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GROUPS OF UNSTABLE ADAMS OPERATIONS

ON p-LOCAL COMPACT GROUPS

RAN LEVI AND ASSAF LIBMAN

Abstract. A p-local compact group is an algebraic object modelled on the homotopy theory associated
with p-completed classifying spaces of compact Lie groups and p-compact groups. In particular p-
local compact groups give a unified framework in which one may study p-completed classifying spaces
from an algebraic and homotopy theoretic point of view. Like connected compact Lie groups and p-
compact groups, p-local compact groups admit unstable Adams operations - self equivalences that are

characterised by their cohomological effect. Unstable Adams operations on p-local compact groups were
constructed in a previous paper by F. Junod and the authors. In the current paper we study groups
of unstable operations from a geometric and algebraic point of view. We give a precise description
of the relationship between algebraic and geometric operations, and show that under some conditions
unstable Adams operations are determined by their degree. We also examine a particularly well behaved
subgroup of operations.

Let G be a connected compact Lie group. An unstable Adams operation of degree k ≥ 1 on BG
is a self equivalence f : BG → BG which induces multiplication by ki on H2i(BG;Q) for every i > 0.
In [JMO] unstable Adams operations for compact connected simple Lie groups G were classified. The
analysis is centred around studying suitable self equivalences of the p-completion BG∧

p . Later on, after
p-compact groups were introduced by Dwyer and Wilkerson, their classification by Andersen-Grodal
[AG09] and Andersen-Grodal-Møller-Viruel [AGMV08] relied on studying a suitable notion of unstable
Adams operation of p-compact groups.

In this paper we study unstable Adams operations on p-local compact groups and their classifying
spaces. In light of [BLO7, Theorem A] and the definition of unstable Adams operations for compact
Lie groups, it is natural to define a geometric unstable Adams operation of degree ζ ∈ Z×

p on a p-local

compact group G = (S,F ,L) as a self equivalence f of BG
def
= |L|∧p which induces multiplication by ζk on

H2k
Qp

(BG) for every k ≥ 1. Here H∗
Qp

(X) = H∗(X ;Zp)⊗Q.

This definition differs from the one we gave in [JLL]. Recall that ψ ∈ Aut(S) is called an Adams
automorphism if it induces multiplication by some ζ ∈ Z×

p , called the degree of ψ, on the identity
component S0 of S. We say ψ is normal if it induces the identity on S/S0. In [JLL, Def. 3.4] we define
a geometric Adams operation on G as a self equivalence f of BG which renders the following square
homotopy-commutative for some normal Adams automorphism ψ.

(1.1) BS
Bψ

//

i

��

BS

i

��

BG
f

// BG

The two definitions of “geometric unstable Adams operations” we have given above coincide under the
assumption that T is self-centralising in S (and hence F -centric) in which case we say that F is weakly
connected. This is the content of [BLO7, Proposition 3.2]. We will write Adgeom(BG) for the group of
the homotopy classes of the geometric unstable Adams operations as defined in [JLL].

Following [JLL, Definition 3.3], replicated as 4.2 in this paper, an (algebraic) unstable Adams operation
on G = (S,F ,L) is a pair (Ψ, ψ) of an automorphism Ψ of the small category L and a fusion preserving
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normal Adams automorphism ψ of S such that: (a) π ◦Ψ = ψ∗ ◦π where π : L → F is the projection and
ψ∗ is the automorphism of F induced by ψ and, (b) for every F -centric P,Q ≤ S and every s ∈ NS(P,Q)

we have Ψ(ŝ) = ψ̂(s). We notice in Remark 4.3 that ψ is determined by Ψ.

In this paper we will investigate the relationship between the algebraic and the geometric Adams
operations. When we will write “Adams operation” we will always mean “algebraic Adams operation”.
Throughout, we will use the following notation. Let G = (S,F ,L) be a p-local compact group.

• Ad(S) ≤ Aut(S) is the group of all the normal Adams automorphisms of S (Definition 3.3).
• Adfus(S) = Autfus(S) ∩Ad(S).
• OutAdfus(S) is the image of Adfus(S) in Outfus(S) = Autfus(S)/AutF(S). See Definition 3.4.
• Adgeom(BG) ≤ Out(BG) is the group of the homotopy classes of the geometric unstable Adams
operations on BG.
• Ad(G) ≤ AutItyp(L) is the group of algebraic unstable Adams operation of G as defined in [JLL],

where AutItyp(L) is the group of inclusion preserving isotypical self equivalences of L [AOV,
Lemma 1.14].
• InnT (G) ≤ Ad(G) for the subgroup of operations (ct̂, ct) of degree 1 where ct ∈ Inn(S) is con-

jugation by t and ct̂ ∈ Aut(L) is “conjugation” by t̂ ∈ AutL(S). See equation (4.5) for more
details.

Let G be a discrete group. We say that G is Z/p∞-free (Definition 3.1) if it contains no subgroup
isomorphic to Z/p∞. We say that G has a maximal discrete p-torus if it contains a subgroup T ≤ G
isomorphic to a discrete p-torus such that any discrete p-torus U ≤ G is conjugate to a subgroup of T .
This subgroup of G is normal if and only if it is the unique maximal discrete p-torus in G, and in this
case we denote it by G0. Since an extension of two discrete p-tori is a discrete p-torus (this follows easily
from [BLO3, Lemma 1.3]), it is clear that G/G0 is Z/p∞-free.

We say that G has a Sylow p-subgroup if it contains a subgroup P isomorphic to a discrete p-toral
group such that any discrete p-toral subgroup of G is conjugate to a subgroup of P . See [BLO3, Section
8]. Clearly, if G is Z/p∞-free then its Sylow p-subgroup, if it exists, is a finite p-group. The next result
is closely related to [BLO3, Proposition 7.2].

1.2. Proposition. Let G = (S,F ,L) be a p-local compact group. Then Adgeom(BG) is Z/p∞-free and
contains a normal Sylow p-subgroup. In addition there is a short exact sequence

1→ lim←−
1

Oc(F)

Z → Adgeom(BG)→ OutAdfus(S)→ 1.

If p is odd then Adgeom(BG) ∼= OutAdfus(S). In addition Adgeom(BG) is solvable, in fact, OutAdfus(S)
is solvable of class ≤ 2.

Geometric realisation gives rise to a homomorphism from the group of algebraic Adams operations to
the group of geometric Adams operations, see (4.4)

γ : Ad(G)
(Ψ,ψ) 7→|Ψ|∧p
−−−−−−−−−→ Adgeom(BG).

Let D(F) be the subgroup of Z×
p consisting of the degrees of all ϕ ∈ AutF (S) ∩Ad(S). In fact, D(F) is

a subgroup of the group Up of the roots of unity in Zp which, by [Ro, Sec. 6.7, Prop. 1,2], is isomorphic
to the cyclic group Cp−1 if p is odd and to C2 if p = 2.

1.3. Theorem. Let G = (S,F ,L) be a weakly connected p-local compact group (Definition 3.8). Let T
denote the maximal torus of S. Then

(i) Ad(G) has a normal maximal discrete p-torus denoted Ad(G)0. It contains a Sylow p-subgroup which
is normal if p = 2.

(ii) Ad(G)0 is contained in the kernel of γ (see (4.4)) and there is a short exact sequence

1→ D(F)→ Ad(G)/Ad(G)0
γ̄
−−→ Adgeom(BG)→ 1

(iii) Ad(G)0 = InnT (G) ∼= T/Z(F) where Z(F) is the centre of F .
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A natural question is whether an unstable Adams operation is determined by its degree. Such a
question is too näıve. Looking at Diagram (1.1), and taking into account [BLO3, Theorem 6.3(a)], it is
clear that ψ is only determined modulo AutF (S) ∩ Ad(S). Hence, the degree of a geometric unstable
Adams operation is, at best, only determined modulo D(F). Also, all elements of InnT (G) are (distinct)
algebraic unstable Adams operations of degree 1. The best we can hope for is to address the question of
the injectivity of

Adgeom(BG)
deg
−−−→ Z×

p /D(F) and Ad(G)/Ad(G)0
deg
−−−→ Z×

p .

The next result will be proven in section 5.

1.4. Proposition. Suppose that G = (S,F ,L) is weakly connected and let W = AutF(T ) be its Weyl

group. If H1(W,T ) = 0 then OutAdfus(S)
deg
−−→ Z×

p /D(F) is injective and there are exact sequences

(1) 1→ lim←−
1

O(Fc)

Z → Adgeom(BG)
deg

−−−−−−→ Z×
p /D(F)

(2) 1→ lim←−
1

O(Fc)

Z → Ad(G)/Ad(G)0
deg

−−−−−−→ Z×
p

If p 6= 2 and H1(W,T ) = 0, then the degree maps in (1) and (2) are injective.

In Proposition 5.8 we will present conditions under which H1(W,T ) = 0. For example, if p is odd and

D(F) 6= 1 then H1(W,T ) = 0 and as a consequence Adgeom(BG)
deg
−−→ Z×

p /D(F) is injective.

The next natural question to ask is what the possible degrees of unstable Adams operation of a given
G = (S,F ,L) are. This is closely related to the problem of constructing unstable Adams operations
which was our main goal in [JLL]. We will call an unstable Adams operation (Ψ, ψ) special relative to a
collectionR of F -centric subgroups of S if for every P ∈ R there exists τP ∈ T and for every ϕ ∈ L(P,Q),
where P,Q ∈ R, there exists some τϕ ∈ Q0 such that the following hold. First, ψ(P ) = τPPτ

−1
P for every

P ∈ R. Next, Ψ(ϕ) = τ̂Q ◦ τ̂ϕ ◦ϕ ◦ τ̂P
−1. See Definition 7.1. We will denote the group of all such Adams

operations by SpAd(G;R). It turns out that all the unstable Adams operations we constructed in [JLL]
are special, and in this paper we will study this more general class of operations.

Of course SpAd(G; ∅) = Ad(G). It is reasonable that “a minimum requirement” from R is to have the

property that |LR|
∧

p ≃ BG where LR is the full subcategory of L with object set R.

In section 6 we introduce a category LR/0 whose objects are the elements of R and morphisms are

LR/0(P,Q) = L(P,Q)/Q0 for any P,Q ∈ R and where Q0 acts on L(P,Q) by post-composition with the

elements of Q̂0 ≤ AutL(Q). There is a naturally defined functor Φ: LR/0 → Ab defined by P 7→ P0. By

utilising a theory of extensions of categories, see e.g. [Ho], we show that the category LR corresponds to
a well defined element [LR] in H2(LR/0,Ψ).

For every k ≥ 0 set

(1.5) Γk(p) = Ker

(
Z×
p

x 7→(x mod pk)
−−−−−−−−−−−−−−→ (Z/pk)×

)
.

This group has finite index in Z×
p , of course. Note that Γ0(p) = Z×

p .

The following result, Theorem 1.6, is the content of Lemma 7.17, Proposition 7.19 and Proposition 7.2.
Observe that InnT (G) is a discrete p-torus and that under the hypotheses of the theorem H1(LR/0,Φ) is

discrete p-toral because LR/0 has finitely many isomorphism classes of objects and morphisms and therefore

the cobar construction C∗(LR/0,Φ) consists of discrete p-tori.

1.6. Theorem. Let G = (S,F ,L) be a weakly connected p-local compact group. Suppose that a collection
R ⊆ Fc has finitely many F-conjugacy classes. Then SpAd(G;R) is a normal subgroup of Ad(G) of finite
index. The quotient group is solvable of class at most 3.

3



If in addition, R ⊇ H•(F), see [BLO3, Sec. 3], then there is an exact sequence

H1(LR/0,Φ)→ SpAd(G;R)/ InnT (G)
deg
−−→ Γm(p)→ 1

where pm is the order of [LR] in H2(LR/0,Φ). In particular, SpAd(G;R) has a normal Sylow p-subgroup

with InnT (G) as its maximal discrete p-torus.

A corollary of this theorem is that the image of deg : Ad(G) → Z×
p contains Γm(p) where pm is the

order of [LR] in H2(LR/0,Φ). This gives a more precise result than the one obtained in [JLL, Theorem A].

Even though SpAd(G;R) has finite index in Ad(G), it is usually a proper subgroup. In fact, in
Proposition 8.7 we give an example of a geometric unstable Adams operation that is not the geometric
realisation of a special unstable Adams operation relative to the collection R of the F -centric F -radical
subgroups.

The paper is organised as follows. In Section 2 we recall some definitions and useful facts on p-local
compact groups. In Section 3 we discuss geometric unstable operations and prove Proposition 1.2. Section
4 is dedicated to the proof of Theorem 1.3, and in Section 5 we prove Proposition 1.4 and find conditions
for the vanishing of H1(W,T ). In Section 6 we recall some basic theory of extensions of categories and
introduce the category L/0. Sections 7 is dedicated to what we call special Adams operations, and the
proof of Theorem 1.6. Finally in Section 8 we show that there exist unstable Adams operations which
are not special. We end with two appendices containing proofs of statements from Section 6 and the
observation that the operations constructed in [JLL] are all special.

2. Recollections of p-local compact groups

This section briefly introduces p-local compact groups and collect some results about them that we
will use. The reference is [BLO3].

Fix a prime p. Recall that Z/p∞
def
= ∪n≥1Z/pn. This is a divisible group. A discrete p-torus of rank n

is a group T isomorphic to
⊕n Z/p∞. A group P is called discrete p-toral if it contains a discrete p-torus

T as a normal subgroup and P/T is a finite p-group. In this case T is characteristic in P and we write
T = P0 and call it the identity component of P . Every sub-quotient of P is a discrete p-toral group by
[BLO3, Lemma 1.3]. Also, an extension of discrete p-toral groups is a discrete p-toral group. The order
of a discrete p-toral group P is the pair (rk(P0), |P/P0|). These pairs are ordered lexicographically.

A fusion system F over a discrete p-toral group S is a category whose objects are all the subgroups of S.
Morphisms between P,Q ≤ S are group monomorphisms and HomF(P,Q) always contains HomS(P,Q),
namely the homomorphisms P → Q induced by conjugation by elements of S. In addition every morphism
in F can be factored as an isomorphism in F followed by an inclusion homomorphism. See [BLO3,
Definition 2.1]

We say that P,Q ≤ S are F -conjugate if they are isomorphic as objects of F . A subgroup P ≤ S is
called fully centralised (resp. fully normalised) if for every P ′ ≤ S which is F -conjugate to P , the order
of CS(P

′) (resp. NS(P
′)) is at most the order of CS(P ) (resp. NS(P )).

A fusion system F over S is called saturated if

(1) Every fully normalised P ≤ S is fully centralised, OutF (P )
def
= AutF (P )/ Inn(P ) is finite and

contains OutS(P ) as a Sylow p-subgroup.
(2) If ϕ ∈ HomF (P, S) and if ϕ(P ) is fully centralised, then ϕ extends to ψ ∈ HomF(Nϕ, S) where

Nϕ = {g ∈ NS(P ) : ϕ ◦ cg ◦ ϕ
−1 ∈ AutS(ϕ(P ))}.

(3) If P1 ≤ P2 ≤ . . . is an increasing sequence of subgroups of S and ϕ ∈ Hom(
⋃
n Pn, S) is a

homomorphism such that ϕ|Pn ∈ HomF(Pn, S) then ϕ ∈ HomF(
⋃
n Pn, S).

A subgroup P of S is called F-centric if CS(P
′) = Z(P ′) for every P ′ which is F -conjugate to P . It

is called F-radical if Op(OutF(P )) = 1 where Op(K) denotes the largest normal p-subgroup of a finite
group K.
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If P ≤ S is F -centric then it must contain Z(S). The centre of F is defined by:

Z(F) = {x ∈ Z(S) : ϕ(x) = x for every P ∈ Fc and every ϕ ∈ HomF (P, S)}.

In light of Alperin’s fusion theorem [BLO3, Theorem 3.6] this is the same as the subgroup of x ∈ Z(S)
such that ϕ(x) = x for any P ≤ S which contains x and every ϕ ∈ HomF(P, S).

The orbit category of F denoted O(F) has the same objects as F and morphism sets HomO(F)(P,Q) =
HomF(P,Q)/ Inn(Q). The full subcategory on the F -centric subgroups is denoted O(Fc). In [BLO3,
proof of Theorem 7.1] the functor Z : O(Fc)op → Z(p)-mod was defined:

Z : P 7→ Z(P ) = CS(P ).

A linking system L associated to a saturated fusion system F over S is a small category whose objects
are the F -centric subgroups of S. It is equipped with a surjective functor π : L → Fc which is the identity
on objects and with monomorphisms of groups δP : P → AutL(P ), one for each P ∈ Fc such that the
following hold.

(A) For each P,Q ∈ L the group Z(P ) acts freely on L(P,Q) via δP : P → AutL(P ) and pre-
composition of morphisms, and π : L(P,Q)→ HomF(P,Q) is the quotient map by this action.

(B) For any P ∈ L and g ∈ P , π(δP (g)) = cg ∈ AutF (P ).
(C) For any ϕ ∈ L(P,Q) and g ∈ P , the following diagram commutes in L

P

δP (g)

��

ϕ
// Q

δQ(π(ϕ)(g))

��

P ϕ
// Q.

The morphisms δP (g) will be denoted ĝ.

A p-local compact group is a triple G = (S,F ,L) where F is a saturated fusion system over S and L
is an associated centric linking system. The classifying space of G denoted BG is by definition |L|∧p .

It is shown in [JLL, Proposition 1.5] that the monomorphisms δP can be extended to monomorphisms

NS(P )
g 7→ĝ
−−−→ AutL(P ) which satisfy (B), and more generally to injective functions δP,Q : NS(P,Q)

g 7→ĝ
−−−→

L(P,Q) which satisfy (B). Moreover ĝ ◦ ĥ = ĝh whenever h ∈ NS(P,Q) and g ∈ NS(Q,R). Thus, the

identity element e ∈ S give rise to morphisms ιQP ∈ L(P,Q) for any P ≤ Q where ιQP = ê.

By [JLL, Corollary 1.8] the category L has the property that every morphism in L is both a monomor-
phism and an epimorphism (but in general not an isomorphism). This allows us, by [JLL, Lemma 1.7(i)],
to define “restrictions”: if ϕ ∈ L(P,Q) and P ′ ≤ P and Q′ ≤ Q are F -centric subgroups such that

π(ϕ)(P ′) ≤ Q′ then there exists a unique morphism ψ ∈ L(P ′, Q′) such that ϕ ◦ ιPP ′ = ιQQ′ ◦ ψ. We write

ϕ|Q
′

P ′ for this unique morphism and call it the restriction of ϕ.

In [BLO3, Section 3] a collection of subgroups of S denoted H•(F) was constructed. We will not recall
the precise details of its construction here. The full subcategory of F on this set of objects is denoted F•.
There is a functor F → F• where P ≤ P • for any P ≤ S. This functor is left adjoint to the inclusion
F• ⊆ F . In addition H•(F) contains the collection Fcr of all P ≤ S which are both F -centric and
F -radical.

The functor P 7→ P • “lifts” to a functor L → L• such that ĝ• = ĝ for any g ∈ NS(P,Q). See [JLL,
Proposition 1.12].

3. Geometric unstable Adams operations

In this section we recall the the concept of geometric unstable Adams operations and make some basic
observations, ending with the proof of Proposition 1.2.
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3.1. Groups with maximal discrete p-tori.

3.1. Definition. A group G is called Z/p∞-free if it contains no subgroup isomorphic to Z/p∞, or
equivalently if every homomorphism Z/p∞ → G is trivial. We say that T ≤ G is a maximal discrete
p-torus in G if T ∼=

⊕n Z/p∞ and any other subgroup of G isomorphic to a discrete p-torus is conjugate
to a subgroup of T . We say that S ≤ G is a Sylow p-subgroup if every discrete p-toral subgroup of G is
conjugate to a subgroup of S.

3.2. Lemma. Let 1→ K → G→ H → 1 be an exact sequence of group.

(i) If H and K are Z/p∞-free then G is Z/p∞-free.
(ii) If G is Z/p∞-free and K is finite then H is Z/p∞-free.

Proof. (i). Suppose T ≤ G is a discrete p-torus. Its image in H must be trivial by assumption. Hence
T ≤ K which implies T = 1.

(ii). Assume that H is not Z/p∞-free. Then there exists a sequence x1, x2, x3, . . . of non-identity
elements in H such that xi = (xi+1)

p for all i ≥ 1. The preimages of these elements in G are cosets

X1, X2, X3, . . . of K and hence finite subsets of G. The function (not a homomorphism) G
x 7→xp

−−−−→ G

restricts to functions Xi+1
x 7→xp

−−−−→ Xi for all i and we obtain a tower

· · · → Xi+1
x 7→xp

−−−−→ Xi
x 7→xp

−−−−→ . . .
x 7→xp

−−−−→ X2
x 7→xp

−−−−→ X1.

Since the sets Xi are finite, lim
←−

Xi is not empty. An element in lim
←−

Xi is a sequence g1, g2, g3, . . . of

non-identity elements of G such that gi = gi+1
p. These elements generate a copy of Z/p∞ in G which is

a contradiction. �

3.2. Adams automorphisms of discrete p-toral groups and fusion systems. Let S be a discrete
p-toral group and let T denote its maximal torus. Recall that Aut(T ) ∼= GLr(Zp) where r = rk(T ). It
contains a copy of Z×

p in its centre (the diagonal matrices).

3.3. Definition. An Adams automorphism of S of degree ζ ∈ Z×
p is an automorphism ϕ of S such that

ϕ|T is multiplication by ζ. We say that ϕ is a normal Adams automorphism if it induces the identity on
the set of components S/T . Set

Ad(S) = {all normal Adams automorphisms of S}.

This is a normal subgroup of Aut(S). Restriction Aut(S)→ Aut(T ) induces a “degree homomorphism”

deg : Ad(S)→ Z×
p .

Let Ad1(S) or Ad{deg=1}(S) be the subgroup of the normal Adams automorphisms of degree 1.

Recall that if F is a fusion system over S, then α ∈ Aut(S) is called fusion preserving if α ◦ ϕ is
a homomorphism in F for every ϕ ∈ HomF(P, S). The group of fusion preserving automorphisms is
denoted Autfus(S). It clearly contains AutF (S) as a normal subgroup. We define (see [BLO3, Section 7])

Outfus(S) = Autfus(S)/AutF (S).

3.4. Definition. Let F be a saturated fusion system over S. Set

Adfus(S) = Ad(S) ∩ Autfus(S).

Let OutAdfus(S) be the image of Adfus(S) in Outfus(S).

The goal of this subsection is to prove

3.5. Proposition. Let F be a saturated fusion system over S and let T be the identity component of S.
Then

(i) OutAdfus(S) is Z/p∞-free and solvable of class at most 2.
(ii) It contains a normal Sylow p-subgroup which is abelian if p is odd or if p = 2 and the order of the

extension class of S in H2(S/T ;T ) is at least 4.
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Proof. The torsion elements in Z×
p form the group Up of roots of unity in Zp, and by [Ro, Sec. 6.7, Prop.

1,2]

Up ∼=

{
C2 = {±1} if p = 2
Cp−1 if p > 2

In particular Up is finite and therefore Z×
p is Z/p∞-free, hence so are all of Γm(p). In fact, if p > 2 then

Γk(p) contains no finite p-subgroup, and if p = 2 then Γk(2) contains no finite 2-subgroup if k ≥ 2. By
[JLL, Proposition 2.8] there is a short exact sequence

1→ H1(S/T ;T )→ Ad(S)/AutT (S)
deg
−−→ Γm(p)→ 1

where pm is the order of the extension class of S in H2(S/T, T ). Since S/T is a finite p-group, H1(S/T, T )
is a finite abelian p-group by a transfer argument. It follows that Ad(S)/AutT (S) is solvable of class ≤ 2,
and from Lemma 3.2(i) that it is Z/p∞-free. Let P be the preimage of the normal Sylow p-subgroup of
Γm(p). Then P is a normal Sylow p-subgroup of Ad(S)/AutT (S) and it is abelian if either p is odd or if
p = 2 and m ≥ 2 since in this case Up ∩ Γm(p) = 1, hence P ∼= H1(S/T, T ).

Observe that AutF (S) ≤ Autfus(S) and that AutT (S) ≤ Ad(S). Hence Adfus(S)∩AutF (S) = Ad(S)∩
AutF (S) and by Definition 3.4 we obtain the short exact sequence

1→
AutF (S) ∩ Ad(S)

AutT (S)
→

Adfus(S)

AutT (S)
→ OutAdfus(S)→ 1.

From the results above about Ad(S)/AutT (S) it follows that OutAdfus(S) is solvable of class at most 2.
The first group in this exact sequence is finite since it is a subgroup of AutF (S)/AutT (S) which is finite
since S/T is finite and OutF(S) = AutF (S)/ Inn(S) is finite by [BLO3, Lemma 2.5]. Lemma 3.2(ii) now
implies that OutAdfus(S) is Z/p∞-free and this completes the proof of (i). Recall that Ad(S)/AutT (S)
has a normal Sylow p-subgroup. Let P be the normal Sylow p-subgroup of Adfus(S)/AutT (S) and let P̄
be its image in OutAdfus(S). Then P̄ is normal and it is abelian if either p is odd or if p = 2 and m ≥ 2
namely if the extension class of S in H2(S/T, T ) has order at least 4. It remains to show P̄ is a Sylow
p-subgroup of OutAdfus(S). If Q ≤ OutAdfus(S) is a discrete p-toral group, it is finite since OutAdfus(S)
is Z/p∞-free and its preimage H in Adfus(S)/AutT (S) is therefore finite. If Hp ∈ Sylp(H) then Hp ≤ P

since P is normal and its image in OutAdfus(S) is Q. Hence Q ≤ P̄ as needed. �

3.3. Geometric Adams operations. The goal of this subsection is to prove Theorem 1.3. Let G =
(S,F ,L) be a p-local compact group.

3.6.Definition (Compare [JLL, Definition 3.4]). A geometric unstable Adams operation of degree ζ ∈ Z×
p

is a self equivalence f : BG → BG such that there exists ϕ ∈ Ad(S) of degree ζ which renders the following
diagram commutative

BS

��

Bϕ
// BS

��

BG
f

// BG.

We will write
Adgeom(BG)

for the group of homotopy classes of geometric unstable Adams operations.

This definition differs slightly from [JLL] where we wrote Adg(G) for the topological group of unstable
Adams operations and used π0 Ad

g(G) for what we now denote by Adgeom(BG).

At this point the reader may wonder about the restriction to normal Adams automorphisms of S (by
virtue of Ad(S)). Indeed, in general there are fusion preserving Adams automorphisms which are not
normal. Recall that F is called connected if every element of S is F -conjugate to an element of T .

3.7. Definition. Let F be a saturated fusion system over S. We say that F is connected if every element
of S is F -conjugate to an element of its maximal torus S0. A p-local compact group G = (S,F ,L) is
connected if its underlying fusion system F is connected.
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3.8. Definition. A saturated fusion system F over S is weakly connected if S0 is self-centralising in S,
namely CS(S0) = S0.

The definitions are motivated by the fact that a compact Lie group G is connected if and only if
every element of G is conjugate to an element of its maximal torus and in this case the maximal torus is
self-centralising.

3.9. Lemma. If F is connected then it is weakly connected, namely S0 is self centralising. If S0 is self
centralising in S then every Adams automorphism of S is normal.

Proof. The second assertion is [JLL, Lemma 2.5]. To prove the first, we first claim that any x ∈ S \ T is
not fully centralised, namely the subgroup it generates is not fully centralised. If it is, then by assumption
there is some t ∈ T and a morphism ϕ ∈ F such that ϕ(t) = x. By the extension axiom ϕ extends to
ψ : CS(T )→ S. But T ⊆ CS(T ) and ψ(T ) = T which is impossible since ψ(t) = ϕ(t) = x.

Now suppose that x ∈ CS(T ) \ T . Then there is a morphism ϕ ∈ F such that ϕ(x) = t ∈ T is fully
centralised. By the extension axion ϕ extends to ψ : CS(T ) → S which carries x to t ∈ T . But ψ must
induce an isomorphism of T , a contradiction. Hence CS(T ) = T as claimed. �

We recall the following from [BLO3]. For any discrete p-toral group Q define an equivalence relation
on the set Hom(Q,S) where ρ ∼ ρ′ if there exists some F -isomorphism χ : ρ(Q) → ρ′(Q) such that
ρ′ = χ ◦ ρ. Set Rep(Q,L) = Hom(Q,S)/ ∼. Notice that Rep(S,L) = Aut(S)/AutF(S). Recall from
[BLO3, Theorem 6.3] that there is a natural bijection [BQ,BG] ∼= Rep(Q,L). In particular there is a
natural bijection of sets

(3.10) [BS,BG] ∼= Aut(S)/AutF(S) (left cosets of AutF (S)).

The map Res: [BG, BG]→ [BS,BG] therefore gives a homomorphism

(3.11) Out(BG)
µ
−→ Outfus(S)

and by [BLO3, Proposition 7.2, Proposition 5.8] there is an exact sequence

(3.12) 0→ lim←−
1

Oc(F)

Z → Out(BG)
µ
−→ Outfus(S)→ lim←−

2

Oc(F)

Z

where the groups at the ends are finite abelian p-groups by [BLO3, Proposition 5.8] and since Oc(F) is
equivalent to a finite subcategory.

Proof of Proposition 1.2. As we have seen above, by [BLO3] there is a commutative square

Out(BG)
µ

//

Res

��

Outfus(S)� _

��

[BS,BG] ∼=
// Aut(S)/AutF (S)

Hence, if f : BG → BG is a geometric unstable Adams operation then by definition there exists ϕ ∈ Ad(S)
such that the diagram in Definition 3.6 commutes up to homotopy and since the right arrow in the diagram
above is injective, µ([f ]) = [ϕ]. In particular ϕ is fusion preserving and hence µ([f ]) ∈ OutAdfus(S).
Conversely, suppose that f : BG → BG is a self equivalence such that µ([f ]) ∈ OutAdfus(S). Then there
exists some ϕ ∈ Adfus(S) such that µ([f ]) = [ϕ]. Since the bottom arrow in the diagram above is bijective
it follows that the diagram in Definition 3.6 commutes up to homotopy and therefore f is a geometric
unstable Adams operation. We have thus shown that

Adgeom(BG) = µ−1(OutAdfus(S)).

By [LL, Theorem B] for any p-local compact group lim←−
2

Oc(F)

Z = 0 and, if p is odd then lim←−
1

Oc(F)

Z = 0. In light

of (3.12), the vanishing of lim
←−

2Z implies the exactness of the sequence in the statement of this proposition.

The vanishing of lim
←−

1Z, provided p is odd, establishes the isomorphism Adgeom(BG) ∼= OutAdfus(S).
8



It follows from Proposition 3.5 that OutAdfus(S) is solvable of class at most 2 and since lim←−
1

Oc(F)

Z is a

finite abelian p-group, Adgeom(BG) has a normal Sylow p-subgroup. Lemma 3.2(i) shows that it is also
Z/p∞-free. �

4. Algebraic unstable Adams operations

In this section we will prove Theorem 1.3. Throughout we will fix a p-local compact group G =
(S,F ,L).

4.1. Definition (Compare [JLL, Definition 1.11]). Let G = (S,F ,L) be a p-local compact group and
φ : S → S be a fusion preserving automorphism. Let L′,L′′ be subcategories of L and Φ: L′ → L′′ be a
functor. We say that Φ covers φ if the following square is commutative

L′
Φ //

π

��

L′′

π

��

F
φ∗

// F

and if for every P,Q ∈ L′ and every g ∈ NS(P,Q) the morphisms ĝ ∈ L(P,Q) and φ̂(g) ∈ L(φ(P ), φ(Q))

belong to L′ and L′′ respectively, and moreover Φ(ĝ) = φ̂(g).

4.2. Definition ([JLL, Definition 3.3]). An algebraic unstable Adams operation on G, or simply an
unstable Adams operation on G, is a pair (Ψ, ψ), where ψ ∈ Adfus(S) and Ψ: L → L is a functor which
covers ψ. In other words,

(a) The following diagram is commutative where ψ∗ is the automorphism of F induced by ψ

L

π

��

Ψ // L

π

��

F
ψ∗

// F

(b) For every F -centric P,Q ≤ S and every g ∈ NS(P,Q) we have Ψ(ĝ) = ψ̂(g).

Define
Ad(G) = { all unstable Adams operations (Ψ, ψ) on G }.

If H ≤ Z×
p we will write AdH(G) for those (Ψ, ψ) such that deg(ψ) ∈ H .

4.3. Remark. Recall that the inclusion BS
incl
−−→ BG is induced by the geometric realisation of the

inclusion of categories BS ⊆ BAutL(S) ⊆ G via s 7→ ŝ. By definition of an unstable Adams operation
(Ψ, ψ), upon taking geometric realisations the following diagram commutes on the nose

BS

��

Bψ
// BS

��

BG
|Ψ|∧p

// BG

hence |Ψ|∧p is a geometric unstable Adams operation (Definition 3.6). We obtain a homomorphism

(4.4) γ : Ad(G)
(Ψ,ψ) 7→|Ψ|∧p
−−−−−−−−−→ Adgeom(BG).

Recall from [BLO3, Section 7] that an automorphism Φ: L → L is called isotypical if for every F -
centric subgroup P ≤ S the isomorphism AutL(P )→ AutL(Φ(P )) induced by Φ carries δ(P ) to δ(Φ(P )).
The collection of all isotypical self equivalences of L that preserve inclusions is a group [AOV, Lemma

1.14], and we denote it here by Auttyp(L) (The notation in [AOV] is AutItyp(L)). It is clear from the
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definition that if (Ψ, ψ) is an unstable Adams operation then Ψ ∈ Auttyp(L). Moreover, ψ is completely

determined by Ψ because for every s ∈ S we have Ψ(ŝ) = ψ̂(s) and since δ : S → AutL(S) is injective.
Therefore

Ad(G)
(Ψ,ψ) 7→Ψ
−−−−−−−→ Auttyp(L).

is injective and we can, and will, identify Ad(G) with a subgroup of Auttyp(L).

Geometric realisation of isotypical equivalences gives rise to a homomorphism [BLO3, Section 7]

Ω: Auttyp(L)
Φ7→[|Φ|∧p ]
−−−−−−−→ Out(BG).

By Remark 4.3 the restriction of Ω to Ad(G) is the map γ in (4.4). Among all isotypical equivalences of
L there are the ones that are induced by “conjugation” by automorphisms of S. To be precise, there is
a homomorphism

(4.5) τ : AutL(S)→ Auttyp(L)

defined for every ϕ ∈ AutL(S) as follows. On object, τ(ϕ)(P ) = π(ϕ)(P ) where π : L → F is the

projection. If α ∈ L(P,Q) is a morphism, set τ(ϕ)(α) = (ϕ|
ϕ(Q)
Q ) ◦ α ◦ (ϕ|

ϕ(P )
P )−1 where we write ϕ(P )

instead of π(ϕ)(P ) etc. It is easy to check, using the axioms of linking systems, that τ(ϕ) is isotypical. In
fact, AutL(S) E Auttyp(L) and the quotient group is denoted Outtyp(L). It is shown in [BLO3, Theorem
7.1] that there is an isomorphism

(4.6) Outtyp(L) ∼= Out(|L|∧p )

via the assignment [Φ] 7→ [|Φ|∧p ]. The definition of Outtyp(L) in [BLO3] and our definition coincide by

[AOV, Lemma 1.14].

4.7. Lemma. Let F be a weakly connected fusion system over S. If ψ ∈ AutF (S) is an Adams automor-
phism of degree 1, then ψ is conjugation by t for some t ∈ T .

Proof. Since F is weakly connected, T is F -centric. Now, ψ|S = idS |T and therefore [BLO3, Prop. 2.8]
implies that ψ is conjugation by t for some t ∈ Z(T ) = T . �

4.8. Lemma. Let G = (S,F ,L) be a weakly connected p-local compact group, and suppose that

(Ψ, IdS) ∈ Ker (γ : Ad(G)→ Adgeom(G)) .

Then Ψ = τ(t̂) for some t ∈ T .

Proof. By [BLO3, Theorem 7.1] the map γ is the restriction to Ad(G) of the composition of homomor-
phisms

Auttyp(L)
proj
−−→ Outtyp(L)

∼=
−→ Out(BG).

Note that Ψ(P ) = IdS(P ) = P for every F -centric P ≤ S and that given any ϕ ∈ MorL(P,Q) the images
of ϕ and Ψ(ϕ) in HomF(P,Q) are equal because Ψ covers (IdS)∗ = IdF . Also, since (Ψ, IdS) ∈ Ker(γ),
Ψ is conjugation by some ρ ∈ AutL(S) ∼= AutL(S). In particular for every ϕ ∈ AutL(S), Ψ(ϕ) ◦ ρ = ρ ◦ϕ
.

Since (Ψ, IdS) is an Adams operation, Ψ(ŝ) = ŝ for every s ∈ S, and so ρS ∈ CAutL(S)(S) = Z(S),
where S is considered as a subgroup of AutL(S) via the canonical inclusion. Since F is weakly connected
T = CS(T ) ≥ Z(S), and therefore ρ = t̂ for some t ∈ Z(S) ≤ T . Thus, by the definition of τ in (4.5),
Ψ = τ(t̂) as claimed. �

We will now consider the following subgroup of AutL(S)

AutAd
L (S) = {ϕ ∈ AutL(S) : π(ϕ) ∈ AutF (S) ∩ Ad(S)}.

Recall that the centre of F is the subgroup Z(F) of Z(S) of all x ∈ Z(S) such that ϕ(z) = z for
any F -homomorphism which contains x in its domain. Equivalently, since Z(S) is contained in every
F -centric subgroup it follows from [BLO3, Theorem 3.6] that Z(F) is the set of all x ∈ Z(S) such that
ϕ(x) = x for any F -centric P ≤ S and any ϕ ∈ HomF (P, S).
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4.9. Lemma. There is an exact sequence

1→ Z(F)
z 7→ẑ
−−−→ AutAd

L (S)
τ
−−→ Ad(G)

γ
−−→ Adgeom(BG)→ 1.

Proof. The homomorphism γ defined in (4.4) is surjective by [JLL, Prop. 3.5]. We have seen above that

if ϕ ∈ AutAd
L (S) then τ(ϕ) is an unstable Adams operation whose geometric realisation is homotopic to

the identity, so im(τ) ≤ ker(γ). Consider some (Ψ, ψ) in the kernel of γ. We will show that Ψ is in the
image of τ . The bijection (4.6) and by the definition of Outtyp(L) it follows that there exists a natural
isomorphism ρ : IdL → Ψ. In particular, at the object S ∈ L we obtain a morphism ρS : S → S in L,
i.e. ρS ∈ AutL(S). In fact, ρS determines ρ completely because for every P ∈ L we have the following
commutative square

P
ιSP //

ρP

��

S

ρS

��

ψ(P )
Ψ(ιSP )

// S.

Since ιSP = ê where e ∈ NS(P, S) and since Ψ(ê) = ê, we see that Ψ(ιSP ) = ιSψ(P ). Since ιSP is a

monomorphism we deduce that ρP is determined by ρS , in fact ρP = ρS |
ψ(P )
P for any P ∈ L. For every

s ∈ S we obtain the following commutative square

S
ŝ //

ρS

��

S

ρS

��

ρS

��

S
ψ̂(s)

// S.

It follows from Axiom (C) of linking systems [BLO3, Def. 4.1] that π(ρS) = ψ, in particular ρS ∈
AutAd

L (S). Now we claim that Ψ = τ(ρS) First, for every F -centric P ≤ S,

Ψ(P ) = ψ(P ) = π(ρS)(P ) = τ(ρS)(P ).

So Ψ and τ(ρS) agree on objects of L. Next, suppose that α ∈ MorL(P,Q). Since ρ is a natural
transformation there is a commutative diagram

P

ρP

��

α // Q

ρQ

��

ψ(P )
Ψ(α)

// ψ(Q).

Since ρP and ρQ are restrictions of ρS we get

Ψ(α) = ρQ ◦ α ◦ ρ
−1
P = (ρS |

ψ(Q)
Q ) ◦ α ◦ (ρS |

ψ(P )
P )−1 = τ(ρS)(α).

This completes the proof the the sequence is exact at Ad(G).

We now show exactness at AutAd
L (S). If z ∈ Z(F) then for any ϕ ∈ MorL(P,Q) we have z ∈ Z(S) ≤

P,Q and

τ(ẑ)(ϕ) = ẑ|QQ ◦ ϕ ◦ (ẑ|
P
P )

−1 = ẑ|QQ ◦ (
̂π(ϕ)(z)|QQ)

−1 ◦ ϕ = ẑ|QQ ◦ (ẑ|
Q
Q)

−1 ◦ ϕ = ϕ.

Therefore Z(F) → AutAd
L (S)

τ
−→ Ad(G) is trivial. Now suppose α ∈ Ker(τ). Then in particular α ∈

CAutL(S)(S) = Z(S), namely α = ẑ for some z ∈ Z(S). In addition for any ϕ ∈ MorL(P,Q) we must

have ẑ|QQ ◦ ϕ ◦ (ẑ|
P
P )

−1 = ϕ. Axiom (C) of linking systems and the fact that ϕ is an epimorphism in L

imply that π(ϕ)(z) = z. It follows that z ∈ Z(F) and this shows the exactness at AutAd
L (S). �

Composition of the degree map with the projection π : L → F gives rise to a degree homomorphism

deg : AutAd
L (S)

π
−→ AutF (S) ∩Ad(S)

deg
−−−→ Z×

p .
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Recall that OutF (S) is finite, hence every element of AutF(S) has finite order. Therefore the image of
AutF (S) ∩ Ad(S) under the degree map deg : Ad(S) → Z×

p must be contained in the group Up of the
roots of unity in Zp. We will set

(4.10) D(F) = Im
(
Ad(S) ∩ AutF (S)

deg
−−→ Up

)
.

4.11. Lemma. Let G = (S,F ,L) be a weakly connected p-local compact group. There is a short exact
sequence

1→ T → AutAd
L (S)

deg
−−→ D(F)→ 1.

Proof. By definition, deg is onto D(F). Also T ≤ Ker(deg) since T is abelian so AutT (S) ≤ Addeg=1(S).
Suppose that ϕ ∈ Ker(deg). Lemma 4.7 shows that π(ϕ) is conjugation by some t′ ∈ T . Since Z(S) ≤
CS(T ) = T and T is F -centric by the assumption of weak connectedness, ϕ = t̂ for some t ∈ T . �

Proof of Theorem 1.3. Clearly T ≤ AutAd
L (S), since AutT (S) ≤ AutF (S)∩Ad(S). Since Z(F) ≤ Z(S) ≤

T , The exact sequences in Lemmas 4.11 and 4.9 yield the exact sequence

1→ D(F)
τ
−→ Ad(G)/τ(T )

γ̄
−→ Adgeom(BG)→ 1.

Since D(F) is finite and Adgeom(BG) is Z/p∞-free by Proposition 1.2, Lemma 3.2(i) implies that
Ad(G)/τ(T ) is Z/p∞-free. It follows that τ(T ) is a normal maximal discrete p-torus in Ad(G) denoted
Ad(G)0.

Let P be the unique Sylow p-subgroup of Adgeom(BG) guaranteed in Proposition 1.2 and let H be its
preimage in Ad(G)/Ad(G)0. If p = 2 then D(F) ≤ Up ∼= C2, so H is a finite 2-group and it is clearly the
Sylow 2-subgroup of Ad(G)/Ad(G)0. In particular Ad(G) has a normal Sylow 2-group. If p is odd, any
Sylow p-subgroup of (the finite) group H is a Sylow p-subgroup of Ad(G)/Ad(G)0. This completes the
proof. �

5. The degree of an unstable Adams operation (uniqueness)

Unstable Adams operations of connected compact Lie groups have the pleasant property that their
degree determines them completely up to homotopy. That is, given a connected compact Lie group G and
an integer k, up to homotopy there is at most one unstable Adams operation on BG of degree k. This
was shown in [JMO, Theorem 1]. In the set up of p-local compact groups, Proposition 1.2 makes it clear

that this does not hold in general. First, at least when p = 2, any non-trivial element in lim
←−

1Z gives rise
to a geometric unstable Adams operation whose underlying automorphism of S is the identity. Secondly,
since OutAdfus(S) ∼= Adfus(S)/(AutF(S) ∩ Ad(S)), the degree can only be defined modulo D(F). That
is, the degree map that we must consider is

deg : Adgeom(BG)→ OutAdfus(S)
deg
−−→ Z×

p /D(F).

From the algebraic point of view we can define a degree homomorphism

deg : Ad(G)
(Ψ,ψ) 7→ψ
−−−−−−→ Adfus(S)

deg
−−→ Z×

p .

But observe that every t ∈ T \Z(F) gives an unstable Adams operation τ(t̂) of degree 1, hence the kernel
of this degree map is in general not trivial. In this section we find conditions which guarantee that the
degree does determine the unstable Adams operation in a suitable sense.

5.1. Definition. Let F be a saturated fusion system over S. The Weyl group of F is W (F) = AutF (T ).

Recall that AutAd
L (S) is the subgroup of AutL(S) of the morphisms which project to AutF (S)∩Ad(S).

There is therefore a degree homomorphism deg : AutAd
L (S) → AutF (S) ∩ Ad(S)

deg
−−→ Z×

p . Its image is
D(F) by (4.10).

5.2.Lemma. Let G = (S,F ,L) be a weakly connected p-local compact group, and suppose that H1(W,T ) =
0. Then there is a short exact sequence

1→ T
δ|T
−−→ AutAd

L (S)
deg
−−→ D(F)→ 1

12



Proof. Clearly δ|T is injective and the degree map is surjective. Also deg ◦δ|T is the trivial homomorphism
since T is abelian. Suppose that ϕ ∈ Ker(deg). Then ψ(ϕ)|T = idT and since T is F -centric, it follows
from [BLO3, Proposition 2.8] that π(ϕ) = cz for some z ∈ Z(T ) = T . Since Z(S) ≤ T we now deduce
that ϕ = t̂ for some t ∈ T . �

5.3. Lemma. The homomorphism

Ad(G)
(Ψ,ψ) 7→ψ
−−−−−−−→ Adfus(S)

is surjective.

Proof. Consider some ϕ ∈ Adfus(S) and let [ϕ] denote its class in OutAdfus(S). The exact sequences
in Proposition 1.2 and Theorem 1.3 show that there exists (Ψ, ψ) ∈ Ad(G) such that [ϕ] = [ψ]. Hence

ϕ = α◦ψ for some α ∈ AutF(S)∩Ad(S). Let α̃ ∈ AutAd
L (S) be a lift for α. Then τ(α̃)◦Ψ is an unstable

Adams operation with an underlying automorphism ψ. �

5.4. Lemma. Let F be weakly connected and assume that H1(W,T ) = 0 where W = W (F). Then

OutAdfus(S)
deg
−−→ Z×

p /D(F) is injective.

Proof. Consider some ϕ ∈ Adfus(S) such that deg(ϕ) ∈ D(F). We will show it represents the identity
element in OutAdfus(S), namely ϕ ∈ AutF(S) ∩ Ad(S). By the definition of D(F) in (4.10), there is
ψ ∈ AutF(S) ∩ Ad(S) such that deg(ψ) = deg(ϕ). Therefore ϕ ◦ ψ−1 is a normal Adams automorphism
of S of degree 1, namely is induces the identity on T and on S/T . Since F is weakly connected T is
F -centric and we set G = AutL(T ). Notice that W = AutF (T ) ∼= G/T . By [JLL, Lemma 2.2] there
is an isomorphism Aut(G; IdT , IdS/T )/AutT (G) ∼= H1(W ;T ) which vanishes by assumption. Therefore
ϕ = ct ◦ ψ for some t ∈ T and in particular ϕ ∈ Ad(S) ∩AutF (S). �

Proof of Proposition 1.4. The exact sequence (1) follows from the exact sequence in Proposition 1.2 and

Lemma 5.4. Lemma 4.9 together with Lemma 4.11 and the fact that the image of T
τ
−→ Ad(G) is Ad(G)0

by Theorem 1.3, give rise to the following commutative diagram with short exact rows

1 // AutAd
L (S)/T

∼= deg

��

τ // Ad(G)/Ad(G)0

deg

��

γ̄
// Adgeom(BG)

deg

��

// 1

1 // D(F) // Z×
p

// Z×
p /D(F) // 1

The snake lemma together with the exact sequence (1) yield the exact sequence (2). If p 6= 2 then by

[LL] the group lim
←−

1Z vanishes and therefore the degree maps in (1) and (2) are injective. �

We are led to find conditions under which H1(W,T ) = 0. Recall that Up ≤ Z×
p is the group of p-adic

units. It acts in the natural way on any discrete p-torus T via central automorphisms.

5.5. Lemma. Let 1 6= G ≤ Up be a subgroup which acts on a discrete p-torus T or rank r ≥ 1 in
the natural way. If p 6= 2 then Hn(G, T ) = 0 for all n ≥ 0. If p = 2 then H2n(G, T ) = (Z/2)r and
H2n+1(G, T ) = 0 for all n ≥ 0.

Proof. If p 6= 2 then Up ∼= Cp−1 and T is p-torsion, hence H∗≥1(G, T ) = 0. Choose some 1 6= ζ ∈ G.
Then ζ mod p 6= 1 so ζ − 1 is an invertible element in Zp and therefore it must act without fixed points
on T . This show that H0(G, T ) = 0.

Now suppose that p = 2. Then G = Up = C2. If t ∈ G is the non-trivial element, a projective
resolution of Z is given by

· · · → Z[G]
1−t
−−→ Z[G]

1+t
−−→ Z[G]

1−t
−−→ Z[G]→ Z.

Applying HomZG(−, T ), one obtains the cochain complex

T
·2
−→ T

0
−→ T

2
−→ T

0
−→ · · ·

whose homology groups are H∗(G, T ). The description of H∗(G, T ) now follows. �
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We recall that Qp = Zp ⊗ Z[ 1p ]. We obtain a short exact sequence

1→ Zp → Qp → Z/p∞ → 1.

We also recall that Aut(Z/p∞) ∼= Z×
p where every ζ ∈ Zp acts on Z/pk ⊆ Z/p∞ via multiplication by ζ

mod pk. Using the inclusion Z[ 1p ] ≤ Qp it is easy to check that for any ζ ∈ Z×
p , multiplication by ζ in Qp

induces the automorphism ζ on Zp. Thus the sequence is a short exact sequence of Z×
p -modules. More

generally, if T is a discrete p-torus of rank r > 0, any decomposition T ∼= ⊕rZ/p∞ gives rise to a short
exact sequence of Zp-modules

(5.6) 1→ L→ V → T → 1

where V = ⊕rQp and L = ⊕rZp. Also, Aut(T ) ∼= GLr(Zp) which acts naturally on L and V , and the
sequence becomes a short exact sequence of GLr(Zp)-modules. We notice that different decompositions
of T give rise to isomorphic GLr(Zp)-modules V and L.

5.7. Lemma. Let T be a discrete p-torus, and let G ≤ Aut(T ) ∼= GLr(Zp) be a finite subgroup. Let V and
L be the associated Qp representation and the corresponding integral lattice respectively as above. Then

Hi(G,L) ∼=

{
Hi−1(G, T ) i > 1,

Coker(H0(G, V )→ H0(G, T )) i = 1

Proof. Since G is finite and V is a rational vector space, Hi(G, V ) = 0 for all i > 0. Thus the claim
follows at once from the standard dimension shifting argument (see for instance [Br, III.7]). �

Recall that an element w ∈ GLr(Qp) is called a pseudo-reflection if rk(w − 1) = 1, namely w fixes
a hyperplane of dimension r − 1. A subgroup W ≤ GLr(Qp) is called a pseudo-reflection group if it is
generated by pseudo-reflections.

We notice that Ad(S)
deg
−−−→ Z×

p →֒ Z(Aut(T )) is a factorisation of the restriction map Ad(S)
ϕ 7→ϕ|T
−−−−−−→

Aut(T ). In light of (4.10), we see that D(F) can be identified with a subgroup of Z(AutF (T )) which
acts in the natural way on T considered as as a subgroup of Up ≤ Z×

p .

5.8. Proposition. Let F be a weakly connected saturated fusion system and letW = AutF(T ) ≤ GLr(Zp)
be its Weyl group. Assume that either one of the following conditions holds:

(a) p is odd and D(F) 6= 1, or
(b) p = 2, D(F) 6= 1 and H1(W/D(F), TD(F)) = 0, or
(c) p is odd and the Weyl group W = OutF(T ) is a pseudo-reflection group.

Then H1(W,T ) = 0.

Proof. By the remarks above there is a central extension

1→ D(F)→ W →W/D(F)→ 1

and D(F) ≤ Up acts on T in the natural way. The associated Lyndon-Hochschild-Serre spectral sequence
takes the form

Ei,j2 = Hi
(
W/D(F) , Hj(D(F), T )

)
⇒ Hi+j(W,T ).

If p 6= 2 and D(F) 6= 1 then Lemma 5.5 implies that Hj(D(F), T ) = 0 for all j ≥ 0, and hence that
Ei,j = 0 for all i, j. Thus Hk(W,T ) = 0 for all k ≥ 0.

If p = 2 and D(F) 6= 1 and H1(W/D(F), TD(F)) = 0 then Ei,j2 = 0 for j odd since in this case
Hj(D(F), T ) = 0 by Lemma 5.5. Hence the only, potentially non-zero contribution to H1(W,T ) come
from H1(W/D(F), H0(D(F), T )) = H1(W/D(F), TD(F)) = 0 so H1(W,T ) = 0.

Finally, suppose that p 6= 2 and W ≤ Aut(T ) ∼= GLr(Zp) is a pseudo-reflection group. Let L and V
be the associated p-adic lattice and Qp-vector space associated to T as in (5.6). This is a short exact
sequence of Zp[W ]-modules. Now, W ≤ GLr(Zp) acts faithfully on L so [A, Theorem 3.3] applies and it
follows that H2(W,L) = 0. Hence, H1(W,T ) = 0 by Lemma 5.7. �
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6. Extensions of categories

In this section we will study extensions of categories and their automorphisms. A large portion of the
content of this section is contained in a different form in [Ho].

6.1. Definition. Let C be a small and let Φ: C → Ab be a functor. An extension of C by Φ is a small

category D with the same object set as that of C, together with a functor D
π
−→ C, and for every X ∈ C a

“distinguished” monomorphism δX : Φ(X)→ AutD(X), such that the following hold.

(1) The functor π is the identity on the objects and is surjective on morphism sets. Furthermore,
for each X,Y ∈ C, the action of Φ(Y ) on MorD(X,Y ) via δY by left composition is free, and the
projection

MorD(X,Y )→ MorC(X,Y ).

is the quotient map by this action.
(2) For any d ∈ MorD(X,Y ) and any g ∈ Φ(X) the following square commutes in D.

X
d //

δX(g)

��

Y

δY (Φ(π(d))(g))

��

X
d // Y

We will write E = (D, C,Φ, π, δ) for the extension.

To simplify notation throughout, if d is a morphism in D, then π(d) ∈ C will be denoted by [d]. If
g ∈ Φ(X), we denote δX(g) by JgK. In addition for any c ∈ C(X,Y ) we will write c∗ : Φ(X)→ Φ(Y ) for
the homomorphism Φ(c). Thus, the relation in Definition 6.1(2) can be written

(6.2) d ◦ JgK = JΦ([d])(g)K ◦ d or simply d ◦ JgK = J[d]∗(g)K ◦ d.

We remark that the restriction to functors Φ: C → Ab is only made for the sake of simplification. In
fact, we could have considered functors into the category of groups in which case we would have recovered
Hoff’s results [Ho] in full generality.

6.3. Example. Let N
i
−→ G

π
−→ H be an extension of groups with N abelian. Thus, N becomes an

H-module. Every group Γ gives rise to a category BΓ with one object whose set of automorphisms is Γ.
We then obtain an extension of categories E = (BG,BH,Φ,Bπ,Bi) where Φ: BH → Ab is the functor
representing the H-module N .

6.4. Example. Let (S,F ,L) be a p-local compact group. Let Fc be the full subcategory of F of the

F -centric subgroups. There is a functor Z : Fcop
P 7→Z(P )
−−−−−−→ Ab. Also the distinguished homomorphisms

δP : P → AutL(P ) restrict to δP : Z(P ) → AutLop(P ). It follows directly from the definitions of linking

systems that Lop is an extension of Fcop by Z with structure maps Lop
πop

−−→ Fcop and δP : Z(P ) →
AutLop(P ). Here we used the fact that if Γ is an abelian group then BΓ ∼= BΓop via the identity on
objects and morphisms.

The next example is the one that the next sections will build on. Due to its importance we give it as
Definition 6.5. Let (S,F ,L) be a p-local compact group. Let P,Q be subgroups of S and suppose that
f : P → Q is a homomorphism. Then f(P0) ≤ Q0 because f(P0) is a discrete p-torus.

6.5. Definition. Let (S,F ,L) be a p-local compact group. Define the category L/0 as follows. First,
Obj(L/0) = Obj(L). For any P,Q ∈ L set

MorL/0
(P,Q) = MorL(P,Q)/Q̂0.

where Q̂0 = δQ(Q0) acts on MorL(P,Q) by postcomposition. We will write ϕ̄ for the equivalence class
(orbit) of ϕ ∈ L(P,Q). We write

π/0 : L → L/0
for the projection functor.
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This defines a category because for any P
α
−→ Q

β
−→ R and any t ∈ Q0 and u ∈ R0 we have

û ◦ β ◦ t̂ ◦ α = û · π̂(β)(t) ◦ β ◦ α

and π(β)(t) ∈ R0 by the observation above.

Any homomorphism f ∈ HomF(P,Q) restricts to ϕ : P0 → Q0 of the maximal tori. Also, if t ∈ Q0

then ct induces the identity on Q0 and therefore ϕ|Q0

P0
= (ct ◦ϕ)|

Q0

P0
. This justifies the following definition.

6.6. Definition. Let Φ: L/0 → Ab be the functor which on objects is defined by Φ: P 7→ P0. For a

morphisms ϕ̄ ∈ L/0(P,Q) set Φ(ϕ̄) = π(ϕ)|Q0

P0
.

6.7. Proposition. Let (S,F ,L) be a p-local finite group. Then L is an extension (6.1) of L/0 by the

functor Φ: L/0 → Ab. The structure maps are given by π/0 : L → L/0 and δ/0
def
= δP |P0 : P0 → AutL(P ).

Proof. The functor π/0 : L → L/0 is clearly the identity on objects and is surjective on morphism sets.
The group δQ(Q0) ≤ AutL(Q) acts freely on L(P,Q) because all morphisms in L, in particular the
morphisms in L(P,Q), are epimorphisms by [JLL, Corollary 1.8]. So condition (1) of Definition 6.1
holds. Condition (2) follows from axiom (C) of linking systems. �

6.8. Definition. Let E = (D, C,Φ, π, δ) and E ′ = (D′, C′,Φ′, π′, δ′) be extensions. A morphism E → E ′ is
a functor Ψ: D → D′ such that there exists a functor Ψ: C → C′ which satisfies π′ ◦Ψ = Ψ ◦ π.

An automorphism of extensions is therefore an isomorphism of categories α : D → D such that both
α and α−1 are morphisms of the extension E . Among these there are the inner automorphisms of the
extension E .

6.9. Definition. Let E = (D, C,Φ, π, δ) be an extension. Given a choice of elements u(X) ∈ Φ(X)
for every X ∈ C, we obtain an equivalence τu : E → E where τu is the identity on objects and for any
d ∈ D(X,Y ) we define

τu(d) = Ju(Y )K ◦ d ◦ Ju(X)K−1.

An automorphism of E is called inner if it is equal to some τu. The collection of all the inner automor-
phisms of E is denoted Inn(E).

We remark that the functor Ψ: C → C′ in Definition 6.8, if it exists then it is unique because π and π′

are surjective. In addition there is no condition on the functors Φ and Φ′ in the definition of morphisms
because of Lemma 6.10 below.

6.10. Lemma. Let E = (D, C,Φ, π, δ) and E ′ = (D′, C′,Φ′, π′, δ′) extensions. Then any morphism Ψ: E →
E ′ gives rise to a unique natural transformation

η(Ψ): Φ→ Φ′ ◦Ψ

which takes an object X ∈ C to the homomorphism ηX : Φ(X) → Φ′ ◦ Ψ(X) which is determined by the
formula

(6.11) JηX(g)K = Ψ(JgK),

for any g ∈ Φ(X). (Here η denotes η(Ψ).

Proof. For every object X ∈ C the functors Ψ and Ψ give rise to a morphism of exact sequences

1 // Φ(X)
δX //

ηX

��

AutD(X)
π //

Ψ
��

AutC(X)

Ψ
��

1 // Φ′(Ψ(X))
δ′
Ψ(X)

// AutD′(Ψ(X))
π′

// AutC′(Ψ(X))
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This defines ηX , which satisfies (6.11) by definition. It remains to prove that the homomorphisms ηX
define a natural transformation η : Φ→ Φ′ ◦Ψ. For any c ∈MorC(X,Y ), we need to show that

Φ(X)
Φ(c)

//

ηX

��

Φ(Y )

ηY

��

Φ′(Ψ(X))
Φ′(Ψ(c))

// Φ′(Ψ(Y )).

Choose d ∈ D(X,Y ) such that c = [d]. By (6.11) and (6.2)

Ψ(d) ◦ JηX(g)K = Ψ(d) ◦Ψ(JgK) = Ψ(d ◦ JgK) = Ψ(JΦ(c)(g)K ◦ d) =

Ψ(JΦ(c)(g)K) ◦Ψ(d) = JηY (Φ(c)(g))K ◦Ψ(d).

On the other hand, by applying (6.2) directly to the left hand side of this equality and noticing that
[Ψ(d)] = Ψ(c) we get

Ψ(d) ◦ JηX(g)K = JΦ′(Ψ(c))(ηX (g))K ◦Ψ(d).

By comparing the right hand sides of these equalities and using the free action of Φ′(Y ) on D′(X,Y )
where Ψ(d) belongs, we see that ηY (Φ(c)(g)) = (Φ′ ◦Ψ)(c)(ηX (g)) as needed. �

6.12. Lemma. Let E = (D, C,Φ, π, δ) be an extension. Then any Θ ∈ Inn(E) induces the identity on C
and η(Θ) = Id.

Proof. Using the notation of Definition 6.9 we write Θ = τu. Then τu induces the identity on C because
[Ju(Y )K ◦ ϕ ◦ Ju(X)−1K] = [Ju(Y ) · ϕ∗(u(X)−1)K ◦ ϕ] = [ϕ]. This shows that τu = IdC . By Lemma 6.10,
for any X ∈ C and any x ∈ Φ(X) we have Jη(τu)(x)K = τu(JxK) = Ju(X)K ◦ JxK ◦ Ju(X)−1K = JxK because
Φ(X) is abelian. This shows that η(τu) = Id. �

At this stage it is useful to remark about which functors Ψ: D → D′ give rise to a morphism of
extensions E → E ′ as in Definition 6.8.

6.13. Definition. Let F : Gps → Gps be a functor such that F (G) ≤ G for any group G and these
inclusions induce a natural transformation of functors F → Id. An extension E = (D, C,Φ, π, δ) is called
F -rigid if δX induces an isomorphism Φ(X) ∼= F (AutD(X)) for every X ∈ Obj(D).

Here is an example of a functor F as in the definition above which will play a role in this paper.

6.14. Definition. Let Λ: Gps→ Gps be the functor which assigns to every group G the subgroup Λ(G)
generated by the images of all homomorphisms ϕ : Z/p∞ → G.

Recall that a group G is called virtually discrete p-toral if it is an extension of a finite group by a
discrete p-torus. In this case Λ(G) = G0 is the identity component of G and is a discrete p-torus. Hence,
the restriction of Λ to the full subcategory of virtually discrete p-toral groups factors through the category
Ab.

The reason we consider F -rigid extension is that morphisms between them (Definition 6.8) are just
functors between the categories. This is the content of the next proposition.

6.15. Proposition. Suppose that E = (D, C,Φ, π, δ) and E ′ = (D′, C′,Φ′, π′, δ′) are F -rigid extensions.
Then any functor Ψ: D → D′ is a morphism of extensions E → E ′.

Proof. For any C ∈ Obj(D) the functor Ψ induces a homomorphism Ψ: AutD(C) → AutD′(Ψ(C)). By
applying F and using the natural transformation Id→ F we get

Ψ(Φ(C)) = Ψ(F (AutD(C)) ≤ F (AutD′(Ψ(C))) = Φ′(Ψ(C)).

In view of this we define ψ : C → C′ as follows. On objects ψ : C 7→ Ψ(C). Fix c ∈ C(C0, C1) and choose
a lift d ∈ D(C0, C1). Define ψ : c 7→ [Ψ(d)]. Now, ψ is well defined on morphisms since if d′ is another
lift for c then d′ = JxK ◦ d for some x ∈ Φ(C) and therefore

[Ψ(JxK ◦ d)] = [Ψ(JxK)] ◦ [Ψ(d)] = [Ψ(d)]
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because Ψ(JxK ∈ Φ′(Ψ(C)) as we have seen above. The verification that ψ respects identities and
compositions is straightforward and the equality π′ ◦Ψ = ψ ◦ π holds by the way we defined ψ. �

6.16. Proposition. Let (S,F ,L) be a p-local compact group. The extension E = (L,L/0,Φ, π/0, δ/0) in
Proposition 6.7 is Λ-rigid (Definitions 6.13, 6.14).

Proof. It follows from [BLO3, Lemma 2.5] that for every F -centric P ≤ S the group AutL(P ) is an
extension of P0 by a finite group and therefore Λ(AutL(P )) = P0. �

Fix a small category C. An n-chain in C is a sequence X0
c0−→ X1

c1−→ . . .
cn−1
−−−→ Xn of composable

morphisms. We write Cn for the set of n-chains. Now consider a functor Φ: C → Ab. Recall that the
cobar construction is the cochain complex C∗(C,Φ) where

Cn(C,Φ) =
∏

X0

c1−→...
cn−1
−−−→Xn

Φ(Xn).

We view it as a set of functions u : Cn →
∐
X Φ(X) such that u(X0

c0−→ . . .
cn−1
−−−→ Xn) ∈ Φ(Xn). The

differential δ : Cn(C,Φ)→ Cn+1(C,Φ) is defined on the factor X0
c0−→ . . .

cn−→ Xn+1 of the target by

δ(u)(X•) =

n∑

j=0

(−1)ju(δi(X•)) + (−1)n+1Φ(cn)(δn+1(X•))

where δi(X•) is the n-chain obtained by deleting Xi from X•.

The cohomology groups of C∗(C,Φ) are isomorphic to lim
←−

∗ Φ [GZ, Appendix II, Section 3]. The
following facts are elementary and are left to the reader.

6.17. Lemma. Let C∗(C,Φ) be the cochain complex defined above. Then the following hold.

(a) Any 1-cocycle z ∈ C1(C,Φ) satisfies z(1X) = 1 for any X ∈ C.
(b) A 2-cocycle z is called regular if z(1X1 , c) = 1 = z(c, 1X0) for any c ∈ C(X0, X1). Every 2-cocycle

z′ ∈ C2(C,Φ) is cohomologous to a regular 2-cocycle z.

6.18. Definition. Let E = (D, C,Φ, π, δ) be an extension (Definition 6.1). A section is a function
σ : Mor(C) → Mor(D) such that [σ(c)] = c for every c ∈ Mor(C). We say that a section σ is regular
if σ(1X) = 1X for every X ∈ C.

The following definition is an analogue of the well known construction of the 2-cocycles associated
with extensions of groups. Compare with [Ho].

6.19. Definition. Let E = (D, C,Φ, π, δ) be an extension and σ : C1 → D1 a regular section. Define a

2-cochain as follows. Given a 2-chain X0
c0−→ X1

c1−→ X2 notice that [σ(c1) ◦ σ(c0)] = c1 ◦ c0 = [σ(c1 ◦ c0)]
and therefore there exists a unique element zσ(c1, c0) in Φ(X2) such that

σ(c1) ◦ σ(c0) = Jzσ(c1, c0)K ◦ σ(c1 ◦ c0).

The next lemma is analogous the the well known result about the 2-cocycles associated to a given
extension of groups. We leave the details to Appendix A.

6.20. Lemma. The 2-cochain zσ defined above is a regular 2-cocycle. Moreover, if σ′ is another regular
section then zσ′ and zσ are cohomologous.

This lemma justifies the following definition.

6.21. Definition. Let E = (D, C,Φ, π, δ) be an extension. Let [D] denote the element of H2(C,Φ) defined
by the 2-cocycle zσ associated with a section σ : C1 → D1.

Here is a simple consequence of the definitions analogous to the statement that an extension of groups
is split if and only if the associated 2-cohomology class is trivial. The proof is given in Appendix A.
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6.22. Lemma. Let E = (D, C,Φ, [−], J−K) be an extension. Then [D] = 0 if and only if there exists a

functor s : C → D which is a right inverse to D
[−]
−−→ C.

The next definition is analogous to that of an equivalence of extensions of groups.

6.23.Definition. Let C be a small category and Φ: C → Ab a functor. Two extensions E = (D, C,Φ, π, δ)
and E ′ = (D′, C,Φ, π′, δ) are called equivalent if there exists an isomorphism Ψ: E → E ′ such that Ψ = IdC

and the natural transformation η(Ψ) is the identity transformation Φ→ Φ ◦Ψ = Φ.

This defines an equivalence relation on the class of all extensions of C by Φ. The equivalence class of an
extension E is denoted {E}. Let Ext(C,Φ) denote the collection of equivalence classes of these extensions.

The next result is a special case of the results in [Ho]. It’s proof is deferred to Appendix A.

6.24. Lemma. Fix a small category C and a functor Φ: C → Ab. Then there exists a one-to-one
correspondence

Γ : Ext(C,Φ)
{E}7→[E]
−−−−−−−→ H2(C,Φ).

Now we deal with constructing morphisms of extensions. The next result should be compared with
[JLL, Lemma 2.2(i)]. It’s proof is deferred to Appendix A.

6.25. Proposition. Let E = (D, C,Φ, π, δ) and E ′ = (D′, C′,Φ′, π′, δ′) be extensions. Let ψ : C → C′ be a
functor, and let η : Φ→ Φ′ ◦ ψ be a natural transformation. Then the following are equivalent.

(i) There exists a morphism of extensions Ψ: E → E ′ such that ψ = Ψ and η = η(Ψ).
(ii) The homomorphisms in cohomology induced by ψ and η

H2(C; Φ)
η∗
−→ H2(C; Φ′ ◦ ψ)

ψ∗

←−− H2(C′,Φ′)

satisfy η∗([D]) = ψ∗([D′]).

For the sake of completeness we prove the following result. We will not use it in this paper. Let
Aut(E ; 1C , 1Φ) denote the group of all automorphisms Ψ of E such that Ψ = IdC and η(Ψ) = IdΦ.

6.26. Proposition. Let E = (D, C,Φ, π, δ) be an extension. Then there is a one-to-one correspondence

Γ: H1(C,Φ)→ Aut(E ; 1C , 1Φ)/ Inn(E).

7. Special Adams operations

Let F be a saturated fusion system over S. A set R of subgroups of S is called an F-collection or
simply a collection if it is closed under conjugacy in F , namely it is the union of isomorphism classes of
objects in F . We will write FR for the full subcategory of F with object set R. If R ⊆ Fc we let LR

be the full subcategory of L on the object set R. In this section we will make use of the structure map
δ of a linking system L as well as the structure map δ/0 of L regarded as an extension of the associated
quotient L/0, see Proposition 6.7. While δ/0 : P0 → AutL(P ) is merely the restriction of δ : P → AutL(P )
to P0 these morphisms play different roles in their respective contexts. To emphasize this, for x ∈ P
and t ∈ P0, we will denote δ(x) by x̂ and δ/0(t) by JtK. This is consistent with the notation we have
established in previous sections. An equality of the form JxK = x̂ for x ∈ P0 will simply mean that the
corresponding elements in AutL(P ) coincide. Notice that JxK only makes sense when x ∈ P0 wheras x̂ is
defined for any x ∈ P , or indeed, x ∈ NS(P,Q). Also, we will use the symbol [ϕ] for image in L/0 of a
morphism ϕ in L, and π(ϕ) for the image of that morphism in F .

7.1. Definition. Let G = (S,F ,L) be a p-local compact group and let R be a collection of F -centric
subgroups. We say that (Ψ, ψ) ∈ Ad(G) is a special unstable Adams operation relative to R if there
exists a choice of

(a) τP ∈ T for every P ∈ R and
(b) τϕ ∈ Q0 for every ϕ ∈ LR(P,Q)

such that the following hold
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(1) ψ(P ) = τPPτ
−1
P for every P ∈ R and

(2) Ψ(ϕ) = τ̂Q ◦ τ̂ϕ ◦ ϕ ◦ τ̂P
−1 for every ϕ ∈ LR(P,Q).

The subset of Ad(G) of all the special unstable Adams operation relative to R is denoted SpAd(G;R).

In [JLL], given a p-local compact group G = (S,F ,L), we find an integer m ≥ 0 such that every
ζ ∈ Γm(p) is the degree of some unstable Adams operation which we construct. The construction,
however, involves many choices and the number m is quite mysterious. It turns out that all the unstable
Adams operation we constructed in [JLL] are special relative to the collection H•(Fc). We will show this
in Appendix B.

Recall that G gives rise to an extension of categories E = (LR,LR/0,Φ|R, π/0, δ), as in Definitions

6.5, 6.6 and Proposition 6.7. The main purpose of this section is to relate special unstable Adams
operations relative to R to the extension E . The main result of this section is Proposition 7.2 which gives
a conceptual meaning to the integer m above. It also implies that if H1(LR/0; Φ) = 0 then special unstable

Adams operations relative to R are determined, modulo AutT (G), by their degree. Here AutT (G) means

automorphisms of G induced by elements of T̂ = δ(T ) ≤ AutL(S) (see (4.5)).

7.2. Proposition. Let G = (S,F ,L) be a p-local compact group and R ⊆ Fc be a collection which
contains H•(Fc). Let E denote the extension (LR,LR/0,Φ, [−], J−K) and suppose that the order of [LR] in

H2(LR/0; Φ) is p
m for some m ≥ 0. Then there is an exact sequence

H1(LR/0; Φ)→ SpAd(G;R)/AutT (G)
deg
−−→ Γm(p)→ 1.

Proposition 7.2 gives a sufficient condition for the existence of special Adams operations. The next
statement is a necessary condition.

7.3. Proposition. Let G = (S,F ,L) be a p-local compact group and R ⊆ Fc a collection. If (Ψ, ψ) ∈
SpAd(G;R) is of degree ζ then ζ · [LR] = [LR] in H2(LR/0,Φ).

Let R be a ring and let ξ be a central element in R. Let C a small category and F : C → R-mod be

a functor. Then ξ induces a natural transformation F → F given by F (c)
x 7→ξ·x
−−−−→ F (c) for every object

c ∈ C and x ∈ F (c). We call this natural transformation multiplication by ξ and we will denote it by
ξ : F → F . Proposition 7.3 will follow as a corollary from the next lemma.

7.4. Lemma. Let G = (S,F ,L) be a p-local compact group and R a collection. Let (Ψ, ψ) be a special
unstable Adams operation relative to R of degree ζ. Let E denote the extension (LR,LR/0,Φ, [−], J−K).

Then Ψ restricts to a functor Ψ|R : LR → LR. This gives rise to a homomorphism

Res : SpAd(G;R)
(Ψ,ψ) 7→Ψ|R
−−−−−−−−−→ Aut(E).

As an automorphism of the extension E (see Definition 6.8), Ψ|R : LR → LR has the following properties.

(1) Φ ◦Ψ = Φ,
(2) η(Ψ): Φ→ Φ ◦Ψ = Φ is multiplication by ζ (see Lemma 6.10) , and

(3) Ψ
∗
([LR]) = [LR] in H2(LR/0,Φ).

Proof. Since R is closed under F -conjugation, it is invariant under conjugation by T . Since Ψ is special,
Ψ(P ) = ψ(P ) is a T -conjugate of P for any P ∈ R and therefore Ψ restricts to a functor on the object
set R ⊆ Obj(L) and hence gives a functor Ψ|R : LR → LR whose inverse is Ψ−1|R. Since the extension E
is Λ-rigid by Proposition 6.16, it follows that Ψ|R is an automorphism of the extension E . It is clear that
the assignment Res : Ψ 7→ Ψ|R is a homomorphism (since composition of fucntors is the group operation).

Now consider some (Ψ, ψ) ∈ SpAd(G;R). By definition of the functor Ψ: LR/0 → L
R
/0 and since (Ψ, ψ)

is an Adams operation, for any P ∈ R

Ψ(P ) = [Ψ(P )] = ψ(P ).
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Suppose that P,Q ∈ R and that ϕ ∈ L(P,Q) and consider its image [ϕ] ∈ LR/0(P,Q). Then by definition

of Ψ

Ψ([ϕ]) = [Ψ(ϕ)].

Proof of (1). Let π : L → F denote the projection. Since ψ is an Adams automorphism of S then ψ|T
is multiplication by ζ, hence it leaves any subgroup of T invariant. Also note that if P ∈ R then P0 is a
characteristic subgroup of P . This shows that

Φ(Ψ(P )) = Ψ(P ))0 = ψ(P )0 = ψ(P0) = P0 = Φ(P ).

So Φ◦Ψ and Φ attain the same values on objects. Now suppose that P
[ϕ]
−−→ Q is a morphism in L/0 where

P,Q ∈ R and ϕ ∈ L(P,Q). Notice that π(ϕ)(P0) is a discrete p-torus and it is therefore a subgroup of
T . Since (Ψ, ψ) is a special unstable Adams operation relative to R,

Φ(Ψ([ϕ]))
(6.8)
= Φ([Ψ(ϕ)])

(7.1)
= Φ([τ̂Q ◦ τ̂ϕ ◦ ϕ ◦ τ̂P

−1])

(6.6)
= cτQ ◦ cτϕ ◦ π(ϕ) ◦ cτP

−1|P0 = π(ϕ)|P0

(6.6)
= Φ([ϕ]),

where each equality follows from the definition indicated above it, and the fourth equality holds since T
is abelian. This shows that Φ ◦Ψ = Φ.

Proof of (2). Fix some P ∈ R and x ∈ Φ(P0) = P0. Then, since ψ|T is multiplication by ζ, one has

Jη(Ψ)(x)K = Ψ(JxK) = Ψ(x̂) = ψ̂(x) = ζ̂ · x = Jζ · xK,

where the first quality follows from Lemma 6.10, and the third from Definition 4.2. Thus η(Ψ) is multi-
plication by ζ ∈ Zp.

Proof of (3). Let {τP }P∈R and {τϕ}ϕ∈Mor(LR) be as in Definition 7.1. Choose a regular section

σ : Mor(LR/0)→ Mor(LR).

Define a 1-cochain t ∈ C1(LR/0,Φ) by setting

t(c)
def
= τσ(c), c ∈Mor(LR/0).

Observe that for every c ∈ LR/0(P,Q),

[Ψ(σ(c))] = Ψ([σ(c)]) = Ψ(c)

and therefore there exists a unique element v(c) ∈ Q0 such that

(7.5) σ(Ψ(c)) = Jv(c)K ◦Ψ(σ(c)).

We obtain a 1-cochain v ∈ C1(LR/0,Φ). Recall that we use multiplicative notation for the group operation

in Φ and hence in the cochain complex C∗(LR/0,Φ). Set

u = v · t ∈ C1(LR/0,Φ).

Since Ψ is special relative to R, for any c ∈ LR/0(P,Q),

Ψ(σ(c)) = τ̂Q ◦ Jt(c)K ◦ σ(c) ◦ τ̂P
−1.

Together with (7.5) and the commutativity of T we obtain

(7.6) σ(Ψ(c)) = Jv(c)K ◦Ψ(σ(c)) = τ̂Q ◦ Ju(c)K ◦ σ(c) ◦ τ̂P
−1
.

Let P
c0−→ Q

c1−→ R be a 2-chain in LR/0. By definition of zσ (Definition 6.19) and the functoriality of Ψ,

(7.7) Jzσ(Ψ(c1),Ψ(c0))K ◦ σ(Ψ(c1 ◦ c0)) = σ(Ψ(c1)) ◦ σ(Ψ(c0)).
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Thus we obtain the following sequence of equalities:

Jzσ

(
Ψ(c1),Ψ(c0)

)
K ◦ τ̂R ◦ Ju(c1 ◦ c0)K ◦ σ(c1 ◦ c0) ◦ τ̂P

−1
=

τ̂R ◦ Ju(c1)K ◦ σ(c1) ◦ τ̂Q
−1 ◦ τ̂Q ◦ Ju(c0)K ◦ σ(c0) ◦ τ̂P

−1 =

τ̂R ◦ Ju(c1)K ◦ σ(c1) ◦ Ju(c0)K ◦ σ(c0) ◦ τ̂P
−1 =

τ̂R ◦ Ju(c1)K ◦ JΦ(c1)(u(c0))K ◦ σ(c1) ◦ σ(c0) ◦ τ̂P
−1

=

τ̂R ◦ Ju(c1) · Φ(c1)(u(c0))K ◦ Jzσ(c1, c0)K ◦ σ(c1 ◦ c0) ◦ τ̂P
−1
,

where the first equality follows from (7.6) applied to both sides of (7.7), the third by Definition (6.6) and
Axiom (C) of linking systems, and the fourth by Definition (6.19).

Now, τ̂P : P → ψ(P ) and τ̂R : R → ψ(R) are both isomorphisms, and σ(c1 ◦ c0) is an epimorphism in
L by [JLL, Corollary 1.8]. Hence,

Jzσ

(
Ψ(c1),Ψ(c0)

)
· u(c1 ◦ c0)K = Ju(c1) · Φ(c1)(u(c0)) · zσ(c1, c0)K,

and so we deduce that

zσ(Ψ(c1),Ψ(c0)) = zσ(c1, c0) · u(c1) · u(c1 ◦ c0)
−1 · Φ(c1)(u(c0)) = zσ(c1, c0) · δ(u)(c1, c0),

where δ is the differential in C∗(LR/0,Φ). This shows that zσ and Ψ
∗
(zσ) are cohomologous. �

Proof of Proposition 7.3. Proposition 6.25 and Lemma 7.4 show that [LR] = Ψ
∗
([LR]) = η(Ψ)∗([LR]) =

ζ · [LR]. �

Next we turn to Proposition 7.2. This require some preparation.

7.8. Lemma ([JLL, Proposition 1.14]). Let G = (S,F ,L) be a p-local compact group and let R be a
collection which contains H•(F). Let ψ : S → S be a fusion preserving Adams automorphism. Then any
functor Ψ′ : LR → LR which covers ψ in the sense of Definition 4.2, extends uniquely to an unstable
Adams operation (Ψ, ψ).

7.9. Definition. Let G = (S,F ,L) be a p-local finite group and R ⊆ Fc a collection. Let E denote the
extension (LR,LR/0,Φ, [−], J−K). Let Z ⊆ Z×

p be a subgroup. Let

Aut(E ; IdLR

/0
, Z) ≤ Aut(E)

denote the subgroup of the automorphisms Θ, such that Θ = IdLR

/0
and η(Θ) is multiplication by some

ζ ∈ Z.

Observe that Aut(E ; IdLR

/0
, Z) is indeed a subgroup, since for any P ∈ R and any x ∈ P0, the definition

of η(−) implies

Jη(Θ1 ◦Θ2)(x)K = (Θ1 ◦Θ2)(JxK) = Θ1(Jη(Θ2)(x)K) = Jη(Θ1)(η(Θ2)(x))K,

and so η(Θ1 ◦Θ2) = η(Θ1)◦η(Θ2). Notice also that for any Θ ∈ Aut(E ; IdLR

/0
,Z×

p ) and any ϕ ∈ LR(P,Q)

one has [Θ(ϕ)] = [ϕ].

7.10. Proposition. Let G = (S,F ,L) be a p-local compact group and R be a collection which contains
H•(Fc). Let E denote the extension (LR,LR/0,Φ, [−], J−K). Then

(i) There exists a homomorphism

Aut(E ; IdLR

/0
,Z×

p )
ρ
−−−→ SpAd(G;R)

such that deg(ρ(Θ)) = η(Θ) ∈ Z×
p (compare Definition 7.9).

(ii) Moreover, composition of ρ with the quotient by InnT (G) gives a surjective homomorphism

Aut(E ; IdLR

/0
,Z×

p )
ρ̄
−−−→ SpAd(G;R)/ InnT (G)

whose kernel contains Inn(E), (compare Definition 6.9 and Lemma 6.12).
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Proof. For any Θ ∈ Aut(E ; IdLR

/0
,Z×

p ), fix the following elements:

(i) For any ϕ ∈ LR(P,Q) let τϕ(Θ) be the unique element of Q0 such that

Θ(ϕ) = Jτϕ(Θ)K ◦ ϕ.

(ii) For every P ∈ R set τP (Θ)
def
= τιSP (Θ).

Notice that τP (Θ) ∈ T for all P ∈ R. Consider Θ ∈ Aut(E ; IdLR

/0
,Z×

p ) such that η(Θ) = ζ. Set

τP = τP (Θ) and τϕ = τϕ(Θ) for short, where τP (Θ) and τϕ(Θ) are as in (i) and (ii) above. Notice that
τS = 1 since ιSS = idS in L.

For any x ∈ P , where P ∈ R, consider x̂ ∈ AutL(P ). Then [Θ(x̂)] = Θ([x̂]) = [x̂] , so Θ(x̂) ∈ P̂ ≤

AutL(P ). By identifying P with P̂ via δP , this shows that for every P ∈ R, the functor Θ induces an
automorphism θP ∈ Aut(P ) by the equation

θ̂P (x) = Θ(x̂), (∀x ∈ P ).

Notice that S ∈ R, and we set

ψ
def
= θS .

Consider some P ∈ R and x ∈ P . By applying Θ to the equality ιSP ◦ δP (x) = δS(x) ◦ ιSP we obtain

τ̂P ◦ θ̂P (x) = ψ̂(x) ◦ τ̂P in L. Therefore

(7.11) ψ(x) = (cτP ◦ θP )(x), (x ∈ P ).

In particular it follows that

τP · P · τ
−1
P = ψ(P ),

i.e, τP ∈ NT (P, ψ(P )).

Step 1. ψ is a normal Adams automorphism of degree ζ. Notice first that for any x ∈ T ⊆ S,

ψ̂(x) = Θ(x̂) = Θ(JxK)
(6.2)
= Jη(Θ)S(x)K = Jζ · xK = ζ̂ · x.

Therefore ψ|T is multiplication by ζ. Also, the image of S in AutL/0
(S) is exactly S/T and since Θ = Id,

it follows that ψ induces the identity on S/T . Hence ψ is a normal Adams automorphism, as claimed.

Step 2. ψ is fusion preserving. Since R ⊇ F•, it controls fusion. Therefore, it is enough to show that

for any P ∈ R and any f ∈ HomF(P, S) there exists g ∈ HomF (ψ(P ), S) such that ψ ◦ f = g ◦ ψ|
ψ(P )
P .

Let ϕ ∈ L(P, S) be a lift for f . By axiom (C) of linking systems, for every x ∈ P we have ϕ◦ x̂ = f̂(x)◦ϕ.
By applying Θ,

(7.12) Θ(ϕ) ◦ θ̂P (x) = ψ̂(f(x)) ◦Θ(ϕ).

Set f ′ = π(Θ(ϕ)). By Axiom (C) and (7.11),

(7.13) Θ(ϕ) ◦ θ̂P (x) = f ′(θP (x)) ◦Θ(ϕ) = ̂f ′(cτP
−1(ψ(x))) ◦Θ(ϕ).

Comparing the right hand sides of (7.12) and (7.13), and using the fact that Θ(ϕ) is an epimorphism in
L by [JLL, Corollary 1.8],

ψ(f(x)) = f ′(cτP
−1(ψ(x)))

for every x ∈ P . Set g = f ′ ◦ cτP
−1|Pψ(P ). Then g ∈ HomF(ψ(P ), S) and ψ ◦ f = g ◦ ψ|

ψ(P )
P . This shows

that ψ is fusion preserving and completes Step 2.

Define a functor Ψ: LR → LR, on objects P,Q ∈ R and morphisms ϕ ∈ LR(P,Q), by

Ψ(P )
def
= ψ(P )(7.14)

Ψ(ϕ)
def
= τ̂Q ◦Θ(ϕ) ◦ τ̂P

−1
,(7.15)
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where τP and τQ are considered here as elements of NT (P, ψ(P )) and NT (Q,ψ(Q)) respectively. The
functoriality of Ψ is clear from that of Θ. In fact, the morphisms τ̂P ∈ L(P, ψ(P )) give a natural
isomorphism

τ̂ : Θ→ Ψ.

Step 3. Ψ covers ψ (see Definition 4.2). First, we show that π ◦ Ψ = ψ∗ ◦ π. The functors on both
sides agree on objects, by definition of Ψ and ψ∗, and since the projection π is the identity on objects.
Let ϕ ∈ LR(P,Q) be a morphism. Consider the squares:

P
ϕ

//

x̂

��

Q

̂π(ϕ)(x)

��

P ϕ
// Q

P
Θ(ϕ)

//

θ̂P (x)

��

Q

̂θQ(π(ϕ)(x))

��

P
Θ(ϕ)

// Q

The left square commutes by Axiom (C), and the right one is obtained from the left by applying Θ. Since
Θ(ϕ) is an epimorphism in L, Axiom (C) applied to the right square gives

(7.16) θQ(π(ϕ)(x)) = π
(
Θ(ϕ)

)
(θP (x)).

Therefore, for any x ∈ P

π
(
Ψ(ϕ)

)
(ψ(x)) = π

(
τ̂Q ◦Θ(ϕ) ◦ τ̂P

−1)
(ψ(x)) = (cτQ ◦ π(Θ(ϕ)) ◦ c−1

τP )(ψ(x))
(7.11)
=

(cτQ ◦ π(Θ(ϕ)))(θP (x))
(7.16)
= cτQ(θQ(π(ϕ)(x)))

(7.11)
= ψ(π(ϕ)(x))

Thus, π(Ψ(ϕ)) ◦ ψ|P = ψ ◦ π(ϕ) and consequently (π ◦Ψ)(ϕ) = (ψ∗ ◦ π)(ϕ) as claimed.

Next we show that for any P,Q ∈ R and g ∈ NS(P,Q) we have Ψ(ĝ) = ψ̂(g). First, notice that
ψ(g) ∈ NS(ψ(P ), ψ(Q)). Next,

ιSψ(Q) ◦Ψ(ĝ) = by definition of Ψ (7.15)

ιSψ(Q) ◦ τ̂Q ◦Θ(ĝ) ◦ τ̂P
−1

= by definition of τQ

Θ(ιSQ) ◦Θ(ĝ) ◦ τ̂P
−1

=

Θ(ιSQ ◦ ĝ) ◦ τ̂P
−1

=

Θ(ĝ ◦ ιSP ) ◦ τ̂P
−1

=

Θ(ĝ) ◦Θ(ιSP ) ◦ τ̂P
−1 = by definition of θS

θ̂S(g) ◦Θ(ιSP ) ◦ τ̂P
−1

= by definition of τP

θ̂S(g) ◦ ι
S
ψ(P ) =

ιSψ(Q) ◦ ψ̂(g).

Since ιSψ(Q) is a monomorphism in L it follows that Ψ(ĝ) = ψ̂(g). This shows that Ψ covers ψ and

completes the proof of the claim.

Step 4. Proof of (i). By Lemma 7.8, Ψ extends to an unstable Adams operation (ρ(Θ), ψ). We retain
the notation Ψ = ρ(Θ) for convenience. Then Ψ is special relative to R because for any P ∈ R,

ψ(P ) = cτP (θP (P )) = cτP (P ) = τPPτ
−1
P ,

where the first and second equality follow from (7.11), and for any ϕ ∈ LR(P,Q),

Ψ(ϕ) = τ̂Q ◦Θ(ϕ) ◦ τ̂P
−1

= τ̂Q ◦ JτϕK ◦ ϕ ◦ τ̂P
−1
,

where the second equality follows from the definition of τϕ and (7.15). It has degree ζ because for any
x ∈ T ,

Jψ(x)K = JθS(x)K = Θ(JxK) = η(Θ)(JxK) = ζ · JxK.
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It remains to prove that ρ is a homomorphism. Choose Θ,Θ′ ∈ Aut(E ; IdL/0
,Z×

p ) and set Θ′′ = Θ′ ◦Θ.

Let Ψ,Ψ′,Ψ′′ denote their images in Ad(G;R) by ρ. We need to show that Ψ′′ = Ψ′ ◦ Ψ. Keeping the
notation above, if P ∈ R then it is clear that θ′′S = θ′S ◦ θS , namely ψ′′ = ψ′ ◦ ψ and therefore

Ψ′′(P ) = ψ′′(P ) = ψ′(ψ(P )) = (Ψ′ ◦Ψ)(P ).

Hence Ψ′′ and Ψ′ ◦Ψ agree on objects. Moreover, observe that by the definition of the elements τP , τ
′
P , τ

′′
P

of T

ιSψ′′(P ) ◦ τ̂
′
ψ(P ) ◦Θ

′(τ̂P ) = Θ′(ιSψ(P )) ◦Θ
′(τ̂P ) = Θ′(ιSψ(P ) ◦ τ̂P ) = Θ′(Θ(ιSP )) = Θ′′(ιSP ) = ιSψ′′(P ) ◦ τ̂

′′
P .

Since ιSψ′′(P ) is a monomorphism in L it follows that

τ̂ψ(P ) ◦Θ
′(τ̂P ) = τ̂ ′′P .

Now suppose that P,Q ∈ R and that ϕ ∈ L(P,Q). Then

Ψ′(Ψ(ϕ)) = Ψ′(τ̂Q ◦Θ(ϕ) ◦ τ̂P
−1) = τ̂ ′ψ(Q) ◦Θ

′(τ̂Q ◦Θ(ϕ) ◦ τ̂P
−1) ◦ τ̂ ′ψ(P )

−1
=

τ̂ ′ψ(Q) ◦Θ
′(τ̂Q) ◦Θ

′(Θ(ϕ)) ◦Θ′(τ̂P
−1) ◦ τ̂ ′ψ(P )

−1
= τ̂ ′′Q ◦Θ

′(Θ(ϕ)) ◦ τ̂ ′′P
−1

= Ψ′′(ϕ).

This shows that Ψ′′ and Ψ′ ◦Ψ agree on morphisms and completes the proof of (i).

Step 5. Proof of (ii). Suppose that (Ψ, ψ) ∈ SpAd(G;R) has degree ζ. For each P ∈ R and each
ϕ ∈Mor(LR), fix elements τP and τϕ, as in Definition 7.1. Define a functor Θ: LR → LR by

Θ(P ) = P, (P ∈ R)

Θ(ϕ) = τ̂Q
−1 ◦Ψ(ϕ) ◦ τ̂P , (ϕ ∈ LR(P,Q)).

The functoriality of Θ is clear, and it is a morphism of extensions by Propositions 6.15 and 6.16. Since
(Ψ, ψ) is special relative to R,

[Θ(ϕ)] = [τ̂Q
−1

] ◦ [τ̂Q ◦ τ̂ϕ ◦ ϕ ◦ τ̂P
−1

] ◦ [τ̂P ] = [ϕ],

and so Θ = IdLR

/0
. Also, given P ∈ R and g ∈ P0, since T is abelian we get

Θ(JgK) = Θ(ĝ) = τ̂P
−1 ◦Ψ(ĝ) ◦ τ̂P = τ̂P

−1 ◦ ψ̂(g) ◦ τ̂P = Jψ(g)K = Jζ · gK.

Hence η(Θ) = ζ by Lemma 6.10. Thus, Θ ∈ Aut(E ; IdLR

/0
;Z×

p ).

It remains to show that ρ(Θ) and (Ψ, ψ) differ by cτ̂S ∈ InnT (G). Observe first that τP (Θ) is the
unique element satisfying Θ(ιSP ) = JτP (Θ)K ◦ ιSP . On the other hand,

Θ(ιSP ) = τ̂S
−1 ◦Ψ(ιSP ) ◦ τ̂P = τ̂S

−1 ◦ ιSψ(P ) ◦ τ̂P = τ−1
S τP ◦ ι

S
P .

By comparing the two expressions for Θ(ιSP ) and since ιSP is an epimorphism in L we deduce that

τP (Θ) = τ−1
S τP .

By (7.11), (7.14) and (7.15) it follows that

ρ(Θ)(P ) = τP (Θ) · P · τP (Θ)−1 = τ−1
S τP · P · τ

−1
P τS = τ−1

S · ψ(P ) · τS

ρ(Θ)(ϕ) = τ̂Q(Θ) ◦Θ(ϕ) ◦ τ̂P (Θ)
−1

= τ̂−1
S ◦ τ̂Q ◦Θ(ϕ) ◦ τ̂P

−1 ◦ τ̂S = τ̂S
−1 ◦Ψ(ϕ) ◦ τ̂S .

Therefore Ψ = cτ̂S−1 ◦ ρ(Θ), and this shows that ρ̄ is surjective.

Finally, consider some Θ ∈ Inn(E). Then for every P,Q ∈ R and any ϕ ∈ LR(P,Q), there is an element

tP ∈ P0, such that Θ(ϕ) = t̂Q
−1
◦ ϕ ◦ t̂P . In particular τP (Θ) = t−1

S tP . Then for any ϕ ∈ LR(P,Q)

ρ(Θ)(ϕ) = τ̂Q(Θ) ◦Θ(ϕ) ◦ τ̂P (Θ)
−1

= t̂s
−1
◦ ϕ ◦ t̂s.

This shows that ρ(Θ)|R = c
t̂S

−1 and by Lemma 7.8, ρ(Θ) = c
t̂S

−1 . This completes the proof of Step 5

and hence of the proposition. �
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We recall from (4.5) that if G = (S,F ,L) is a p-local compact group then every element of AutL(S)
induces a “conjugation automorphism” on G which we call “inner”. We will write AutT (G) for the inner

automorphisms of G induced by the elements of T̂ ≤ AutL(S). Observe that conjugation by t ∈ T induces
an Adams automorphism of S of degree 1 and ct is a special unstable Adams operation with τP = t for
every P ∈ Fc and τϕ = 1 for any ϕ ∈ Mor(L).

Suppose that M is a Zp-module and that x ∈ M has order pm for some m, i.e pmx = 0. Then for
any ζ ∈ Z×

p we claim that ζ · x = x if and only if ζ ∈ Γm(p). To see this write ζ = u + pmv for some
u ∈ Z ⊆ Zp and v ∈ Zp. Then ζ · x = u · x so ζ · x = x if and only if u · x = x which happens if and only
if u ∈ Ker(Z×

p → Aut(Z/pm)) = Γm(p).

Proof of Proposition 7.2. Suppose that (Ψ, ψ) ∈ SpAd(G;R) and let ζ = deg(ψ). By Propositions 6.15
and 6.16, Ψ|R ∈ Aut(E). By Proposition 7.3, ζ · [LR] = [LR]. By the remark above, ζ ∈ Γm(p).
Conversely, if ζ ∈ Γm(p) the same remark shows that ζ · [LR] = [LR] and Proposition 6.25 implies that
there exists Θ ∈ Aut(E) such that Θ = IdLR

/0
, and η(Θ) = ζ. By Proposition 7.10, ρ(Θ) is a special

unstable Adams operation relative to R of degree ζ. This shows that the degree homomorphism is onto
Γm(p).

The kernel of deg is the group of special unstable Adams operations relative to R of degree 1. Its
preimage under ρ is Aut(E ; IdLR

/0
, IdΦ). The exactness of the sequence at SpAd(G;R)/ InnT (G) now

follows from Proposition 7.10(ii) and Proposition 6.26. �

We end this section with an analysis of the group SpAd(G;R) as a subgroup of Ad(G). The next two
lemmas will be needed.

7.17. Lemma. Let G = (S,F ,L) be a p-local finite group and R ⊆ Fc a collection. Then SpAd(G;R) is
a normal subgroup of Ad(G).

Proof. Suppose (Ψ, ψ) and (Ψ′, ψ′) are special unstable Adams operations relative to R. Fix structure
elements {τP }P∈R and {τϕ}ϕ∈Mor(LR) for (Ψ, ψ), and {τ ′P }P∈R and {τ ′ϕ}ϕ∈Mor(LR) for (Ψ′, ψ′). Set

(Ψ′′, ψ′′) = (Ψ ◦ Ψ′, ψ ◦ ψ′), τ ′′P = τPψ(τ
′
P ) for every P ∈ R, and τϕψ(τ

′
ϕ) for any ϕ ∈ Mor(LR). Notice

that ψ′′(P ) = τ ′′p Pτ
′′
P
−1 and that τ ′′ϕ ∈ ψ

′′(Q)0 for any ϕ ∈ LR(P,Q). Using the fact that Ψ(ĝ) = ψ̂(g) it
is straightforward to check that (Ψ′′, ψ′′) is a special unstable Adams operation with structure elements
{τ ′′P }P∈R and {τ ′′ϕ}ϕ∈Mor(LR). The details are straightforward and left to the reader. In addition Ψ−1 is

a special unstable Adams operation with structure elements {ψ−1(τ−1
P )}P∈R and {ψ−1(τ−1

ϕ )}ϕ∈Mor(LR).

The verification uses the commutativity of T and the fact that ψ−1(τ−1
ϕ ) ∈ Q0 for ϕ ∈ LR(P,Q). It

follows that SpAd(G;R) is a subgroup of Ad(G).

Let (Ψ, ψ) be a special unstable Adams operation relative to R. For any (Θ, θ) ∈ Ad(G) consider the

Adams operation Ψ′ def
= Θ−1 ◦ Ψ ◦ Θ. Set τ ′P

def
= θ−1(τθ(P )) and τ

′
ϕ

def
= θ−1(τΘ(ϕ)). For any P ∈ LR and

any ϕ ∈ LR(P,Q),

Ψ′(P ) = θ−1(ψ(θ(P )) = θ−1(τθ(P ) · θ(P ) · τ
−1
θ(P )) = τ ′P · P · τ

′
P
−1,

Ψ′(ϕ) = Θ−1(τ̂θ(Q) ◦ τ̂Θ(ϕ) ◦Θ(ϕ) ◦ τ̂θ(P )
−1

) = τ̂ ′Q ◦ τ̂
′
ϕ ◦ ϕ ◦ τ̂

′
P .

Therefore the sets {τ ′P }P∈R and {τ ′ϕ}ϕ∈Mor(LR) give Ψ′ the structure of a special Adams operation, and
so SpAd(G;R) E Ad(G). �

7.18. Lemma. Let G = (S,F ,L) be a p-local compact group and let R ⊆ Fc be any collection with finitely
many F-conjugacy classes. Then the the order of the class [LR] ∈ H2(LR/0,Φ) is a power of p.

Proof. The category LR/0 can be replaced with a finite subcategoryM such that H∗(LR/0,Φ)
∼= H∗(M,Φ).

Since M is finite the cobar construction has the property that for any n ≥ 0 the group Cn(M,Φ) is a
product of finitely many discrete p-tori and it is therefore a p-torsion group. �
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7.19. Proposition. Let G = (S,F ,L) be a p-local compact group and R ⊆ Fc be a collection which
contains finitely many F-conjugacy classes. Then SpAd(G;R) had finite index in Ad(G) and the factor
group is solvable of class at most 3.

Proof. We have seen in Lemma 7.17 that SpAd(G;R) E Ad(G). By Lemma 7.18 and Proposition 7.2
there is a morphism of exact sequences

1 // SpAddeg=1(G;R)
� _

��

// SpAd(G;R)
� _

��

deg
// Γm(p)

� _

��

// 1

1 // Addeg=1(G) // Ad(G)
deg

// Z×
p .

The cokernel of the last column is a finite abelian group. Thus, by the snake lemma it remains to show
that the quotient group in the first column is a solvable finite group of class at most 2.

Consider the following commutative diagram with exact rows

1 // SpAdidS (G;R) //
� _

��

SpAddeg=1(G;R)
(Ψ,ψ) 7→ψ

//
� _

��

Addeg=1(S)

1 // AdidS (G) // Addeg=1(G)
(Ψ,ψ) 7→ψ

// Addeg=1(S)

where the superscript idS means operations whose underlying Adams automorphism is the identity on
S. Let U ≤ V be the images of the right horizontal maps. Notice that AutT (S) ≤ U because for every

t ∈ T , ct̂ ∈ SpAddeg=1(G;R). By [JLL, Proposition 2.8] Addeg=1(S)/AutT (S) ∼= H1(S/T ;T ). Since this
is a finite abelian group it follows that V/U is a finite abelian group. It remains to show that the quotient
group in the left column in this diagram is a finite abelian group. This follows from the next two claims.

Claim 1: AdidS (G) is an abelian discrete p-toral group.

Proof: Recall from [BLO3, Lemma 3.2] that H•(F) has finitely many S-conjugacy classes and hence
finitely many T -conjugacy classes. Let Q = {Q1, . . . , Qr} be a set of representatives and for any P ∈
H•(F) we choose once and for all some tP ∈ T such that tPPt

−1
P ∈ Q. If (Ψ, idS) ∈ Ad(G), then for

ϕ ∈ L(P,Q) we have π(Ψ(ϕ)) = π(ϕ), so Ψ(ϕ) = ϕ◦ ẑ(ϕ) for a unique z(ϕ) ∈ Z(P ). This gives a function

z : AdidS (G)
Ψ 7→(z(ϕ))
−−−−−−−−→

∏

Q,Q′∈Q

∏

L(Q,Q′)

Z(Q).

This is a homomorphism because if Ψ,Ψ′ ∈ AdidS (G), then for any ϕ ∈ L(P,Q)

(Ψ′ ◦Ψ)(ϕ) = Ψ′(ϕ ◦ ̂z(Ψ)(ϕ)) = Ψ′(ϕ) ◦Ψ′( ̂z(Ψ)(ϕ)) = ϕ ◦ ̂z(Ψ′)(ϕ) ◦ ̂z(Ψ)(ϕ),

so z(Ψ′ ◦Ψ) = z(Ψ′) · z(Ψ).

We claim that z is injective. Choose some Ψ ∈ ker(z) and suppose that z(Ψ)(ϕ) = 1 for all ϕ ∈ LQ.
This means that Ψ is the identity on LQ. If P, P ′ ∈ H•(Fc), then with the notation above, there

are unique Q,Q′ ∈ Q such that L(P, P ′) = t̂P ′

−1
◦ L(Q,Q′) ◦ t̂P . Since Ψ(t̂P ) = ̂idS(tP ) = t̂P and

Ψ(t̂P ′) = t̂P ′ , and since Ψ is the identity on L(Q,Q′), it follows that Ψ is the identity on LH
•(Fc). By

the uniqueness part in Lemma 7.8 it follows that Ψ = Id.

Since z is injective and the codomain of z is a finite product of discrete p-tori, hence a discrete p-torus
itself, it follows that its image is an abelian discrete p-toral group.

Claim 2: SpAdidS (G;R) has finite index in AdidS (G).

Proof: By the the previous claim, AdidS (G) is an abelian discrete p-toral. Thus by the structure theorem
of abelian discrete p-toral groups, it is isomorphic to D0 × A, where D0 is a discrete p-torus and A is
a finite abelian p-group. Therefore, n ·D has finite index in D for any n ≥ 1. We will show that there
exists some n such that Ψn ∈ SpAdidS (G;R) for any Ψ ∈ AdidS (G), and this will complete the proof.
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Any (Ψ, idS) ∈ Ad(G) induces, by Propositions 6.15 and 6.16, a functor Ψ ∈ Aut(L/0) which is the
identity on objects and therefore induces a permutation on L/0(P,Q) for all P,Q ∈ L. We therefore
obtain a homomorphism

σ : Ad{idS}(G)→
∏

P,Q∈LR

Sym(L/0(P,Q))

where Sym(Ω) is the symmetric group of a set Ω. Since the sets L/0(P,Q) are finite and since R has
finitely many T -conjugacy classes, we obtain a well defined

r = max{|L/0(P,Q)| : P,Q ∈ H•(Fc)}.

Then n = r! annihilates any element in the codomain of σ, and in particular Ψn ∈ Ker(σ) for any

Ψ ∈ AdidS (G). It remains to show that Ker(σ) ≤ SpAdidS (G;R). Suppose that (Ψ, idS) ∈ Ker(σ). Then
Ψ(P ) = P for any P ∈ R and also [Ψ(ϕ)] = [ϕ] for any ϕ ∈ LR(P,Q), namely Ψ(ϕ) = τ̂ϕ ◦ϕ for a unique
τϕ ∈ Q0. This shows that (Ψ, ψ) has the structure of a special unstable Adams operation with structure
τP = 1 and the elements τϕ above. This completes the proof of the claim and the proposition follows. �

8. Not all Adams operations are special

specials

In this section we find examples of weakly connected p-local compact groups G that afford unstable
Adams operations which are not special relative to the collection R of the F -centric F -radical subgroups.
The idea is to find such G which fulfils the conditions of Lemma 8.1 below.

The collection R is a very natural one to look at since |LR| → |L| is a mod-p equivalence. To see this

observe that R ⊆ H•(Fc) by [BLO3, Corollary 3.5] and that |LH
•(Fc)| → |L| is a homotopy equivalence

by [JLL, Proposition 1.12] which provides a natural transformation from the identity on L to the functor

L
P 7→P•

−−−−→ L. Since H•(Fc) has finitely many F -conjugacy classes by [BLO3, Lemma 3.2], there results

a finite filtration of LH
•(Fc) which together with the Λ-functors machinery in [BLO3, Section 5], can be

used to prove that |LR| → |LH
•(Fc)| induces an isomorphism in H∗(−,Z(p)).

8.1. Lemma. Let G = (S,F ,L) be a p-local compact group and R be a collection of F-centric subgroup.
Let (Ψ, ψ) ∈ Ad(G) and assume that

(i) deg(ψ) ∈ Z×
p \ Γ1(p) and that

(ii) there exists P ∈ R such that P is not a semi-direct product of P0 with P/P0.

Then (Ψ, ψ) /∈ SpAd(G;R).

Proof. Assume by contradiction that (Ψ, ψ) ∈ SpAd(G;R) and set ζ = deg(ψ). We claim that [LR] is the
trivial element in H2(LR/0,Φ). To see this, let L be the Zp-submodule of H2(LR/0,Φ) generated by [LR].

By Proposition 7.3, ζ acts as the identity on L. If L is infinite then L ∼= Zp and therefore ζ = 1 ∈ Γ1(p)
which is a contradiction. Therefore L ∼= Z/pm and ζ ∈ Γm(p) which by hypothesis (i) implies that m = 0,
namely L = 0.

Lemma 6.22 now implies that there exists a functor s : LR/0 → L
R which is a right inverse to the

projection LR → LR/0. Consider any P ∈ R. Notice that AutL(P ) contains P̂ as a copy of P and

similarly AutL/0
(P ) contains a copy of P/P0. The functor s gives a section s : P/P0 → P for the

projection P → P/P0. This is a contradiction to hypothesis (ii). �

It turns out that compact Lie groups provide examples of p-local compact group G which satisfy the
conditions of the lemma. First, let us recall from [BLO3, Section 9] how compact Lie groups give rise to
p-local compact groups.

The poset of all discrete p-toral subgroups of a compact Lie group G contains a maximal element S.
Every discrete p-toral P ≤ G is conjugate to a subgroup of S and in particular all maximal discrete p-toral
subgroups of G are conjugate. The fusion system F = FS(G) over S has by definition HomF (P,Q) =
HomG(P,Q) namely the homomorphisms P → Q induced by conjugation by elements of g. This fusion
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system is saturated by [BLO3, Lemma 9.5], it admits an associated centric linking system L = LcS(G)
that is unique up to isomorphism, and |LcS(G)|

∧
p ≃ BG

∧
p by [BLO3, Theorem 9.10].

Recall that a closed subgroup Q ≤ G is called p-toral if it is an extension of a torus by a finite p-group.
Let P be a discrete p-toral subgroup of G. Then P (the closure of P ) is a a p-toral subgroup of G. In
fact, P0 is the maximal torus of P .

A discrete p-toral P ≤ G is called snugly embedded if P = P0 ·P and every p-power torsion element in
(P )0 belongs to P0.

8.2. Lemma. Let G be a compact Lie group and P ≤ G a snugly embedded discrete p-toral subgroup. If
P is the semidirect product of P0 with P/P0 then P is the semidirect product of P 0 with P/P0.

Proof. Suppose π ≤ P is a complement of P0. Since P is snugly embedded, P = P0·P = (P )0·P = (P )0·π.
Also, P0 contains all p-torsion in (P )0 so (P )0 ∩ π ≤ P0 ∩ π = 1. �

Fix a compact Lie group G. A subgroup P is called p-stubborn, if P is p-toral and if NG(P )/P is finite
and Op(NG(P )/P ) = 1, where Op(K) denotes the largest normal p-subgroup of a finite group K [JMO].
Let us now recall from [O] the structure of the p-stubborn subgroups of the classical groups U(n) and
SU(n) when p > 2.

First, consider the regular representation of Z/p on Cp with the standard basis e0, . . . , ep−1. This
representation sends a generator of Z/p to the permutation matrix in U(p):

B =




0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . .
0 0 0 . . . 1
1 0 0 . . . 0




B : ei 7→ ei−1

Since the regular representation contains one copy of every irreducible representation of Z/p, it is clear
that B is conjugate in U(p) to the matrix

A = diag(1, ζ, ζ2, . . . , ζp−1) =




1 0 0 . . . 0
0 ζ 0 . . . 0
0 0 ζ2 . . . 0
. . . . . .
0 0 0 . . . ζp−1




A : ei 7→ ζiei

where ζ is a p-th root of unity. It is easy to check that

[A,B] = ABA−1B−1 = ζIp.

Thus, A and [A,B] belong to the standard maximal torus of U(p) (namely the unitary diagonal matrices).

Consider the natural action of U(pk) on Cp
k ∼= Cp⊗ · · · ⊗Cp. For every i = 0, . . . , k− 1 we let Ai and

Bi denote the matrices that correspond to the action of A and B on the ith factor of the tensor product
and the identity on the other factor. From this description it is clear that

(8.3) [Ai, Aj ] = [Bi, Bj ] = I, [Ai, Bj ] = I (i 6= j), [Ai, Bi] = ζI.

In matrix notation, Ai = I⊗i−1 ⊗ A ⊗ I⊗k−i and Bi = I⊗i−1 ⊗ B ⊗ I⊗k−i where I denotes the p × p
identity matrix and we use the Kronecker tensor product of matrices.

For any k ≥ 0 define ΓUpk ≤ U(pk) by

ΓUpk
def
=

〈
A0, . . . , Ak−1, B0, . . . , Bk−1, u · I : u ∈ U(1)

〉
,

where I denotes the identity matrix in U(pk). It is clear from (8.3) that the identity component of ΓUpk
is isomorphic to U(1) and that the factor group is isomorphic to

(8.4) Z/p2k = 〈A0, . . . , Ak−1, B0, . . . , Bk−1〉
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where Ai and Bi are the images of Ai and Bi in the quotient. Thus, ΓUpk are p-toral groups. Notice that

ΓU1 = U(1) and ΓUp =
〈
A, B, u · I : u ∈ U(1)

〉
.

Next, fix some k ≥ 1 and recall that Σpk ≤ U(pk) via permutation matrices. Let Epk = (Z/p)k act on
itself by left translation. This gives a monomorphism Epk → Σpk and identifies Epk as a subgroup of

U(pk). Given any H ≤ U(m) the wreath product H ≀Epk is naturally a subgroup of U(mpk).

Now fix some n ≥ 1 and let p be an odd prime. Write n = pm1 + · · ·+ pmr . Identifying the product
U(pm1)× · · ·×U(pmr) as a subgroup of U(n) in the standard way, consider the subgroups Q1× · · ·×Qr,
where for each 1 ≤ i ≤ r, Qi ≤ U(Pmi) has the form

ΓUpk ≀Eq1 ≀ · · · ≀Eqt ,

and where t ≥ 0 and q1, . . . , qt are all p-powers such that pmi = pkq1 . . . qt. By [O, Theorems 6 and 8],
these groups give a complete set of representatives for the conjugacy classes of p-stubborn subgroups of
U(n) when p > 2. By [O, Theorem 10] the assignment P 7→ P ∩ SU(n) gives a bijection between the
p-stubborn subgroups of U(n) and SU(n).

8.5. Lemma. Let G be a connected compact Lie group and S ≤ G a maximal discrete p-toral group.
Then FS(G) is weakly connected, namely T = S0 is self centralising in S.

Proof. Let T ≤ S be the maximal discrete p-torus in S. Then T is the maximal torus in S, and hence it
is the maximal torus of G. Since G is connected, its maximal torus is self-centralising and in particular
CS(T ) = CS(T ) = S ∩ CG(T ) = S ∩ T = T , where the last equality holds since S is snugly embedded in
G. �

Recall that a space X is called p-good in the sense of Bousfield and Kan [BK72] if the natural map

X → X∧
p induces isomorphism in H∗(−;Z/p). Also recall that H∗

Qp
(X)

def
= H∗(X ;Zp)⊗Q.

8.6. Lemma. Let X be a CW-complex. If X is p-good then H∗
Qp

(X) ∼= H∗
Qp

(X∧
p ) via the natural map. If

H∗(X ;Z) is finitely generated in every degree then H∗
Qp

(X) ∼= H∗(X)⊗Qp ∼= H∗(X ;Q)⊗ Zp.

Proof. If X is p-good then X → X∧
p induces an isomorphism in H∗(−;Z/p) and hence in H∗(−;Z/pn) for

all n ≥ 1. Since Zp = lim
←−n

Z/pn a standard spectral sequence argument gives H∗(X ;Zp) ∼= H∗(X∧
p ;Zp)

and hence H∗
Qp

(X) ∼= H∗
Qp

(X∧
p ).

Suppose H∗(X) is finitely generated in every degree. If A is a torsion-free abelian group, [Sp, Theorem
10 in Chap. 5.5] implies that H∗(X ;A) ∼= H∗(X)⊗A. Therefore

H∗
Qp

(X) = H∗(X ;Zp)⊗Q ∼= H∗(X)⊗ Zp ⊗Q = H∗(X)⊗Qp = H∗(X)⊗Q⊗ Zp = H∗(X ;Q)⊗ Zp.

�

The next proposition is the main result of this section.

8.7. Proposition. Let p ≥ 3 be a prime and set G = PSU(2p). Let S ≤ G be a maximal discrete p-toral
group and let G = (S,FS(G),L

c
S(G)) be the associated p-local compact group. Let R denote the collection

of all centric radical subgroups of S. Then SpAd(G;R) � Ad(G). In fact, the following composition is
not surjective

SpAd(G;R)
incl
−−→ Ad(G)

(Ψ,ψ) 7→|Ψ|∧p
−−−−−−−−→ Adgeom(BG).

Proof. Write G = (S,F ,L) for short. Let W be the Weyl group of G. Since p > 2, Dirichlet’s theorem on
the existence of infinitely many primes in arithmetic progressions implies that there are infinitely many
primes k such that k 6≡ 1 mod p. In particular there exists such k that, in addition, satisfies (k, |W |) = 1.
By [JMO, Theorem 2] there exist unstable Adams operations f : BG → BG of degree k. That means
that f∗ : H2m(BG;Q) → H2m(BG;Q) is multiplication by km for every m > 0. Lemma 8.6 and the
functoriality of H∗(−) imply that f∧

p induces multiplication by km on H2m(BG;Q)⊗Zp ∼= H2m
Qp

(BG) ∼=

H∗
Qp

(BG∧
p ). Since BG

∧
p ≃ BG, we obtain a self equivalence h of BG which induces multiplication by km
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on H∗
Qp

(BG). Since G is weakly connected by Lemma 8.5 it follows from [BLO7, Proposition 3.2] that

h ∈ Adgeom(BG). Theorem 1.3 applies to show that h is homotopic to |Ψ|∧p for some (Ψ, ψ) ∈ Ad(G).

Set ζ = deg(ψ). Thus, ψ|T is multiplication by ζ. Commutativity of

BT //

Bψ|T

��

BG

|Ψ|∧p
��

BT // BG

and the fact that H∗
Qp

(BG) ∼= H∗
Qp

(BT )W (G), [BLO7, Theorem A], imply that |Ψ|∧p induces multiplication

by ζm on H2m
Qp

(BG) for all m > 0. On the other and, |Ψ|∧p ≃ h, so ζ
m = km for all m > 0.

Now, G = PSU(2p) and since Z(SU(2p)) is a finite group, BG and BSU(2p) are rationally equivalent.
It is well known that

H∗(BSU(n)) ∼= Z[c2, c3, . . . , cn], ci ∈ H
2i(BSU(n)).

It follows from Lemma 8.6 that H∗
Qp

(BG) is a polynomial algebra over Qp generated by c2, . . . , cp, . . . , c2p.

In particular H2p(BG) is a non-trivial vector space over Qp on which |Ψ|∧p induces multiplication by ζp,
and this map is the same as multiplication by kp. This implies that ζ and k differ by a pth root of unity
in Qp and [Ro, Sec. 6.7, Prop. 1,2] implies that ζ = k since Qp contains no pth roots of unity if p > 2.

In order to complete the proof we apply Lemma 8.1 to show that (Ψ, ψ) is not special relative to R.
Since k 6≡ 1 mod p, it follows that k /∈ Γ1(p), and so Condition (i) of Lemma 8.1 holds. The remainder
of the proof is dedicated to showing that Condition (ii) of the lemma also holds.

Let Q̃ ≤ U(2p) be the subgroup

Q̃ = ΓUp × ΓUp

that, by the discussion above, is p-stubborn in U(2p). As we explained above, Q̃ is generated by the
matrices

A(1) =

(
A 0
0 I

)
, B(1) =

(
B 0
0 I

)
,

A(2) =

(
I 0
0 A

)
, B(2) =

(
I 0
0 B

)
,

(
uI 0
0 vI

)
, (u, v ∈ U(1)).

Throughout we will write I for the identity matrix in U(p) and we will also write diag(uI, vI) for the
matrices of the last type, and diag(A, I) for A(1) etc. It is clear from (8.3) that

[A(1), A(2)] = [A(1), B(2)] = [B(1), B(2)] = 1,

[A(1), B(1)] = diag(ζI, I), [A(2), B(2)] = diag(I, ζI).

Also, A(1), A(2), B(1), B(2) commute with all the matrices diag(uI, vI). Set

Q = Q̃ ∩ SU(2p).

By [O, Theorem 10], Q is p-stubborn in SU(2p) and by [O, Lemma 7] it is also centric in SU(2p), namely
CSU(2p)(Q) = Z(Q). Notice that Q contains A(1), A(2), B(1), B(2) because det(B) = 1 since it is the

signature of the odd cycle (1, 2, . . . , p). Therefore Q is generated by A(1), A(2), B(1), B(2) and by the
subgroup consisting of the matrices

(8.8)

(
uI 0
0 vI

)
, u, v ∈ U(1), upvp = 1.

This subgroup is easily seen to be isomorphic to U(1) × Z/p. The maximal torus of Q is therefore the
set of matrices

Q0 = {diag(uI, vI) : v = u−1} ∼= U(1).

Clearly Q contains Z(SU(2p)) which is the set of matrices u · I where u2p = 1.
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Let R be the image of Q in PSU(2p). It is generated by the images of A(1), A(2), B(1), B(2) which we
denote by adding “bars” - Ā(i) and B̄(i) - and by the images of the matrices in (8.8) which we denote by
Ū . The maximal torus of R is the image of Q0, namely these matrices U with v = u−1.

By [JMO, Proposition 1.6(i)], R is p-stubborn in G and hence, by [O, Lemma 7(ii)] it is also centric in
G = PSU(2p), namely CG(R) = Z(R). We claim that the projection R→ R/R0 does not have a section.
Assume to the contrary that such a section s : R/R0 → R exists. Consider the following elements in R

X = Ā(1)B̄(2), Y = B̄(1)Ā(2).

A straightforward calculation using (8.3) gives

[X,Y ] = [Ā(1)B̄(2), B̄(1)Ā(2)] = [Ā(1), B̄(1)] · [B̄(2), Ā(2)] = diag(ζI, I) · diag(I, ζ−1I) = diag(ζI, ζ−1I).

Let x, y denote the images of X,Y in R/R0. These are clearly non-trivial elements, and since
s : R/R0 → R is a section, there are Ū , V̄ ∈ R0 such that

s(x) = X · Ū and s(y) = Y · V̄ .

Say, U = diag(uI, u−1I) and V = diag(vI, v−1I) where u, v ∈ U(1). Then U, V commute with the
matrices A(i) and B(i), and since s is a homomorphism and R/R0 is abelian, (8.4), it follows that

1 = [s(x), s(y)] = [XŪ, Y V̄ ] = [X,Y ] = diag(ζI, ζ−1I).

This means that diag(ζI, ζ−1I) ∈ Z(SU(2p)) so it is diagonal, namely ζ = ζ−1. Therefore ζ2 = 1 in Zp
which implies that ζ = ±1. However, we have seen that ζ = k, and k was chosen such that k > 0 and
k 6= 1 mod p, which is absurd. We conclude that R→ R/R0 does not have a section.

Let P be a maximal discrete p-toral subgroup of R. Up to conjugation in G we may assume that
P ≤ S. Since R is centric, it is p-centric (namely Z(R) is the maximal p-toral subgroup of CG(R)) and
[BLO3, Lemma 9.6(c)] shows that P is F -centric. Also, P is snugly embedded in R, hence in G, and by
[BLO3, Lemma 9.4] there is an isomorphism of groups

OutG(P ) = RepG(P, P )
∼=
−→ RepG(R,R) = OutG(R).

Since R is centric in G, it follows that OutG(R) = NG(R)/R and since R is p-stubborn, OutG(R) is finite
and

Op(OutF (P )) = Op(OutG(P )) ∼= Op(OutG(R)) = Op(NG(R)/R) = 1

Therefore P is F -radical. We deduce that P ∈ R. Since P = R, Lemma 8.2 shows that P cannot have
a complement for P0 in P . This shows that P satisfies the condition (ii) in Lemma 8.1 and finishes the
proof of this proposition. �

Appendix A. Extensions of categories - Proofs of results

Proof of Lemma 6.20. Let c ∈ C(X0, X1) be a morphism. By the definition of zσ we have Jzσ(1X1 , c)K ◦
σ(1x1 ◦ c) = σ(1X1) ◦σ(c) = σ(c) and since Φ(X1) acts freely on D(X0, X1) it follows that zσ(1X1 , c) = 1.
Similarly zσ(c, 1X0) = 1.

Now we show that zσ is a 2-cocycle. We need to show that δ(zσ)(c2, c1, c0) = 1 for any 3-chain

X0
c0−→ X1

c1−→ X2
c2−→ X3. Consider the following diagram in D

X0

σ(c2◦c1◦c0)

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁

σ(c1◦c0)

��

X0

σ(c0)

�� σ(c2◦c1◦c0)

��
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

X2
Jzσ(c1,c0)K

//

σ(c2)

��

X2

σ(c2)

��

X1
σ(c1)

oo

σ(c2◦c1)

��

X3
Jzσ(c2,c1◦c0)K

// X3
Jc2∗(zσ(c1,c0))K

// X3 X3
Jzσ(c2,c1)K

oo X3
Jzσ(c2◦c1,c0)K
oo

The rectangle, the bottom-right square and the two triangles commute by the definition of zσ. The
bottom-left square commutes by (6.2). The diagram is therefore commutative. Since Φ(X3) acts freely
on D(X0, X3) it follows that the two morphisms X3 → X3 defined at the bottom of the diagram are
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equal because their composition with σ(c2 ◦ c1 ◦ c0) give the same morphism in D(X0, X2). This, in turn,
is equivalent to the 2-cocycle condition for zσ.

Now suppose that σ′ is another regular section. Since [σ(c)] = c = [σ′(c)] for any c ∈ C(X0, X1), there
exists a unique u(c) ∈ Φ(X1) such that σ′(c) = Ju(c)K ◦ σ(c). This gives a 1-cochain u ∈ C1(C,Φ). By

the defining relation of zσ and zσ′ we get for any 2-cochain X0
c0−→ X1

c1−→ X2 in C

Jzσ′(c1, c0)K ◦ Ju(c1 ◦ c0)K ◦ σ(c1 ◦ c0)
(u)
= Jzσ′(c1, c0)K ◦ σ

′(c1 ◦ c0)
(zσ′)
= σ′(c1) ◦ σ

′(c0)
(u)
=

Ju(c1)K ◦ σ(c1) ◦ Ju(c0)K ◦ σ(c0)
(6.2)
= Ju(c1)K ◦ Jc1∗(u(c0))K ◦ σ(c1) ◦ σ(c0)

(zσ)
=

Ju(c1)K ◦ Jc1∗(u(c0))K ◦ Jzσ(c1, c0)K ◦ σ(c1 ◦ c0).

Since Φ(X2) acts freely on D(X0, X2) and since J−K : Φ(X2) → AutD(X2) is injective, we deduce that
zσ′(c1, c0) = zσ(c1, c0) · u(c1) · u(c1 ◦ c0)−1 · c1∗(u(c0)). Since this holds for all 2-cochains, zσ′ = zσ · δ(u),
namely zσ and zσ′ are cohomologous. �

Proof of Lemma 6.22. Suppose first that s exists. Then it provides a regular section s : C1 → D1 and the
functoriality of s readily implies that zs = 1, hence [D] = 0.

Conversely, suppose that [D] = 0. Choose a regular section σ : C1 → D1. Then zσ = δ(u) where δ is

the differential in the cobar construction and u ∈ C1(C,Φ). Thus, given a 2-chain C0
c1−→ C1

c2−→ C2 in C,

(A.1) zσ(c2, c1) = u(c2) · u(c2 ◦ c1)
−1 · Φ(c2)(u(c1)).

Define a functor s : C → D as follows. On objects s(C) = C for all C ∈ C. On morphisms c ∈ C(C1, C2),

s(c) = Ju(c)K ◦ σ(c).

Then s is a functor because it respects units and compositions. First, since zσ is regular 1 = zσ(1X , 1X) =
u(1X) · u(1X ◦ 1X)−1 · (1X)∗(u(1X)) = u(1X), and therefore u(1X) = 1. Hence s(1X) = 1X because σ is
regular. Next, s respects composition because

s(c2 ◦ c1) = Ju(c2 ◦ c1)K ◦ σ(c2 ◦ c1) = Ju(c2 ◦ c1)K ◦ Jzσ(c2, c1)K ◦ σ(c2) ◦ σ(c1)
=

(A.1)

Ju(c2)K ◦ JΦ(c2)(u(c1))K ◦ σ(c2) ◦ σ(c1)
=

(6.2)Ju(c2)K ◦ σ(c2) ◦ Ju(c1)K ◦ σ(c1) = s(c2) ◦ s(c1).

Clearly s is a right inverse to D
[−]
−−→ C. �

A.2. Remark. Given a functor Φ: C → Ab, Thomason’s construction [Th] gives rise to an extension D.
Inspection of this construction shows that is comes equipped with a section, namely a functor s : C → D

which is a right inverse to the projection D
[−]
−−→ C. It is not hard to see that [TrC(Φ)] = 0 and conversely,

if D is an extension with [D] = 0 then D is isomorphic as an extension to TrC(Φ).

Proof of Lemma 6.24. To see that Γ is well defined we need to show that if E and E ′ are equivalent
extensions of C by Φ then they give rise to the same element of H2(C,Φ). Fix regular sections σ : C1 → D1

and σ′ : C1 → D′
1 and let zσ and zσ′ be their associated 2-cocycles. Also fix an equivalence Ψ: E → E ′,

i.e. Ψ = IdC and η(Ψ) = IdΦ. Notice that Ψ(σ) : C1 → D′
1 is a regular section for E ′ because Ψ = IdC .

Since η(Ψ) = IdΦ, by applying Ψ to the defining relation of zσ and using (6.11) we get

Jzσ(c1, c0)K ◦Ψ(σ(c1 ◦ c0)) = Ψ(σ(c1)) ◦Ψ(σ(c0)).

Therefore zσ = zΨ(σ) which is cohomologous to zσ′ by Lemma 6.20.

Now we construct Σ: H2(C,Φ) → Ext(C,Φ). Given ζ ∈ H2(C,Φ) choose a regular 2-cocycle z ∈ ζ
(this is possible by Lemma 6.17). Define a category Dz as follows. First, Obj(Dz) = Obj(C) and
Dz(X,Y ) = Φ(Y )×C(X,Y ). Composition of morphisms (g0, c0) ∈ Dz(X0, X1) and (g1, c1) ∈ Dz(X1, X2)
is given by

(g1, c1) ◦ (g0, c0) = (g1 · Φ(c1)(g0) · z(c1, c0), c1 ◦ c0).

It is a standard calculation to show that composition defined in this way is unital and associative, hence
makingDz a small category. The functor πz : Dz → C is the identity on objects and the obvious projection
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on morphisms. The assignment g 7→ (g, 1X) gives the maps δX : Φ(X)→ AutDz(X). It is easy to check
that Dz is an extension of C by Φ.

Suppose that z′ ∈ ζ is another regular 2-cocycle and let Dz′ be the associated extension. We claim
that Dz and Dz′ are equivalent extensions. Since z and z′ are cohomologous there is u ∈ C1(C,Φ) such
that z = z′ · δ(u). Regularity of z and z′ implies that u(1X) = 1 for all X ∈ C (by looking at the 2-chain

X
id
−→ X

id
−→ X). Define Ψ: Dz → Dz′ as the identity on objects, and on morphisms

Ψ: (g, c) 7→ (u(c) · g, c).

Then Ψ respects identity morphisms since u(1X) = 1. One easily checks it respects compositions because
z(c1, c0) = z′(c1, c0) ·u(c1) ·u(c1 ◦c0)−1 ·c1∗(u(c0)). Finally, Ψ = IdC as is evident from the definitions and
η(Ψ) = Id. Therefore Dz and Dz′ define equivalent extensions. This shows that a map Σ: H2(C,Φ) →
Ext(C,Φ) is well defined. Notice that σ : C1 → (Dz)1 defined by c 7→ (1, c) where c ∈ C(X0, X1) and
1 denotes the identity element of Φ(X1) gives a regular section such that zσ = z. This shows that
Γ ◦Σ = Id. If E = (D, C,Φ, π, δ) is an extension and σ : C1 → D1 is a section then there is an equivalence
Ψ: Dzσ → D defined as the identity on objects and Ψ: (g, c) 7→ JgK◦σ(c) on morphisms. This shows that
Σ ◦ Γ = Id. �

Proof of Proposition 6.25. Fix regular sections σ : C1 → D1 and σ′ : C′1 → D
′
1 and let zσ and zz′σ be the

associated 2-cocycles (6.19).

(i) =⇒ (ii). Let Ψ: E → E ′ be a morphism of extensions such that Ψ = ψ and η(Ψ) = η. Then for any
c ∈ C(X0, X1) we have [Ψ(σ(c))] = ψ(c) = [σ′(ψ(c))] so Ψ(σ(c)) = JgK◦σ′(ψ(c)) for a unique g ∈ Φ′(ψ(c)).
Therefore there exists u ∈ C1(C,Φ′ ◦ ψ) such that

(A.3) Ψ(σ(c)) = Ju(c)K ◦ σ′(ψ(c)), (c ∈ C1).

Now, given a 2-chain X0
c0−→ X1

c1−→ X2 in C we have

JηX2(zσ(c1, c0))K ◦ Ju(c1 ◦ c0)K ◦ σ
′(ψ(c1 ◦ c0))

(A.3)
= JηX2(zσ(c1, c0))K ◦Ψ(σ(c1 ◦ c0))

(6.11)
=

Ψ
(
Jzσ(c1, c0)K · σ(c1 ◦ c0)

)
(6.19)
= Ψ(σ(c1)) ◦Ψ(σ(c0))

(A.3)
=

Ju(c1)K ◦ σ
′(ψ(c1)) ◦ Ju(c0)K ◦ σ

′(ψ(c0))
(6.2)
= Ju(c1)K ◦ JΦ′(ψ(c1))(u(c0))K ◦ σ

′(ψ(c1)) ◦ σ
′(ψ(c0))

(zσ′ )
=

Ju(c1)K ◦ JΦ′(ψ(c1))(u(c0))K ◦ Jzσ′(ψ(c1), ψ(c0))K ◦ σ
′(ψ(c1 ◦ c0)).

Since Φ′(ψ(X2)) acts freely on D′(X0, X2) we deduce that

ηX2(zσ(c1, c0)) = zσ′(ψ(c1), ψ(c0)) · u(c1) · u(c1 ◦ c0)
−1 · Φ′(ψ(c1))(u(c0)).

This shows that η∗(zσ) = ψ∗(zσ′) · δ(u), hence η∗([D]) = ψ∗([D′]).

(ii) =⇒ (i). Assume that η∗([D]) = ψ∗([D′]). We will construct a morphism Ψ: E → E ′. By the
hypothesis, there exists u ∈ C1(C,Ψ′ ◦ ψ) such that η∗(zσ) = ψ∗(zσ′) · δ(u). Notice that since zσ and zσ′

are regular 2-cocycles, u(1X) = 1 for every X ∈ C (to see this, evaluate η∗(zσ) and ψ
∗(zσ′) on the 2-chain

X
id
−→ X

id
−→ X).

Define Ψ: D → D′ a follows. On objects Ψ: X 7→ ψ(X). Every morphism in D(X,Y ) has the form
JgK ◦ σ(c) for unique c ∈ C(X,Y ) and g ∈ Φ(Y ). Define

(A.4) Ψ: JgK ◦ σ(c) 7→ JηY (g)K ◦ Ju(c)K ◦ σ′(ψ(c)).

Then Ψ respects identities since u(1X) = 1 and σ′(1X) = 1X . It respects composition as one verifies

directly for X0
Jg0K◦σ(c0)
−−−−−−−→ X1

Jg1K◦σ(c1)
−−−−−−−→ X2. On one hand,

Ψ(Jg1K ◦ c1) ◦Ψ(Jg0K ◦ c0) = JηX2(g1) · u(c1)K ◦ σ
′(ψ(c1)) ◦ JηX1 (g0) · u(c0)K ◦ σ

′(ψ(c0))
(6.2)
=

JηX2(g1) · u(c1) · Φ
′(ψ(c1))(ηX1 (g0)) · Φ

′(ψ(c1))(u(c0))K ◦ σ
′(ψ(c1)) ◦ σ

′(ψ(c0))
nat. of η

=

JηX2(g1) · u(c1) · ηX2(Φ(c1)(g0)) · Φ
′(ψ(c1))(u(c0))K ◦ σ

′(ψ(c1)) ◦ σ
′(ψ(c0))

(zσ′)
=

JηX2(g1) · u(c1) · ηX2(Φ(c1)(g0)) · Φ
′(ψ(c1))(u(c0)) · zσ′(ψ(c1), ψ(c0))K ◦ σ

′(ψ(c1 ◦ c0))
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On the other hand

Ψ(Jg1K ◦ c1 ◦ Jg0K ◦ c0)
(6.2),(zσ)

= Ψ(Jg1 · Φ(c1)(g0) · zσ(c1, c0)K ◦ σ(c1 ◦ c0))
(6.11),(A.4)

=

JηX2 (g1) · ηX2(Φ(c1)(g0)) · ηX2(zσ(c1, c0))K ◦ Ju(c1 ◦ c0)K ◦ σ
′(ψ(c1 ◦ c0))

The right hand sides of the two equations are equal since η∗(zσ) = ψ∗(zσ′) · δ(u). We have just shown
that Ψ: D → D′ is a functor. By its construction π′ ◦Ψ = ψ ◦ π and η(Ψ) = η because for any g ∈ Φ(X)
we have Ψ(JgK ◦ σ(1X)) = JηX(g) · u(1X)K ◦ σ′(ψ(1X)) = JηX(g)K and use (6.11). �

Proof of Proposition 6.26. For any 1-cocycle z ∈ C1(C; Φ) define αz : D → D as the identity on objects
and for any d ∈ D(X,Y )

αz : d 7→ Jz([d])K ◦ d.

Since z is a 1-cocycle, z(1X) = 1 for any X ∈ C and therefore αz respects identity morphisms. It respects
composition since z is a 1-cocycle:

αz(d1) ◦ αz(d0) = Jz([d1])K ◦ d1 ◦ Jz([d0])K ◦ d0
(6.2)
= Jz([d1]) · [d1]∗(z([d0]))K ◦ d1 ◦ d0

1-cocycle
=

Jz([d1 ◦ d0])K ◦ d1 ◦ d0 = αz(d1 ◦ d0).

It easily follows from (6.2) that given u ∈ C0(C,Φ) we have αδ(u) = τu. This shows that Γ is well defined.

The inverse of Γ sends every self equivalence Ψ to the 1-cochain z ∈ C1(C,Φ) which is defined by the
relation Ψ(d) = Jz([d]K ◦ d which follows from the fact that [Ψ(d)] = Ψ([d]) = [d]. It is left as an exercise
to check that z is a 1-cocycle and that αz = Ψ. �

Appendix B. The unstable Adams operations in [JLL] are special

Fix a p-local compact group G = (S,F ,L) and set R = H•(Fc). Let P be a set of representatives for
the S-conjugacy classes in R. By [BLO3, Lemma 3.2] the set P is finite. For any P,Q ∈ P letMP,Q be
a set of representatives for the orbits of NS(Q) on L(P,Q). These sets are finite by [BLO3, Lemma 2.5].
Also we remark that since every R ∈ R is F -centric, NS(R)/R0 is finite.

In [JLL] we showed that there exists some m such that for any ζ ∈ Γm(p) we can construct an unstable
Adams operation (Ψ, ψ) of degree ζ. This operation has the following properties

(1) ψ(P ) = P for any P ∈ P .
(2) If P ∈ P then ψ|NS(P ) is an automorphism of NS(P ) which induces the identity on NS(P )/P0.
(3) Ψ(ϕ) = ϕ for every ϕ ∈ MP,Q where P,Q ∈ P .

In the rest of this section we show that any (Ψ, ψ) which satisfies these conditions must be special relative
to H•(Fc). As usual we will write T for the identity component of S.

For any R ∈ H•(Fc) we fix once and for all gR ∈ S such that R = gRPg
−1
R where P ∈ P (clearly P is

unique). For any R,R′ ∈ H•(Fc) and any ϕ ∈ L(R,R′) we consider P = g−1
R RgR and P ′ = g−1

R′ R′gR′ ;
these are the representatives in P for the S-conjugacy classes of R and R′ respectively. There is a unique
µ ∈MP,P ′ and a unique nϕ ∈ NS(P ′) such that

(B.1) ĝ−1
R′ ◦ ϕ ◦ ĝR = n̂ϕ ◦ µ.

Since ψ induces the identity on S/T , there is a unique τR ∈ T such that

ψ(gR) = τR · gR.

Similarly, with the notation above ψ induces the identity on NS(P
′)/P ′

0 and therefore there exists a
unique tϕ ∈ P ′

0 such that

ψ(nϕ) = tϕ · nϕ.

Notice that gR′ ∈ NS(P
′, R′) and therefore conjugation by gR carries P ′

0 onto R′
0. Set

τϕ = gR′ · tϕ · g
−1
R′ ∈ R′

0.

We now claim that τR and τϕ chosen above render (Ψ, ψ) a special unstable Adams operation relative to
H•(Fc), see Definition 7.1.
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First, for any R ∈ H•(Fc),

ψ(R) = ψ(gRPg
−1
R ) = ψ(gR)Pψ(gR)

−1 = τRgRPg
−1
R τ−1

R = τRRτ
−1
R .

Next, if R,R′ ∈ H•(Fc) and ϕ ∈ L(R,R′) then (B.1) implies

Ψ(ϕ) = Ψ(ĝR′ ◦ n̂ϕ ◦ µ ◦ ĝ
−1
R ) = ψ̂(gR′) ◦ ψ̂(nϕ) ◦Ψ(µ) ◦ ψ̂(g−1

R ) =

τ̂R′ ◦ ĝR′ ◦ t̂ϕ ◦ n̂ϕ ◦ µ ◦ ĝ
−1
R ◦ τ̂

−1
R = τ̂R′ ◦ τ̂ϕ ◦ ĝR′ ◦ n̂ϕ ◦ µ ◦ ĝ

−1
R ◦ τ̂

−1
R = τ̂R′ ◦ τ̂ϕ ◦ ϕ ◦ τ̂

−1
R
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