
1

Parallel and Streaming Truth Discovery
in Large-Scale Quantitative Crowdsourcing

Robin Wentao Ouyang, Lance M. Kaplan, Alice Toniolo, Mani Srivastava, and Timothy J. Norman

Abstract—To enable reliable crowdsourcing applications, it is of great importance to develop algorithms that can automatically discover

the truths from possibly noisy and conflicting claims provided by various information sources. In order to handle crowdsourcing

applications involving big or streaming data, a desirable truth discovery algorithm should not only be effective, but also be scalable.

However, with respect to quantitative crowdsourcing applications such as object counting and percentage annotation, existing truth

discovery algorithms are not simultaneously effective and scalable. They either address truth discovery in categorical crowdsourcing

or perform batch processing that does not scale. In this paper, we propose new parallel and streaming truth discovery algorithms for

quantitative crowdsourcing applications. Through extensive experiments on real-world and synthetic datasets, we demonstrate that 1)

both of them are quite effective, 2) the parallel algorithm can efficiently perform truth discovery on large datasets, and 3) the streaming

algorithm processes data incrementally, and can efficiently perform truth discovery both on large datasets and in data streams.

Index Terms—Crowdsourcing, truth discovery, quantitative task, big data, parallel algorithm, streaming algorithm

✦

1 INTRODUCTION

Crowdsourcing is a process of obtaining needed content,
information, or services by soliciting contributions from
a large group of usually undefined people, rather than
from traditional employees or suppliers. It is becoming
increasingly popular as it provides an easy, time-, and
cost-efficient way to collect a large volume of data for
a variety of applications, such as image labeling, image
description, sentiment analysis, listing verification, object
counting, translation, and logo design [1]–[5].

A typical crowdsourcing application involves a set of
crowd participants ui and a set of targets zj (illustrated
in Fig. 1). A target could be the label of an image, the
translation of a sentence, or the number of objects in an
image. When a participant ui works on a target zj , she
makes a claim xij . These participants, targets, and claims
then form an information network.

As the quality of data obtained from crowd partic-
ipants is often much lower than the quality of data
collected from traditional employees and experts [2],
it is of great importance to develop truth discovery
methods that can automatically discover the true values
of targets zj from possibly conflicting and low-quality

• R. W. Ouyang is with the Department of Computer Science, and M.
Srivastava is with the Department of Electrical Engineering and the
Department of Computer Science, University of California, Los Angeles,
CA, USA.
E-mail: {wouyang, mbs}@ucla.edu

• L. M. Kaplan is with the Networked Sensing & Fusion Branch, US Army
Research Laboratory, Adelphi, MD 20783, USA.
E-mail: lance.m.kaplan@us.army.mil

• A. Toniolo and T. J. Norman are with the Department of Computing
Science, University of Aberdeen, Aberdeen, UK.
E-mail: {a.toniolo, t.j.norman}@abdn.ac.uk

Fig. 1. Information network formed by a set of crowd
participants ui making claims xij on a set of targets zj .

crowdsourced claims xij , thus enabling reliable crowd-
sourcing applications.

In this paper, we address the effective and scalable
truth discovery problem in quantitative crowdsourcing
applications involving big or streaming data. This is
motivated by the various quantitative applications that
crowdsourcing can enable. In sensor network and com-
puter vision applications such as occupancy inference
[6] and people counting [7], a large number of labeled
data are often needed to train an automatic system. For
example, in order to train a sensor-based room-level
occupancy inference system, the ground truth people
counts from snapshots taken by a camera every 1 to 5
minutes over at least two weeks need to be annotated [6].
That is to say, 3k to 15k snapshots (excluding those at late
night) per room need to be annotated. Even for a small-
scale deployment with 5 rooms, one needs to annotate
15k to 75k snapshots. Crowdsourcing can thus be used
to simplify and speed up such annotation processes [6].

Crowdsourcing can also be used to enable new quan-
titative applications. For example, eBird1 crowdsourced
the bird populations around the world [8]. It was noted
that ”birds are notoriously hard to count. While sta-
tionary sensors can measure things like carbon dioxide
levels and highway traffic, it takes people to note the

1. http://ebird.org/content/ebird/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive

https://core.ac.uk/display/77051965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

type and number of birds in an area”. In May 2013,
eBird gathered 5.6 million new observations from 169
countries [8]. As another example, Indonesian voters
crowdsourced ballot counts to protect against election
fraud in 2014 [9]. It was reported that ”in just two
days, the (General Elections Commissions’) website has
garnered 1,200 users who ’crowdcounted’ over 31,000
documents” [9]. Furthermore, our previous work [10]
crowdsourced the waiting line length and the occupancy
level in local businesses and services, where physical
sensor networks encounter the scalability problem.

However, the lack of an effective and scalable quantita-
tive truth discovery algorithm may hinder the usefulness
of these large-scale crowdsourcing applications. Most
existing truth discovery methods [11]–[17] are designed
for categorical or even binary truth discovery. They rely
on the agreement among claims and use the rates of
exactly correct claims to capture participants’ abilities.
These methods are thus not effective or even not appli-
cable for quantitative crowdsourcing applications, where
it is not uncommon that each participant provides a
different claim for a target, and the rate of exactly correct
claims is small for any participant. Moreover, due to the
networked nature of crowdsourcing applications (Fig.
1), these methods perform batch truth discovery on the
whole networked data, which does not scale.

We recently proposed the Truth, Bias, and Precision
(TBP) model [10] for quantitative truth discovery. The
TBP model uses biases and precisions to capture crowd
participants’ abilities in quantity estimation, and it nat-
urally incorporates the similarity between the latent
truth and each crowdsourced claim. Although the TBP
model has been shown to be more effective than existing
truth discovery methods for quantitative crowdsourcing
[10], the original model inference algorithm is also not
scalable. This is because it is a batch algorithm and
the inferences of target-related and participant-related
parameters are coupled together such that joint opti-
mization must be performed. Wang et al. [18] recently
proposed a recursive truth discovery method that is scal-
able. However, it is designed for binary truth discovery,
and is not applicable to quantitative crowdsourcing.

In this paper, we propose a parallel algorithm and a
streaming algorithm to handle truth discovery in large-
scale quantitative crowdsourcing applications. We first
develop a new batch algorithm based on the TBP model.
This algorithm decouples the inferences of target-related
and participant-related parameters, and is thus amenable
to scalable truth discovery upon further modification.
We then examine its structure and exploit the MapRe-
duce framework [19] to develop a parallel algorithm
that can efficiently handle big data. This algorithm de-
composes the large-scale truth discovery problem into
several small-scale map and reduce tasks that can be run
in parallel over a cluster of processors. Finally, we exploit
the on-line expectation-maximization (EM) algorithm
[20] to develop a streaming algorithm, which recursively
updates its parameters by processing data incrementally.

It can thus efficiently perform truth discovery both on
large datasets and in data streams. Through extensive
experiments, we demonstrate that both the parallel and
the streaming algorithms are simultaneously effective
and scalable. To our best knowledge, both the MapRe-
duce framework and the on-line EM algorithm have not
been explored for enabling large-scale truth discovery in
crowdsourcing applications.

In summary, our main contributions are as follows:

1) We address the effective and scalable truth discov-
ery problem in quantitative crowdsourcing appli-
cations involving big or streaming data.

2) We propose a parallel algorithm and a streaming
algorithm that are both effective and scalable.

3) We analyze the time and the space complexity of
these proposed algorithms.

4) We conduct extensive experiments on both real-
world and synthetic datasets to evaluate the per-
formance of these proposed truth discovery algo-
rithms and other state-of-the-art competitors.

The remainder of this paper is organized as follows.
We formalize the problem in Section 2 and briefly review
the TBP model in Section 3. We then develop new batch,
parallel, and streaming truth discovery algorithms in
Sections 4, 5, and 6. We analyze the time and the space
complexity of these algorithms in Section 7. Experimen-
tal results are presented in Section 8. We discuss other
research problems and related work in Sections 9 and
10. Finally, we conclude the paper in Section 11.

2 PROBLEM STATEMENT

For ease of illustration, we list the notations used in this
paper in Table 1. A typical quantitative crowdsourcing
task is to ask crowd participants to count the number of
target quantities such as people, vehicles, and animals in
images, video frames, local businesses, or other scenarios
[6]–[10]. Consider a scenario where M crowd partici-
pants ui make quantitative claims xij (e.g., 5, 12, and
20) on N target quantities zj (e.g., the number of people
in the jth image). We only observe the crowdsourced
claims xij , but not the true quantity values zj . The
truth discovery problem in quantitative crowdsourcing
applications is to automatically recover the true quantity
values zj from crowdsourced claims xij .

3 REVIEW OF THE TBP MODEL

In this section, we briefly review the Truth, Bias, and
Precision (TBP) model proposed in [10], summarize its
properties, outline the original truth discovery algo-
rithm, and discuss its scalability issue.

3.1 The TBP Model

The structure of the TBP model is shown in Fig. 2. The
TBP model is specifically designed to tackle truth discov-
ery in quantitative crowdsourcing applications. It jointly
models the following variables: 1) a target’s latent true

3

TABLE 1
Notations.

Notation Meaning

M # of crowd participants

N # of target quantities

K # of underlying difficulty levels

P # of processors

X # of claims

ui ith participant

zj true value of the jth target quantity

Uj set of participants who make a claim on zj

Zi set of targets that ui makes a claim on

πk probability that task difficulty is in level k

rjk difficulty of estimating zj is in level k

hik ui’s bias in difficulty level k

λik ui’s precision in difficulty level k

xij claim that ui makes on zj

xj all the claims on zj

µj , νj hyperparameters for zj

aik , bik hyperparameters for λik

quantity value zj , 2) a task’s underlying difficulty level
rjk, 3) a participant’s quantity estimation bias hik and
precision λik, and 4) a participant’s claim xij . Among
these variables, only the claim xij is observed.

1) Latent truth. It models that the target quantity in
each task has a latent true value zj , which is generated
from a Gaussian distribution as

p(zj |µj , νj) = N (zj |µj , 1/νj) =

√

νj
2π

exp
[

−
νj
2
(zj − µj)

2
]

,

where µj and νj are hyperparameters, encoding the prior
belief on the mean and the precision (i.e., inverse of the
variance) of zj .

2) Difficulty level. It models that there are K discrete
difficulty levels (such as easy, normal, and hard). This is
motivated by the observations from Fig. 4 in [10], where
multiple modes are observed in participants’ quantity es-
timation errors. By modeling difficulty levels, the errors
around each mode can then be well explained as caused
by a specific difficulty level and can be conveniently
modeled by a parametric distribution. In particular, each
task draws an unobserved underlying difficulty indica-
tor rjk from a multinomial distribution as

p(rjk = 1|πk) = πk,

where πk is the probability that the task difficulty is in
level k. rjk uses 1-of-K coding, where only 1 out of K
rjk can be 1 and others are all 0. Using such a coding,
when we write rjk, we implicitly imply rjk = 1.

3) Participant’s bias and precision. It models that each
participant ui has K pairs of (bias, precision) parameters
(hik,λik) in quantity estimation. The choice of which pair
to use depends on the underlying task difficulty rjk. It
also imposes the prior probability on each λik as

p(λik|aik, bik) = Gamma(λik|aik, bik)

=
1

Γ(aik)
baik

ik λaik−1
ik exp(−bikλik),

xij

zj

rj
NM

!ik"

K

aik

hik

bik

j#

j$

Fig. 2. Structure of the Truth, Bias, and Precision (TBP)
model. Each node represents a random variable. Dark
shaded nodes represent observed variables, light nodes
represent latent variables and model parameters, and
nodes without a circle represent hyperparameters.

where aik, bik are hyperparameters of a Gamma distribu-
tion (the conjugate prior of the precision parameter of a
Gaussian distribution), encoding the prior belief on λik.

4) Crowdsourced claim. It models the conditional
probability that ui makes a claim xij on a target zj as

p(xij |zj , rjk, hik,λik) = N (xij |zj + hik, 1/λik). (1)

In (1), the underlying task difficulty rjk impacts which
(hik,λik) pair ui will use to generate xij . xij is centered at
zj +hik (instead of zj in order to reflect the participant’s
estimation bias), and its spread is controlled by λik.

The hyperparameters are set as follows

µj = žj , νj =
|Uj |2

∑

i∈Uj
(xij − žj)2

, aik = 1 + 10−4, bik = 10−4.

where žj = mediani∈Uj
(xij) and Uj is the set of partici-

pants who make a claim on zj . These hyperparameters
can encode prior belief and also help alleviate model
overfitting.

The number K of difficulty levels is set empirically,
based on the type of tasks (implying different overall
difficulties) [10]. K is set to 3 for object counting tasks,
and K is set to 2 for percentage annotation tasks.

3.2 Properties

It can be shown that the TBP model holds the following
properties [10] which make it more appropriate for quan-
titative truth discovery than existing categorical truth
discovery methods [11]–[17].

1) The TBP model uses biases and precisions to cap-
ture participants’ abilities in quantity estimation. In
contrast, categorical truth discovery methods use
the rates of exactly correct claims to capture partic-
ipants’ abilities. Such rates are usually very small
for any participant in quantitative crowdsourcing.

2) The TBP model naturally incorporates the simi-
larity between the latent truth and each crowd-
sourced claim. The more similar a claim (after bias
correction) is to the latent truth, the more likely
such a claim can be observed. In contrast, in most
categorical truth discovery methods, the likelihood
of observing a claim is the same for any claim that
differs from the latent truth.

4

(a) Batch truth discovery (b) Parallel truth discovery (c) Streaming truth discovery

Fig. 3. Illustration of different truth discovery algorithms. x denotes a crowdsourced claim and − denotes a missing
value (i.e., the corresponding u does not make a claim on the corresponding z). (a) Batch truth discovery. It loads
the whole dataset for processing. (b) Parallel truth discovery. It splits the whole dataset into small chunks, which are
processed by map tasks in parallel. The outputs of the map tasks are then sorted and input to the reduce tasks. (c)
Streaming truth discovery. It loads and processes data incrementally, and updates its parameters recursively.

3) The marginal probability of observing a claim un-
der the TBP model is given by a Gaussian mixture
model. Therefore, TBP has the ability to model
the estimation errors in crowdsourced claims with
complex underlying distributions, such as multi-
modal, caused by varying task difficulties.

3.3 Original Truth Discovery Algorithm

Given the TBP model, the original truth discovery algo-
rithm in [10] treats R = {rjk} as latent variables, θ =
{πk, zj , hik,λik} as model parameters, and X = {xij} as
observed data. It is developed based on the Expectation
Maximization (EM) algorithm [21], [22], and it iterates
over an E-step and an M-step until model convergence.
The converged zj values are used as the estimated truths.

In the E-step (tth iteration), it computes the expecta-
tions of the latent variables rjk as

γ(t)jk ≡ E
R|X,θ(t)(rjk) ∝ π(t)

k

∏

i∈Uj

N (xij |z
(t)
j + h(t)

ik , 1/λ
(t)
ik).

For each j, γ(t)jk needs to be normalized over k.

In the M-step, it first computes π(t+1)
k =

∑
j γ

(t)
jk

N
. It

then initializes zj as z(t)j and iterates over the following
system of equations until convergence.

hik =

∑

j∈Zi
γ(t)jk (xij − zj)

∑

j∈Zi
γ(t)jk

,

λik =
1
2

∑

j∈Zi
γ(t)jk + aik − 1

1
2

∑

j∈Zi

[

γ(t)jk (xij − zj − hik)2
]

+ bik
,

zj =
νjµj +

∑

k

[

γ(t)jk

∑

i∈Uj
(λik(xij − hik))

]

νj +
∑

k

(

γ(t)jk

∑

i∈Uj
λik

) . (2)

The converged values h∗ik, λ∗ik, and z∗j are treated as

h(t+1)
ik , λ(t+1)

ik , and z(t+1)
j .

3.4 Scalability Issue

It is observed that the original truth discovery algorithm
presented in Section 3.3 is unfortunately not scalable.
This is because 1) each update needs all the available
data xij , and 2) the optimal h∗ik, λ∗ik, and z∗j of (2) do
not have closed-form solutions, but are coupled together
so that joint optimization must be performed (e.g., each
optimal h∗ik depends on a set of unknown zj , and each
optimal z∗j depends on a set of unknown hik and λik).

4 BATCH TRUTH DISCOVERY

In this section, we develop a new batch truth dis-
covery algorithm based on the TBP model. This algo-
rithm decouples the inferences of target-related (zj) and
participant-related (hik,λik) parameters. We illustrate its
structure in Fig. 3(a). As a batch algorithm, it is still
not scalable. However, it can be extended to handle big
data upon further modification, which results in a new
parallel algorithm in Section 5 and a new streaming
algorithm in Section 6. We also illustrate the structures
of these two algorithms in Fig. 3 in order to demonstrate
the core ideas and differences of them.

4.1 Overview

The idea behind this new batch algorithm is to move the
inference of zj to the E-step, rather than in the M-step. In
other words, zj is treated as a latent variable rather than
a model parameter. This is motivated by the observation
from Fig. 2 that crowdsourced claims corresponding to
the same target are conditionally independent when both
the task difficulty rjk and the target value zj are given
(otherwise, they are dependent).

In this new algorithm, we compute the expectations
of task difficulties rjk, target-related parameters zj , and
their functions in the E-step, and we only need to update
participant-related parameters hik and λik in the M-step.
By doing so, the expectations of zj and the updating
rules of hik and λik all have closed forms.

5

Algorithm 1 Batch truth discovery

Input: Crowdsourced claims X = {xij}
Output: Estimated true quantity values ẑj

1: Initialize πk, hik, λik and set t = 0
2: while Model does not converge do
3: {E-step}
4: for j = 1, . . . , N do
5: For all k, calculate α

(t)
jk , β(t)

jk , ζ(t)jk acc. (5)
6: end for
7: {M-step}
8: For all k, update π

(t+1)
k acc. (8)

9: for i = 1, . . . ,M do
10: For all k, update h

(t+1)
ik , λ(t+1)

ik acc. (8)
11: end for
12: t← t+ 1
13: end while
14: {Truth Discovery}
15: Estimate ẑj using converged model paras. acc. (9)
16: return ẑj

In particular, we treat Y = {rjk, zj} as latent variables
and ϑ = {πk, hik,λik} as model parameters. We can write
out the likelihood of observing crowdsourced claims
X = {xij} given model parameters ϑ as

p(X|ϑ) =
∏

j

p(xj |ϑ)

=
∏

j

∫

p(zj)
∑

k

[

p(rjk|ϑ)
∏

i∈Uj

p(xij |zj , rjk,ϑ)
]

dzj , (3)

where xj = {xij |i ∈ Uj} is the set of claims with respect
to the target zj .

Using the maximum a posteriori (MAP) estimation
[22], we can maximize ln p(X|ϑ) + ln p(ϑ) with respect
to ϑ, and obtain the estimates of model parameters.
However, direct optimization is difficult due to the
summations and integrals in p(X|ϑ). We thus again
resort to the EM algorithm [21] for model inference. We
summarize the inference procedure in Algorithm 1.

The derivation of this new batch algorithm is much
more complex than that of the original algorithm in
[10]. This is because we now have an additional latent
variable zj , in addition to rjk, and we need to compute
more expectation terms in the E-step.

4.2 E-step

We first write out the complete-data log-likelihood as

ln p(X,Y|ϑ) =
∑

j

ln p(zj) +
∑

j

∑

k

rjk lnπk

+
∑

j

∑

k

rjk
∑

i∈Uj

(1

2
lnλik −

1

2
λik(xij − zj − hik)

2
)

. (4)

In the E-step, we compute E
Y|X,ϑ(t) [ln p(X,Y|ϑ)],

which is the expectation of the complete-data log-
likelihood given the current estimate ϑ

(t) of model
parameters. After writing out the expression of
E
Y|X,ϑ(t) [ln p(X,Y|ϑ)], we find that we need to compute

the following expectations

α(t)
jk ≡ E

Y|X,ϑ(t)(rjk) ∝ π(t)
k N (f (t)

jk |µj , 1/νj + 1/g(t)jk),

β(t)
jk ≡ E

Y|X,ϑ(t)(rjkzj) = α(t)
jk φ

(t)
jk ,

ζ(t)jk ≡ E
Y|X,ϑ(t)(rjkz

2
j) = α(t)

jk

[

(φ(t)jk)
2 + 1/ψ(t)

jk

]

, (5)

where

f (t)
jk ≡

∑

i∈Uj
λ(t)ik (xij − h(t)

ik)
∑

i∈Uj
λ(t)ik

, g(t)jk ≡
∑

i∈Uj

λ(t)ik ,

φ(t)jk ≡
νjµj +

∑

i∈Uj
λ(t)ik (xij − h(t)

ik)

νj +
∑

i∈Uj
λ(t)ik

, ψ(t)
jk ≡ νj +

∑

i∈Uj

λ(t)ik .

(6)

For each j, α(t)
jk needs to be normalized over k. We

provide the complex derivation in the Appendix.

4.3 M-step

In the M-step, we re-estimate the model parameters
ϑ given the expectations of the latent variables. We
perform the MAP estimation [22] and the corresponding
M-step is to solve the following optimization problem

ϑ
(t+1) = argmax

ϑ
E
Y|X,ϑ(t) [ln p(X,Y|ϑ)] + ln p(ϑ)

s.t.
∑

k

πk = 1, (7)

where ln p(ϑ) =
∑

i

∑

k ln p(λik).
We can derive the solution to (7) as follows

π(t+1)
k =

∑

j α
(t)
jk

N
, h(t+1)

ik =

∑

j∈Zi
α(t)
jk xij −

∑

j∈Zi
β(t)
jk

∑

j∈Zi
α(t)
jk

,

λ(t+1)
ik =

1
2

∑

j∈Zi
α(t)
jk + aik − 1

1
2

∑

j∈Zi

[

α(t)
jk x

2
ij + α(t)

jk (h
(t+1)
ik)2 − 2α(t)

jk xijh
(t+1)
ik

− 2β(t)
jk xij + 2β(t)

jk h
(t+1)
ik + ζ(t)jk

]

+ bik

,

(8)

where Zi is the set of targets that ui makes a claim on.
As the expectations α(t)

jk , β(t)
jk , and ζ(t)jk have been

computed in the E-step and the claims xij are observed,
these updating rules in (8) have closed forms, which do
not depend on the unknown true values of zj (but its
known expectations).

4.4 Estimating True Quantity Values

Different from the original truth discovery algorithm in
[10], we do not directly estimate zj during model infer-
ence. After the EM algorithm converges, we estimate the
true quantity value zj using the minimum mean square
error (MMSE) estimation [22] as

E(zj |xj) =
∑

k

p(rjk|xj)E(zj |rjk,xj)

=
∑

k

αjkφjk =
∑

k

βjk. (9)

6

Algorithm 2 Parallel truth discovery

Input: Crowdsourced claims X = {xij}
Output: Estimated true quantity values ẑj

1: Initialize πk, hik, λik and set t = 0
2: while Model does not converge do
3: {Map algorithm}
4: for each chunk c of claims (in parallel) do
5: Initialize all sc(t) as 0
6: for each target j do
7: For all k, calculate α

(t)
jk , β(t)

jk , ζ(t)jk acc. (5)

8: For all k, update s
c(t)
0k acc. (12)

9: for i ∈ Uj do
10: For all k, update s

c(t)
1ik , sc(t)2ik , sc(t)3ik acc. (13)

11: end for
12: end for
13: Output < key, value > pairs acc. (14)
14: end for
15: {Reduce algorithm}
16: Compute N , s(t)0k ; update π

(t+1)
k acc. (11)

17: for Each chunk d of participants (in parallel) do
18: for each participant i do
19: Compute s

(t)
1ik, s(t)2ik, s(t)3ik and update h

(t+1)
ik , λ(t+1)

ik

acc. (11)
20: end for
21: end for
22: t← t+ 1
23: end while
24: {Truth Discovery}
25: Estimate ẑj using converged model paras. acc. (9) on each

mapper (in parallel)
26: return ẑj

It is observed that E(zj |xj) can be conveniently com-
puted as the sum over βjk, which has been calculated in
(5) in the E-step. We then round E(zj |xj) to the closest
integer as the final estimate ẑj .

5 PARALLEL TRUTH DISCOVERY

In this section, we develop a parallel truth discovery
algorithm based on the new batch algorithm developed
in Section 4 and the MapReduce framework [19] that
can efficiently handle big data. This parallel algorithm
decomposes the large-scale truth discovery problem into
several small-scale map and reduce tasks that can be run
in parallel over a cluster of processors. We illustrate the
structure of this algorithm in Fig. 3(b).

5.1 Overview

We first examine the structures of the updating rules (8)
in the M-step of the new batch algorithm, and define the
following new variables representing sufficient statistics

s(t)0k ≡
∑

j

α(t)
jk , s(t)1ik ≡

∑

j∈Zi

α(t)
jk ,

s(t)2ik ≡
∑

j∈Zi

(

α(t)
jk xij − β

(t)
jk

)

,

s(t)3ik ≡
∑

j∈Zi

(

α(t)
jk x

2
ij − 2β(t)

jk xij + ζ(t)jk

)

. (10)

Using these sufficient statistics, we can rewrite the up-
dating rules (8) in the M-step as

π(t+1)
k =

s(t)0k

N
, h(t+1)

ik =
s(t)2ik

s(t)1ik

,

λ(t+1)
ik =

1
2s

(t)
1ik + aik − 1

1
2

[

s(t)1ik(h
(t+1)
ik)2 − 2s(t)2ikh

(t+1)
ik + s(t)3ik

]

+ bik
. (11)

It is observed from (11) that once we have computed
the values of the sufficient statistics in (10), the model
parameters in the M-step can be easily updated. The
problem remaining is how to compute these sufficient
statistics in (10) efficiently.

By observing the structures of the sufficient statistics,
we exploit the MapReduce framework [19] to com-
pute them in parallel. MapReduce is a programming
model and an associated implementation for processing
large datasets with a parallel, distributed algorithm on
a cluster. A MapReduce job usually splits the input
dataset into independent chunks, which are processed
by the map tasks in a completely parallel manner. The
framework sorts the outputs of the map tasks, which
are then input to the reduce tasks. MapReduce has
been used in a wide range of applications, including
distributed pattern-based searching, distributed sorting,
web access log statistics, inverted index construction,
document clustering, and machine learning2.

In the following, we detail our proposed Map and
Reduce algorithms. The overall parallel algorithm is
summarized in Algorithm 2.

5.2 Map Algorithm

We first partition the whole set of claims into C chunks
with almost equal size such that each chunk can be
completely loaded into memory (the partition is target-
wise). Each chunk then contains a subset of claims xij

corresponding to non-overlapping targets zj , but over-
lapping participants ui (illustrated in Fig. 3(b)). Denote
the number of targets in the cth chunk as N c.

Assume we have P processors, then P mappers can
be run in parallel and each mapper processes a chunk
of claims. For the cth chunk, a mapper initializes all
the sufficient statistics sc as 0, and does the following
processing for each target zj and associated xij (we
annotate related variables with superscript c to denote
that the result is produced from the cth chunk of data).

1) Compute α(t)
jk , β(t)

jk , and ζ(t)jk according to (5).

2) Update sc(t)0k as

sc(t)0k ← sc(t)0k + α(t)
jk . (12)

3) Update sc(t)1ik , sc(t)2ik , sc(t)3ik for all i ∈ Uj as

sc(t)1ik ← sc(t)1ik + α(t)
jk ,

sc(t)2ik ← sc(t)2ik + α(t)
jk xij − β

(t)
jk ,

sc(t)3ik ← sc(t)3ik + α(t)
jk x

2
ij − 2β(t)

jk xij + ζ(t)jk . (13)

2. https://en.wikipedia.org/wiki/MapReduce.

7

Algorithm 3 Streaming truth discovery

Input: Crowdsourced claims X = {xij}
Output: Estimated true quantity values ẑj

1: for Each target do
2: j ← j + 1
3: {E-step}
4: For all k, calculate αjk, βjk, ζjk acc. (5)
5: For all k, update s̃

(j)
0k acc. (17)

6: for i ∈ Uj do
7: li ← li + 1
8: For all k, update s̃

(li)
1ik , s̃(li)2ik , s̃(li)3ik acc. (17)

9: end for
10: {M-step}
11: If j > 20, for all k, update π

(j)
k acc. (18)

12: for i ∈ Uj do
13: If li > 20, for all k, update h

(li)
ik , λ(li)

ik acc. (18)
14: end for
15: end for
16: {Truth Discovery}
17: Estimate ẑj using final model paras. acc. (9)
18: return ẑj

Once a mapper finishes processing the cth chunk of
claims, it outputs the following < key, value > pairs

< count,N c >,< 0k, sc(t)0k >,

< 1ik, sc(t)1ik >,< 2ik, sc(t)2ik >,< 3ik, sc(t)3ik > . (14)

The key count needs to be output only once. After the
model converges, each mapper also locally computes
E(zj |xj) according to (9).

5.3 Reduce Algorithm

A reducer sums up the values received from different
mappers with respect to the same key (illustrated in Fig.
3(b)). For example, for the key 1ik, the reducer initializes
s(t)1ik as 0 and does s(t)1ik ← s(t)1ik + sc(t)1ik over c (the reduce
step for the key count needs to be done only once). After
summing up all the values from all the data chunks, it
updates the model parameters π(t+1)

k , h(t+1)
ik , and λ(t+1)

ik

according to (11). These updated model parameters are
then input to the mappers again.

It is easy to show that

s(t)1ik =
∑

c

sc(t)1ik =
∑

c

∑

j∈Zc
i

α(t)
jk =

∑

j∈Zi

α(t)
jk ,

where Zc
i is the set of targets in the cth chunk of

data that ui makes a claim on. Therefore, this parallel
truth discovery algorithm and the batch truth discovery
algorithm in Section 4 produce exactly the same result.

As the aggregation of values (e.g., s(t)1ik) with respect to
different ui are independent in the M-step (11), we can
also partition the set of participants into several chunks
and use several reducers in parallel, each processing a
subset of non-overlapping participants.

6 STREAMING TRUTH DISCOVERY

In this section, we develop a streaming truth discovery
algorithm based on the new batch algorithm developed

in Section 4 and the on-line EM algorithm [20]. This
algorithm does not need to load all the data in each
iteration. Instead, it loads only one target and associated
claims in each iteration, and recursively updates its
parameters until all the targets are processed. It can thus
efficiently perform truth discovery both on large datasets
and in data streams, with limited hardware requirement.
We illustrate the structure of this algorithm in Fig. 3(c).

6.1 Overview

The batch truth discovery algorithm (Fig. 3(a)) has three
drawbacks when dealing with big data: 1) it needs to
load and process the whole dataset, which may cause
an “out of memory” problem, 2) it needs to iterate over
the whole dataset several times until convergence, which
costs lots of time, and 3) when new claims are available,
it cannot perform truth discovery incrementally but has
to reprocess historical data, in addition to new data.
Although the parallel algorithm (Fig. 3(b)) can load and
process chunks of data in parallel (which avoids the “out
of memory” problem and is much faster), it still cannot
perform incremental truth discovery.

These drawbacks motivate the development of a
streaming truth discovery algorithm (Fig. 3(c)) in this
section. This streaming algorithm only needs to load and
process one target and the associated claims in each iter-
ation. It recursively updates its model parameters until
all the targets are processed. That is to say, it iterates over
the whole dataset only once instead of several times. It
thus converges much faster than the parallel and the
batch algorithms. It also consumes much less memory
and can be executed in memory-limited environments.
Moreover, it can enable incremental truth discovery in
data streams in real time, where crowdsourced claims
arrive over time.

To enable the streaming algorithm, we first consider
a classical recursive parameter estimation algorithm [23]
which takes the form

ϑ̂n = ϑ̂n−1 + ρnI
−1(ϑ̂n−1)∇ϑ ln p(xn|ϑ̂n−1), (15)

where n denotes the nth data, ρ is a step size, and I is
the Fisher Information Matrix (FIM) [24]. This algorithm
recursively updates its parameters ϑ̂ when each new
data point x is obtained, thus achieving streaming model
update. However, it is difficult to apply this algorithm to
our problem as the data likelihood (3) is rather complex,
which makes the computation of the FIM prohibitive.

We thus resort to a more recently proposed on-line EM
algorithm [20], which does not rely on the computation
of the FIM, for streaming truth discovery. This algorithm
also processes each new data point only once and recur-
sively updates its model parameters. It has been proved
to converge to a local maximum [20], and empirically, it
often exhibits comparable performance as the batch EM
algorithm [24]. It replaces the E-step in the batch EM
algorithm [21] by a stochastic E-step on some sufficient
statistics, while keeping the M-step unchanged. To apply

8

this algorithm, the updating rules in the M-step must
be explicit (i.e., have closed forms) [20]. As a result,
the original truth discovery algorithm in [10] cannot be
extended to streaming processing utilizing this on-line
EM algorithm, while the new batch algorithm developed
in Section 4 can. We summarize our proposed streaming
truth discovery algorithm in Algorithm 3.

6.2 E-step

We consider all the claims xj = {xij |i ∈ Uj} with respect
to a target zj as a high-dimensional data point. The
streaming E-step is performed on each xj , rather than
on each xij . This is because xij are correlated for a
zj according to the TBP model, and considering them
separately is unreasonable. For applications where the
target quantity with respect to a given entity changes
over time, the quantities at different time are considered
as different targets [10], [18]. For example, people counts
in a given room at 3pm and at 4pm on the same day are
treated as two different targets. Truth discovery is then
performed on the claims for respective targets.

We start by examining the complete-data log likeli-
hood ln p(xj , rjk, zj |ϑ) with respect to one data point
(similar to (4), but only with respect to the jth target). We
then identify the sufficient statistics in the log likelihood
as Sj ≡ [rjk, rjkzj , rjkz2j , rjkxij , rjkx2

ij , rjkzjxij].
In the jth time step of the streaming E-step, we process

the jth data point xj and update the expectation of Sj

through stochastic approximation as [20]

s̃(j) = (1− ρ(j))s̃(j−1) + ρ(j)E(Sj), (16)

where ρ(j) = j−τ is the step size (i.e., the time order
j impacts the step size). We set τ = 0.6 according to
[20]. As ρ(1) = 1, the initial values of s̃ in (16) are well-
defined. According to Section 4.2, E(Sj) can be readily
obtained as E(Sj) = [αjk,βjk, ζjk,αjkxij ,αjkx2

ij ,βjkxij].
After examining the structures of the updating rules in
the corresponding M-step, we merge the updating of
several sufficient statistics given by (16) and have the
updating rules in the streaming E-step as

s̃(j)0k = (1−ρ(j))s̃(j−1)
0k +ρ(j)αjk,

s̃(li)1ik = (1−ρ(li))s̃(li−1)
1ik +ρ(li)αjk,

s̃(li)2ik = (1−ρ(li))s̃(li−1)
2ik +ρ(li)(αjkxij−βjk),

s̃(li)3ik = (1−ρ(li))s̃(li−1)
3ik +ρ(li)(αjkx

2
ij−2βjkxij+ζjk). (17)

In the above rules, we use an additional superscript
li to denote the time order of xij with respect to the
set of claims by ui. For example, if ui makes claims as
(xi1, xi2, xi5), then we have li = 3 for xi5 (i.e., xi5 is the
3rd claim made by ui).

It is observed from (17) that these new sufficient
statistics such as s̃(j)0k are recursively updated (rather than

the sum over all the data as that in (10)). Moreover, s̃(j)0k is

updated for each new xj , while s̃(li)1ik to s̃(li)3ik are updated
only when ui makes a claim xij on zj (i.e., i ∈ Uj), and
are with respect to the time order li of this claim.

6.3 M-step

In the streaming M-step, we compute the new model pa-
rameters by maximizing the expectation of the complete-
data log-likelihood (over a single data point) plus the
prior probabilities on model parameters. It can be shown
that the updating rules take the following form

π(j)
k = s̃(j)0k , h(li)

ik =
s̃(li)2ik

s̃(li)1ik

,

λ(li)ik =
1
2 s̃

(li)
1ik + aik − 1

1
2

[

s̃(li)1ik (h
(li)
ik)2 − 2s̃(li)2ikh

(li)
ik + s̃(li)3ik

]

+ bik
. (18)

Comparing (18) and (11), we note that π(j)
k in (18)

does not need normalization over N , as s̃(j)0k is already

normalized in (17). Moreover, π(t+1)
k , h(t+1)

ik , and λ(t+1)
ik

are all updated in the tth iteration in (11). In contrast,
when processing a new xj , π(j)

k is updated, while h(li)
ik

and λ(li)ik are updated only when the corresponding xij

is observed. According to [20], we do not perform the
M-step for the first 20 claims of each ui.

7 ANALYSIS

In this section, we analyze the time complexity (TC) and
the space complexity (SC) of the proposed batch, parallel
and streaming truth discovery algorithms (in Sections 4,
5, and 6 respectively).

7.1 Time Complexity

Batch algorithm. The batch algorithm needs to process
all the available data in each iteration. The TC of com-
puting each αjk, βjk, or ζjk in each iteration is O(M̄),
where M̄ is the average number of participants on each
target. The TC of computing each πk is O(1). The TC
of computing each hik or λik is O(N̄), where N̄ is the
average number of claims by each participant. Assume
this algorithm iterates T times until model convergence.
Its overall TC is then O(TK(1 + NM̄ + MN̄)), where
K is the number of difficulty levels, M is the total
number of participants, and N is the total number of
targets. We denote the total number of claims as X . As
NM̄ = MN̄ = X , its data processing TC can be rewritten
as O(TK(1 +X)).

Parallel algorithm. Assume in each iteration, each
mapper and each reducer process 1/C and 1/D of all
the data. For each mapper, the TC of computing all the
αjk, βjk, and ζjk is O(KM̄ N

C
) = O(KX

C
). The TC of

computing all the sc0k is O(K N
C
). The TC of computing

all the sc1ik, sc2ik, and sc3ik is O(KX
C
). For each reducer, the

TC of computing all the s1ik, s2ik, and s3ik is O(K CM
D

).
The TC of computing all the hik and λik is O(KM

D
). The

TC of computing all the s0k and πk (on any reducer)
are O(KC) and O(K) respectively. This algorithm takes
the same number T of iterations as the batch algorithm
until model convergence. Its overall data processing TC
is then O(TK(1 + C + X+N

C
+ CM+M

D
)). Moreover, each

9

mapper needs to send out all the sc1ik, sc2ik, and sc3ik, and
each reducer needs to send out 1/D of all the hik and
λik. This communication overhead is then O(KM(1+ 1

D
)).

Additionally, the system needs to sort the output of all
the mappers. This shuffling overhead is O(CKM).

Streaming algorithm. For the streaming algorithm, the
number of iterations is the same as the number N of
targets. In each iteration, the TC of computing all the
αjk, βjk, and ζjk is O(KM̄). The TC of updating all the
s̃0k is O(K). The TC of updating all the s̃1ik, s̃2ik, and
s̃3ik is O(KM̄). The TC of computing all the πk is O(K).
The TC of computing all the hik and λik is O(KM̄). Its
overall data processing TC is then O(NK(1 + M̄)) =
O(K(N +X)).

7.2 Space Complexity

Batch algorithm. In each iteration, the batch algorithm
needs to load all the available data, whose SC is O(X).
The SC of caching all the αjk, βjk, and ζjk is O(KN). The
SC of caching all the πk, hik, and λik is O(K +KM). Its
overall SC in each iteration is then O(X+K(1+M+N)).

Parallel algorithm. In each iteration of the parallel
algorithm, each mapper needs to load 1/C of all the
data, whose SC is O(X

C
). The SC of caching all sc0k, sc1ik,

sc2ik, and sc3ik on each mapper is O(K + KM). The SC
of caching all the πk, hik and λik on all the reducers is
O(KM). As there are C mappers, the overall SC in each
iteration is then O(X + CK(1 +M) +KM).

Streaming algorithm. In each iteration, the streaming
algorithm needs to load all the claims associated with
one target, whose SC is O(M̄). The SC of caching all the
s̃0k, s̃1ik, s̃2ik, and s̃3ik is O(K+KM). The SC of caching
all the πk, hik, and λik is O(K +KM). Its overall SC in
each iteration is then O(M̄ +K(1 +M)).

8 EXPERIMENTS

In this section, we present experimental results to
demonstrate that 1) the proposed batch, parallel, and
streaming algorithms are all more effective than other
state-of-the-art algorithms for quantitative truth discov-
ery, and 2) the parallel and the streaming algorithms are
additionally scalable, suitable for handling crowdsourc-
ing applications involving big or streaming data.

8.1 Setup

Real-world datasets. We conducted two sets of real-
world experiments, which are to count people and to
estimate the occupancy level based on given snapshots
(400 for each experiment). We posted these snapshots
on CrowdFlower as quantitative crowdsourcing tasks
to collect crowdsourced claims (20 participants for each
task; each task contains a single target quantity). The
corresponding datasets have been utilized in [10]. The
statistics of these datasets are listed in Table 2.

Synthetic datasets. We further simulated two syn-
thetic datasets (object counting, with K = 3 difficulty

TABLE 2
Statistics of quantitative crowdsourcing tasks (occ -

occupancy, pt - participant, avg - average).

Task
#

tasks
#

pts
total
claims

avg #
pts per

task

avg #
tasks
per pt

ground truth
(mean ± std)

People 400 106 8,000 20 75.5 29.4± 16.1

Occ 400 93 8,000 20 86.0 46.9± 28.3

Syn1 10,000 100 100,000 10 1,000 52.2± 27.4

Syn2 100,000 1,000 1,000,000 10 1,000 52.5± 27.5

levels) according to the (generative) TBP model to study
the scalability of different algorithms in handling large
datasets. In the first synthetic dataset (Syn1), we sim-
ulated M = 100 participants and N = 10k tasks. In
the second synthetic dataset (Syn2), we simulated M =
1, 000 participants and N = 100k tasks. Syn2 contains
more participants and more tasks than Syn1. Each task
has 10 (random) participants. Each negative xij is dis-
carded and resampled until it is non-negative. πk is set
as 1/K. The biases of participants are generated as hi1 ∼
Uni(−5, 5), hi2 ∼ Uni(−15, 15), and hi3 ∼ Uni(−30, 30)
(Uni denotes the uniform distribution). The precisions
of participants are generated as λi1 ∼ Uni(0.01, 0.1),
λi2 ∼ Uni(0.001, 0.02), and λi3 ∼ Uni(0.0001, 0.005). The
true quantity values are generated as zj ∼ Uni(5, 100).
All xij and zj are rounded to the closest integers. The
statistics of these datasets are also listed in Table 2.

8.2 Methods in Comparison

We have shown in [10] that the original truth discovery
algorithm based on the TBP model outperforms existing
algorithms such as majority voting, Average Log [15],
Investment [15], Truth Finder [11], and median, in terms
of the root mean square error (RMSE). Moreover, Truth
Finder and median are the two best-performing com-
petitors. To more clearly visualize the differences of the
newly proposed algorithms, we only compare them with
the two best-performing competitors.

In summary, we compare the performance of the
following algorithms for truth discovery in quantitative
crowdsourcing applications.

1) TF: the Truth Finder method proposed in [11]
with implication scores between distinct pairwise
claims. We set the implication score between xij

and xi′j as exp(−|xij − xi′j |/20), which increases
as the difference between xij and xi′j decreases. It
means that similar claims support each other.

2) Median: using the median (more robust to outliers
than mean) of the claims as the estimated truth.

3) Ori: the original truth discovery algorithm in [10].
4) Batch: the batch truth discovery algorithm pro-

posed in Section 4.
5) Para: the parallel truth discovery algorithm pro-

posed in Section 5.
6) Stream: the streaming truth discovery algorithm

proposed in Section 6.

10

3 5 7 9 11 13 15 17 19
5

7

9

11

13

15

17

19

Number of participants per task

R
M

S
E

TF
Median
Ori

Batch
Para
Stream

(a) RMSE vs. # of pts per task

50 100 150 200 250 300 350
7

8

9

10

11

12

13

14

15

Number of tasks

R
M

S
E

TF
Median
Ori

Batch
Para
Stream

(b) RMSE vs. # of tasks

Fig. 4. RMSE on the people counting dataset. (a) RMSE
vs. the number of participants per task (N = 200). (b)
RMSE vs. the number of tasks (M = 74).

3 5 7 9 11 13 15 17 19
5

7

9

11

13

15

Number of participants per task

R
M

S
E

TF
Median
Ori

Batch
Para
Stream

(a) RMSE vs. # of pts per task

50 100 150 200 250 300 350
5

6

7

8

9

10

Number of tasks

R
M

S
E

TF
Median
Ori

Batch
Para
Stream

(b) RMSE vs. # of tasks

Fig. 5. RMSE on the occupancy estimation dataset. (a)
RMSE vs. the number of participants per task (N = 200).
(b) RMSE vs. the number of tasks (M = 65).

The last five algorithms round their outputs to respective
closest integers.

8.3 Evaluation Metric

Error: We use the RMSE to evaluate the effectiveness
of an algorithm. The RMSE takes into account both the
mean and the standard deviation of estimation errors. It
is defined as RMSE =

√

1
N

∑

j(ẑj − zj)2. The RMSE pe-
nalizes larger errors more and a smaller RMSE indicates
better performance (i.e., discovered “truths” are closer to
true quantity values on average).

CPU time: We use the CPU time to evaluate the time
efficiency of an algorithm. A shorter CPU time implies
a faster algorithm.

Space usage: We use the number of non-empty ele-
ments in allocated arrays to evaluate the space efficiency
of an algorithm. A smaller number implies a more space
efficient algorithm.

All the algorithms are implemented in Matlab (Para is
implemented using Matlab Parallel Computing Toolbox).
All the experiments below are conducted on the UCLA
Hoffman2 Cluster3 with a maximum of 8 processors
(limited by the user group). Each processor is equipped
with an Intel Xeon CPU and 4GB RAM. We are unable
to monitor the system memory through a Matlab script.
Except Para, all the other algorithms are evaluated
using a single processor. As the RMSE of Para does not
depend on the number of processors used, but the CPU
time does, we do not indicate the number of processors
used when we report its RMSE, but we indicate that
number when we report its CPU time. Each experiment
is performed 20 times by randomly sampling the desired

3. http://hpc.ucla.edu/hoffman2/hoffman2.php

3 4 5 6 7 8 9 10
6

8

10

12

14

16

Number of participants per task

R
M

S
E

TF
Median
Ori

Batch
Para
Stream

(a) RMSE vs. # of pts per task

100 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
6

7

8

9

10

11

12

Number of tasks

R
M

S
E

TF
Median
Ori

Batch
Para
Stream

(b) RMSE vs. # of tasks

Fig. 6. RMSE on the first synthetic dataset. (a) RMSE vs.
the number of participants per task (N = 5k). (b) RMSE
vs. the number of tasks (M = 70).

3 4 5 6 7 8 9 10
5

6

7

8

9

10

11

12

13

Number of participants per task

R
M

S
E

Median

Para

Stream

(a) RMSE vs. # of pts per task

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
6

7

8

9

10

11

12

Number of tasks

R
M

S
E

TF
Median
Ori

Batch
Para
Stream

(b) RMSE vs. # of tasks

Fig. 7. RMSE on the second synthetic dataset. (a) RMSE
vs. the number of participants per task (N = 50k). (b)
RMSE vs. the number of tasks (M = 700).

number of entities. We only retain targets with at least
3 crowdsourced claims and participants with at least 20
claims (due to the requirement of Stream).

8.4 Effectiveness

Real-world datasets. Fig. 4 plots the RMSEs of different
algorithms on the people counting dataset. It is observed
from Fig. 4(a) that the RMSEs of different algorithms
obviously decrease as more participants join a task (we
set N = 200). Median results in smaller RMSEs than TF.
Ori, Batch, Para, and Stream result in even smaller
RMSEs than the strong competitor Median, showing
their effectiveness. When the number of participants per
task is 19, the RMSEs of these four algorithms are all
about 30% smaller than that of Median.
Batch, Para, and Stream exhibit comparable per-

formance as Ori, as they are different model inference
algorithms for the same TBP model. We also observe that
Para and Batch have exactly the same performance, as
we have shown in Section 5.3 that Para only differs from
Batch in how the data are partitioned and processed,
but not in the final updating rules. We also observe
that Batch performs better than Ori. This is because in
Batch, the true quantity value zj is treated as a latent
variable, while in Ori, zj is treated as a model parameter.
As a consequence, Ori needs more data than Batch

to reliably infer the values of more model parameters.
Stream exhibits slightly better performance than Ori,
but slightly worse performance than Batch and Para.

It is observed from Fig. 4(b) that the RMSEs of differ-
ent algorithms are relatively stable or slightly decrease
as more tasks are involved (we use 70% participants).
These results show that participants’ ability parameters
can be accurately estimated when a sufficient number

11

3 5 7 9 11 13 15 17 19
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of participants per task

C
P

U
 t
im

e
 (

se
co

n
d
)

TF
Median
Ori

Batch
Para
Stream

(a) CPU time vs. # of pts per task

50 100 150 200 250 300 350
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of tasks

C
P

U
 t
im

e
 (

se
co

n
d
)

TF
Median
Ori

Batch
Para2
Stream

(b) CPU time vs. # of tasks

Fig. 8. CPU time on the people counting task.

of tasks are performed, and adding more tasks will not
lead to significant reduction in the RMSE.

Fig. 5 plots the RMSEs of different algorithms on the
occupancy estimation dataset. We observe similar trends
as those in Fig. 4.

Synthetic datasets. We also observe similar trends of
RMSEs on the two synthetic datasets as those on the
real-world datasets. Fig. 6 plots the RMSEs of different
algorithms on the first synthetic dataset. It is observed in
Fig. 6(a) that Ori, Batch, Para, and Stream all exhibit
almost identical performance regardless of the number
of participants per task (we set N = 5k). It is observed in
Fig. 6(b) that the RMSEs of different algorithms quickly
decrease in the beginning when more tasks are involved
(we set M = 70). But these RMSEs become relatively
stable after N = 1k. This is because each task in this
synthetic dataset is worked on by only 10 participants
(rather than 20 in the real-world datasets), and thus truth
discovery algorithms need more tasks to reliably infer
participants’ ability parameters.

Fig. 7 plots the RMSEs of different algorithms on the
second synthetic dataset. It is observed that TF, Ori, and
Batch run into computational limitations (discussed
next) on this dataset, while the relative performance of
other algorithms is similar to that in Fig. 6.

8.5 Time Efficiency

Real-world datasets. Fig. 8 plots the CPU time (log scale)
of different algorithms on the people counting dataset
(we set N = 200). As this dataset is small, we test Para
with 2 processors. It is observed from Fig. 8(a) that all
the CPU time increases slightly as more participants join
a task. Median is the most time efficient, which can
finish processing 200 tasks, each with 19 participants
in less than 0.01 second. Stream follows, it can finish
processing these tasks in around 0.05 second. As Para

has additional communication and shuffling overhead,
its CPU time is longer than Batch on this small dataset.
Batch is more time efficient than Ori, as its M-step has
closed forms, while Ori’s does not.

It is observed from Fig. 8(b) that all the CPU time
obviously increases as more tasks are involved (we use
70% participants), except Para, whose CPU time seems
to be dominated by its communication overhead.

Synthetic datasets. Fig. 9 plots the CPU time of dif-
ferent algorithms on the first synthetic dataset. Para#
denotes Para with # processors, where # ranges from 2

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of tasks

C
P

U
 t
im

e
 (

se
co

n
d
)

TF
Median
Ori

Batch
Para2
Para4

Para6
Para8
Stream

(a) All the CPU time

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
0

20

40

60

80

100

120

Number of tasks

C
P

U
 t
im

e
 (

se
co

n
d
) Batch

Para2

Para4

Para6

Para8

(b) CPU time of Batch and Para

Fig. 9. CPU time on the first synthetic dataset.

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of tasks

C
P

U
 t
im

e
 (

se
co

n
d
)

TF
Median
Ori

Batch
Para2
Para4

Para6
Para8
Stream

(a) All the CPU time

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
0

300

600

900

1200

1500

Number of tasks

C
P

U
 t
im

e
 (

se
co

n
d
)

Batch

Para2

Para4

Para6

Para8

(b) CPU time of Batch and Para

Fig. 10. CPU time on the second synthetic dataset.

to 8. It is observed from Fig. 9(a) that Median is the most
time efficient, followed by Stream. When processing 10k
tasks, Median and Stream take around 0.6 second and
2.4 seconds respectively. TF is the most time-consuming
as it needs to assign pair-wise implication scores be-
tween distinct claims. Its CPU time increases quickly as
more tasks are involved, which exceeds 1,000 seconds
when processing 6k tasks. As a consequence, TF is not
suitable for processing big data. The CPU time of TF can
be much shorter if we do not assign implication scores.
However, the resulting RMSEs are much larger.

To more clearly observe the differences between
Batch and Para#, we plot in Fig. 9(b) their CPU time
on the linear scale. It is observed that Para2 is more
time efficient than Batch when the number of tasks is
larger than 3k, and Para4, Para6, and Para8 are more
efficient than Batch when the number of tasks is larger
than 2k. Para8 is the most efficient when the number
of tasks is larger than 5k. It can process 10k tasks in 29
seconds, much shorter than 106 seconds of Batch.

Fig. 10 plots the CPU time of different algorithms
on the second synthetic dataset. It is observed that TF
has excessively long CPU time which exceeds 20 hours
when processing 20k tasks. Ori has a CPU time of 50.0
minutes and Batch has a CPU time of 9.2 minutes
when processing 30k tasks. TF is forced to terminate
by the UCLA Hoffman2 Cluster when the number of
tasks is larger than 20k, as its CPU time exceeds 24
hours. Ori and Batch cause an “out of memory” error
when the number of tasks is larger than 30k. As a result,
these methods are not able to handle large datasets. In
contrast, Median, Para, and Stream still work when
the number of tasks is 100k, showing their scalability.
Para8 is the most time efficient among the variants of
Para. Para8 takes 373 seconds (6.2 minutes) to process
100k tasks, compared with 1340 seconds (22.3 minutes)
of Para2.

Note that, when new claims arrive over time, Median
and Stream can perform incremental truth discovery.

12

2 4 6 8
1

2

3

4

5

6

7

8

Number of processors

S
p
e
e
d
u
p

Syn1 10k tasks
Syn2 30k tasks
Ideal

Fig. 11. Speedup curves (the speedup at P is defined as
the ratio of the CPU time for one processor to the CPU
time for P processors).

Their CPU time depends on the number of incremental
tasks processed. In contrast, other algorithms need to
process all the cumulative data. Their CPU time depends
on the number of cumulative tasks processed.

Speedup. We now examine the speedup of using
multiple processors (Para) over using one processor
(Batch). In our problem, we define the speedup at P as
the ratio of the CPU time for one processor to the CPU
time for P processors. Fig. 11 shows the speedup on the
first synthetic dataset (Syn1) with 10k tasks, the second
synthetic dataset (Syn2) with 30k tasks, and the ideal
curve (i.e., a straight line with slope 1). It is observed that
the speedup curve of Syn2 with 30k tasks is closer to the
ideal curve. This makes sense as there is more processing
workload versus communication overhead for Syn2. In
other words, the speedup is more salient when using
multiple processors for heavier processing workload.

8.6 Space Efficiency

Fig. 12 plots the space usage (in terms of the number
of non-empty elements in allocated arrays) of different
algorithms on Syn1. The space usage of Para# is the
overall usage across all the processors. It is observed that
Median is the most space efficient, as it is a model-less
method that works on one target and associated claims
each time. Stream follows, as it also works on one target
and associated claims each time. However, it needs to
cache sufficient statistics and model parameters. Para
consumes more space than Stream as it needs to load
all the data chunks over the processors. The space usage
of the variants of Para does not differ too much, as the
space used by the raw data dominates. Batch and Ori

consume more space than Para, as they need to cache
expectations on all the targets while Para needs to cache
sufficient statistics on all the participants. Since usually
M ≪ N , Para is more space efficient. Finally, TF is the
most space-consuming as it performs matrix operations
on all the distinct claims for all the targets.

9 DISCUSSION AND FUTURE WORK

Which algorithm to choose? Given a computing system,
we can first run Batch on a small dataset and examine
the memory usage and the execution time. We can then
predict them given a large dataset. If the predicted
memory usage exceeds the available system memory or
the execution time exceeds expectation, we should not

30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Number of participants

S
p
a
c
e
 u

s
a
g
e

TF
Median
Ori

Batch
Para2
Para4

Para6
Para8
Stream

(a) Space usage vs. # of pts

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
10

1

10
2

10
3

10
4

10
5

10
6

Number of tasks

S
p
a
ce

 u
sa

g
e

TF
Median
Ori

Batch
Para2
Para4

Para6
Para8
Stream

(b) Space usage vs. # of tasks

Fig. 12. Space usage on the first synthetic dataset. (a)
Space usage vs. the number of participants (N = 10k).
(b) Space usage vs. the number of tasks (M = 100).

choose Batch. If we have enough hardware and prefer
good performance, we might choose Para. If we have
limited hardware and we can tolerate slight performance
loss, we might choose Stream.

If truth discovery needs to be performed in data
streams where claims about time-varying target quanti-
ties arrive over time, we might choose Stream as it can
perform incremental truth discovery without processing
historical data. If the target quantities do not change
over time while the number of claims per target is
unbound, then all these algorithms need to be rerun on
both historical and new data from time to time.

Exploiting alternative parallel processing frame-
works. We currently exploit the MapReduce framework
[19] to enable parallel truth discovery. There are also
alternative parallel processing frameworks with differ-
ent design principles such as the resilient distributed
datasets [25] that can be exploited in the future.

Theoretical analysis. Results on the effectiveness of
the streaming algorithm in this paper are empirical. In
the future, we may analyze the theoretical performance
of the streaming algorithm, compared with others.

Alternative modeling. Besides modeling the task dif-
ficulty in the TBP model, we can also consider to model
direct dependency of participants’ ability parameters on
the latent truth in the future.

10 RELATED WORK

Research in crowdsourcing has gained rapid growth in
recent years [1]. Crowds have been explored to perform
various Human Intelligence Tasks (HITs) such as large-
scale image classification [13], transcription [26], and
word processing [3]. Besides performing such HITs on
crowdsourcing platforms such as the Amazon Mechan-
ical Turk (AMT)4 and CrowdFlower5, crowds have also
been utilized to detect and report events in the physical
world, e.g., to detect earth quakes [27], to detect desired
flora on campus [28], and to detect social disorder in
public places [29].

However, these useful applications may be impaired
by unskilled or sloppy crowd participants who provide
low-quality data. As a consequence, it is important to

4. https://www.mturk.com/mturk/welcome.
5. http://www.crowdflower.com.

13

develop truth discovery algorithms which can automat-
ically discover the truths from possibly conflicting and
noisy crowdsourced data.

In the domain of truth discovery from conflicting Web
information, Yin et al. [11] proposed truth finder, which
is a transitive voting algorithm with rules specifying
how votes iteratively flow from sources to claims and
then back to sources. Pasternack and Roth [15] pro-
posed AverageLog, Investment, and PooledInvestment
algorithms. Zhao et al. [17] proposed a more principled
probabilistic approach which can automatically infer
true claims and two-sided source quality.

In the domain of aggregating conflicting claims in
crowdsourcing applications, Dawid and Skene [30] mod-
eled the generative process of the claims by introducing
source ability parameters. Whitehill et al. [12] further
included the task difficulty in the model. Welinder et
al. [14] proposed a model consisting of worker com-
patibility for each task. Wang et al. [16] proposed a
model for truth discovery in social sensing. They further
extended their model to consider potentially dependent
information sources in [31]. Baba et al. [32] proposed
a model for truth discovery in general crowdsourcing
tasks such as article writing and logo design. Ouyang
et al. [33] proposed a model for truth discovery in
crowdsourced detection of spatial events.

Nevertheless, these methods are mainly designed for
categorical or even binary truth discovery, and thus they
do not directly apply or are not effective for quantitative
truth discovery problems. Although we have proposed
the TBP model in [10] and have shown that TBP is more
effective than existing methods for quantitative truth
discovery, the original model inference algorithm is un-
fortunately not scalable. Recently, Wang et al. proposed
a recursive truth discovery algorithm in [18]. However,
it is for binary truth discovery and is not applicable to
our problem. Moreover, it utilizes the classical recursive
parameter estimation algorithm [23], which is difficult to
be applied to our problem (discussed in Section 6).

In this paper, we first develop a new batch truth
discovery algorithm based on the TBP model, which de-
couples the inferences of target-related and participant-
related parameters. We then examine its structure and
exploit the MapReduce framework [19] to develop a
parallel algorithm. Finally, we exploit the on-line EM
algorithm [20] to develop a streaming algorithm. We
demonstrate that the parallel and the streaming algo-
rithms are both effective and scalable.

11 CONCLUSION

In this paper, we propose new parallel and stream-
ing truth discovery algorithms for quantitative crowd-
sourcing applications involving big or streaming data.
Through extensive experiments, we demonstrate that
both algorithms are effective. Moreover, the parallel
algorithm can efficiently perform truth discovery on
large datasets, and the streaming algorithm can effi-
ciently perform truth discovery both on large datasets

and in data streams. They can thus support effective
and scalable truth discovery in large-scale quantitative
crowdsourcing applications.

ACKNOWLEDGEMENTS

This research is based upon work supported in part by
the U.S. ARL and U.K. Ministry of Defense under Agree-
ment Number W911NF-06-3-0001, and by the NSF under
award CNS-1213140. Any opinions, findings and con-
clusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect
the views or represent the official policies of the NSF,
the U.S. ARL, the U.S. Government, the U.K. Ministry
of Defense or the U.K. Government. The U.S. and U.K.
Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright notation hereon.

REFERENCES

[1] Alexander J Quinn and Benjamin B Bederson. Human computa-
tion: a survey and taxonomy of a growing field. In CHI, pages
1403–1412. ACM, 2011.

[2] Aniket Kittur, Ed H Chi, and Bongwon Suh. Crowdsourcing user
studies with mechanical turk. In CHI, pages 453–456. ACM, 2008.

[3] Michael S Bernstein, Greg Little, Robert C Miller, Björn Hartmann,
Mark S Ackerman, et al. Soylent: a word processor with a crowd
inside. In UIST, pages 313–322. ACM, 2010.

[4] Greg Little, Lydia B Chilton, Max Goldman, and Robert C Miller.
Exploring iterative and parallel human computation processes. In
Proceedings of the ACM SIGKDD workshop on human computation,
pages 68–76. ACM, 2010.

[5] Omar F Zaidan and Chris Callison-Burch. Crowdsourcing trans-
lation: Professional quality from non-professionals. In HLT, pages
1220–1229. ACL, 2011.

[6] Aftab Khan, James Nicholson, Sebastian Mellor, Daniel Jackson,
Karim Ladha, et al. Occupancy monitoring using environmental
& context sensors and a hierarchical analysis framework. In
BuildSys. ACM, 2014.

[7] Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang Yang.
Cross-scene crowd counting via deep convolutional neural net-
works. In CVPR. IEEE, 2015.

[8] Jim Robbins. Crowdsourcing, for the birds. http://www.nytimes.
com/2013/08/20/science/earth/crowdsourcing-for-the-birds.
html, 2013. [Online; accessed 16-Dec-2015].

[9] Enricko Lukman. Indonesian voters are crowdsourcing
ballot counts to protect against election fraud. https:
//www.techinasia.com/kawal-suara-indonesia-voters-
crowdsourcing-ballot-counts-protect-election-fraud, 2014.
[Online; accessed 16-Dec-2015].

[10] Robin Wentao Ouyang, Lance Kaplan, Paul Martin, Alice Toniolo,
Mani Srivastava, and Timothy J Norman. Debiasing crowd-
sourced quantitative characteristics in local businesses and ser-
vices. In IPSN, pages 190–201. ACM, 2015.

[11] Xiaoxin Yin, Jiawei Han, and Philip S Yu. Truth discovery with
multiple conflicting information providers on the web. IEEE
TKDE, 20(6):796–808, 2008.

[12] Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R Movellan,
and Paul L Ruvolo. Whose vote should count more: Optimal
integration of labels from labelers of unknown expertise. In NIPS,
pages 2035–2043, 2009.

[13] Vikas C Raykar, Shipeng Yu, Linda H Zhao, Gerardo Hermosillo
Valadez, Charles Florin, et al. Learning from crowds. The Journal
of Machine Learning Research, 99:1297–1322, 2010.

[14] Peter Welinder, Steve Branson, Pietro Perona, and Serge J Be-
longie. The multidimensional wisdom of crowds. In NIPS, pages
2424–2432, 2010.

[15] Jeff Pasternack and Dan Roth. Knowing what to believe (when
you already know something). In COLING, pages 877–885.
Association for Computational Linguistics, 2010.

14

[16] Dong Wang, Lance Kaplan, Hieu Le, and Tarek Abdelzaher.
On truth discovery in social sensing: a maximum likelihood
estimation approach. In IPSN, pages 233–244. ACM, 2012.

[17] Bo Zhao, Benjamin IP Rubinstein, Jim Gemmell, and Jiawei Han.
A bayesian approach to discovering truth from conflicting sources
for data integration. VLDB Endowment, 5(6):550–561, 2012.

[18] Dong Wang, Tarek Abdelzaher, Lance Kaplan, and Charu C
Aggarwal. Recursive fact-finding: A streaming approach to truth
estimation in crowdsourcing applications. In ICDCS, pages 530–
539. IEEE, 2013.

[19] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[20] Olivier Cappé and Eric Moulines. On-line expectation–
maximization algorithm for latent data models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 71(3):593–613,
2009.

[21] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Max-
imum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society. Series B (Methodological), pages
1–38, 1977.

[22] Christopher M Bishop and Nasser M Nasrabadi. Pattern recogni-
tion and machine learning. Springer New York, 2006.

[23] D Michael Titterington. Recursive parameter estimation using
incomplete data. Journal of the Royal Statistical Society. Series B
(Methodological), pages 257–267, 1984.

[24] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

[25] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur
Dave, Justin Ma, et al. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In NSDI.
USENIX Association, 2012.

[26] Matthew Marge, Satanjeev Banerjee, and Alexander I Rudnicky.
Using the amazon mechanical turk for transcription of spoken
language. In ICASSP, pages 5270–5273. IEEE, 2010.

[27] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake
shakes twitter users: real-time event detection by social sensors.
In WWW, pages 851–860. ACM, 2010.

[28] Sasank Reddy, Deborah Estrin, and Mani Srivastava. Recruitment
framework for participatory sensing data collections. In Pervasive
Computing, pages 138–155. Springer, 2010.

[29] Robin Wentao Ouyang, Animesh Srivastava, Prithvi Prabahar,
Romit Roy Choudhury, Merideth Addicott, and F Joseph McCler-
non. If you see something, swipe towards it: crowdsourced event
localization using smartphones. In UbiComp, pages 23–32. ACM,
2013.

[30] Alexander Philip Dawid and Allan M Skene. Maximum likeli-
hood estimation of observer error-rates using the em algorithm.
Applied Statistics, pages 20–28, 1979.

[31] Dong Wang, Md Tanvir Amin, Shen Li, Tarek Abdelzaher, Lance
Kaplan, et al. Using humans as sensors: An estimation-theoretic
perspective. In IPSN, pages 35–46. IEEE, 2014.

[32] Yukino Baba and Hisashi Kashima. Statistical quality estimation
for general crowdsourcing tasks. In KDD, pages 554–562. ACM,
2013.

[33] Robin Wentao Ouyang, Mani Srivastava, Alice Toniolo, and Tim-
othy J. Norman. Truth discovery in crowdsourced detection of
spatial events. In CIKM, pages 461–470. ACM, 2014.

Robin Wentao Ouyang received the Ph.D. de-
gree in electronic and computer engineering
from Hong Kong University of Science and Tech-
nology (HKUST), Hong Kong, China, in 2011,
and the B.E. degree in electronic engineering
from Beijing University of Posts and Telecom-
munications (BUPT), Beijing, China, in 2007.
He is currently a postdoctoral associate with
the Department of Computer Science, University
of California, Los Angeles (UCLA), USA. His
current research interests include human com-

putation, data mining and mobile computing.

Lance M. Kaplan received the B.S. degree with
distinction from Duke University, Durham, NC, in
1989 and the M.S. and Ph.D. degrees from the
University of Southern California, Los Angeles,
in 1991 and 1994, respectively, all in Electri-
cal Engineering. From 1987-1990, Dr. Kaplan
worked as a Technical Assistant at the Geor-
gia Tech Research Institute. He held a National
Science Foundation Graduate Fellowship and a
USC Dean’s Merit Fellowship from 1990-1993,
and worked as a Research Assistant in the

Signal and Image Processing Institute at the University of Southern Cal-
ifornia from 1993-1994. Then, he worked on staff in the Reconnaissance
Systems Department of the Hughes Aircraft Company from 1994-1996.
From 1996-2004, he was a member of the faculty in the Department
of Engineering and a senior investigator in the Center of Theoretical
Studies of Physical Systems (CTSPS) at Clark Atlanta University (CAU),
Atlanta, GA. Currently, he is in the Networked Sensing and Fusion
branch of the U.S. Army Research Laboratory (ARL). Dr. Kaplan serves
as Editor-In-Chief for the IEEE Transactions on Aerospace and Elec-
tronic Systems (AES) and he is Vice President of Conference for the
International Society of Information Fusion (ISIF). In addition, he also
served on the Board of Governors of the IEEE AES Society, 2009-2014,
and on the ISIF Board, 2012-2014. He served as Technical Co-Chair
(with Neil Gordon) for the 2011 ISIF/IEEE International Conference
on Information Fusion in Chicago, IL. From 2004-2014, he served as
the Remote Sensing Co-Organizer (with Peter Kahn) for the IEEE
Aerospace Conference in Big Sky, MT. He is a three time recipient of the
Clark Atlanta University Electrical Engineering Instructional Excellence
Award from 1999-2001. Dr. Kaplan has published over 180 technical
articles. His current research interests include signal and image pro-
cessing, information/data fusion, resource management, and network
science.

Alice Toniolo is a postdoctoral researcher in the
Computing Science Department at the Univer-
sity of Aberdeen (UK). Her interest is in com-
putational models of argumentation for reason-
ing and dialogue. She was awarded her PhD
in Computing Science by the University of Ab-
erdeen (UK) in 2013.

Mani Srivastava received the B.Tech. degree
from the Indian Institute of Technology Kanpur,
Kanpur, India, in 1985, and the M.S. and Ph.D.
degrees from the University of California Berke-
ley, Berkeley, in 1987 and 1992, respectively.

He was with Bell Laboratory Research, Murray
Hill, NJ. He joined the University of California,
Los Angeles, as a Faculty Member, in 1997,
where he is currently a Professor of the Electri-
cal Engineering and Computer Science Depart-
ment. His current research interests include em-

bedded systems, low-power design, wireless networking, and pervasive
sensing.

Dr. Srivastava is affiliated with the National Science Foundation Sci-
ence and Technology Center on Embedded Networked Sensing, where
he co-leads the System Research Area. He currently serves as the
Steering Committee Chair of the IEEE TRANSACTIONS ON MOBILE
COMPUTING.

Timothy J. Norman is a professor of computing
science at the University of Aberdeen, Scotland,
UK. His research interests are in multi-agent
systems, computational models of trust, policies
and argumentation, and how these methods are
applied to problems of information interpretation
and management. Dr. Norman has a PhD in
Computer Science from University College Lon-
don, UK.

