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ABSTRACT An important first line of defense against Candida albicans infections is the killing of fungal cells by professional
phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we em-
ployed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albi-
cans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were
present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity
than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs
were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells in-
gested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albi-
cans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C.
albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these condi-
tions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which mi-
grated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the
phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection.

IMPORTANCE Extensive work investigating fungal cell phagocytosis by macrophages and PMNs of the innate immune system has
been carried out. These studies have been informative but have examined this phenomenon only when one phagocyte subset is
present. The current study employed live-cell video microscopy to break down C. albicans phagocytosis into its component parts
and examine the effect of a single phagocyte subset, versus a mixed phagocyte population, on these individual stages. Through
this approach, we identified that the rate of fungal cell engulfment and rate of phagocyte killing altered significantly when both
macrophages and PMNs were incubated in coculture with C. albicans compared to the rate of either phagocyte subset incubated
alone with the fungus. This research highlights the significance of studying pathogen-host cell interactions with a combination
of phagocytes in order to gain a greater understanding of the interactions that occur between cells of the host immune system in
response to fungal invasion.
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Candida species collectively represent the fourth leading cause
of nosocomial bloodstream infections in the United States (1,

2). Within the Candida genus, Candida albicans is the major hu-
man fungal pathogen, accounting for approximately 50% of can-
didemia cases (3, 4). This fungus ordinarily colonizes mucosal
surfaces of the skin and gastrointestinal and vulvovaginal tracts of
healthy individuals. Around 75 million women suffer at least four
episodes of Candida vaginitis each year, and AIDS-associated
esophagitis is extremely common in untreated HIV-positive indi-
viduals (3). This opportunistic pathogen can also cause life-
threatening systemic infections, with associated mortality rates of
30 to 60% in patients who have implanted medical devices, have
been administered immunosuppressant drugs, or have been sub-
jected to severe trauma (5).

An important first line of defense against Candida infections is
provided by the innate immune system through the recruitment
of professional phagocytes, such as polymorphonuclear cells

(PMNs) and macrophages, to the site of infection (5–8). Studies to
date have recognized the importance of macrophages and neutro-
phils in host defense against fungal pathogens and suggest a dom-
inant role for the PMNs (9–11). This is reflected in the observation
that neutropenic patients and patients with peroxidase deficiency
are highly susceptible to invasive candidiasis (5, 12, 13). In partic-
ular, patients with chronic granulomatous disease, displaying im-
paired neutrophil function, are especially prone to systemic fungal
infections (12–15). Additionally, in a mouse model where splenic
macrophages were eliminated, mice demonstrated increased sus-
ceptibility to experimental disseminated candidiasis (16). Despite
studies highlighting the clinical importance of phagocytes in anti-
Candida infection, the process of fungal cell phagocytosis remains
poorly understood at the mechanistic level.

The first step in the phagocytosis process involves macro-
phages and PMNs recognizing pathogen-associated molecular
patterns (PAMPs) present in the fungal cell wall through pattern
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recognition receptors (PRRs) localized on the phagocytic cell
membrane, in endosomes, and in the cytoplasm (17–19). Engage-
ment of these receptors enables the phagocyte to directly engulf
and destroy fungal cells within the phagolysosome by a number of
oxidative and nonoxidative mechanisms, including the produc-
tion of toxic reactive oxygen species (ROS) and reactive nitrogen
species (RNS), expression of various antimicrobial peptides, and
the activities of hydrolytic enzymes (5, 6, 17, 20–23). Further-
more, fungi and bacteria induce the formation of neutrophil ex-
tracellular traps (NETs) by activated PMNs, which can entrap and
kill fungi and bacteria extracellularly (24). PAMP-PRR interac-
tions also facilitate indirect killing of Candida by triggering the
induction of proinflammatory cytokines and chemotactic factors
which serve to activate other arms of the host immune system and
aid in the clearance of Candida from the body (6, 17, 18).

Extensive work has been carried out identifying the PRRs and
downstream signaling pathways that are involved in phagocyte
recognition of fungal cells (6, 9, 23). These studies have identified
the Toll-like receptors (TLRs) and C-type lectin receptors (CLRs)
as the major PRRs involved in C. albicans PAMP recognition (6,
17, 25). Other studies have revealed how the overall phagocytic
process in macrophages and PMNs is affected by fungal cell wall
composition, morphogenesis, and species (5, 8, 26, 27). For exam-
ple, Keppler-Ross et al. demonstrated that J774.1 macrophages
preferentially phagocytosed Candida glabrata and Saccharomyces
cerevisiae over C. albicans and that these macrophages displayed a
strong preference for C. albicans yeast cells rather than hyphal cells
(26). In addition, C. albicans mutants deficient in cell wall N- and
O-linked glycans negatively affected the capacity of PMNs to
phagocytose C. albicans (5). Such studies have been informative
but have investigated phagocytosis under conditions where only
one immune cell type and one fungal cell type were present.

By breaking down the phagocytic process into distinct stages
(migration, recognition, engulfment, phagosome maturation,
and killing), we have been able to determine the effect of specific
factors, such as cell morphology and cell wall composition, on
individual stages of the phagocytosis process (8, 28). In doing so,
novel insights into the mechanisms that govern effective phago-
cytic clearance have been revealed. For example, dynamic imaging
was used to demonstrate nonlytic expulsion of hyphal C. albicans
cells from macrophages (29) and C. albicans-mediated inhibition
of cell division in macrophages undergoing mitosis (30).

In this study, we assessed stage-specific C. albicans phagocyto-
sis by human monocyte-derived macrophages and human PMNs
in isolation with C. albicans and when both phagocyte subsets
were present. Through this dual approach, we revealed marked
differences in the behaviors of cells and in the outcomes of the
interaction between PMNs and macrophages with C. albicans dur-
ing phagocytosis. We show a lower overall capacity of PMNs to
phagocytose fungal cells, an increased susceptibility of PMNs to
C. albicans-mediated killing when phagocytes were incubated
alone with C. albicans, and a marked increase in C. albicans-me-
diated macrophage killing when both types of phagocytes were
cocultured with C. albicans.

RESULTS
Comparison of macrophage- and PMN-mediated C. albicans
phagocytoses. Phagocytosis of C. albicans by macrophages and
PMNs is critical for elimination of fungal infections from the
body; however, the relative roles that they play in this process and

the interactions that occur between these two cell types remain to
be elucidated. We first quantified the dynamics of C. albicans
phagocytosis by PMNs or macrophages in cell cultures using pure
populations of only one phagocyte type. To do this, human
monocyte-derived macrophages and human PMNs were chal-
lenged with live C. albicans CAI4-CIp10. Live-cell video micros-
copy using our standard phagocytosis assay (28) recorded the total
number of C. albicans cells taken up by individual macrophages
and PMNs over a 6-h period. Video S1 in the supplemental mate-
rial shows the interactions between C. albicans and macrophages,
and Videos S2 to S4 show the interactions between C. albicans and
PMNs. An uptake event was defined as the complete engulfment
of one C. albicans cell by either a macrophage or a PMN following
cell-cell contact. Figure 1A to C and D to F show snapshots of the
overall clearance of C. albicans cells throughout the 6 h of the assay
by macrophages and PMNs, respectively. At a multiplicity of in-
fection (MOI) of 1, there was no significant difference between the
macrophages and PMNs in terms of the average numbers of C. al-
bicans cells taken up (Table 1) or the percentages of cells taking up
at least one fungal cell (65.0 � 3.6 and 62.7 � 10.4, means �
standard deviations [SD] [n � 300], for macrophages and PMNs,
respectively) (Fig. 1G). However, when the MOI was increased to
3, the average C. albicans cell uptake by macrophages was signifi-
cantly greater than for PMNs (Table 1) (P � 0.05). Furthermore,
the percentage of macrophages taking up at least one fungal cell
was significantly greater than for PMNs (85.0 � 3.6 and 68.7 �
4.0, respectively) (Fig. 1H). Thus, at low concentrations of C. al-
bicans cells, both phagocytes were equally as effective in taking up
fungal cells; however, when C. albicans yeast cells were in excess,
macrophages took up a greater number of C. albicans cells than
PMNs did.

Human PMNs engulf C. albicans more rapidly than macro-
phages do. Uptake of target yeast cells is influenced by the migra-
tion of phagocytes toward the site at which fungal cells are located
and the time taken from the establishment of cell-cell contact to
complete uptake of C. albicans. As in our previous studies, we
define the latter as the rate of engulfment (28). We examined
whether there were differences in the rates of C. albicans engulf-
ment between macrophages and PMNs by live-cell video micros-
copy and image analysis (Fig. 2A to C and D to F for macrophages
and PMNs, respectively). First, at MOIs of both 1 and 3, PMNs
engulfed C. albicans cells at a significantly higher rate than mac-
rophages (Table 2; Fig. 2G and H). Videos S1 to S3 in the supple-
mental material highlight this observed difference in rates of en-
gulfment between macrophages and PMNs. Furthermore, at both
MOIs, approximately 12 to 15% of C. albicans cells bound to a
macrophage took longer than 30 min to be internalized, com-
pared with 5% of cells bound to PMNs (Fig. 2G and H). Interest-
ingly, when macrophage activities at the different MOIs were
compared, it was observed that macrophages engulfed C. albicans
cells at a markedly higher rate at a MOI of 3 than at an MOI of 1
(Table 2). This accelerated uptake of yeast cells did not occur for
PMNs at higher MOIs (Table 2).

In summary, PMNs engulfed C. albicans at a significantly
higher rate than macrophages did at both a low and a high MOI,
and the rate of macrophage engulfment was affected by the con-
centration of fungal cells.

PMNs are more susceptible than macrophages to killing by
C. albicans. It has been shown previously that C. albicans can
form hyphae inside phagocytes, often resulting in phagocyte rup-
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ture and death (8, 31, 32). We examined this phenomenon in
more detail to determine whether there were differences between
the different phagocytic cell types in this respect. It was observed
that at both low and high MOIs, a significantly greater number of
PMNs than macrophages were killed by C. albicans during the

course of the phagocytosis assay (Fig. 3A and B). As expected, at
the higher MOI, significantly more macrophages were killed than
at the lower MOI (Fig. 3C). In contrast, rates of PMN killing were
similar at both MOIs (Fig. 3D). The percentages of macrophages
and PMNs killed increased with the number of fungal cells being

FIG 1 Uptake of live C. albicans cells by macrophages and PMNs. (A to F) Snapshots from live-cell video microscopy experiments tracking the phagocytosis of
live wild-type C. albicans cells by human monocyte-derived macrophages (A to C) and human PMNs (D to F) over 6 h. Phagocytes (red) with live wild-type
C. albicans cells (green) at 0 min, 180 min, and the end of the 6 h. Bars, 30 �m. (G and H) Numbers of C. albicans cells ingested by macrophages and PMNs at
the 1:1 (G) and 3:1 (H) C. albicans cell/phagocyte ratios. Bars represent percentages of macrophages or PMNs that ingested a defined number of C. albicans cells.
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taken up; however, it was observed that at both MOIs, when mac-
rophages and PMNs had taken up the same number of C. albicans
cells, a significantly greater proportion of PMNs were killed
(Fig. 4A and B). This may reflect the smaller average size of PMNs
(8.3 �m � 1.1 �m) than macrophages (21.2 �m � 3.5 �m).
Furthermore, the data revealed that �90% of PMNs that took up
3 or more fungal cells were killed, whereas a high proportion
(~40%) of macrophages survived even after ingesting up to 7 fun-
gal cells. Thus, in these assays, PMNs were more susceptible to
C. albicans-mediated killing than macrophages, irrespective of the
number of C. albicans cells ingested.

Phagocytosis and killing dynamics in mixed-phagocyte co-
cultures. For coculture assays, an MOI of 3 C. albicans cells for all
phagocytes (macrophages plus PMNs, with macrophages and
PMNs at a 1:1 ratio) was used. C. albicans uptake and engulfment
by macrophages and PMNs was quantified, and C. albicans-medi-
ated phagocyte killing was measured (see Video S5 in the supple-
mental material).

When phagocytes were cultivated with an excess of C. albicans
cells, macrophages took up more fungal cells than PMNs did. We
examined whether the same was true when macrophages and
PMNs were present in coculture. Interestingly, no significant dif-
ference between macrophages and PMNs was observed in C. albi-
cans uptake rates (Table 1 and Fig. 5A to C). Additionally, approx-
imately 22% of PMNs did not take up any C. albicans cells,
compared with 33% of macrophages (Fig. 5D). Thus, when both
cell types were present, macrophages and PMNs contributed ap-
proximately equally to clearance of C. albicans.

Human PMNs engulf C. albicans more rapidly than macro-
phages do in mixed-phagocyte cocultures. When both phagocyte
subsets were present, PMNs engulfed C. albicans at a significantly
higher rate than macrophages (Table 2 and see Video S5 in the
supplemental material). Furthermore, 38% of C. albicans cells
took longer than 30 min to be engulfed by macrophages, whereas
only 1% of fungal cells took longer than 30 min to be ingested by
PMNs (Fig. 6). The average rate of C. albicans engulfment by
PMNs was similar to that observed when the PMNs were studied
in isolation (Table 2 and Fig. 2H and 6). In contrast, macrophage
engulfment of C. albicans was significantly delayed in the cocul-
ture assay, with macrophages taking an average of 14.4 � 0.6 min
to engulf fungal cells, compared to 8.1 � 0.4 min in the absence of
PMNs (Table 2 and Fig. 2H and 6). Thus, the rate of C. albicans
engulfment by macrophages decreased when PMNs were present,
whereas for the PMNs, the rate of engulfment was unaffected by
the presence of macrophages and was significantly higher both in
the presence and in the absence of macrophages.

C. albicans-mediated macrophage killing increases in
mixed-phagocyte cocultures. In the coculture assay, C. albicans-
mediated macrophage killing was significantly increased from the
level observed when macrophages were cultivated in isolation
with C. albicans (Fig. 7A). Indeed, there was no difference in rates

of C. albicans-mediated killing of macrophages and PMNs when
both cell types were present (Fig. 7B). This contrasts with the
observation that PMNs were significantly more susceptible to kill-
ing by fungal cells when PMNs and macrophages were cultured in
isolation (Fig. 3B). Additionally, the percentage of macrophages
killed after taking up 2 or more fungal cells in the coculture assay
was �80%, compared to approximately 25% when macrophages
were incubated alone with C. albicans (Fig. 4B and 7C).

PMNs migrate more rapidly toward C. albicans cells. To in-
vestigate this increase in C. albicans-mediated macrophage killing,
we analyzed the migration of macrophages and PMNs toward
fungal cells. C. albicans cells formed germ tubes rapidly under the
conditions of the experiment; therefore, the time taken for a
phagocyte to locate and migrate toward a fungal cell influenced
whether it was taken up early in the yeast form or later on as a germ
tube. It is reasonable to speculate that this may ultimately affect
the susceptibility of the phagocyte to C. albicans-mediated killing.
Tracking diagrams (Fig. 8A and B) illustrate the distances traveled
and the directionality and velocity of PMNs and macrophages in
the coculture assay in the presence of wild-type C. albicans. In
these diagrams, symbols indicate the locations of macrophages or
PMNs at 1-min intervals, and arrows represent directionality.
Quantitative analysis of the average track revealed a 20-fold-
higher average track velocity of PMNs than of macrophages to-
ward C. albicans cells (0.007 � 0.004 �m/s [n � 3] for macro-
phages versus 0.13 � 0.07 �m/s [n � 3] for PMNs) (see Video S5
in the supplemental material). Thus, in the combined phagocyte
assays, PMNs migrated at a greater velocity than macrophages
toward C. albicans.

This faster migration of PMNs toward fungal cells resulted in
earlier clearance of yeast cells by PMNs, leaving the remaining
Candida cells time to germinate before being engulfed by macro-
phages as hyphae. Indeed, in the coculture assays, macrophages
took up a significantly greater proportion of hyphal cells (relative
to yeast cells) in the coculture assay than they did when in isolation
(72.4% � 9.6% and 59.3% � 2.7% [means � SD, n � 300] of
hyphal cells were taken up by macrophages in coculture and iso-
lation assays, respectively [data not shown]), and this coincided
with increased C. albicans-mediated macrophage killing. These
data are consistent with previous reports which indicate that up-
take of hyphal cells enhances phagocyte killing (8). In addition,
this increase in hyphal uptake was accompanied by a lower rate of
engulfment than when macrophages were incubated alone with
C. albicans (Table 2). Furthermore, in some uptake events, we
observed continued extension of C. albicans hyphae during the
engulfment process (see Video S6 in the supplemental material).
These are all factors which are likely to have contributed to en-
hanced macrophage killing. Thus, in the presence of PMNs, mac-
rophages were more susceptible to killing by the fungus.

TABLE 1 Uptake of live C. albicans cells by macrophages and PMNsa

Phagocytes

Avg uptake (no. of C. albicans cells taken up � SD)

C. albicans cell/phagocyte MOI of 1 C. albicans cell/phagocyte MOI of 3 Coculture assay

Macrophages 1.3 � 0.2 2.9 � 0.3 2.3 � 0.6
PMNs 1.2 � 0.1 2.0 � 0.3* 2.5 � 0.7
a Average number of C. albicans cells taken up � SD by human monocyte-derived macrophages and human PMNs. n � 3; *, P � 0.05.
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DISCUSSION

C. albicans is a major life-threatening human fungal pathogen that
causes infections associated with high morbidity and high mortal-

ity (2). Professional phagocytes, such as macrophages and PMNs,
provide an important line of defense against invasive candidiasis
by directly engulfing and destroying fungal cells. We conducted a

FIG 2 Macrophage and PMN engulfment of live C. albicans cells. Shown are snapshots taken from live-cell video microscopy capturing the various stages of
C. albicans engulfment by macrophages (A to C) and PMNs (D to F). (A and D) Phagocyte (red, �) and C. albicans cell (green) prior to cell-cell contact; (B and
E) cells once cell-cell contact had been established; (C and F) C. albicans within the phagocyte following ingestion; (G and H) times taken for macrophages and
PMNs to ingest live wild-type C. albicans cells at the 1:1 (G) and 3:1 (H) C. albicans cell/phagocyte ratios. The rate of engulfment was defined as the time taken
from initial cell-cell contact to complete ingestion of C. albicans cells by the phagocyte. Bars represent the percentages of uptake events (n � 3).
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detailed comparison of stage-specific phagocytosis of C. albicans
by PMNs and that by macrophages in isolation and when both
phagocyte subsets were present and competing for fungal cells.
We observed profound differences in (i) migration, (ii) rate of
engulfment, (iii) overall uptake, and (iv) phagocyte survival when
C. albicans yeast cells interacted with mixtures of macrophages
and PMNs rather than individual phagocyte subsets. Nonprofes-
sional phagocytes, such as dendritic and endothelial cells, also
contributed to the overall clearance of C. albicans in vivo and will
be the subject of future studies.

PMNs are considered the primary mediators of phagocytic
clearance (9–11, 31, 33). Indeed, neutropenia is a major predis-
posing factor in clinical studies for developing invasive candidiasis
(21, 22). Furthermore, recent in vitro studies suggest that the onset
of hyphal formation and subsequent escape of fungal cells is in-
hibited inside human neutrophils (33). This may suggest that
PMNs not only mediate the majority of C. albicans uptake but also
are less susceptible than macrophages to killing by C. albicans
following phagocytosis. Surprisingly, we observed that when only
one immune cell type was present, macrophages, not PMNs, had
the greater capacity for C. albicans uptake despite engulfing fungal
cells at a lower rate after establishing cell-cell contact. However,
when both cell types were present, macrophages and PMNs con-
tributed approximately equally to clearance of C. albicans. Our
data illustrate that uptake rates are affected not only by the fungal/
phagocyte ratio but also by the proportion of the phagocyte sub-
sets encountered. This suggests that the overall phagocytic capac-
ity in single phagocyte assays is not determined simply by the
number PMNs and macrophages but is rather a consequence of
the percentage of phagocytes contributing to uptake. In vivo, the
contribution of phagocyte subsets to overall uptake would also be
influenced further by factors such as chemokine and cytokine
concentrations and spatial considerations such as location of the
fungal infiltrate, the numbers of phagocytes, and accessibility to
the infection sites. Interestingly, observations from a larval ze-
brafish model of disseminated candidiasis where phagocytosis of
Candida cells was imaged in vivo showed that macrophage-like
cells took up a significantly greater number of C. albicans yeast
cells than neutrophils did (17).

A number of studies have previously established that C. albi-
cans can form filaments inside macrophages and that hyphal for-
mation is essential for C. albicans escape and phagocyte killing (8,
30–32). In this study, we examined this phenomenon further and
observed that PMNs were significantly more susceptible than
macrophages to C. albicans-mediated killing when incubated in
isolation with C. albicans. Indeed, in vitro, nearly 50% of macro-
phages that took up 5 or more fungal cells survived, whereas 100%
of PMNs that took up 3 or more fungal cells were killed following
continued growth of hyphae inside the host cell. However, when

both macrophages and PMNs were studied in coculture, macro-
phage survival following C. albicans phagocytosis was significantly
impaired, and the rate of C. albicans-mediated killing of macro-
phages increased to the same level as that of PMNs incubated
alone with C. albicans.

We showed here that PMNs not only migrated more rapidly
than macrophages toward C. albicans cells but also engulfed C. al-
bicans cells at a significantly higher rate once cell-cell contact was
established. The differential activation and expression of PRRs
displayed on macrophages and PMNs may contribute to the ob-
served differences in rates of engulfment seen in these myeloid
cells in the present study. This is in keeping with the results of a
number of studies that have established that immune cell migra-
tion and fungal cell recognition is influenced by the relative levels
of expression and specificities of PRRs displayed on the immune
cell surface (34,35). The observations also mirror findings from
our previous work showing that the glycosylation status of the
C. albicans cell wall and therefore repertoire of PAMPs affects the
migration, engulfment, and killing of neutrophils (5) and macro-
phages (28).

Taken together, the data from the current study suggest that
when both macrophages and PMNs are presented to C. albicans in
a coculture, PMNs mediate the majority of early C. albicans yeast
cell uptake events due to their ability to migrate more rapidly
toward fungal cells and then engulf bound fungal cells at a higher
rate than macrophages do. As a consequence, macrophages may
encounter a higher proportion of hyphal cells, which they engulf
at a lower rate. Both uptake of a higher proportion of hyphal
C. albicans cells and increased hyphal length at the time of uptake
is reportedly associated with host cell death (8, 28, 31, 32), which
may explain the increase in macrophage death seen here in the
coculture assay compared to that when macrophages were incu-
bated alone with C. albicans.

This study highlights the critical role that macrophages and
PMNs play in C. albicans phagocytosis and demonstrates that ma-
jor kinetic parameters related to the rate and efficiency of phago-
cytosis and killing are multifactorial, depending on the presence of
multiple cell types and a temporal program of events that ulti-
mately defines the outcome of the predation of fungal cells by
different phagocyte cell types. The implications of this study are
that extrapolations of complex interactions between pathogen
cells and the myeloid cells involved in innate immunity have to be
made in the knowledge that cellular interactions are significantly
affected by the proximity of other cell types and dynamic changes
in the predator/prey cell type ratio.

MATERIALS AND METHODS
C. albicans strains and growth conditions. C. albicans serotype A strain
CAI4 � CIp10 was used for all experiments and was the progenitor of the

TABLE 2 Rate of engulfment of live C. albicans cells by macrophages and PMNsa

Phagocytes

Avg rate of engulfment (min � SD)

C. albicans cell/phagocyte MOI of 1 C. albicans cell/phagocyte MOI of 3 Coculture assay

Macrophages 12.0 � 1.3 8.1 � 0.4b 14.4 � 0.6c

PMNs 2.9 � 0.6d 2.1 � 0.4d 1.7 � 0.2d

a Average times (min) taken � SD for human monocyte-derived macrophages and human PMNs to engulf live wild-type C. albicans cells (n � 3).
b The value for macrophages was significantly different at an MOI of 3 (P � 0.01) from the value at an MOI of 1 when macrophages were incubated alone with C. albicans.
c The value for macrophages in coculture was significantly different (P � 0.0001) from that for macrophages incubated alone at an MOI of 3.
d Values for PMNs were significantly different (P � 0.0001) from those for macrophages at the same MOI.
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mutant strains used in our previous studies (28). This strain was obtained
from glycerol stocks stored at �80°C and plated on synthetic complete
medium lacking uracil (SC�Ura). SC�Ura plates consisted of 6.9 g yeast
nitrogen base without amino acids (Formedium, Norfolk, United King-
dom), 1 ml 1 M NaOH (BDH Chemicals, VWR International, Leicester-
shire, United Kingdom), 10 ml 1% (wt/vol) adenine hemisulfate salt

(Sigma, Dorset, United Kingdom), 50 ml 40% D-glucose (Fisher Scien-
tific, Leicestershire, United Kingdom), 50 ml 4% SC�Ura dropout (For-
medium, Norfolk, United Kingdom), and 2% (wt/vol) technical agar
(Oxoid, Cambridge, United Kingdom) made up to 1,000 ml in distilled
H2O.

Preparation of human monocyte-derived macrophages. Human
monocyte-derived macrophages were isolated from the blood of healthy
volunteers. Peripheral venous blood was collected in EDTA-coated tubes,
pooled, and diluted 1:3 in Hanks’ balanced salt solution (HBSS). Lym-
phoprep (Axis-Shield, Norway) kits were used to separate peripheral
blood mononuclear cells (PBMCs) from whole blood. The PBMC layer
was washed and resuspended in DMEM (Lonza, Slough, United King-
dom) supplemented with 200 U/ml penicillin-streptomycin antibiotics
(Invitrogen, Paisley, United Kingdom) and 2 mM L-glutamine (Invitro-
gen, Paisley, United Kingdom). Serum was separated from blood using
standard methods and heat inactivated at 56°C for 20 min before use.
PBMCs were seeded at 10 � 106 in 2 ml supplemented DMEM containing
10% autologous human serum onto glass-based imaging dishes (PAA
Imaging gas chromatography [GC] dishes; The Cell Culture Company,
GE Healthcare, France) and incubated at 37°C with 5% CO2 for 2 h to
allow for monocyte adherence to the dish. After 2 h, the supernatant
containing the floating lymphocytes was removed and replaced with 2 ml
warm supplemented DMEM containing 10% autologous human serum.
Dishes were incubated at 37°C with 5% CO2, and medium was changed on
days 3 and 6. Cells were used in imaging experiments on day 7. Immedi-
ately prior to phagocytosis experiments, supplemented DMEM was re-
placed with prewarmed supplemented serum-free CO2-independent me-
dium (Gibco, Invitrogen, Paisley, United Kingdom) containing 1 �M
LysoTracker red DND-99 (Invitrogen, Paisley, United Kingdom) when
macrophages were the only immune cell type present or 1 �M Lyso-
Tracker blue DND-22 (Invitrogen, Paisley, United Kingdom) when both

FIG 3 Killing of macrophages and PMNs by live C. albicans cells over a 6-h
period. (A and B) Percentages of macrophages and PMNs killed by C. albicans
at the 1:1 (A) and 3:1 (B) C. albicans cell/phagocyte ratios; (C and D) compar-
isons of C. albicans-mediated phagocyte killings at MOIs for macrophages (C)
and PMNs (D). Values are means � SD (n � 3). *, P � 0.05; **, P � 0.01.

FIG 4 C. albicans-mediated phagocyte killing in relation to the number of
C. albicans cells taken up. (A and B) Percentages of phagocytes killed after
taking up a defined number of C. albicans cells at the 1:1 (A) and 3:1 (B)
C. albicans cell/phagocyte ratios. Bars represent mean percentages of phago-
cytes killed � SD (n � 3). *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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macrophages and PMNs were present to distinguish between the two
immune cell types. LysoTracker red and blue DND are fluorescent dyes
that stain acidic compartments in live cells, enabling tracking of these cells
during phagocytosis and phagolysosome maturation.

Preparation of human PMNs. Human PMNs were isolated from the
blood of healthy volunteers and used in phagocytosis assays within 3 h of
isolation. Peripheral venous blood was collected in EDTA-coated tubes,
pooled, and diluted 1:2 in sterile PBS. Histopaque-1119 (Sigma, Dorset,
United Kingdom) was added to a conical tube and carefully overlaid with
the same volume of Histopaque-1077 (Sigma, Dorset, United Kingdom)
to create a double-density gradient. An equal volume of diluted blood was
carefully layered on top of the upper Histopaque gradient, and tubes were
centrifuged at 700 � g for 40 min at room temperature to allow for sepa-

ration of PBMCs and PMNs from erythro-
cytes. Serum and PBMC layers were aspirated
and discarded, and the PMN layer was washed
once in PBS. For hypotonic lysis of erythro-
cytes carried over into the PMN fraction, 3 ml
of 0.2% NaCl solution was added to cells and
mixed gently. After 30 to 45 s, 3 ml of 1.6%
NaCl solution was added, mixed gently, and
then diluted to 50 ml in PBS before centrifu-
gation at 350 � g for 10 min at room temper-
ature. Cells were then washed in PBS and
resuspended in prewarmed supplemented
serum-free CO2-independent medium con-
taining 1 �M LysoTracker red DND-99 (Invit-
rogen, Paisley, United Kingdom) and used im-
mediately in phagocytosis assays.

Preparation of FITC-stained C. albicans.
C. albicans colonies were grown in SC�Ura
medium and incubated overnight at 30°C with
200-rpm shaking. Live C. albicans cells were
stained for 10 min at room temperature in the
dark with 1 mg/ml fluorescein isothiocyanate
(FITC) (Sigma, Dorset, United Kingdom) in
0.05 M carbonate-bicarbonate buffer (pH 9.6)
(BDH Chemicals, VWR International, Leices-
tershire, United Kingdom). Following incuba-
tion, cells were washed three times in 1� PBS
to remove any residual FITC and finally resus-
pended in 1� PBS.

Live-cell video microscopy phagocytosis
assays. Phagocytosis assays were performed
using our standard protocol, with modifica-
tions (8, 28). Samples of live FITC-stained

wild-type C. albicans (CA14-CIp10) cells were added to 1 � 106 Lyso-
Tracker red DND-99-stained human monocyte-derived macrophages or
1 � 106 LysoTracker red DND-99-stained human PMNs in glass-based
imaging dishes at a multiplicity of infection (MOI) of either 1 or 3. For
phagocytosis assays where both macrophages and PMNs were present at a
1:1 ratio, live, FITC-stained wild-type C. albicans (CA14-CIp10) cells were
added to glass-based imaging dishes containing 5 � 105 macrophages
stained with 1 �M LysoTracker blue DND-22, and 5 � 105 PMNs stained
with 1 �M LysoTracker red DND-99 at an MOI of 3 (ratio of C. albicans
cells to total phagocytes, 3:1). In the coculture experiments, macrophages
and PMNs were not always isolated from the same donors. Video micros-
copy was performed using a DeltaVision Core microscope (Applied Pre-

FIG 5 Uptake of live C. albicans cells in combined macrophage-PMN cultures. (A to C) Images taken
from live-cell video microscopy experiments tracking the phagocytosis of live C. albicans cells by mac-
rophages and PMNs in the combined assay over 6 h. Shown are macrophages (blue) and PMNs (red)
with live C. albicans cells (green) at 0 min, 180 min, and the end of the 6 h. Bar, 30 �m. (D) Numbers of
C. albicans cells ingested by macrophages and PMNs in the combined assay. Experiments were carried
out an MOI of 3. Bars represent percentages of macrophages or PMNs that ingested a defined number
of C. albicans cells (n � 3).

FIG 6 Macrophage and PMN engulfment of live C. albicans cells in combined cultures. Shown are the times taken for macrophages and PMNs to ingest live
C. albicans cells in the coculture assay. Rate of engulfment was defined as the time taken from initial cell-cell contact to complete ingestion of C. albicans by the
phagocyte. Experiments were carried out at a MOI of 3. Macrophages and PMNS were present at a 1:1 ratio. Bars represent the percentages of uptake events (n
� 3).
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cision, WA, USA) in a 37°C chamber, and images were captured at 1-min
intervals over a 6-h period using an EMCCD camera. At least three inde-
pendent experiments were performed for both macrophages and PMNs
incubated alone with C. albicans, and at least 3 videos were analyzed from
each experiment using softWoRx Explorer image analysis software (Ap-
plied Precision). The same setup was used for the coculture assays where
both macrophages and PMNs were present. One hundred phagocytes
were selected at random from each experiment and analyzed individually
at 1-min intervals over a 6-h period. Measurements taken included C. al-
bicans uptake, defined as the number of C. albicans cells taken up by an
individual phagocyte over the 6-h period, the time point at which cell-cell
contact was established, and the time point at which a C. albicans cell was
fully engulfed; these measurements were used to determine the rate of
C. albicans engulfment, defined as the time taken from establishment of
cell-cell contact to complete ingestion of a C. albicans cell (a fungal cell was
considered to have been fully ingested when its FITC fluorescent signal
was lost, indicating that the fungal cell was now inside the phagocyte and
not merely bound to the phagocyte cell surface). The viability of the
phagocytes over the 6-h period was defined as the percentage of macro-
phages or PMNs from the total macrophage or PMN population, respec-
tively, that had been killed by specific time points. In the coculture assays,
macrophages and PMNs were also analyzed separately in this manner, so
the percentage of macrophages killed by certain time points in the cocul-

ture assays represents the percentage of macrophages out of the total
macrophage population sampled that had been killed. Velocity 6.2 imag-
ing analysis software was used to track phagocyte migration at 1-min
intervals throughout the 6-h phagocytosis assay. The software enabled
high-throughput analysis of phagocyte migration, providing detailed in-
formation on the distances traveled, directionality, and velocity of hun-
dreds of individual phagocytes. Data were subsequently displayed in
tracking diagrams and used to calculate the mean track velocity and track
lengths of phagocytes cultured with C. albicans (28).

Means values and standard deviations were calculated. Unpaired, two-
tailed t tests and two-way analysis of variance (ANOVA) followed by
Bonferroni multiple-comparison tests were used to determine statistical
significance.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org
/lookup/suppl/doi:10.1128/mBio.00810-13/-/DCSupplemental.

Video S1, WMV file, 3.4 MB.
Video S2, MPG file, 9 MB.
Video S3, WMV file, 4.2 MB.
Video S4, WMV file, 18.5 MB.
Video S5, WMV file, 2.6 MB.
Video S6, WMV file, 3.2 MB.

FIG 7 Killing of macrophages and PMNs by live C. albicans cells in the
combined assay over 6 h. (A) Comparison of C. albicans-mediated killing of
macrophages in the combined assay and that in isolation; (B) percentages of
macrophages and PMNs killed by C. albicans in the combined culture assay;
(C) percentages of phagocytes killed after taking up a defined number of C. al-
bicans cells in the combined assay. Experiments were carried out at a 3:1 ratio
of C. albicans cell to total phagocytes. Values/bars represent means � SD (n �
3). *, P � 0.05; **, P � 0.01.

FIG 8 Phagocyte migration toward C. albicans. Shown are tracking diagrams
illustrating the distances traveled, directionality, and velocity of macrophages
(A, blue) and PMNs (B, red) in pursuit of live C. albicans cells in the combined
assay. Tracks represent the movement of individual phagocytes relative to their
starting position, symbols indicate the locations of phagocytes at 1-min inter-
vals, and arrows represent directionality.
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