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Abstract: The bronchial airway epithelial cell (BAEC) is the site for initial encounters between
inhaled environmental factors and the lower respiratory system. Our hypothesis was that release of
pro inflammatory interleukins (IL)-6 and IL-8 from primary BAEC cultured from children will be
increased after in vitro exposure to common environmental factors. Primary BAEC were obtained
from children undergoing clinically indicated routine general anaesthetic procedures. Cells were
exposed to three different concentrations of lipopolysaccharide (LPS) or house dust mite allergen
(HDM) or particulates extracted from side stream cigarette smoke (SSCS). BAEC were obtained from
24 children (mean age 7.0 years) and exposed to stimuli. Compared with the negative control, there
was an increase in IL-6 and IL-8 release after exposure to HDM (p ď 0.001 for both comparisons).
There was reduced IL-6 after higher compared to lower SSCS exposure (p = 0.023). There was no
change in BAEC release of IL-6 or IL-8 after LPS exposure. BAEC from children are able to recognise
and respond in vitro with enhanced pro inflammatory mediator secretion to some inhaled exposures.

Keywords: children’s health; epithelial cell; environmental exposures; house dust mite; interleukin-8;
lipopolysaccharide; tobacco smoke

1. Introduction

The airways are the initial site for encounters between inhaled exposures and the host immune
response including macrophages and dendritic cells [1,2]. The airway epithelial cell is considered to
have an important role in the regulation of respiratory inflammatory responses to inhaled foreign
particles in adult and children [3,4]. Studying the response of children’s bronchial airway epithelial
cells to environmental exposures is a challenge due to the inaccessibility of the paediatric lower airway.

Bronchial airway epithelial cells (BAEC) have been successfully collected from children by airway
brushings of the trachea under general anaesthetic during clinically indicated interventions [5–7]. The
role of the BAEC in the response of children’s airways to inhaled foreign matter is not understood but
is important given the daily exposures to allergens, pollutants and microbial compounds experienced
by children world-wide. What is currently understood about BAEC response to exposures such as
second hand smoke (SHS), lipopolysaccharide (LPS) and house dust mite (HDM) comes from models
using BAEC from animals or adults and immortalised cell lines. Studies in human lung epithelial
cell lines have demonstrated that these exposures are generally associated with pro-inflammatory
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responses characterised by increased release of interleukins (IL)-6 and IL-8 [8–10] through pathways
which include Nuclear Factor kappa-light-chain-enhancer of activated B cells (NFkB) and toll-like
receptors [11–13].

There are no data which describe how BAEC in children respond to SHS, LPS of HDM and our
previous work has demonstrated that BAEC in adults do not necessarily respond in the same way as
in children [14,15]. In this study we collected and cultured BAEC from children and then exposed the
cells to concentration ranges of SHS or LPS or HDM in vitro. Our hypothesis was that primary BAEC
sampled from children will have increased pro inflammatory mediator release after in vitro exposure
to common environmental factors. Based on our previous work [14–17], the mediators of primary
interest were IL-6 and IL-8.

2. Materials and Methods

2.1. Recruitment

Children aged ď16 years scheduled for routine ear nose and throat operations under anaesthesia
were recruited between January 2011 and April 2013. Exclusion criteria included upper respiratory
tract infection in the previous week and hereditary bleeding conditions. A lifetime history of asthma,
eczema and hayfever, receipt of current asthma medications and exposure to parental smoking at home
was obtained by a researcher-administered questionnaire. A bronchoscopy cytology brush (10-mm
disposable cytology brush, BC 202D-2010, Olympus, Southend-on-Sea, Essex, UK) was used to obtain
“blind” bronchial brushings to obtain airway epithelial cells. Ethical approval for the study was granted
by the North of Scotland Medical Research Ethics Committee (approval numbers 09/S0802/122 and
12/NS/0107) and informed patient consent was obtained.

2.2. Second Hand Smoke

Side-stream second-hand tobacco smoke was generated by allowing a lit cigarette to burn while
placed inside a 2 m3 exposure chamber. Respirable particulate matter was collected from the chamber
air on to 37 mm polycarbonate filters placed inside a Higgins Dewell type cyclone with air drawn
through it at 2.2 L/min by a Casella Apex pump [18]. Particulate matter was removed from the
filters by sonication in distilled water (25 mL) for thirty minutes. After sonication the filters were left
to soak overnight before being removed and dried. The particulate solution was then freeze dried,
weighed and a stock solution of known concentration prepared. The particulate solution was added to
growth media.

2.3. Cell Culture and Mediator Assay

Bronchial AEC were grown in submerged culture as previously described [15]. Subculture by
trypsinization at 70%–90% confluence was undertaken twice and experiments performed on confluent
cells at third passage in 12-well plates. The bronchial epithelial growth medium was supplemented
with 1% fetal calf serum (FCS, Gibco, Life Technologies, Paisley, UK) as a source of essential toll-like
receptor (TLR) 4 co-factors, particularly MD2 which is required for LPS response [19,20]. Tertiary
confluent monolayers of BAEC were stimulated with media or IL-1β and tumour necrosis factor
(TNF)α (both at 10 ng/mL, R & D, Abingdon, UK); or LPS (1, 10 and 100 µg/mL, Sigma-Aldrich Ltd.,
Poole, UK); or HDM (5, 25 and 50 µg/mL, Greer Laboratories, Lenoir, NC, USA. This contains 44 µg
DerP1 and 625 EU per vial); and SSCS (5, 25 and 50 µg/mL). All exposures were performed at a final
volume of 500 µL of media per well and were 24 h in duration. A semi-quantitative immunoarray
using cytometric bead array analysis (CBA, Becton Dickinson, Oxford, UK) was performed on pooled
samples from ten children. This informed the choice of a panel of cytokines and chemokines that were
assayed in BAEC supernatants. The following mediators were measured: vascular endothelial growth
factor (VEGF), regulated on activation normal T-cell expressed and secreted (RANTES), monocyte
chemoattractant protein (MCP)-1, IL-3, IL-6, IL-8, IL-10, IL-17A, interferon (IFN)-γ, Granulocyte
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macrophage colony stimulating factor (GM-CSF), eotaxin, macrophage inhibitory proteins (MIP) 1-α
and 1-β, intracellular adhesion molecule (ICAM)-1. Mediator release was determined in a negative
control (i.e., mediator alone for HDM and mediator plus FCS for LPS and SSCS exposures), a positive
control (IL 1β and TNFα) and from culture supernatants from unstimulated and stimulated BAEC. All
mediator results were normalised to cellular protein content of lysed monolayers quantified using the
Bradford assay as previously described [15–17].

2.4. Analysis

Some result from the CBA were below the lower limit of detection (LLOD) and mediators were
only considered for analysis if >75% of results were above the LLOD. The absolute difference in
mediator concentration between negative control (media for HDM and 1% FCS for LPS and SSCS
exposures) and supernatants from BAEC exposed to LPS, HDM and SSCS were compared using
Friedman’s test since these data did not have a normal distribution. Our primary comparison was
between negative control and exposure groups. We also compared differences within the three
exposure groups as evidence of a dose-response relationship.

3. Results

3.1. Study Subjects

Bronchial AEC were cultured in 24 children, mean age 7.0 years (SD 3.1) including 14 boys. Three
children had a history of asthma (all in receipt of asthma medications), six had a history of eczema,
six had a hayfever history and three had ě one parent who smoked. Mediators meeting the inclusion
criteria of >75% of CBA results above the LLOD were: IL-6, IL-8, VEGF, GCSF and ICAM. The results
of the remaining mediators were not analysed. Stimulation with TNFα and IL1β resulted in the highest
concentration of mediators compared to other exposures and the negative control (Tables 1–5).

Table 1. Median and interquartile range (IQR) concentrations of interleukin (IL)-6 in supernatants from
bronchial airway epithelial cell culture after exposure to lipopolysaccharide (L = lowest concentration
= 1 µg/mL, I = intermediate concentration = 10 µg/mL and H = highest concentration = 100 µg/mL),
house dust mite (L = lowest concentration = 5 µg/mL, I = intermediate concentration = 25 µg/mL and
H = highest concentration = 50 µg/mL) and side stream cigarette smoke (concentrations the same as
for house dust mite). Units are pg per mg protein content of the confluent cellular monolayer.

Exposure Lipopolysaccharide
Median (IQR) n = 23

House Dust Mite Median
(IQR) n = 23

Side Stream Cigarette
Smoke Median (IQR) n = 18

Negative control 5.8 (1.1, 15.0) 1.6 (0.1, 11.3) * 4.1 (0.8, 18.3)
Exposure to L 7.5 (1.5, 15.5) 7.4 (0.5, 33.3) * 7.4 (1.7, 22.1) ‡

Exposure to I 5.4 (0.9, 16.7) 13.5 (1.1, 22.8) * 5.1 (1.0, 16.0) ‡

Exposure to H 4.2 (0.6, 11.4) 9.8 (1.9, 23.9) * 4.9 (1.1, 10.9) ‡

Exposure to TNFa and IL-1B 64.1 (8.2, 132.8) 63.4 (8.2, 136.9) 57.4 (5.9, 79.9)

* p < 0.001 from Friedman’s test when three exposures groups plus negative control included; ‡ p = 0.023 from
Friedman’s test when only the exposure groups were included.

3.2. Exposure to LPS

Compared to the negative control, there was no difference in any mediator release after exposure
to LPS. Within the three exposure groups there were differences in VEGF and GM-CSF release, with
the lowest concentrations of LPS were present after exposure to the intermediate concentration of LPS
relative to the lowest and highest LPS concentrations (Tables 3 and 4).
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Table 2. Median and interquartile range (IQR) concentrations of interleukin (IL)-8 in supernatants from
bronchial airway epithelial cell culture after exposure to lipopolysaccharide (L = lowest concentration
= 1 µg/mL, I = intermediate concentration = 10 µg/mL and H = highest concentration = 100 µg/mL),
house dust mite (L = lowest concentration = 5 µg/mL, I = intermediate concentration = 25 µg/mL and
H = highest concentration = 50 µg/mL) and side stream cigarette smoke (concentrations the same as
for house dust mite).

Exposure Lipopolysaccharide
Median (IQR) n = 24

House Dust Mite Median
(IQR) n = 22

Side Stream Cigarette Smoke
Median (IQR) n = 18

Negative control 32.1 (18.1, 68.2) 18.5 (2.3, 46.1) * 34.1 (8.8, 78.0)
Exposure to L 28.5 (15.1, 105.7) 51.5 (15.1, 113.1) * 38.8 (18.4, 99.7)
Exposure to I 25.7 (12.5, 101.1) 56.3 (8.3, 121.2) * 34.0 (16.2, 104.7)
Exposure to H 35.7 (14.4, 84.0) 51.8 (12.0, 108.6) * 24.7 (14.7, 70.6)

Exposure to TNFa and IL-1B 323.8 (140.7, 552.7) 329.3 (138.0, 565.0) 263.9 (130.9, 373.0)

Units are pg per mg protein content of the confluent cellular monolayer. * p < 0.001 from Friedman’s test when
three exposures groups plus negative control were included.

Table 3. Median and interquartile range (IQR) concentrations of vascular endothelial growth factor
in supernatants from bronchial airway epithelial cell culture after exposure to lipopolysaccharide
(L = lowest concentration = 1 µg/mL, I = intermediate concentration = 10 µg/mL and highest
concentration = 100 µg/mL), house dust mite (L = lowest concentration = 5 µg/mL, I = intermediate
concentration = 25 µg/mL and H = highest concentration = 50 µg/mL) and side stream cigarette smoke
(concentrations the same as for house dust mite).

Exposure LipopolysaccharideMedian
(IQR) n = 24

House Dust MiteMedian
(IQR) n = 23

Side Stream Cigarette Smoke
Median (IQR) n = 18

Negative control 2.8 (1.8, 4.1) 3.0 (2.1, 4.6) 3.3 (2.4, 5.0)
Exposure to L 2.9 (2.4, 4.3) * 2.9 (1.7, 4.6) 3.6 (2.5, 4.8)
Exposure to I 1.8 (1.3, 2.9) * 2.7 (1.6, 5.1) 3.3 (1.8, 4.1)
Exposure to H 3.4 (1.7, 4.7) * 2.9 (1.9, 6.0) 3.4 (2.0, 4.6)

Exposure to TNFa and IL-1B 4.8 (1.9, 7.3) 4.8 (2.0, 7.4) 5.2 (2.3, 7.6)

Units are pg per mg protein content of the confluent cellular monolayer. * p = 0.008 for Friedman’s test across
three exposure groups.

Table 4. Median and interquartile range [IQR] concentrations of granulocyte macrophage colony
stimulating factor in supernatants from bronchial airway epithelial cell culture after exposure to
lipopolysaccharide (L = lowest concentration = 1 µg/mL, I = intermediate concentration = 10 µg/mL
and highest concentration = 100 µg/mL), house dust mite (L = lowest concentration = 5 µg/mL,
I = intermediate concentration = 25 µg/mL and H = highest concentration = 50 µg/mL) and side
stream cigarette smoke (concentrations the same as for house dust mite).

Exposure Lipopolysaccharide
Median (IQR) n = 24

House Dust Mite Median
(IQR) n = 23

Side Stream Cigarette Smoke
Median (IQR) n = 18

Negative control 0.06 (0.03, 0.33) 0.12 (0.00, 0.49) 0.05 (0.03, 0.32) ‡

Exposure to L 0.09 (0.01, 0.30) * 0.15 (0.02, 0.56) 0.11 (0.01, 0.38) ‡

Exposure to I 0.05 (0.00, 0.24) * 0.21 (0.03, 0.53) 0.03 (0.00, 0.24) ‡

Exposure to H 0.07 (0.03, 0.28) * 0.21 (0.00, 0.48) 0.02 (0.00, 0.30) ‡

Exposure to TNFa and IL-1B 0.38 (0.02, 2.04) 0.25 (0.02, 2.07) 0.68 (0.05, 1.99)

Units are pg per mg protein content of the confluent cellular monolayer. * p = 0.023 for Friedman’s test across
three exposure groups; ‡ p = 0.019 for Friedman’s test across three exposure groups and p = 0.035 for Friedman’s
test across three exposure groups plus negative control.

3.3. Exposure to HDM

Compared to the negative control, concentrations of IL-6, IL-8 and ICAM but not GM-CSF and
VEGF were elevated for all three HDM exposures (p < 0.001). There were no difference between
concentrations of any mediators among the three exposure groups, Tables 1, 2 and 5 and Figure 1.
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Table 5. Median and interquartile range (IQR) concentrations of intracellular adhesion molecule
in supernatants from bronchial airway epithelial cell culture after exposure to lipopolysaccharide
(L = lowest concentration = 1 µg/mL, I = intermediate concentration = 10 µg/mL and highest
concentration = 100 µg/mL), house dust mite (L = lowest concentration = 5 µg/mL, I = intermediate
concentration = 25 µg/mL and H = highest concentration = 50 µg/mL) and side stream cigarette smoke
(concentrations the same as for house dust mite).

Exposure Lipopolysaccharide
Median (IQR) n = 24

House Dust Mite Median
(IQR) n = 23

Side Stream Cigarette Smoke
Median (IQR) n = 18

Negative control 0.58 (0.22, 1.23) 0.34 (0.00, 0.75) * 0.55 (0.21, 1.42) †

Exposure to L 0.53 (0.28, 1.12) 0.71 (0.44, 1.46) * 0.89 (0.27, 1.76) †

Exposure to I 0.30 (0.13, 1.11) 1.00 (0.27, 1.53) * 0.42 (0.07, 0.80) †

Exposure to H 0.43 (0.21, 1.07) 0.78 (0.39, 1.60) * 0.31 (0.11, 1.70) †

Exposure to TNFa and IL-1B 1.42 (0.46, 3.44) 1.58 (0.43, 3.73) 1.43 (0.60, 4.25)

Units are pg per mg protein content of the confluent cellular monolayer. * p = 0.001 from Friedman’s test when
three exposure groups and negative control were included; † p = 0.031 for Friedman’s test across three exposure
groups and p = 0.045 for Friedman’s test across three exposure groups plus negative control.
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Figure 1. Interleukin-8 (IL-8) release from children’s bronchial epithelial cells after exposure to media
alone (negative control), three different concentrations of house dust mite (HDM) and tumour necrosis
factor alpha (TNFα) and interleukin-1 beta (IL-1β).

3.4. Exposure to SSCS

There were no differences in mediator concentrations across exposure groups when the negative
control was also included in the analysis. When only the three exposure groups were considered,
concentrations of IL-6, GM-CSF and ICAM were greatest after the low exposure compared to the
intermediate and high exposure (p < 0.005), Tables 1, 4 and 5.

4. Discussion

This study addressed the question “how do isolated BAEC from children respond to common
inhaled environmental exposures?” and the first notable finding was that exposure to house dust
mite, at concentrations of ě5 µg/mL, was associated with increased release of pro-inflammatory
mediators. In contrast, there was no evidence of increased pro-inflammatory mediator release
from BAEC following exposure to side stream cigarette smoke or lipopolysaccharide, even at the
relatively higher concentrations of 50 and 100 µg/mL respectively. This proof-of-concept study
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demonstrates associations between release of pro-inflammatory cytokine release from BAEC in children
following in vitro exposure to some common environmental exposures, and these findings support the
paradigm that BAEC have a role in initiating the response of the innate immune system. Work is now
required to explore the underlying regulatory mechanisms for mediator release in children with and
without asthma.

Our findings are consistent with previous work from our group where we observed increased
IL-8 release from neonatal nasal AEC after exposure to 5 µg/mL HDM and where there was no
dose response for IL-8 release at concentrations higher than 5 µg/mL [16], suggesting that AEC are
responding maximally to HDM at ď5 µg/mL. Here we also replicate in BAEC our work in neonatal
nasal AEC where release of IL-6 and ICAM, but not VEGF, was increased after exposure to HDM
in vitro [17] and also the work by Rusznak et al. [10] who reported increased release of IL-8 and
ICAM from adult BAEC after HDM exposure. The mechanism where HDM exposure leads to pro
inflammatory mediator release from BAEC is not known. The LPS which might have contaminated
our HDM extract might theoretically have caused the pro inflammatory response, but the lack of
BAEC response to LPS in our study strongly suggests that the cytokine response to HDM is not
explained by LPS co-exposure, although a synergistic effect cannot be ruled out. One potential
mechanism for stimulating pro-inflammatory response from BAEC involves beta glucan moieties on
HDM products [21] binding to TLR-2 [22]. Alternatively, or additionally, constituents of HDM extract
can trigger intracellular calcium influx via an action on purinergic receptors [23] and by pathogen
recognition receptors other than TLRs [24].

This was the first study to describe BAEC response to side stream cigarette smoke extract in any
age group, and the results are partly consistent with the literature reporting effects of main stream
CSE on BAEC in adults. Comer et al. [7] also report no increase in BAEC release of IL-6 using an
in vitro model and observed increased IL-8 release relative to control at lower exposures but reduced
release at higher exposure [8]. The apparent reduction in IL-8 response at higher exposure to cigarette
smoke products seen in our study and elsewhere [8,25] might be explained by cytotoxicity at very
high exposure concentrations. Cytotoxicity may also explain the lower BAEC production of GM-CSF
and ICAM-1 after exposure to highest concentration of side stream smoke extract compared to the
negative control. Witherden et al. [25] suggest that at very high exposures, CSE has an antioxidant
effect on BAEC which suppresses a proinflammatory response. The response of BAEC to exposure to
products of tobacco smoke is also dependent on the duration of exposure, since there is a diminishing
IL-8 response to exposure to cigarette smoke between 20 min and 6 h [10]. An additional limitation of
our model is that the particles within the side stream CSE will have settled onto the BAEC and result
in prolonged direct contact between exposure and cell which does not occur in vivo due to mucocilliary
clearance and activities such as change in posture and coughing. Cigarette smoke products might
modify the structure of IL-8 and/or alter binding between IL-8 and the monoclonal antibody in the
detection assay [10]. We speculate that we would have observed a pro-inflammatory BAEC response
to lower concentrations of side stream cigarette smoke and for shorter duration.

The apparent absence of BAEC response to LPS in our study at the lowest concentration is
consistent with many studies but there is evidence that higher LPS exposures can provoke a pro
inflammatory response. One study of alveolar epithelial cells from adults reported IL-8 release was
increased after exposure to 10 µg/mL LPS [26]. Studies in human alveolar cell line (A549) have also
reported increased IL-6 and IL-8 release after exposure to LPS of 50 µg/mL [12] and 100 µg/mL [27]
but not at lower exposures. Comer et al [8] report increased IL-8 but not IL-6 in adult primary BAEC
after exposure to 25 µg/mL LPS. The difference between the present study and others [8,12,26,27] may
be explained by known differences between: (i) alveolar and bronchial cell responses to LPS [27] (ii)
results from cell lines and primary cell culture (iii) adults and children. The present results contrast
with our recent work in neonatal nasal AEC where we observed increased release of IL-6, IL-8, GM-CSF
and ICAM [17] after exposure to 100 µg/mL LPS. Differences between the present study and our work
in neonates which might explain different outcomes for LPS exposure include the use of bronchial
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versus nasal cells, in the neonatal study fetal calf serum was not added to the culture and finally,
age-related differences in responses to LPS may also occur.

One potential challenge to interpreting our results is determining the biologically relevance of
the exposures. It is not valid to directly extrapolate the exposures applied in our in vitro experiment
to those experienced by the airways in vivo. In one study, household dust had a geometric mean
LPS concentration of 100 endotoxin units/mg [28] (range 4 to 2405 EU/mg) which is equivalent to
between 2 and 50 ng/mg [29]. Assuming that 1 mL culture media weighs 1 g, our exposures of 1, 10
and 100 µg/mL are equivalent to 1, 10 and 100 ng/mg and thus approximately consistent with direct
exposure of BAEC to average household dust.

There are strengths and limitations to the methodology used in the present study. One strength
was using primary cells (and not cell lines) and this retains the phenotype of the individual, although
there were insufficient individuals with asthma to allow a comparison of responses between children
with and without asthma. A second strength is that in vivo, BAEC are exposed to LPS, HDM and
SSCS held in airway surface liquid and our model replicates this situation, although in vivo the layer
of airway surface liquid is much thinner that that used in our model. A limitation is that other cells
which were not included in our model may modify BAEC response in vivo, e.g., dendritic cells, and
while the study of inter cellular interactions is one method of extending our model, our focus for this
study was BAEC response in isolation. A second limitation is that environmental exposures in vivo are
usually intermittent whereas in our model the exposure was constant and for 24 h. A further limitation
is that undifferentiated cells were exposed in our experiments and different results might have arisen
if differentiated cells cultured at air-liquid interface had been used.

5. Conclusions

In summary, this is the first study to describe children’s BAEC responses to common inhaled
environmental exposures, and we report that BAEC can respond to some exposures in the absence
of other mediators of the immune/inflammatory response. A better understanding of the signalling
mechanisms which regulate BAEC responses to HDM is now required.
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