A) & C([0,1] x S"~ A) is contained in C. Thus,
we may view ¢g P 1 as a map ¢ : C(S"') — C(D", A). Then for
a€C(S"),

¢(a)lsn-1 = P(a)lpyxsn1 = a,
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as required. O

5. KIRCHBERG AND RGRDAM’S ARGUMENT

Proof of Theorem = (@) This is essentially contained in the
proof of [8, Proposition 3.5].

Assume that holds. Let us first assume that X is a CW com-
plex. Given a finite subset F of C(X) and ¢ > 0, let us take a CW
decomposition of X so that each a € F varies by at most € on each
cell. We may view this decomposition as a canonical surjection

«a: H D, — X,
k=1
where each D), is homeomorphic to a disc of dimension at most n, and
the restriction of « to | J Dy, is one-to-one. Composition with « provides
an injective s-homomorphism C(X) — C([[,_, Dx); we will identify
C(X) with its image under this map. For each k, define Y, C Dy
and ¢y @ C(Yy) — C(Dg, A) as follows: If Dy has dimension n, set
Y: := 0Dy and let ¢, be as given by . Otherwise, set Y}, := D), and
let ¢y : C(Dy) — C(Dy, A) be the inclusion.

Note that in both cases, we have 0Dy C 9Y} and ¢x(a)|ap, = alop,
for all a € C(Dy). Set ¢ = @ ¢x : C(I11, Ya) — C(Uj_, D, A), and
set Y = a([[Ys). Identify C(Y) with a subalgebra of C'([[, Y%) via a.
Since (;B(a)luapk = alyap,, we see that for a € C'(Y),

~

d(a) € C(X, A).

Hence, ¢ = (glc(y) is a map from C(Y) to C(X,A). For x € X, the
kernel of ev, o ¢ is Co(Y'\K') where

K €| {a(Dy) | = € (D)}
Since each a € F varies by at most € on each a(Dy), we see that

¢laly)(z) ~c a(z).

In particular, F is approximated by the image of C'(Y"), thus concluding
the proof in the case that X = D™,

Now, any other n-dimensional compact Hausdorff space X is an in-
verse limit of CW complexes of dimension at most n, so that F can be
approximated (up to €/2), inside C'(X), by an algebra C' isomorphic to
C(Z) for some n-dimensional CW complex Z. Hence, we may approx-
imate F (up to €) inside C® A C C'(X) ® A by a commutative algebra
of topological dimension at most n — 1. U

Proof of the last sentence of Theorem[I.1]. The above argument, and
induction, shows that if Theorem holds, then for any m > n,
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the inclusion C(D™) — C(D™, A®™) can be approximately factorized
as

c(p™) 2 o) % o(Dr, ARy,

where T' has dimension at most n — 1 and ¥¢(f)|gm-1 = f|gm-1. We
may identify A" "1 with A, so that for any m € N, the inclusion
C(D™) — C(D™, A®™) can be approximately factorized as

c(p™) 2 o) % o(pr, ARy,

where I" has dimension at most n — 1 and ¥¢(f)|gm-1 = f|gm-1 (this
factorization is trivial if m < n — 1). Then, a patching-together ar-
gument as in the above proof shows that holds with the words
“n-dimensional” removed, when X is a CW complex. Approximating
arbitrary X by CW complexes, again as in the above argument, yields
with the words “n-dimensional” removed, in general. U
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