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Abstract

In this paper, we focus on the impact on soil organic carbon (SOC) of two dedicated energy crops: perennial

grass Miscanthus x Giganteus (Miscanthus) and short rotation coppice (SRC)-willow. The amount of SOC seques-

tered in the soil is a function of site-specific factors including soil texture, management practices, initial SOC

levels and climate; for these reasons, both losses and gains in SOC were observed in previous Miscanthus and

SRC-willow studies. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas emis-
sions in mineral and organic soils. The performance of ECOSSE has already been tested at site level to simulate

the impacts of land-use change to short rotation forestry (SRF) on SOC. However, it has not been extensively

evaluated under other bioenergy plantations, such as Miscanthus and SRC-willow. Twenty-nine locations in the

United Kingdom, comprising 19 paired transitions to SRC-willow and 20 paired transitions to Miscanthus, were

selected to evaluate the performance of ECOSSE in predicting SOC and SOC change from conventional systems

(arable and grassland) to these selected bioenergy crops. The results of the present work revealed a strong corre-

lation between modelled and measured SOC and SOC change after transition to Miscanthus and SRC-willow

plantations, at two soil depths (0–30 and 0–100 cm), as well as the absence of significant bias in the model.
Moreover, model error was within (i.e. not significantly larger than) the measurement error. The high degrees of

association and coincidence with measured SOC under Miscanthus and SRC-willow plantations in the United

Kingdom, provide confidence in using this process-based model for quantitatively predicting the impacts of

future land use on SOC, at site level as well as at national level.
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Introduction

The European renewable energy directive 2009/28/EC

(E.C., 2009) provides a legislative framework for reduc-

ing greenhouse gas (GHG) emissions by 20%, while

achieving a 20% share of energy from renewable

sources by 2020. Energy crops can contribute to both

targets by replacing fossil fuel energy sources, as well

as increasing soil organic carbon (SOC) sequestration,

that is the long-term storage of carbon (C) in soil

(Clifton-Brown et al., 2004). In this paper, we focus on

the impact on SOC of two dedicated energy crops: short

rotation coppice (SRC)-willow and perennial grass

Miscanthus x Giganteus (Miscanthus).

Short rotation coppicing is a system of semi-intensive

cultivation of fast-growing, woody species. The rota-

tions between harvests are short (3–4 years) in compari-

son with longer rotations in typical forests (Don et al.,

2012), and the frequent harvests enhance root turnover

(Block et al., 2006). Annual leaf litter in Europe has been

estimated to be on average between 1 and 5 t ha�1

(Baum et al., 2009); therefore, inputs of organic matter to

soils under SRC are assumed to be relatively high com-

pared to conventional crops. Moreover, no tillage is

required during the lifetime of SRC which may enhance

SOC sequestration (West & Post, 2002; Walter et al.,

2015).

Short rotation coppicing of willow has a high poten-

tial to increase SOC due to the abundant above- and

belowground biomass input. For example, a study by

Tufekcioglu et al. (2003) reported that willow trees in
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Iowa, USA, can have greater productivity of fine root

biomass than corn (5.8 t ha�1 vs. 0.9 t ha�1 for corn,

7 years after establishment). Zan et al. (2001) estab-

lished a factorial experiment with 4-year-old energy

plantations in south-western Quebec, Canada. They

reported an average SOC sequestration at 0–60 cm soil

depth across sites, not including belowground bio-

mass, of 130 t C ha�1 following planting of willow,

compared to 110 t C ha�1 measured in soil on aban-

doned agricultural fields used as a baseline for com-

parison and therefore an estimated SOC sequestration

rate under willow of approximately 4 t C ha�1 yr�1.

In a study of three mixed poplar, aspen and willow

plantation sites across Germany, a small increase in

SOC (45 and 44 t C ha�1, under current vegetation

and former arable soils, respectively) of 0.1–0.6 t C

ha�1 yr�1 in the upper 30 cm soil was observed after

7 years of transition from former arable soil (Jug et al.,

1999; Meki et al., 2014).

In the United Kingdom, SRC-willow has been identi-

fied as the bioenergy crop with the greatest potential

for C mitigation across the United Kingdom (Smith

et al., 2000a,b). Willow is an ideal species for SRC in

the United Kingdom because of its vigorous shoot

regeneration after coppicing, and its suitability to regio-

nal climate and soil conditions (Britt et al., 1995; Gro-

gan & Matthews, 2002). Grogan & Matthews (2002)

estimated a SOC sequestration rate to 50 cm soil depth

of 0.5 t C ha�1 yr�1 under SRC-willow plantations in

the United Kingdom. They developed a model to char-

acterize the essential processes underlying SOC

dynamics relating to SOC sequestration but stressed

the need for further model development to account for

the dynamics of the system within each season, as well

as for regional variations in yield and soil C inputs

and outputs.

Miscanthus is one of the most promising dedicated

energy crops with around 16 000 ha being established

in the United Kingdom (Don et al., 2012). Several fea-

tures of Miscanthus’ physiology and the agricultural

practices associated with its cultivation suggest a large

potential for SOC sequestration (Dondini et al., 2009a).

Miscanthus is usually harvested in spring to allow

winter senescence to reduce plant moisture content.

Leaving the crop standing over winter increases litter

fall, leading to the accumulation of biomass on the soil

surface (Zimmermann et al., 2013). In addition, as a rhi-

zomatous crop it allocates a large proportion of the

aboveground C to the roots and rhizomes during winter

senescence, further increasing SOC stocks (Kuzyakov &

Domanski, 2000). When Miscanthus is planted on former

arable land, the absence of soil tillage results in less soil

disturbance which, in turn, enhances SOC stabilization

processes (Clifton-Brown et al., 2007).

The amount of SOC sequestered by Miscanthus is a

function of site-specific factors including soil texture,

management practices, initial SOC levels and climate

(Lemus & Lal, 2005); for these reasons, both losses and

gains in SOC were observed in Miscanthus studies (Han-

sen et al., 2004; Clifton-Brown et al., 2007). Several stud-

ies quantifying the changes in SOC on converting arable

land to Miscanthus energy crop reported an increase in

SOC; the reported SOC change rate, however, varied

largely across and within experiments, ranging from 0.8

to 2.8 t C ha�1 yr�1 (Kahle et al., 1999; Hansen et al.,

2004; Dondini et al., 2009a,b; Zimmermann et al., 2011;

Felten & Emmerling, 2012). Changes from pasture to a

Miscanthus energy crop have a small effect on SOC. In a

review of the effect of land-use change to bioenergy

production in Europe, Don et al. (2012) estimated a SOC

change of �0.09 t C ha�1 yr�1 if grassland was con-

verted to Miscanthus. On the other hand, Zatta et al.

(2014) reported that planting on semipermanent grass-

lands with a range of Miscanthus genotypes did not

deplete SOC significantly after 6 years from establish-

ment. Moreover, the authors suggested that it is highly

unlikely that a reduction in SOC levels relative to initial

values with increasing stand age will occur.

Methods for the determination of SOC involve direct

and indirect approaches. Direct methods employ field

and laboratory measurements of SOC stocks, but field

documentation of SOC changes faces many challenges

because of the heterogeneity of soils, environmental

conditions, land-use history, sampling methods and

analytical errors. Therefore, indirect methods, which

require the use of process-based models, are used to

predict SOC changes temporally and spatially (Saby

et al., 2008). Computer models can also complement and

extend the applicability of information collected in field

trials (Meki et al., 2013). Combining measurement of

SOC with models also provides a useful tool to test the

model performance to simulate soil processes with a

higher degree of confidence. In fact, model evaluation

involves running a model using input values that have

not been used during the calibration process, demon-

strating that it is capable of making accurate simulations

on a wide range of conditions (Moriasi et al., 2007).

Although several soil C models have been developed

for conventional agricultural and forest systems, most

of them have not been fully parameterized and effec-

tively tested for application on Miscanthus and SRC-wil-

low (Dimitriou et al., 2012; Borzezcka-Walker et al., 2013;

Robertson et al., 2015). Here we focus on the applicabil-

ity of the process-based model ECOSSE to predict SOC

sequestration and SOC changes after transition to

Miscanthus and SRC-willow.

The development of the ECOSSE model was mainly

due to the need to simulate the C and nitrogen (N)
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cycles using minimal input data on both mineral and

organic soils (Smith et al., 2010a,b). The ECOSSE model

has already been validated and applied spatially to sim-

ulate land-use change impacts on SOC and GHG emis-

sions over different soil types, to simulate SOC change

under energy crops and to simulate soil N and nitrous

oxide (N2O) emissions in cropland sites in Europe

(Smith et al., 2010b; Bell et al., 2012). It has also been

previously evaluated against a range of soils under

short rotation forestry (SRF) plantations across the Uni-

ted Kingdom (Dondini et al., 2015).

This paper evaluates the suitability of ECOSSE for

estimating SOC sequestration from SRC-willow and

Miscanthus soils in the United Kingdom after land-use

change from conventional systems (grassland and ara-

ble). Based on the previous published recommenda-

tions, a combination of graphical techniques and error

index statistics have been used for model evaluation

(Moriasi et al., 2007). Model testing is often limited by

the lack of field data to which the simulations can be

compared (Desjardins et al., 2010) and by inconsistent

sampling approaches and soil depths. In this study, the

model is evaluated against observations at 29 locations

in the United Kingdom, comprising 19 paired transi-

tions to SRC-willow and 20 paired transitions to Miscan-

thus, and two soil depths (0–30 and 0–100 cm), meaning

that the mechanistic processes of ECOSSE can be thor-

oughly evaluated.

Materials and methods

ECOSSE model

The ECOSSE model includes five pools of soil organic matter

(SOM), each decomposing with a specific rate constant. Decom-

position is sensitive to temperature, soil moisture and vegeta-

tion cover, and so soil texture, pH, bulk density and clay

content of the soil along with land-use and monthly climate

data are the inputs to the model (Coleman & Jenkinson, 1996;

Smith et al., 1997). The ECOSSE model simulates the C and N

cycles for six categories of vegetation: arable, grassland, for-

estry, and seminatural, SRC-Willow and Miscanthus.

The soil input of the vegetation (SI) is estimated by a modifi-

cation of the Miami model (Lieth, 1972), which is a simple con-

ceptual model that links the climatic net primary production of

biomass (NPP) to annual mean temperature (T) and total

precipitation (P) (Grieser et al., 2006). Separate estimates are

obtained for NPP as a function of temperature and precipita-

tion according to empirical relationships, and the Miami esti-

mate of NPP is found as the minimum of these two estimates.

The NPP estimated by the Miami model is then rescaled for

each land-cover type. The scaling factor for Miscanthus (1.6)

was calculated as the ratio of mean UK yield estimated using

Miscanfor (Hastings et al., 2014), converted to NPP, to mean

UK NPP estimated by Miami. The scaling factor for SRC-wil-

low (0.875) was calculated by adjusting the Miscanthus scaling

factor by the ratio of SRC-willow yield values (Styles et al.,

2008) to Miscanthus yield values. SI is then estimated as a fixed

proportion of the rescaled NPP according to the land cover, as

described by Schulze et al. (2010). The linear rescaling of the

nonlinear Miami functions is reasonable given the near-linear

behaviour of the Miami functions in the temperature and

precipitation range of the United Kingdom. The NPP estimated

by the Miami model is a function of climatic variables only;

therefore, it does not capture the effects of other local environ-

mental factors such as N inputs. However, the rescaling factors

derived for each land-use type implicitly account for standard

management practices. For a full description of the ECOSSE

model, refer to Smith et al. (2010a).

The minimum ECOSSE input requirements for site-specific

simulations are as follows:

Climate/atmospheric data:

• Thirty years of average monthly rainfall, potential evapo-

transpiration (PET) and temperature and

• Monthly rainfall and temperature.

Soil data:

• Initial SOC content,

• Soil sand, silt and clay content,

• Soil bulk density,

• Soil pH and

• Soil depth.

Land-use data:

• Land use for each simulation year.

The initialization of the model is based on the assumption

that the SOC is at steady state under the initial land use at the

start of the simulation. Previous work has used SOC measured

at steady state to determine the plant inputs that would be

required to achieve an equivalent simulated value (e.g. Smith

et al., 2010a). This approach iteratively adjusts plant inputs

until measured and simulated values of SOC converge. Run-

ning the simulations to steady state with this adjusted rate of

plant input therefore provides an estimate of the activity of the

SOM as expressed by the relative C pool sizes of the decom-

posable plant material, resistant plant material, microbial bio-

mass (BIO) and humified organic matter. However, where

input data are missing, most notably the description of the

drainage of the soil, the OM in soil with restricted drainage is

actually decomposing more slowly than would be calculated

from the available soil descriptors. This results in an unrealisti-

cally high estimate of plant inputs to compensate for the

elevated simulated decomposition rate. In the absence of addi-

tional measurements, estimates of plant inputs from the NPP

model Miami (Lieth, 1972, 1973) can be used to account for rate

modifiers that are missing due to the lack of input data. This

approach instead fixes the plant inputs at the rate estimated by

the Miami model and then iteratively adjusts an additional

decomposition rate modifier until the SOC simulated using

long-term climate data converges with the measured value.

The same rate modifier is used for all pools, so this approach is

adjusting the overall activity of the SOM to account for the

missing input data, not the rate constants of the pools, which

© 2015 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., GCB Bioenergy, 8, 790–804
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remain a fixed characteristic of the model. The rate modifier

calculated in this way is then used unchanged for any subse-

quent calculations to determine the impact of changes in land

use. Here we are testing a modelling approach that can also be

applied at large scales, so rather than measuring additional

values at the specific sites, we used the above approach to

evaluate the model using only the input data that would be

available in large-scale simulations.

Data

In 2012/2013, 29 sites, including a total of 40 transitions, were

sampled in Britain using a paired site comparison approach

(Keith et al., 2015). The sites and the relative measurements

contribute to the ELUM (Ecosystem Land Use Modelling & Soil

Carbon GHG Flux Trial) project, which was commissioned and

funded by the Energy Technologies Institute (ETI). Each transi-

tion consisted of one reference field (arable or grassland,

depending on the previous land use of the site) and one adja-

cent bioenergy field (Miscanthus or SRC-willow); some sites

contained multiple transitions. At each site, soil samples were

collected at two soil depths, for a total of 40 transitions

sampled at 0–30 cm soil depth and 38 transitions sampled at 0–

100 cm soil depth. In total, 12 arable to SRC-willow transitions,

eight grassland to SRC-willow transitions, 11 arable to Miscan-

thus transitions and nine grassland to Miscanthus transitions

were sampled (Table 1).

The soil of each bioenergy plantation or control field was

sampled using a hierarchical design (Keith et al., 2015), devel-

oped to capture variability across different spatial scales (Co-

nant & Paustian, 2002; Conant et al., 2003). Five sampling

plots per field were randomly selected, and three soil cores

Table 1 Details of vegetation type, duration between estab-

lishment and sampling, and location of the study sites

Site no.

Transitions
(previous land
use in bold)

Latitude,
Longitude

Duration between
establishment and
sampling (years)

1 SRC-willow 53.7, �0.8 5
2 SRC-willow 12
1 + 2C Arable 20+
3 SRC-willow 53.2, �0.8 11
4 SRC-willow 7
4C Arable 20+
5 SRC-willow 53.2, �0.7 4
5C Grassland 20+
6 SRC-willow 54.6, �2.7 13
6C Arable 20+
7 SRC-willow 4
7C Grassland 7
8 SRC-willow 50.9, �0.4 4
8C Grassland 12
9 SRC-willow 51.7, �0.9 5
10 Miscanthus 5
9 + 10C Arable 32
11 Miscanthus 54.0, �1.2 5
11C Arable 20+
12 Miscanthus 54.1, �1.1 6
12C Grassland 4
13 Miscanthus 53.4, �0.5 2
13C Arable 20+
14 Miscanthus 53.2, 0.1 7
14C Grassland 6
15 SRC-willow 51.5, �0.8 6
15C Arable 20+
16 Miscanthus 51.5, �1.3 5
16C Arable 20+
17 SRC-willow 51.5, �1.6 22
17C Grassland Unknown
18 SRC-willow 7
18C Arable Unknown
19 Miscanthus 51.8, �1.6 5
19C Arable 20+
20 SRC-willow 52.2, �1.9 9
22 SRC-willow 22
20, 22C Grassland 32+
23 Miscanthus 53.2, �3.7 5
23C Grassland 8
24 Miscanthus 52.4, �4.0 1
24C Grassland 22
25 Miscanthus 51.2, �2.8 9
25C Grassland 20+
26 SRC-willow 50.7, �2.4 5
26C Arable 20+
27 Miscanthus 51.0, �3.1 10
27C Arable 20+
28 Miscanthus 10
28C Grassland 29
29 Miscanthus 50.5, �4.8 9
29C Grassland 10
30 Miscanthus 50.4, �4.6 5
30C Arable Unknown
31 Miscanthus 7
31C Pasture 20+

(continued)

Table 1 (continued)

Site no.

Transitions
(previous land
use in bold)

Latitude,
Longitude

Duration between
establishment and
sampling (years)

33 SRC-willow 56.0, �3.6 14
33C Arable 20+
34 SRC-willow 56.2, �3.2 6
34C Grassland Unknown
35 SRC-willow 51.7, �4.7 9
35C Grassland 20+
36 Miscanthus 8
36C Arable 20+
37 SRC-willow 54.8, �2.9 6
37C Arable Unknown
38 Miscanthus 52.6, 2.0 6
38C Grassland 14
39 Miscanthus 6
39C Arable 39
40 Miscanthus 52.5, �0.5 5
40C Arable 20+
41 SRC-willow 5
42 Miscanthus 53.1, �0.4 5
41/42C Arable 20+

SRC, short rotation coppice.
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were taken to a depth of 30 cm within each sampling plot.

Soil cores were divided in the field into 0–15 and 15–30 cm

(measuring from the base of the core). One of the five sam-

pling plots was randomly selected and three 1-m cores were

taken, except for site 38. Due to the high stones content at site

38, it was possible to sample just two 1-m cores. On return to

the laboratory, the 1-m cores were divided into four sections:

0–15, 0–30, 30–50 and 50–100 cm. The rationale behind the

sampling approach for the 1-m soil cores was largely based

on feasibility and practicality.
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Air-dried soil samples were sieved to 2 mm, and the mass

and volume of stones and roots remaining on the sieve were

recorded. A subsample of the sieved soil was oven-dried

(105 °C for 12 h) and subsequently ball-milled (Fritsch Plane-

tary Mill); samples were analysed for %C using a LECO TruS-

pec CN analyser (Leco, TruSpec CN, St. Joseph, MI, USA), and

a 100 mg subsample was used for the assessment of OC con-

centration using an elemental analyser (Leco, TruSpec CN).

Prior to OC analysis, soil subsamples that were either from

sites located on soil types known to contain inorganic C or

which had pH values >6.5 were tested for the presence of inor-

ganic C. Samples that tested positive were treated to remove

inorganic C by acid fumigation following the procedure

detailed by Harris et al. (2001).

The change in SOC was assumed to be the difference between

the bioenergy and non-bioenergy pair. Measurements of SOC,

soil bulk density, soil texture and soil pH, as well as information

on the land-use history, were collated for each field. Soil texture

was determined for the top 30 cm soil depth; therefore, soil tex-

ture data for the 30–100 cm soil depth were extracted from soil

data at 1 km resolution for England and Wales, Scotland and

Northern Ireland as described in Bradley et al. (2005), first used

to run RothC in support of the Land use, land-use change and

forestry (LULUCF) inventory (Falloon et al., 2006).

Air temperature and precipitation data at each location were

extracted from the E-OBS gridded data set from the EU-FP6

project ENSEMBLES, provided by the ECA&D project (Haylock

et al., 2008), publicly available at http://eca.knmi.nl/. For each

location, monthly air temperature and precipitation for each

simulated year was collated and a long-term (30 years before

transition) average was also calculated (Table 2). Monthly PET

was estimated using the Thornthwaite method (Thornthwaite,
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Fig. 3 Comparison between modelled and measured SOC at the SRC-willow sites at 0–30 cm soil depth. Error bars represent 95%
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Table 3 ECOSSE model performance at simulating soil C at the reference sites at 0–30cm soil depth, Miscanthus and SRC-willow

fields for two soil depths (0–30 and 0–100 cm). Association is significant for t > t (at P = 0.05). Model bias is not significant for

E < E95. Error between measured and modelled values is not significant for F < F (critical at 5%)

0–30 cm depth 0–100 cm depth

Reference Miscanthus SRC-willow Miscanthus SRC-willow

r = Correlation coefficient 1.0 0.95 0.72 0.93 0.9

t-value 79.38 12.27 4.37 10.24 8.15

t-value at (P = 0.05) 2.03 2.11 2.1 2.11 2.13

E = Relative error 0 2 2 3 �3

E95 (95% Confidence limit) 9 13 10 92 87

F 0 0.01 0.08 0 0

F (Critical at 5%) 1.48 1.69 1.69 1.71 1.77

Number of values 40 20 20 20 18

SRC, short rotation coppice.
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1948), which has been used in other modelling studies when

direct observational data have not been available (e.g. Smith

et al., 2005; Yokozawa et al., 2010; Bell et al., 2012).

Model evaluation

At each site, each transition from conventional (arable or

grassland) to bioenergy crop (Miscanthus or SRC-willow) was

modelled and the simulated SOC was compared to the

measured SOC. Based on the site information provided, the

measured SOC at each reference arable/grassland site was

used as the starting C input to the model, assuming that the

soil at the reference site had been in equilibrium before

the transition. The model has not been recalibrated or

reparameterized using the data presented in this study;

therefore, the presented results are an independent test of the

ability of the model to simulate SOC under Miscanthus and

SRC-willow as well as change in SOC from grassland/arable.
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The model was evaluated using input data of measured SOC

at the start of the simulation, bulk density and soil texture.

Simulations were carried out for 0–30 and 0–100 cm soil

depths.

A quantitative statistical analysis was undertaken to deter-

mine the coincidence and association between measured and

modelled values, following the methods described in Smith

et al. (1997) and in Smith & Smith (2007). The statistical signifi-

cance of the difference between model outputs and experimen-

tal observations can be quantified if the standard error of the

measured values is known (Hastings et al., 2010). The standard

errors (data not shown) and 95% confidence intervals around

the mean measurements were calculated for all field sites.

The degree of association between modelled and measured

values was determined using the correlation coefficient (r). Val-

ues for r range from �1 to +1. Values close to �1 indicate a

negative correlation between simulations and measurements,

values of 0 indicate no correlation, and values close to +1 indi-

cate a positive correlation (Smith et al., 1996). The significance

of the association between simulations and measurements was

assigned using a Student’s t-test as outlined in Smith & Smith

(2007).

The bias was expressed as a percentage using the relative

error, E. The significance of the bias was determined by com-

paring to the value of E that would be obtained at the 95% con-

fidence interval of the replicated values (E95). If the relative

error is less than the 95% error (i.e. E < E95), the model bias

cannot be reduced using these data.

Analysis of coincidence was undertaken to establish how

different the measured and modelled values were. The degree

of coincidence between the modelled and measured values was

determined using the lack of fit statistic (LOFIT) and its signifi-

cance was assessed using an F-test (Whitmore, 1991) indicating

whether the difference in the paired values of the two data sets

is significant. All statistical results were considered to be statis-

tically significant at P < 0.05.

Results

The model simulations of the SOC show a good fit

against the measured SOC, for both reference (Fig. 1)

and bioenergy crops (Miscanthus and SRC-willow), at 0–
30 cm soil depth (Figs 2 and 3, respectively).

All the reference sites have been simulated for a time

period of ≥30 years without any land-use change and

using the field measurements as inputs to the model.

Based on the site histories, we assumed that all the ref-

erence sites were in equilibrium at the time of sampling.

The r value (1) of the reference sites at 0–30 cm soil

depth showed a significant (P < 0.05) association

between modelled and measured values, as well as no

significant model bias (E < E95) (Table 3).

The correlations between modelled and measured

SOC at the Miscanthus and SRC-willow fields, at

–100

–80

–60

–40

–20

0

20

40

60

–100 –80 –60 –40 –20 0 20 40 60 80

Arable --> Miscanthus

Grass --> Miscanthus

1:1 line

Measured ΔSOC 0-30 cm (t C/ha)

M
od

el
le

d 
ΔS

O
C

0-
30

 c
m

 (t
 C

/h
a)

Fig. 6 Measured and modelled change in SOC after transition to Miscanthus at 0–30 cm soil depth. Error bars represent 95% confi-

dence interval of measured values. Solid line represents 1 : 1 correlation between measured and modelled values. SOC, soil organic

carbon.

© 2015 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., GCB Bioenergy, 8, 790–804

798 M. DONDINI et al.



0–30 cm soil depth, are presented in Figs 2 and 3,

respectively. Overall, the simulated C correlates well

with the measured SOC (Table 3).

The r value of the SOC at both Miscanthus (r = 0.95)

and SRC-willow (r = 0.72) sites showed a significant

(P < 0.05) association between simulated and measured

values. The calculated value of E indicated that the sim-

ulations at both Miscanthus and SRC-willow sites show

no significant bias (E < E95). Finally, the LOFIT value

showed that the model error was within (i.e. not signifi-

cantly larger than) the measurement error.

At most of the Miscanthus sites, the simulated SOC

was within the 95% confidence interval of the measured

SOC (error bars in Fig. 2). At sites 11, 16 and 19, the

model estimated a lower SOC compared to the mea-

sured values (51.9 vs. 54.6 t C ha�1, 56.4 vs. 63.6 t C

ha�1, 55.2 vs. 58.9 t C ha�1, respectively).

The simulated SOC at the SRC-willow sites was

within the 95% confidence interval of the measured

SOC (error bars in Fig. 3). The only exceptions were

found at sites 4 and 33 where the model estimated a

lower SOC compared to the measured values (60.0 vs.

65.7 t C ha�1, 94.3 vs. 107.4 t C ha�1, respectively)

while for sites 8 and 20 the model simulated a higher

accumulation of SOC compared to the site measure-

ments. However, simulated SOC showed a good fit

against soil measurements at all sites (Table 3).

The model simulations of the total C at 0–100 cm soil

depth again showed a good correlation with the mea-

sured SOC, for both Miscanthus (Fig. 4) and SRC-willow

fields (Fig. 5). High variation of the measured SOC was

found at certain Miscanthus (site 30 and site 38) and

SRC-willow (site 18 and site 33) sites. The statistics of

the SOC at the 0–100 cm soil depth reflected the good

model performance found for the top soil layer, with a

high correlation between simulated and measured val-

ues and no significant bias for both Miscanthus and

SRC-willow sites (Table 3).

The change in SOC (DSOC) has been calculated as the

difference between the SOC at the bioenergy sites and

the SOC at the reference. These results are important as

they directly show the effect of the land-use transition

itself, that is the long-term accumulation or loss of SOC

due to the transition occurring. At 0–30 cm soil depth,

the modelled transitions from conventional crops (ara-

ble and grassland) to Miscanthus and SRC-willow lead

to a DSOC that was within the 95% confidence intervals

of the measured values (Figs 6 and 7).
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Overall, at 0–100 cm, the DSOC simulated by the

model followed the same direction of the measured

SOC changes, for both transitions to Miscanthus (Fig. 8)

and SRC-willow (Fig. 9). All the DSOC simulated by the

model is within the 95% confidence intervals of the

measured values.

The simulated changes in SOC are well associated

with the measured values, with a r value for Miscanthus

of 0.98 and 0.97 at 0–30 and 0–100 cm soil depth, respec-

tively, and for SRC-willow of 0.98 and 0.84 at 0–30 and

0–100 cm soil depth, respectively. Furthermore, the sta-

tistical analysis on the DSOC showed no model bias

(E < E95) and a good coincidence [F < F (critical at 5%)]

between modelled and measured changes in SOC after

transition to Miscanthus and to SRC-willow (Table 4).

Discussions

The present study emphasizes the high accuracy of the

ECOSSE model to simulate SOC and SOC changes after

transitions to SRC-willow and Miscanthus crops in the

United Kingdom. The statistical analysis of the SOC and

SOC changes at both 0–30 and 0–100 cm soil depths

highlights the absence of significant error between

simulated and measured values as well as the absence

of significant bias in the model. As for the bioenergy

plantations, SOC in the reference fields has been accu-

rately simulated by the model. The extremely high

correlation for the reference fields shows a good perfor-

mance of the model spin-up, which is used by the

model to reach a state of equilibrium under the speci-

fied inputs. However, it is important to stress that it

does not confirm that the reference sites are in an equi-

librium condition. In fact, at certain bioenergy sites, the

model under/overestimated the SOC at 0–30 cm soil

depth. A possible explanation of such model underesti-

mates could be that the soil at the reference sites, all ara-

ble cultivations established before 1990, were not in

equilibrium at the time of the transitions. The initializa-

tion of the model is based on the assumption that the

soil column is at a stable equilibrium under the initial

land use at the start of the simulation (T0); therefore, the

SOC measured at the reference site at the time of sam-

pling (T1) is assumed to be at the same level as at the

time of the transition to the new crop. The equilibrium

level depends on several factors: the input of organic

material and its rate of decomposition, the rate at which

existing SOM is mineralized, soil texture and climate.
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The time to reach such equilibrium between vegetation

and soil system is extremely unpredictable as all the fac-

tors involved in the stabilization process are in constant

interaction with each other (Jenkinson, 1990).

Another source of discrepancy between modelled and

measured SOC could also be attributed to the diver-

gence between model estimates of the plant inputs to

the soil and the actual field value. In the ECOSSE

model, the SI is estimated by a modification of the

Miami model (Lieth, 1972), which is a simple conceptual

model that links the NPP to annual mean temperature

and total precipitation (Grieser et al., 2006). The NPP is

rescaled for each land-cover type, and SI is then esti-

mated as a fixed proportion of the NPP according to the

land cover. The rescaling factors for Miscanthus and

SRC-willow have been derived from comparison of

unadjusted Miami results with published yield data for

Miscanthus in the United Kingdom (Hastings et al. 2013)

and SRC-willow (Styles et al., 2008). The Styles et al.

(2008) publication reports an expected annual yield of

9 t DM ha�1 yr�1 for SRC-willow in Ireland; this figure

is comparable with UK estimates reported by Tallis

et al. (2013) (9.0 t DM ha�1 yr�1) and Hastings et al.

(2014) (6.1–12.1 t DM ha�1 yr�1). The application of the
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Table 4 ECOSSE model performance at simulating soil C

changes (DC) at the Miscanthus and SRC-willow fields for two

soil depths (0–30 cm and 0–100 cm). Association is significant

for t > t (at P = 0.05). Model bias is not significant for E < E95.

Error between measured and modelled values is not significant

for F < F (critical at 5%)

0–30 cm depth 0–100 cm depth

Miscanthus

SRC-

willow Miscanthus

SRC-

willow

r = Correlation

coefficient

0.98 0.98 0.97 0.84

t-value 21.59 20.92 16.99 6.52

t-value at

(P = 0.05)

2.10 2.10 2.1 2.1

E = Relative

error

�34 47.51 114 �134

E95 (95%

Confidence

limit)

�253 657.24 657 �962

F 0.02 0.03 0.04 0.2

F (Critical at 5%) 1.69 1.69 1.69 1.7

Number of

values

20 20 20 18

SRC, short rotation coppice.
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rescaling factors has been necessary as the Miami model

has been developed to estimate NPP at a global scale

and based on environmental variables only, while land-

cover type is a key aspect in the ECOSSE model. In the

present study, this approach has provided good plant

input predictions, and consequently SOC figures, at 17

Miscanthus and 16 SRC-willow sites in the United King-

dom; it has also been previously applied with good

results on the prediction of SOC in 29 transitions to SRF

(Dondini et al., 2015). However, localized weather

conditions at some sites may cause divergent yields

compared to that predicted by the Miami model. A

study by Hastings et al. (2014) reported estimated yield

potential for current and future climates across Great

Britain; Miscanthus yield, estimated using the Miscanfor

model, ranged from 7.4 to 13.1 t DM ha�1 yr�1 across

regions in Great Britain, whereas estimates of willow

yield (from the ForestGrowth-SRC model) ranged from

6.1 to 12.1 t DM ha�1 yr�1 under current climate.

High variability in the measured SOC at 1 m depth

was found at the Miscanthus site 38 (error bars in Fig. 4).

The high variability in SOC at this site is mainly due to

the higher stone content in the soil cores compared to

the other Miscanthus fields and to a lower number of

soil cores collected at this site. In fact, due to the high

stone content, two soil cores (instead of three) have been

collected at site 38, leading to a bigger 95% confidence

interval of the measured values compared to other sites.

A high error in the measured SOC has also been found

at site 30 and at two SRC-willow sites (sites 18 and 33).

Many factors influence SOC, including temperature,

precipitation, NPP and soil physical characteristics (Par-

ton et al., 1987), all of which are spatially variable. The

result is substantial variability in SOC, with coefficients

of variation as high as 20% even in a visually uniform

cultivated field (Robertson et al., 1997). As variability

increases, the minimum number of samples needed to

detect a given level of change increases. Furthermore,

short-term changes in SOC are usually small relative to

the amount of C in soil (Conant & Paustian, 2002).

Therefore, all transition units reported in the current

study were sampled using a hierarchical design, devel-

oped to capture variability across different spatial scales

(Conant & Paustian, 2002; Conant et al., 2003), especially

for the top 30 cm soil.

The results of the present work revealed a strong cor-

relation between modelled and measured SOC and SOC

changes to Miscanthus and SRC-willow plantations, at

two soil depths (Tables 3 and 4). Previous studies on

ECOSSE have used large spatial data sets (Smith et al.,

2010a,b) to evaluate the model accuracy to simulate

SOC. Smith et al. (2010a) presented an evaluation of the

ECOSSE model to simulate SOC at a national scale,

using data from the National Soil Inventory of Scotland.

This data set provided measurements of SOC and SOC

change for the range of soils, climates and land-use

types found across Scotland. The results of the present

work are in agreement with the publication of Smith

et al. (2010a), which reported a high degree of associa-

tion of the ECOSSE modelled values with the measure-

ments in both total C and change in C content in the

soil.

The performance of the ECOSSE model in simulating

SOC and SOC changes was recently evaluated for SRF

plantations in the United Kingdom (Dondini et al.,

2015). The same approach has been used in the present

study to test its application for transitions to Miscanthus

and SRC-willow in the United Kingdom. The statistical

analysis of the results presented here is in accordance

with the results presented by Dondini et al. (2015) for

SRF, revealing no significant error between modelled

and measured SOC and SOC changes, as well as no sig-

nificant model bias. The latter is a promising result,

given that this work is an independent evaluation of

ECOSSE, and therefore, the model had not been further

improved or parameterized to produce the outputs

under Miscanthus and SRC-willow plantations.

This work reinforces previous studies on the ability of

ECOSSE to simulate SOC and SOC changes at field level

and using limited data to initialize the model. The high

degrees of association with measured SOC under

Miscanthus, SRC-willow and SRF (Dondini et al., 2015)

plantations in the United Kingdom allow confidence in

using this process-based model for quantitatively

predicting the impacts of future land use on SOC, at site

level as well as at national level.

Acknowledgements

This work contributes to the ELUM (Ecosystem Land Use
Modelling & Soil Carbon GHG Flux Trial) project, which was
commissioned and funded by the Energy Technologies
Institute (ETI). We acknowledge the E-OBS data set from the
EU-FP6 project ENSEMBLES (http://ensembles-eu.metof-
fice.com) and the data providers in the ECA&D project
(http://www.ecad.eu).

References

Baum C, Leinweber P, Weih M, Lamersdorf N, Dimitriou I (2009) Effects of short

rotation coppice with willows and poplar on soil ecology. Agriculture and Forestry

Research, 3, 83–196.

Bell MJ, Jones E, Smith J et al. (2012) Simulation of soil nitrogen, nitrous oxide emis-

sions and mitigation scenarios at 3 European cropland sites using the ECOSSE

model. Nutrient Cycling in Agroecosystems, 92, 161–181.

Block RMA, Rees KCJ, Knight JD (2006) A review of fine root dynamics in Populus

plantations. Agroforestry Systems, 67, 73–84.

Borzezcka-Walker M, Borek R, Faber A, Pudelko R, Kozyra J, Syp A, Matyka M

(2013) Carbon and nitrogen balances in soil under SRC willow using DNDC

model. Journal of Food, Agriculture & Environment, 11, 1920–1925.

Bradley RI, Milne R, Bell J, Lilly A, Jordan C, Higgins A (2005) A soil carbon and

land use database for the United Kingdom. Soil Use and Management, 21, 363–369.

© 2015 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., GCB Bioenergy, 8, 790–804

802 M. DONDINI et al.

http://ensembles-eu.metoffice.com
http://ensembles-eu.metoffice.com
http://www.ecad.eu


Britt C, Heath M, Buckland M (1995) Arable Energy Coppice. ADAS, Oxford.

Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for

energy in Europe and its potential contribution to decreasing fossil fuel carbon

emissions. Global Change Biology, 10, 509–518.

Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop,

Miscanthus. Global Change Biology, 13, 2296–2307.

Coleman KW, Jenkinson DS (1996) RothC-26.3 – a model for the turnover of carbon in

soil. In: Evaluation of Soil Organic Matter Models Using Existing Ling-Term Datasets

(eds Powlson DS, Smith P, Smith J), pp. 237–246. Springer-Verlag, Heidelberg.

Conant RT, Paustian K (2002) Spatial variability of soil organic carbon in grasslands:

implications for detecting change at different scales. Environmental Pollution, 116,

S127–S135.

Conant RT, Smith GR, Paustian K (2003) Spatial variability of soil carbon in forested

and cultivated sites. Journal of Environmental Quality, 32, 278–286.

Desjardins RL, Pattey E, Smith WN et al. (2010) Multiscale estimates of N2O

emissions from agricultural lands. Agricultural and Forest Meteorology, 150, 817–

824.

Dimitriou I, Mola-Yudego B, Aronsson P, Eriksson J (2012) Changes in organic car-

bon and trace elements in the soil of willow short-rotation coppice plantations.

BioEnergy Research, 5, 563–572.

Don A, Osborne B, Hastings A et al. (2012) Land-use change to bioenergy produc-

tion in Europe: implications for greenhouse gas balance and soil carbon. Global

Change Biology-Bioenergy, 4, 372–391.

Dondini M, Hastings A, Saiz G, Jones MB, Smith P (2009a) The potential of Miscan-

thus to sequester carbon in soils: comparing field measurements in Carlow,

Ireland to model predictions. Global Change Biology-Bioenergy, 1, 413–425.

Dondini M, Van Groenigen KJ, Del Grado I, Jones MB (2009b) Carbon sequestration

under Miscanthus: a study of 13C distribution in soil aggregates. Global Change

Biology-Bioenergy, 1, 321–330.

Dondini M, Jones EO, Richards M et al. (2015) Evaluation of the ECOSSE model for

simulating soil carbon under short rotation forestry energy crops in Britain. Global

Change Biology-Bioenergy, 7, 527–540.

E.C. (2009) PE-CONS 3736/08, Vol. 2009/28/EC (ed. Parliament E). European

Union, Official Journal of the European Communities, Luxembourg.

Falloon P, Smith P, Bradley RI et al. (2006) RothCUK – a dynamic modelling system

for estimating changes in soil C from mineral soils at 1-km resolution in the UK.

Soil Use and Management, 22, 274–288.

Felten D, Emmerling C (2012) Accumulation of Miscanthus-derived carbon in soils in

relation to soil depth and duration of land use under commercial farming condi-

tions. Journal of Plant Nutrition and Soil Science, 175, 661–670.

Grieser J, Gommes R, Bernardi M (2006) The Miami Model of Climatic Net Primary

Production of Biomass. FAO of the UN, Rome, Italy.

Grogan P, Matthews R (2002) A modelling analysis of the potential for soil carbon

sequestration under short rotation coppice willow bioenergy plantations. Soil Use

and Management, 18, 175–183.

Hansen EM, Christensen BT, Jensen LS, Kristensen K (2004) Carbon sequestration in

soil beneath long-term Miscanthus plantations as determined by C-13 abundance.

Biomass and Bioenergy, 26, 97–105.

Harris D, Horwath WR, van Kessel C (2001) Acid fumigation of soils to remove car-

bonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Science

Society of America Journal, 65, 1853–1856.

Hastings A, Wattenbach M, Eugster W, Li C, Buchmann N, Smith P (2010) Uncer-

tainty propagation in soil greenhouse gas emission models: an experiment using

the DNDC model and at the Oensingen cropland site. Agriculture Ecosystem &

Environment, 136, 97–110.

Hastings A, Tallis MJ, Casella E, et al. (2014) The technical potential of Great Britain

to produce ligno-cellulosic biomass for bioenergy in current and future climates.

Global Change Biology-Bioenergy, 6, 108–122.

Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A

European daily high-resolution gridded dataset of surface temperature and pre-

cipitation for 1950-2006. Journal of Geophysical Research (Atmospheres), 113, D20119.

Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philosophi-

cal transactions of the Royal Society, 320, 361–368.

Jug A, Makeschin M, Rehfuess KE, Hofmann-Schielle C (1999) Short-rotation planta-

tions of balsam poplars, aspen and willows on former arable land in the Federal

Republic of Germany. III. Soil ecological effects. Forest Ecology and Management,

121, 85–99.

Kahle P, Boelcke B, Zacharias S (1999) Effects of Miscanthus x giganteus cultivation

on chemical and physical soil properties. Journal of Plant Nutrition and Soil Science

– Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 162, 27–32.

Keith AM, Rowe RL, Parmar K, Perks MP, Mackie E, Dondini M, McNamara NP

(2015) Implications of land-use change to Short Rotation Forestry in Great Britain

for soil and biomass carbon. Global Change Biology Bioenergy., 7, 541–552.

Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. Jour-

nal of Plant Nutrition and Soil Science, 163, 421–431.

Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Critical Reviews in

Plant Sciences, 24, 1–21.

Lieth H (1972) Modelling the primary productivity of the word. Nature and Resources,

UNESCO, VIII, 2, 5–10.

Lieth H (1973) Primary production: terrestrial ecosystems. Human Ecology, 1, 303–

332.

Meki NM, Snider JL, Kiniry JR, Raper RL, Rocateli AC (2013) Energy sorghum

biomass harvest thresholds and tillage effects on soil organic carbon and bulk

density. Industrial Crops and Products, 43, 172–182.

Meki MN, Kiniry JR, Behrman KD, Pawlowski MN, Crow SE (2014) The role of sim-

ulation models in monitoring soil organic carbon storage and greenhouse gas

mitigation potential in bioenergy cropping systems. CO2 Sequestration and Valori-

zation, Mr. Victor Esteves (Ed.), ISBN: 978-953-51-1225-9, InTech, doi: 10.5772/

57177. Available at: http://www.intechopen.com/books/co2-sequestration-and-

valorization/the-role-of-simulation-models-in-monitoring-soil-organic-carbon-

storage-and-greenhouse-gas-mitigatio (accessed 29 June 2015).

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007)

Model evaluation guidelines for systematic quantification of accuracy in

watershed simulations. American Society of Agricultural and Biological Engineers, 50,

885–900.

Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil

organic matter levels in Great Plains grasslands. Soil Science Society of America

Journal, 51, 1173–1179.

Robertson GP, Klingensmith KM, Klug MJ, Paul EA, Crum JR, Ellis BG (1997) Soil

resources, microbial activity, and primary production across an agricultural eco-

system. Ecological Applications, 7, 158–170.

Robertson AD, Davies CA, Smith P, Dondini M, McNamara NP (2015) Modelling

the carbon cycle of Miscanthus plantations: existing models and potential for their

improvement. Global Change Biology-Bioenergy, 7, 405–421.

Saby NPA, Bellamy PH, Morvan X et al. (2008) Will European soil monitoring net-

works be able to detect changes in topsoil organic carbon? Global Change Biology,

14, 1–11.

Schulze ED, Ciais P, Luyssaert S et al. (2010) The European carbon balance. Part 4:

integration of carbon and other trace-gas fluxes. Global Change Biology, 16, 1451–

1469.

Smith JU, Smith P (2007) Environmental Modelling. An Introduction. Oxford University

Press, Oxford.

Smith JU, Bradbury NJ, Addiscott TM (1996) SUNDIAL: a PC-based system for sim-

ulating nitrogen dynamics in arable land. Agronomy Journal, 88, 38–43.

Smith P, Smith JU, Powlson DS et al. (1997) A comparison of the performance of

nine soil organic matter models using datasets from seven long-term experi-

ments. Geoderma, 81, 153–225.

Smith P, Milne R, Powlson DS, Smith JU, Falloon P, Coleman K (2000a) Revised esti-

mates of the carbon mitigation potential of UK agricultural land. Soil Use and

Management, 16, 293–295.

Smith P, Powlson DS, Smith JU, Falloon P, Coleman K (2000b) Meeting the UK’s cli-

mate change commitments: options for carbon mitigation on agricultural land.

Soil Use and Management, 16, 1–11.

Smith P, Smith JU, Wattenbach M et al. (2005) Projected changes in mineral soil car-

bon of European forests, 1990-2100. Canadian Journal of Soil Science, 86 (Special

Issue), 159–169.

Smith JU, Gottschalk P, Bellarby J et al. (2010a) Estimating changes in national soil

carbon stocks using ECOSSE – a new model that includes upland organic soils.

Part I. Model description and uncertainty in national scale simulations of Scot-

land. Climate Research, 45, 179–192.

Smith JU, Gottschalk P, Bellarby J et al. (2010b) Estimating changes in national soil

carbon stocks using ECOSSE – a new model that includes upland organic soils.

Part II. Application in Scotland. Climate Research, 45, 193–205.

Styles D, Thorne F, Jones MB (2008) Energy crops in Ireland: an economic compari-

son of willow and Miscanthus production with conventional farming systems. Bio-

mass and Bioenergy, 32, 407–421.

Tallis MJ, Casella E, Henshall PA, Aylott MJ, Randle TJ, Morison JIL, Taylor G

(2013) Development and evaluation of ForestGrowth-SRC a process-based model

for short rotation coppice yield and spatial supply reveals poplar uses water

more efficiently than willow. Global Change Biology-Bioenergy, 5, 53–66.

© 2015 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., GCB Bioenergy, 8, 790–804

SOIL CARBON ESTIMATES UNDER BIOENERGY 803

http://dx.doi.org/10.5772/57177
http://dx.doi.org/10.5772/57177
http://www.intechopen.com/books/co2-sequestration-and-valorization/the-role-of-simulation-models-in-monitoring-soil-organic-carbon-storage-and-greenhouse-gas-mitigatio
http://www.intechopen.com/books/co2-sequestration-and-valorization/the-role-of-simulation-models-in-monitoring-soil-organic-carbon-storage-and-greenhouse-gas-mitigatio
http://www.intechopen.com/books/co2-sequestration-and-valorization/the-role-of-simulation-models-in-monitoring-soil-organic-carbon-storage-and-greenhouse-gas-mitigatio


Thornthwaite CW (1948) An approach toward a rational classification of climate.

Geographical Review, 38, 55–94.

Tufekcioglu A, Raich JW, Isenhart TM, Schultz RC (2003) Biomass, carbon and nitro-

gen dynamics of multi-species riparian buffers within an agricultural watershed

in Iowa, USA. Agroforestry Systems, 57, 187–198.

Walter K, Don A, Flessa H (2015) No general soil carbon sequestration under Central

European short rotation coppices. Global Change Biology-Bioenergy, 7, 727–740.

West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop

rotation: a global data analysis. Soil Science Society of America Journal, 66, 1930–1946.

Whitmore AP (1991) A method for assessing the goodness of computer simulations

of soil processes. Journal of Soil Science, 42, 289–299.

Yokozawa M, Shirato Y, Sakamoto T, Yonemura S, Nakai M, Ohkura T (2010)

Use of the RothC model to estimate the carbon sequestration potential of

organic matter application in Japanese arable soils. Soil Science & Plant Nutri-

tion, 56, 168–176.

Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial

bioenergy, annual corn and uncultivated systems in southern Quebec. Agriculture,

Ecosystems and Environment, 86, 135–144.

Zatta A, Clifton-Brown J, Robson P, Hastings A, Monti A (2014) Land use

change from C3 grassland to C4 Miscanthus: effects on soil content and esti-

mated mitigation benefit after six years. Global Change Biology-Bioenergy, 6,

360–370.

Zimmermann J, Dauber J, Jones MB (2011) Soil carbon sequestration during the

establishment phase of Miscanthus 9 giganteus: a regional-scale study on commer-

cial farms using 13C natural abundance. Global Change Biology-Bioenergy, 4,

453–461.

Zimmermann J, Styles D, Hastings A, Dauber J, Jones M (2013) Assessing the impact

of within crop heterogeneity (‘patchiness’) in young Miscanthus x Giganteus fields

on economic feasibility and soil carbon sequestration. Global Change Biology-Bioen-

ergy, 6, 566–576.

© 2015 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., GCB Bioenergy, 8, 790–804

804 M. DONDINI et al.


