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Abstract14

Identifying the genetic architecture underlying complex phenotypes is a notoriously difficult prob-15

lem that often impedes progress in understanding adaptive eco-evolutionary processes in natural16

populations. Host-parasite interactions are fundamentally important drivers of evolutionary pro-17

cesses, but a lack of understanding of the genes involved in the host’s response to chronic parasite18

insult makes it particularly difficult to understand the mechanisms of host life-history trade-offs and19

adaptive dynamics involved. Here we examine the genetic basis of gastrointestinal nematode (Tri-20

chostrongylus tenuis) burden in 695 red grouse (Lagopus lagopus scotica) individuals genotyped at21

384 genome-wide SNPs. We first use genome-wide association to identify individual SNPs associated22

with nematode burden. We then partition genome-wide heritability to identify chromosomes with23

greater heritability than expected from gene content, due to harbouring a multitude of additive SNPs24

with individually undetectable effects. We identified five SNPs on five chromosomes that accounted25

for differences of up to 556 worms per bird, but together explained at best 4.9 % of the phenotypic26

variance. These SNPs were closely linked to genes representing a range of physiological processes27

including the immune system, protein degradation and energy metabolism. Genome partitioning28
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indicated genome-wide heritability of up to 29 % and three chromosomes with excess heritability of29

up to 4.3 % (total 8.9 %). These results implicate SNPs and novel genes underlying nematode burden30

in this system and suggest that this phenotype is somewhere between being based on few large-effect31

genes (oligogenic) and based on a large number of genes with small individual but large combined32

effects (polygenic).33

Introduction34

Host-parasite interactions are widely recognised as fundamentally important drivers of evolutionary and35

ecological processes in natural populations. The Red-Queen dynamics of the host-parasite co-evolutionary36

arms race dictate that the ability of a host to cope with parasite insult is a major component of individual37

fitness (van Valen, 1973; Brockhurst, 2011). This selective pressure on the host can influence how energetic38

resources are allocated to immune defence over other vital cellular functions and life-history components,39

and thus how parasite-driven life-history trade-offs are resolved (Sheldon & Verhulst, 1996; Zuk & Stoehr,40

2002; Schmid-Hempel, 2003). Such decisions affect individual mating behaviour and sexual selection41

processes (Hamilton & Zuk, 1982; Hill & Farmer, 2005) as well as population demography and dynamics42

(Lochmiller, 1996; Hudson et al., 2006).43

A proper understanding of host-parasite eco-evolutionary dynamics requires knowledge of the genetic44

basis of individual host resistance or susceptibility (Paterson & Piertney, 2011). Traditionally, and45

perhaps intuitively, most focus has been placed on the immune system (Lochmiller & Deerenberg, 2000;46

Schmid-Hempel, 2003; Sadd & Schmid-Hempel, 2009; Owen et al., 2010). As such, a range of classic47

immunological candidate genes have been implicated, including the Major Histocompatibility Complex48

MHC (Piertney & Oliver, 2006; Tobler et al., 2014), interferon gamma IFNG (Coltman et al., 2001;49

Stear et al., 2007), Toll-like receptors TLR (Downing et al., 2010; Gavan et al., in press) and cytokines50

(Downing et al., 2010; Turner et al., 2012). However, a focus on the immune system alone may be51

misleading in systems where hosts do not attain complete parasite resistance and instead suffer chronic52

infection (Schmid-Hempel, 2003; Sadd & Schmid-Hempel, 2009). These cases might necessitate a complex53

constitutive response by the host, which may involve a multitude of genes across broad physiological54

processes rather than one or few particular key immune genes. Indeed, parasites in general and nematodes55

in particular often evade or manipulate the host’s immune response and have extensive multidimensional56

effects on host behaviour and physiology (Thomas et al., 2010; Biron & Loxdale, 2013; Poulin, 2013). If57

the host response is then mediated through changes in the allocation of resources among the different58

life-history categories and cellular processes (Sheldon & Verhulst, 1996; Lochmiller & Deerenberg, 2000),59

this will inevitably involve a broad suite of genotypic mechanisms with a range of physiological functions60

divorced from the immune system (Hill, 2011).61

In order to identify novel genes that affect a host’s response to parasites, functional transcriptomic62
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assays can provide extensive suites of gene targets, which can then be screened for genotypic variation63

(Hoffmann & Willi, 2008; Piertney & Webster, 2010; Orsini et al., 2011; Pemberton et al., 2011; Gossner64

et al., 2013; Wenzel & Piertney, 2015). However, this strategy does not necessarily provide a robust65

understanding of the genetic basis of a phenotype because transcriptomic responses are context dependent66

and are not always linked to genotypic variation in homologues of different species (Orsini et al., 2012;67

Brown et al., 2013; Wenzel & Piertney, 2015). A more robust genome-scale understanding of genetic68

architecture can be gained by quantitative-trait-loci (QTL) mapping or genome-wide association (GWA)69

analysis directly in the target species (Slate, 2005; Hill, 2012). These approaches are based on associations70

between genome-wide genetic markers and phenotypic traits, usually without a priori marker selection71

based on putative function. QTL mapping and GWA analysis have been undertaken extensively for72

gastrointestinal nematode burden in sheep or cattle breeds and have highlighted that nematode burden is73

associated with small numbers of predominantly anonymous loci, some of which are located near classic74

immunological candidate genes (e.g., Beh et al., 2002; Davies et al., 2006; Beraldi et al., 2007; Silva et al.,75

2012; Riggio et al., 2013). These results are consistent with insights from QTL studies in other host-76

parasite systems and suggest that parasite burden may after all be primarily based on small numbers of77

large-effect immune genes (Wilfert & Schmid-Hempel, 2008).78

Notwithstanding, a major issue with these methods is that those genotypic variants that are identi-79

fied through QTL or GWA usually explain only a small fraction of the phenotypic variance even if the80

phenotype is highly heritable (Manolio et al., 2009). This “missing heritability” issue fuels an ongoing81

controversy over the power of candidate gene or QTL/GWA approaches to detect small-effect polymor-82

phisms and whether the endeavour to identify individual genotypic variants linked to complex phenotypes83

is inherently misguided (Amos et al., 2011; Rockman, 2012; Robinson et al., 2013). The central tenet84

of the argument is that polygenic phenotypes that are underpinned by the joint effect of a multitude of85

loci each of small effect, corresponding to Fisher’s infinitesimal model (Fisher, 1919), are intractable with86

SNP-by-SNP association approaches because only loci with individually large effects can be detected. As87

such, these loci may be misleading about the distribution and effect size of the genetic variants that truly88

underpin phenotypic evolution (Rockman, 2012). The high incidence of missing heritability suggests that89

polygenic architectures may be common and thus reinforces the argument to abandon classic methods90

involving candidate genes (Yang et al., 2011b; Hill, 2012; Rockman, 2012). Parasite susceptibility may91

well be such a polygenic phenotype if parasites have extensive physiological and behavioural effects on92

their host (Thomas et al., 2010; Biron & Loxdale, 2013; Poulin, 2013). Although heritability of parasite93

burden is well established, for example in sheep, cattle and poultry (e.g., Stear et al., 2007; Kaufmann94

et al., 2011), and previous candidate gene and QTL/GWA studies have indeed identified some large ef-95

fect genes, these approaches may well have failed to identify genes with subtle individual, but large joint96

effects.97
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One way forward in addressing this issue is to compare results obtained from GWA with emerging98

“genome partitioning” methods based on quantitative genetics. These approaches do not identify in-99

dividual SNPs or haplotypes, rather than linkage groups of SNPs (usually chromosomes) that together100

explain more phenotypic variance than expected from a polygenic null model where all markers contribute101

equally (Yang et al., 2011b,a; Hill, 2012). Genome partitioning has proven extremely useful for retrieving102

some of the missing heritability unaccounted for by genotypic variants identified through GWA. This has103

been well illustrated in complex phenotypes, for example in human height (Yang et al., 2010, 2011b) and104

disorders such as schizophrenia, Tourette syndrome and obsessive-compulsive disorder (Lee et al., 2012;105

Davis et al., 2013). Genome partitioning can also be useful in non-model systems with limited genomic106

resources. Gastrointestinal nematode burden in sheep has recently been shown to be primarily polygenic,107

but five chromosomes explained disproportionate amounts of phenotypic variance, implying particular108

genomic regions as targets for fine-mapping causal variants (Al-Kalaldeh et al., 2013). The utility of109

comparing across QTL/GWA and genomic partitioning approaches is further illustrated by contrasting110

results in recent studies that examined the genetic basis of wing length in birds. In spite of multiple QTLs111

identified in zebra finches (Schielzeth et al., 2012) and reed warblers (Tarka et al., 2010), genome parti-112

tioning in great tits with substantial numbers of samples and markers instead suggests that wing length113

may be a purely polygenic additive phenotype (Robinson et al., 2013). This highlights that genomic114

architectures may be idiosyncratic among different species and that genome partitioning may be a useful115

method for reconciling differences in the numbers and identities of large-effect genetic polymorphisms.116

Here, we examine the genetic basis of chronic nematode infection in a wild bird species using GWA117

and genome partitioning approaches to identify genotypic variants that explain detectable amounts of118

phenotypic variance and genomic regions that harbour missing heritability. We focus on red grouse119

(Lagopus lagopus scotica) and its primary gastrointestinal nematode parasite Trichostrongylus tenuis.120

This host-parasite system has become an important model for understanding parasite-driven demographic121

and ecological dynamics in the absence of a classic immune response (Hudson et al., 1998; Redpath et al.,122

2006a; Webster et al., 2011b). Red grouse are an economically important game bird endemic to the upland123

heather moors of Scotland and northern England (Martínez-Padilla et al., 2014). T. tenuis displays a124

direct life cycle where infective larvae are ingested with heather shoots, adults establish in the caeca and125

eggs are shed with faeces (Hudson & Dobson, 1989). Adult worms burrow into the caecal walls where126

they cause haemorrhaging and necrosis with substantial impacts on grouse fitness (Hudson, 1986; Watson127

et al., 1987; Hudson et al., 1992; Delahay et al., 1995; Delahay & Moss, 1996). Prevalence of infection with128

T. tenuis in grouse populations is typically greater than 90 % and grouse bear chronic nematode burdens129

due to an inability to purge the infection despite mounting directed responses (Wilson, 1983; Shaw &130

Moss, 1989; Webster et al., 2011a). This long-term exposure to nematode insult has marked effects131

on grouse life-history trade-offs and population dynamics. Interactions between nematode burden and132
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testosterone-mediated territorial contest behaviour and sexual selection by females have been identified133

as key drivers of life-history trade-offs in male grouse in particular (MacColl et al., 2000; Mougeot et al.,134

2003, 2004, 2005c, 2009; Piertney et al., 2008; Bortolotti et al., 2009; Wenzel et al., 2013). Further,135

the direct impact of nematode infection on grouse fecundity and survival together with intrinsic density-136

dependent aggression and stress-mediated immuno-suppression implicates T. tenuis as a major component137

in regulating grouse population dynamics (Hudson et al., 1998; Mougeot et al., 2005b; Seivwright et al.,138

2005; Redpath et al., 2006a; Webster et al., 2011b).139

Motivated by this importance of chronic nematode infection for red grouse ecology, substantial effort140

has gone into characterising the physiological categories involved in the molecular response to infection141

and into identifying genomic regions associated with variation in nematode burden among individual142

grouse. Transcriptomic assays following experimental nematode infection have highlighted a broad range143

of physiological categories beyond the immune system and have identified testosterone-dependent tran-144

scription dynamics that are consistent with trade-offs involving depression of parasite defence mechanisms145

(Webster et al., 2011a,b; Wenzel et al., 2013). These insights have been channelled into developing novel146

candidate genes for nematode susceptibility (Wenzel et al., 2015), which have been confirmed to explain147

variation in nematode burden among grouse individuals in a network of moors in north-east Scotland148

(Wenzel & Piertney, 2015). In that same study system, DNA methylation patterns at specific genomic149

regions have been linked to nematode burden, suggesting that parasites may affect epigenetic mechanisms150

impacting the regulations of specific genes (Wenzel & Piertney, 2014). In concert, this previous work151

has established that the host-parasite interactions in this system may be linked to multiple large-effect152

candidate genes involved in immune system, oxidative stress, energy metabolism and cell cycle processes.153

However, it is unknown whether previously undetected genome-wide large-effect genotypic variants ex-154

ist, and to what extent linkage groups of variants with individually undetectable effects contribute to155

variation in nematode burden.156

We extend and expand on these issues by carrying out genome-wide association and genome parti-157

tioning of variation in nematode burden in a sample of 695 red grouse individuals from five locations158

in Scotland and England across twelve years and genotyped at 384 genome-wide SNPs. First, we fit159

custom generalized linear models to identify individual SNPs that are associated with individual nema-160

tode burden. Second, we ascertain putative functions of these identified SNPs via linked genes identified161

through homology with the chicken genome. Finally, we estimate genome-wide and chromosome-specific162

heritabilities of nematode burden, and identify chromosomes that contribute disproportionately to heri-163

tability through multiple additive genotypic variants of individually small effects.164
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Materials and Methods165

Phenotypic data166

A total of 695 red grouse individuals were sampled at four sites near Deeside in north-east Scotland and167

one site in Catterick, northern England from 1995–2012 (Table 1). The core sampling effort was carried168

out at Invermark and Invercauld in 2011–2012 and was supplemented with birds that were sampled as169

part of previous studies investigating grouse population ecology (e.g., MacColl et al., 2000; Redpath et al.,170

2006b), behavioural ecology (e.g., Mougeot et al., 2003, 2009) and physiological responses to nematode171

infection (e.g., Webster et al., 2011b; Wenzel et al., 2013; Wenzel & Piertney, 2014, 2015). Birds were172

either captured at night using lamping and netting techniques or collected following driven or walked-up173

sporting shoots. T. tenuis burdens were estimated from faecal egg counts using the standard McMaster174

chamber slide method and empirical prediction functions for worm burden (Moss et al., 1990; Seivwright175

et al., 2004). For shot birds, caecum samples were stored cold immediately after sampling and processed176

within one week to ensure reliable estimates (Seivwright et al., 2004). Sex and age were determined177

morphologically using plumage and supra-orbital comb size. Birds that fledged in the year of sampling178

were classed as “young”, and all other birds were classed as “old” (>1 year), allowing for statistical control179

of typically lower nematode burden in young birds (Shaw & Moss, 1989; Hudson & Dobson, 1997). Body180

mass was measured to the nearest 10 g using a spring balance and wing length was measured to the181

nearest mm. As a measure of physiological condition, the scaled mass condition index (Peig & Green,182

2009) was then calculated for each individual (i) as:183

CIi = mi

(
w0

wi

)b

where mi is body mass, wi is wing length, w0 is mean wing length and b is the slope of standardised184

major axis regression of lnm on lnw across the data set.185

Genetic data186

DNA was extracted from feather calamus or liver tissue samples using a standard salting out method187

(Hogan et al., 2008). Individuals were genotyped at 384 genome-wide SNPs using the Illumina Gold-188

enGate BeadXPress platform (NBAF-S, University of Sheffield). Based on orthology with the chicken189

genome (galGal4 assembly) following blat searches (Kent, 2002), these SNPs were designed such that190

the number of SNPs per chromosome was approximately proportional to chromosome size. As such,191

chromosomes 1–15, 17–26, 28 and Z were covered by 1–82 SNPs (median 6) with a median distance192

between consecutive SNPs of 1.9 Mbp (supplementary materials S1).193

Quality filtering and calculation of summary statistics were carried out in plink 1.9 (Chang et al.,194
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2014). SNPs with calling rate below 0.90 and minor allele frequency (MAF) below 0.05 were removed.195

The inbreeding coefficient (F IS) for each SNP and individual was computed from observed and expected196

heterozygosities, and Hardy-Weinberg equilibrium exact tests were carried out to identify SNPs with197

genotyping errors. Quality filtering resulted in a remaining total of 271 SNPs. All 695 individuals had a198

genotyping rate larger than 80 %, with an overall genotype coverage of 99.6 %. Linkage disequilibrium (r2)199

was estimated among SNP pairs within each chromosome. The degree of relatedness among individuals200

was ascertained from the realized relationship matrix based on genetic identity-by-state (Yang et al.,201

2011a). Genetic structure was ascertained by computing global FST among sampling sites and graphically202

examining the first 20 principal components of the genetic relationship matrix (Johnston et al., 2014). The203

minimum number of principal components that capture most of the genetic structure was then identified204

by examining the eigenvalues and selecting a principal component cut-off such that the differences in205

eigenvalues across subsequent principal components were minimal and relatively stable. To aid the206

identification of this cut-off, an ad hoc statistic ∆E was calculated that relates the changes in eigenvalues207

from each principal component to the following and the preceding component (∆Epc = |Epc−Epc+1|
|Epc−Epc−1| ), and208

peaks in ∆E were examined.209

Genome-wide association analysis210

GWA analysis was carried out by implementing implement custom generalized linear models with neg-211

ative binomial error structure in the statistical software r 3.0.3 (R Core Team, 2014) and the package212

MASS (Venables & Ripley, 2002). The discrete worm counts were not normally distributed and there-213

fore inappropriate for analysis with common GWA analysis packages. Exploratory modelling including214

all sampling-related and phenotypic variables and applying a Poisson error structure indicated substan-215

tial over-dispersion (φ > 1000), and diagnostic residuals plots confirmed that a negative-binomial error216

structure provided the best fit for these data.217

Relationships among nematode burden and sampling-related or phenotypic variables were ascertained218

by graphical exploration and linear modelling to identify confounding variables. Nematode burden varied219

considerably among sampling sites, years and months, but sample sizes were very low for several years220

and months (supplementary materials S2). To avoid statistical issues with small sample sizes, these two221

variables were simplified by combining factor levels. Years were binned into three time periods with sub-222

stantially different nematode burdens (1995–1999; 2000–2006; 2010–2012; supplementary materials S2).223

Similarly, sampling activity was predominantly limited to spring (April) and autumn (August, Septem-224

ber, October), reflecting breeding and territory establishment seasons respectively (Mougeot et al., 2005a;225

Redpath et al., 2006b). In consequence, months were binned into two seasons (“spring”: January to June;226

“autumn”: July to December) that captured seasonal differences in nematode burden (supplementary227

materials S2). Nematode burden was higher in males (β1 = 0.29 ± 0.16; z693 = 1.86, P = 0.06) and old228
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birds (β1 = 0.61±0.15; z693 = 4.22, P < 0.001), confirming expectations from previous studies (Mougeot229

et al., 2004, 2005d, 2009; Martínez-Padilla et al., 2010; Vergara et al., 2012) and justifying inclusion of230

sex and age as explanatory variables. Similarly, significant variation in nematode burden was explained231

by body mass (β1 = 0.003 ± 0.001; z691 = 2.553, P = 0.011), wing length (β1 = 0.035 ± 0.008; z648 =232

4.679, P < 0.001) and condition index (β1 = −0.003 ± 0.001; z647 = −3.149, p = 0.001) individually,233

though all of these variables were stratified by sex and age (supplementary materials S2).234

Five GWA models were constructed with different biological and statistical complexity to balance out235

biological consistency and statistical power. The base-line model contained site, period, season, sex and236

age variables (model 1; n = 695). Two additional models were designed to account for condition-specific237

covariance in nematode burden. First, by including body mass as an additional variable, omitting two238

observations with missing data (model 2; n = 693). Second, by substituting the condition index for body239

mass, omitting 44 further observations with missing data (model 3; n = 649). These two models introduce240

some collinearity among sex, age and body mass or condition index. Although variance inflation factors241

for these variables were low (< 2), an alternative model was constructed to resolve collinearity. Mixed242

correspondence analysis (MCA) was applied on the sex, age and condition index variables using the r243

package ade4 (Dray & Dufour, 2007) and all three independent principal components were then fitted244

instead of the original variables (model 4; n = 649). This model was also implemented in an alternative245

version with full sample size (model 5; n = 695), where missing condition indices were imputed before246

MCA, using the multiple imputation method implemented in the r package missMDA (Josse & Husson,247

2012).248

Associations between individual SNPs and nematode burden were then examined by extending these249

five models to include an additional categorical explanatory variable that represented the three possible250

genotypes. To check for allele-specific effects, all models were also implemented for each individual251

allele independently, by including a single binary explanatory variable representing allele presence. To252

account for genetic relatedness and population structure, the first eight principal components of the253

genetic relationship matrix were included as explanatory variables. Although multiple elbow points were254

apparent when plotting eigenvalues, the greatest change in eigenvalues followed by comparatively steady255

decrease was after the eighth component (Figure 1). Including more components into models provided256

qualitatively similar results but incurred a disproportionate power penalty through overfitting.257

Coefficient estimates and P-values for the genetic term were extracted from each model, and P-values258

were corrected for multiple testing using the Benjamini-Hochberg false-discovery-rate (FDR) method259

(Benjamini & Yekutieli, 2005) genome-wise within each model. Results were visualised using Manhattan260

plots and associations were deemed significant at FDR-corrected q ≤ 0.1 and highly significant at q ≤ 0.05.261

Predicted nematode burdens for each SNP genotype were calculated for significant SNPs as least-square262

population means from GWA model 2 when keeping all other variables constant at mean values, using the263
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r package doBy (Højsgaard & Halekoh, 2013). Effect size was then calculated as the absolute difference264

between the largest and the smallest estimate, and standard errors were propagated. Finally, to estimate265

the proportion of phenotypic variance explained by each individual SNP, the SNP genotypes were fitted266

as the sole predictor of log10-transformed nematode burden in a simple linear model. The OLS coefficient267

of determination (r2) then gives a liberal estimate of the heritability accounted for by a single SNP.268

Identified SNPs were mapped to the chicken genome to ascertain genomic context and putative physi-269

ological functions of genes linked to the identified polymorphism. The SNP probe sequences were mapped270

to the galGal4 assembly using blat (Kent, 2002) and genomic locations were visualised using the UCSC271

genome browser (Kent et al., 2002). Proximal characterised ensembl chicken genes were then explored272

in ensembl biomarts (Kinsella et al., 2011), identifying orthologues and extracting geneontology273

(The Gene Ontology Consortium, 2000) annotations.274

Genome partitioning275

Genome-wide and chromosome-specific narrow-sense heritabilities (h2) of nematode burden were esti-276

mated using genome partitioning analysis as implemented in the software gcta (Yang et al., 2011a).277

This method is based on partitioning phenotypic variance across multiple additive genetic variance com-278

ponents to test whether these components explain significant amounts of phenotypic variance. Each279

genetic component represents an arbitrary group of genetic markers, usually chromosomes or smaller280

linkage groups. Additive genetic variance components are estimated from identity-by-state genetic rela-281

tionship matrices (GRMs) rather than from pedigree data (Yang et al., 2011b; Hill, 2012). In order to282

satisfy the requirement for a Gaussian quantitative phenotype in gcta analysis, nematode burden was283

log10-transformed (Okada et al., 2010; Brown et al., 2013).284

Genome-wide heritability was estimated by generating a single GRM in plink using all SNPs and285

fitting the GRM as a single genetic variance component in linear mixed models in gcta. Statistical286

significance of the genetic variance was obtained from a log-likelihood ratio test in comparison to a287

null model without a genetic variance component. Two types of sensitivity analysis were undertaken.288

First, to ascertain sensitivity to the number of explanatory variables included, three nested analyses were289

carried out and compared: 1) including sex and age explanatory variables and eight PCA components to290

account for genetic stratification; 2) adding sampling site and period explanatory variables; and 3) adding291

sampling season and body mass explanatory variables. This final model contained the same explanatory292

variables as model 2 in the GWA analysis. Second, the sensitivity to SNP density was examined by293

generating 500 replicate GRMs from random genome-wide draws of 5–95 % (in 5 % increments) of all294

SNPs and estimating heritability from each GRM independently. This was carried out for the base-line295

model without control variables and for the three models with nested control variables.296

Chromosome-specific heritability was estimated by generating one GRM for each chromosome using297
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only SNPs on that chromosome and fitting this GRM alongside a second GRM based on all genome-wide298

SNPs apart from those on that chromosome. A likelihood-ratio test was then carried out between this full299

model and a model excluding the chromosome-specific component. Given a null-model of polygenic ar-300

chitecture, chromosome-specific heritability should scale linearly with chromosomal gene content (Davis301

et al., 2013; Robinson et al., 2013). To test this hypothesis, heritability estimates were regressed on302

numbers of RefSeq genes in chicken chromosomes (galGal4 assembly), retrieved from the UCSC Table303

Browser (Karolchik et al., 2004). Given the imbalanced SNP design across chromosomes, heritability304

was also regressed on numbers of genotyped SNPs and an interaction between both predictors in inde-305

pendent models. Finally, to test whether the heritability of some chromosomes is larger than expected306

given chromosomal gene content, another gcta analysis was carried out where the chromosome-specific307

component was fitted alongside a GRM using all genome-wide SNPs (Robinson et al., 2013). All analyses308

were carried out for the four nested models as detailed above for genome-wide heritability estimation.309

Results310

Summary statistics311

Observed and expected heterozygosities at each of 271 SNPs ranged from 0.086–0.534 (median 0.348)312

and 0.107–0.500 (median 0.349) respectively. A total of 20 SNPs on 10 chromosomes displayed significant313

departures from Hardy-Weinberg equilibrium (P ≤ 0.05). However, only three SNPs on chromosome 5314

remained significant after FDR-correction for multiple testing (q ≤ 0.05) and none of these displayed315

extreme genotype distributions or P-values that would suggest genotyping errors. All SNPs were in316

effective linkage equilibrium, with r2 ranging from 0.000 to 0.088 (median: 0.001; 99th percentile: 0.014)317

(supplementary materials S3).318

Inbreeding coefficients (F IS) of individual samples were normally distributed, ranging from –0.251 to319

0.247 with a mean of 0.011 ± 0.085SD (supplementary materials S3). Relatedness among individuals320

was approximately centred on zero (median: –0.003; 1st percentile: –0.144; 99th percentile: 0.156)321

(supplementary materials S3). This distribution is consistent with a simulated distribution of genetic322

relatedness estimates for unrelated red grouse from neutral polymorphisms (Piertney et al., 1999), and as323

such suggests that the genotyped individuals are effectively unrelated. Population genetic differentiation324

among the five sampling sites was very low (FST = 0.005), though the English site was more strongly325

differentiated from the Scottish sites (FST = 0.020), as would be expected under isolation-by-distance.326

Accordingly, little genetic clustering was apparent in PCA eigenvector plots (Figure 1).327
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Genome-wide association analysis328

GWA analysis yielded support for associations between nematode burden and genotypes or alleles of five329

SNPs on five chromosomes (Figure 2). Congruence among models incorporating sex and age (model 1)330

or sex, age and body mass (model 2) variables was very high, highlighting genotypes of all five SNPs331

and alleles of three SNPs (Table 2). However, models incorporating sex, age and condition index or332

equivalent principal components of mixed correspondence analysis (models 3 and 4) highlighted weaker333

associations (q ≤ 0.1) for alleles or genotypes in only three of these five SNPs (Table 2). These models334

probably suffered from decreased power due to reduced sample sizes, given that the equivalent model335

5 with imputed principal components (and hence full sample size) yielded almost identical results to336

models 1 and 2 (Table 2). Notwithstanding, each of these five SNPs is highlighted by at least three337

models, indicating that these are robust results despite the potential for reduced power in some models.338

Of these, SNPs X1407, X5104 and X1375 were best supported, displaying consistently strong asso-339

ciations (q ≤ 0.05) of genotypes or alleles in the three full models, and weaker associations (q ≤ 0.1) of340

genotypes or alleles in the two reduced models (Table 2). Genotypes in two further SNPs X2277 and341

X2298 were moderately supported across models, but there was no support for alleles in any model.342

Some models additionally highlighted weak associations (q ≤ 0.1) for two further SNPs on chromosome343

1 and 2 (not shown), but these were inconsistent and as such were disregarded. Predicted nematode344

burdens among genotypes of the five highlighted SNPs indicated additive allelic effects in most cases,345

and absolute effect sizes ranged from 313–556 worms per bird (Figure 3). None of these SNPs deviated346

from Hardy-Weinberg equilibrium and hence there was no evidence for heterozygosity advantage or dis-347

advantage. The proportion of phenotypic variation explained by these SNPs individually in simple linear348

models ranged from 0.1–2.8 % (sum: 4.9 %), which should be taken as liberal best-case estimates (Table349

2). Full association statistics for all models and SNPs alongside tests for Hardy-Weinberg equilibrium350

are available in supplementary materials S4–S5.351

Homology with the chicken genome indicated that SNPs X1407 and X1375 were located in introns of352

genes MAPKBP1 (mitogen-activated protein kinase binding protein 1) and KLHL34 (kelch-like family353

member 34) on chromosomes 5 and 1 respectively (Table 2). All other SNPs were located in non-354

coding regions on chromosomes 10, 13 and 20, approximately 6–540 kbp (equivalent to 0.02–1.51 cM355

assuming 2.8 cM/Mbp, Hillier et al., 2004) remote from the following upstream and downstream genes:356

RAPGEF6 (Rap guanine nucleotide exchange factor 6), FNIP1 (folliculin interacting protein 1), CEBPB357

(CCAAT/enhancer binding protein β), PTPN1 (protein tyrosine phosphatase, non-receptor type 1),358

NR2F2 (nuclear receptor subfamily 2, group F, member 2) and MCTP2 (multiple C2 domains, trans-359

membrane 2). The putative functions of these linked genes involve innate and adaptive immune system360

processes, protein degradation and energy metabolism (Table 2; supplementary materials S6).361
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Genome partitioning362

Estimated genome-wide heritability of nematode burden based on all SNPs together was h2 = 0.294.363

This estimate decreased rapidly when increasing numbers of explanatory variables were added to the364

model (Table 3). Sensitivity analysis by randomly sampling subsets of genome-wide SNPs and repeating365

heritability estimation identified an asymptotic relationship between heritability and SNP density, though366

this was much weaker when additional explanatory variables were included (supplementary materials S7).367

Although these heritability estimates are likely to increase at higher SNP densities, these SNPs capture368

a statistically significant amount of heritability that is consistently larger than the heritability estimates369

of the five SNPs identified using GWA.370

Partitioning genome-wide heritability across chromosomes was limited by variation in SNP density371

and power reduction when multiple explanatory variables were included in the models. Chromosomes 21,372

22, 24, 26 and 28 could not be analysed because of insufficient SNP density. For other chromosomes, some373

models failed to converge for particular combinations of variables. Estimates of chromosome-specific her-374

itability across all models ranged from 10−6 to 0.099, of which 1–11 estimates were significantly different375

from zero (Figure 4). The summed chromosome-specific heritabilities within models were very similar to376

genome-wide heritabilities, despite the reduced number of chromosomes analysed (Table 3), suggesting377

some covariance across chromosomes that may inflate individual estimates. Heritability estimates were378

significantly positively associated with chromosomal gene content and number of genotyped SNPs in sim-379

ple models only, presumably due to reduced power in more complex models (Table 3). Although these two380

predictors were highly correlated as a consequence of the SNP design (Spearman’s ρ = 0.93; P < 0.001),381

there was a significant interaction among them (Table 3), indicating an effect beyond the mere number382

of genotyped SNPs per chromosome. All these relationships were primarily driven by chromosomes 1383

and 2, which had particularly large heritability, size and SNP density (Figure 4). When these two chro-384

mosomes were removed, the relationships remained significant for the model without control variables385

only (not shown). Chromosomes 5 and 17 displayed significantly (p < 0.05) greater heritability than386

expected from their gene contents in some models (excess h2 = 0.029 ± 0.020 and h2 = 0.017 ± 0.017387

respectively; Figure 4). Some weaker evidence for excess heritability was also apparent for chromosomes388

1 (h2 = 0.043 ± 0.034), 13 and 14 (h2 = 0.010 ± 0.012 in both cases). Total excess heritability across all389

chromosomes was h2 = 0.066 − 0.089.390

These results were partially consistent with the GWA results. Chromosomes 1 and 5 contained391

the best supported SNPs X1407 and X1375, and chromsome 1 also contained other suggestive SNPs392

(Figure 2). SNPs on chromosomes 10, 13 and 20 were highlighted in the GWA analysis, but these393

chromosomes showed no significant excess heritability. In contrast, chromosome 17 displayed evidence394

for excess heritability, but no SNP on this chromosome was highlighted in the GWA analysis.395
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Discussion396

This study examined the broad genome-wide basis of variation in gastrointestinal nematode burden397

among red grouse individuals. Genome-wide association identified five SNPs that were closely linked to398

novel genes putatively involved in multiple physiological processes beyond the immune system, consistent399

with the broad functions of previously identified genes using candidate gene approaches (Wenzel et al.,400

2015; Wenzel & Piertney, 2015) and epigenetic DNA methylation analysis (Wenzel & Piertney, 2014).401

Genome partitioning indicated moderate genome-wide heritability of nematode burden, and highlighted402

that some chromosomes contain additive genotypic variants of individually small effects that represent403

disproportionate amounts of heritability. These findings contribute to elucidating the broad genomic404

basis of parasite susceptibility (Wilfert & Schmid-Hempel, 2008) and suggest that nematode burden in405

grouse may be somewhere between a purely polygenic phenotype corresponding to Fisher’s infinitesimal406

model (Fisher, 1919) and a purely oligogenic phenotype where few loci explain a large proportion of407

phenotypic variance (Rockman, 2012).408

T. tenuis infection is localised to the caecum where adult worms cause haemorrhaging and tissue409

necrosis with substantial impact on grouse condition and fitness (Watson et al., 1987; Hudson et al.,410

1992; Delahay et al., 1995; Delahay & Moss, 1996). The majority of genes closely linked to the five SNPs411

identified through GWA are putatively involved in immune system processes that may be associated with412

chronic intestinal T. tenuis infection: MAPKBP1 is involved in signal transduction during inflammation413

and in intestinal homeostasis (Lecat et al., 2012). In humans, MAPKBP1 (alias JNKBP1) is an antagonist414

to the NOD2 receptor which recognises bacterial cell wall components and helps orchestrate an innate and415

adaptive immune response (Lecat et al., 2012). Failure to regulate expression of NOD2 in intestinal tissue416

by MAPKBP1 disrupts cytokine signal transduction and is implicated in Crohn’s disease, a degenerative417

disorder of the intestine (Hugot et al., 2001; Lecat et al., 2012). Similarly, CEBPB is involved in signal418

transduction following an inflammatory immune response (Ramji & Foka, 2002), and may specifically419

regulate antibacterial activity of macrophages and repair of necrotic tissue (Ruffell et al., 2009). Other420

genes represent broader immunoregulatory factors: RAPGEF6 is a guanine nucleotide exchange factor421

for RAP GTPases (Kuiperij et al., 2003), which are involved in regulating signalling interactions between422

antigen-presenting cells and T-cells and in regulating leukocyte integrin activation (Katagiri et al., 2002;423

Scheele et al., 2007). FNIP1 is an adapter protein that interacts with a range of factors that regulate424

cellular energy metabolism (Park et al., 2012). Disruption of FNIP1 function arrests development of B425

lymphocytes and invariant natural killer T-cells due to an inability to regulate metabolic homeostasis426

during cell proliferation, particularly under metabolic stress (Park et al., 2012, 2014). MCTP2 is involved427

in intercellular signal transduction and has been implicated in various neurological disorders such as428

schizophrenia and autism (Shin et al., 2005; Djurovic et al., 2009). Its link to parasite infection is unclear,429

but transcriptomic studies suggest that it may be cryptically involved in immune system function (Verner430
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et al., 2012), possibly through regulation of T-helper cell differentiation and function (Äijö et al., 2012).431

The remaining identified genes represent a range of other physiological pathways that may play a432

key role in underpinning host-parasite interactions in red grouse. KLHL34 is part of the evolutionarily433

highly conserved kelch-like protein family whose functions are not well understood, though they are434

associated with a range of human diseases (Dhanoa et al., 2013). The best studied function is a role435

in protein ubiquitination (Gupta & Beggs, 2014), which links kelch-like proteins to a broad range of436

cellular processes including inflammatory immune response and protein degradation, potentially as part437

of a xenobiotics detoxification response (Ben-Neriah, 2002; von Mikecz, 2006). In infected red grouse,438

such xenobiotics may originate from primary T. tenuis infection or from secondary pathogen infection439

following caecal haemorrhaging (Watson et al., 1987). Further, both NR2F2 (alias COUP-TFII) and440

PTPN1 are involved in regulating glucose homeostasis, energy expenditure and adipogenesis (Li et al.,441

2009; Tsou et al., 2012), which could plausibly impact physiological condition with broad consequences442

for the ability of red grouse to cope with parasite infection (Sheldon & Verhulst, 1996; Svensson et al.,443

1998).444

Although GWA provides no direct evidence for a mechanistic involvement of these genes, their putative445

physiological functions are broadly consistent with novel candidate genes previously identified through446

comparative transcriptomics between infected and nematode-free grouse (Wenzel et al., 2015; Wenzel447

& Piertney, 2015). These candidate genes represent innate and adaptive immune system processes,448

in particular eosinophil-mediated parasite expulsion and antimicrobial peptides, alongside key enzymes449

in the xenobiotics detoxification and oxidative stress pathways, and broad cell proliferation regulators450

(Wenzel & Piertney, 2015). Together, these insights reinforce the notion that host-parasite interactions451

in red grouse are not a primarily immunological matter. This provides an intriguing perspective on452

the classic immunological paradigm of host life-history trade-offs (Sheldon & Verhulst, 1996; Lochmiller453

& Deerenberg, 2000; Zuk & Stoehr, 2002; Schmid-Hempel, 2003; Owen et al., 2010). In spite of well-454

established immunological links in red grouse (Mougeot & Redpath, 2004; Webster et al., 2011a; Wenzel455

et al., 2013; Wenzel & Piertney, 2015) and sheep or cattle species (e.g., Beh et al., 2002; Davies et al.,456

2006; Beraldi et al., 2007; Silva et al., 2012; Riggio et al., 2013), the cost of chronic parasite infection,457

particularly in the case of nematodes, may well extend to other physiological and perhaps even behavioural458

categories (Thomas et al., 2010; Biron & Loxdale, 2013; Poulin, 2013). In red grouse, for example, DNA459

methylation states at specific loci linked to genes involved in immune system, metabolism, cell cycle460

regulation and epigenetic mechanisms have been associated with parasite burden in the field (Wenzel461

& Piertney, 2014), suggesting that chronic parasite infection may have a broad epigenetic component462

(Poulin & Thomas, 2008). This perspective is still consistent with the classic idea of life-history trade-463

offs (Hamilton & Zuk, 1982; Sheldon & Verhulst, 1996; Lochmiller & Deerenberg, 2000), but suggests464

that physiological condition is an amalgam of a multitude of cellular functions that may either directly465
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contribute to parasite defence or affect its efficacy indirectly by broad effects on energy metabolism or466

molecular signalling cascades (Hill, 2011).467

The genome partitioning analysis broadly supported this perspective. In spite of low heritability of the468

five individual SNPs, genome-wide heritability using all SNPs together was moderate (h2 = 0.07 − 0.29)469

and within the range of reported heritability estimates for nematode burden in sheep (Dominik, 2005;470

Stear et al., 2007) and chicken (Kaufmann et al., 2011; Wongrak et al., 2014). This could imply that471

parasite susceptibility may to some extent be a polygenic phenotype involving large numbers of genes472

with individually small, but large joint effects (Yang et al., 2011b; Hill, 2012; Rockman, 2012). However,473

chromosomes 1, 5 and 17 contributed disproportionate amounts to total heritability despite different474

SNP densities, suggesting that nematode burden may not be primarily based on a large number of475

genome-wide polymorphisms with small effects, rather than on moderate numbers of small effect genes476

in these three chromosomes. In fact, chromosomes 1 and 5 contain two SNPs highlighted by the present477

GWA analysis and seven previously identified novel candidate genes for response to parasite infection478

(Wenzel et al., 2015), most of which have been confirmed to explain variation in parasite load in the479

field (Wenzel & Piertney, 2015). The two identified SNPs are not in the vicinity of any of these genes480

(40–80 Mbp and 7–8 Mbp distance on chromosomes 1 and 5 respectively), highlighting their novelty. This481

chromosomal congruence across candidate genes, GWA and genome partitioning provides support for a482

primarily oligogenic basis of parasite susceptibility in chromosomes 1 and 5, making them priority targets483

for fine-mapping novel genomic candidate regions in addition to those already discovered. Chromosome 17484

may also be a good target on the quest for the “missing heritability”, though it has not been implicated485

in GWA or previous candidate genes studies to contain large-effect genes. The genome partitioning486

results are consistent with a study in sheep, where five chromosomes explained disproportionate amounts487

of variance in gastrointestinal nematode burden, despite an overall relationship between chromosomal488

heritability and gene content (Al-Kalaldeh et al., 2013).489

Despite some congruence in numbers and function of identified genes across red grouse studies with490

different approaches, there are some inconsistencies that deserve consideration. First, some SNPs high-491

lighted by the GWA analysis are on chromosomes that do not display excess heritability or contain492

any previously identified candidate genes. Similarly, many previously identified candidate genes are on493

chromosomes that are not highlighted by GWA or genome partitioning (Wenzel et al., 2015; Wenzel &494

Piertney, 2015). Each of these three techniques highlights a different set of genomic regions overall, reflect-495

ing different ways of statistical inference with different power and potential for false positives (Ellegren496

& Sheldon, 2008; Amos et al., 2011). In the present study, one caveat to consider with respect to genome497

partitioning in particular is that SNP density was low and the study design was based on comparatively498

few samples. Although few chromosomes displayed significant total heritability, we were able to detect499

three chromosomes with more heritability than expected, suggesting that power was sufficient to detect500
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large heritability effects but may have been insufficient to detect more subtle effects. A large-scale study501

with thousands of samples and markers will be required to fully reconcile these differences and resolve502

the underlying genomic architecture (Lee et al., 2012).503

Second, in spite of the putative functional importance of the linked genes identified from orthology504

with chicken, the actual molecular effects of the identified SNPs are unclear. None of the identified505

SNPs were in exonic regions, suggesting that the association of alleles with parasite load may not be due506

to amino acid substitution in the gene product, though these SNPs may be linked to unknown exonic507

SNPs with such effect. Instead, intronic SNPs may affect transcript splicing or downstream mRNA508

processing with effect on translation dynamics (Pagani & Baralle, 2004; Hunt et al., 2014). Similarly,509

non-coding SNPs may affect gene expression or chromatin organisation through epigenetic mechanisms510

such as miRNAs or transcription factors (Pagani & Baralle, 2004; Chamary et al., 2006). Epigenetic511

processes may play a particularly important role in the red grouse system because DNA methylation at a512

range of non-coding genomic regions is associated with parasite load (Wenzel & Piertney, 2014), SNPs in513

previously identified candidate genes associated with parasite load were predominantly non-synonymous,514

intronic or untranslated (Wenzel & Piertney, 2015) and some of these genes are themselves involved in515

regulating gene expression (Wenzel & Piertney, 2015).516

In summary, genome-wide association and genome partitioning have added new insight to our previous517

work on red grouse that highlighted a range of genetic polymorphisms in or close to candidate genes518

that are linked to nematode burden among grouse individuals, accounting for differences of as much519

as 666 worms per bird (Wenzel & Piertney, 2015). By combining a range of strategies for examining520

the genetic basis of a complex phenotype, we have reinforced the idea that parasite susceptibility may521

involve a considerable number of genes involved in a range of physiological categories beyond the immune522

system. We further identified particular chromosomes as priority targets for fine-mapping polymorphisms523

of small effect in the quest for the missing heritability of nematode burden. These findings have painted524

a consistent picture of the genetic basis of nematode burden in red grouse and illustrate that genome525

partitioning is a powerful addition to the classic strategies for studying the genetic basis of complex526

phenotypes.527
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Figure 1: Principal components analysis of the genome-wide genetic relationship matrix based on 271
SNPs. The first three panels are scatterplots of sequential combinations of the first four principal compo-
nents (eigenvectors), highlighting sampling sites (CT = Catterick; EG = Edinglassie; GC = Glas Choille;
IC = Invercauld; IM = Invermark). The last panel plots the eigenvalues of the first 20 principal com-
ponents and an ad hoc statistic ΔE (quotient of the eigenvalue change to the following versus to the
preceding principal component) whose peaks aid identification of elbow points.

0
1

2
3

4
5

S
N

P
 g

en
ot

yp
es

−
lo

g 1
0 P

X1375

X1407

X2277

X5104

X2298

0
1

2
3

4
5

S
N

P
 a

lle
le

s

−
lo

g 1
0 P

X1375 X3468

X1407

X5104

1 2 3 4 5 6 7 8 9 11 13 15 19 22

Chromosome

P >  0.05     P ≤  0.05     q ≤  0.1     q ≤  0.05     

Figure 2: Genome-wide association results (model 2 with full set of control variables, Materials & Meth-
ods) for nematode burden using genotypes (top) or alleles (bottom) of 271 SNPs ordered along chro-
mosomes based on orthology with the chicken genome. Each symbol represents statistical significance
(P-value) of a single test (genotype comparison or allele presence). Statistical significance before and
after correction for multiple testing (false discovery rate correction; q-values) is indicated by symbol shape
and colours. Two common single-test significance thresholds (P = 0.05 and P = 0.001) are indicated by
dashed lines for illustrative purposes.

17



40
0

60
0

80
0

10
00

X1407

11 (18) 12 (179) 22 (496)

20
0

40
0

60
0

80
0

10
00

X5104

11 (12) 12 (150) 22 (531)

60
0

70
0

80
0

90
0

10
00

X1375

11 (354) 12 (280) 22 (55)

40
0

60
0

80
0

10
00

X2298

11 (332) 12 (281) 22 (75)

50
0

70
0

90
0

11
00

X2277

11 (151) 12 (371) 22 (173)

0
20

0
40

0
60

0

X1407 X5104 X1375 X2298 X2277

P
re

di
ct

ed
 n

em
at

od
e 

bu
rd

en
 (

w
or

m
s 

pe
r 

bi
rd

)

Absolute effect

Figure 3: Predicted nematode burden according to three possible genotypes (11 and 22: homozygote for
allele 1 or 2; 12: heterozygote) at five SNPs identified through genome-wide association. Least-square
estimates (± SE) of model 2 (all other variables kept constant at mean values) are presented in the first
five panels. Coloured triangles denote statistically significant (q ≤ 0.1) genotype comparisons in the
fitted model as in Figure 2. Numbers in brackets indicate sample sizes. The bottom right panel indicates
overall effect size as the largest absolute difference in predicted estimates (± propagated SE).

Table 1: Sampling locations, sampling years and sample sizes by sex and age (young: hatched in same year;
or old: >1 year) of 695 red grouse samples. Detailed sample information is presented in supplementary
materials S2.

Sex Age
Site Latitude Longitude Years F M Y O Total
Edinglassie (EG) 57.22 º –3.19 º 2000–2012 13 86 31 68 99
Glas Choille (GC) 57.12 º –3.32 º 1995–2003 63 136 131 68 199
Invercauld (IC) 57.08 º –3.30 º 2012 15 16 10 21 31
Invermark (IM) 56.90 º –2.88 º 2011–2012 109 238 76 271 347
Catterick (CT) 54.33 º –1.87 º 2006 0 19 12 7 19
Total 200 495 260 435 695
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