GENE HOS

A comparative approach to understanding tissue-specific expression of uncoupling protein 1 expression in adipose tissue

Andrew Shore¹, Richard D. Emes², Frank Wessely², Paul Kemp³, Clemente Cillo⁴, Maria D'Armiento⁵, Nigel Hoggard⁶ and Michael A. Lomax⁷*

¹ School of Biosciences, Cardiff University, Cardiff, UK

² School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK

³ Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK

⁴ Department of Clinical and Experimental Medicine, Federico II University Medical School, Naples, Italy

⁵ Department of Biomorphological and Functional Sciences, Federico II University Medical School, Naples, Italy

⁶ Rowett Institute of Nutrition and Health, Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, UK

⁷ School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK

Edited by:

Elvira Larqué, University of Murcia, Spain

Reviewed by:

Michael C. Satterfield, Texas A&M University, USA Qiao LI, University of Ottawa, Canada

*Correspondence:

Michael A. Lomax, University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough, Leicestershire LE125RD, UK. e-mail: michael.lomax@ nottingham.ac.uk The thermoregulatory function of brown adipose tissue (BAT) is due to the tissue-specific expression of uncoupling protein 1 (UCP1) which is thought to have evolved in early mammals. We report that a CpG island close to the UCP1 transcription start site is highly conserved in all 29 vertebrates examined apart from the mouse and xenopus. Using methylation sensitive restriction digest and bisulfite mapping we show that the CpG island in both the bovine and human is largely un-methylated and is not related to differences in UCP1 expression between white and BAT. Tissue-specific expression of UCP1 has been proposed to be regulated by a conserved 5' distal enhancer which has been reported to be absent in marsupials. We demonstrate that the enhancer, is also absent in five eutherians as well as marsupials, monotremes, amphibians, and fish, is present in pigs despite UCP1 having become a pseudogene, and that absence of the enhancer element does not relate to BAT-specific UCP1 expression. We identify an additional putative 5' regulatory unit which is conserved in 14 eutherian species but absent in other eutherians and vertebrates, but again unrelated to UCP1 expression. We conclude that despite clear evidence of conservation of regulatory elements in the UCP1 5' untranslated region, this does not appear to be related to species or tissues-specific expression of UCP1.

Keywords: CpG islands, methylation, uncoupling protein 1, phylogenic analysis

INTRODUCTION

In eutherians, non-shivering thermogenesis (NST) occurs in brown adipose tissue (BAT) which expresses a tissue-specific gene, uncoupling protein 1 (UCP1; Cannon and Nedergaard, 2004). This gene codes for a mitochondrial protein with the ability to uncouple oxidative phosphorylation and generate heat. Recently BAT has been identified in adult humans and has been suggested to offer a potential target to increase energy expenditure and treat obesity(Nedergaard et al., 2007).

The expression of UCP1 is cell-specific to brown adipocytes and has been identified in all mammalian neonates so far examined except the pig, in which exons 3–5 were deleted about 20 million years ago (Berg et al., 2006). BAT-specific UCP1 expression is a feature of small mammals, hibernators, and newborns and is thought to have originated prior to the Eutherian mammal radiation as it has been found in the rock elephant shrew, a member of the Afrotherian mammalian lineage (Mzilikazi et al., 2007). Recent discoveries of UCP1 in non-eutherian marsupials, and of UCP1 orthologs in the non-mammalian vertebrates, frogs, and fish, expressed in liver and muscle, respectively, have questioned this view (Klingenspor et al., 2008; Hughes et al., 2009). Phylogenetic analysis has demonstrated rapid evolution of UCP1 on the Eutherian lineage and suggested that a model of relaxed constraints as predicted from the coevolution of genes which have taken over some of UCP1 function, rather than directional selection, seems to be involved (Hughes et al., 2009). Evidence to support a role of the UCP2 and 3 in oxidative stress suggests that subfunctionalization of these paralogs allowed the divergence of the BAT-specific expression of UCP1 and its role in NST (Klingenspor et al., 2008).

Most newborn mammals are particularly vulnerable to hypothermia, and NST in BAT plays an important role depending on the thermoregulatory behavior of different mammals (Symonds and Lomax, 1992). In altricious newborn such as rodents, pups are born blind and naked, and require the protection of a nest environment to prevent hypothermia until BAT becomes active a few days after birth (Cannon and Nedergaard, 2004). Immature newborns (e.g., hamster) only recruit NST in BAT a week or more after birth with marsupials being an extreme group of immature mammals who do not develop independent NST until the young need to leave the pouch. In contrast to altricious and immature newborns, in precocious mammals (e.g., cows and sheep), BAT develops during fetal life with maximal thermogenic activity occurring immediately after birth to allow the newborn to quickly achieve independent thermoregulation (Symonds and Lomax, 1992). Human fetuses and neonates also possess BAT and fit best into the precocial group (Cannon and Nedergaard, 2004) although BAT has been identified in adult humans (McKinnon and Docherty, 2001).

The exact mechanism which confers BAT-specific expression of UCP1 is not known. Studies on the rodent promoter have revealed a highly conserved 221 bp enhancer element located approximately -2.5 kb from the transcriptional start that confers both hormonal and tissue-specific responses (Cassard-Doulcier et al., 1998). The enhancer unit is also highly conserved across a 5 kb genomic sequence upstream of the UCP1 transcription start site in eutherians, including the Afrotherian species but could not be found in marsupials, despite cold-induced UCP1 expression in BAT (Hughes et al., 2009). In a recent study we have proposed that tissue-specific expression may be dictated by the methylation of CpGs in cyclic AMP response elements in the enhancer unit (Shore et al., 2010). Methylation of CpGs in CpG islands (CGI) in the promoter may also confer tissue-specific expression of UCP1 (Kiskinis et al., 2007). Alternatively, tissue-specific expression of UCP1 during development may be governed by the expression of transcriptional regulators as reported in our previous studies (Lomax et al., 2007).

CpGs are generally methylated in the genome except where they occur in CGI around the start of transcription of genes (Sakurai et al., 2006). These CGI, are a feature of TATA-less promoters, and can act as strong promoters of transcription, this effect being modulated by the degree of CpG methylation. Identification of regions of genomic DNA that have been conserved across divergent species is a commonly used method of indicating important regulatory elements.

Here we employ bioinformatic and molecular approaches to demonstrate that despite evidence of conservation of a CpG island, as well as regulatory elements, in the UCP1 promoter in mammals and vertebrates, these are insufficient to explain expression differences between mammalian species and tissues.

MATERIALS AND METHODS TISSUES

Bovine perirenal brown fat was obtained from a 1-day-old male calf. Human fetal samples were obtained from legally approved therapeutic terminations at the Department of Pathology University of Naples Federico II under the control of the University's Guidelines for Human Experimentation. Informed consent was obtained from all the subjects involved in the experiments and the study protocols were reviewed and approved by the University Ethical Committee. The age of the fetuses was calculated from anamnesis and ultrasonographic data, to be in the range from 22 to 34 gestational weeks. Tissues were dissected, typically within 2 h after death. The biopsies of perirenal fetal BAT were immediately frozen in liquid nitrogen and then stored in a freezer at -80°C until DNA/RNA extraction. Human subcutaneous and omental adipose tissue was taken from the abdominal subcutaneous wall, during an operation for vertical banded gastroplasty, from obese female patients. Adipose tissue samples were obtained within 5 min of the tissue being extracted from the patients and frozen immediately

in liquid nitrogen. Subjects had fasted overnight prior to surgery. All patients provided informed written consent before inclusion in the study. The study was approved by the Grampian Research Ethics committee.

CpG ISLAND PREDICTION

For each UCP1 ortholog, 5 kb of genomic DNA upstream of the open reading frame start was screened for CGI using a modified version of the CpGLH program (kindly provided by Angie Hinrichs UCSC). Briefly, each sequence is screened for the presence of CG rich regions which fulfill the CGI criteria of at least 200 bp with a minimum of 50% C + G and where the observed number of CpGs divided by the expected number is greater than 0.6 (Gardiner-Garden and Frommer, 1987). The sensitivity of initial screening parameters was modified to identify all possible CGI whilst maintaining the criteria of Gardiner-Garden and Frommer.

ALIGNMENT OF HOMOLOGOUS PROMOTERS

Regions of conservation between cow-human and cow-mouse DNA upstream of UCP1 were determined using rVISTA (Loots et al., 2002) using the AVID alignment algorithm (Bray et al., 2003). For details see **Table A2** in Appendix.

METHYLATION SENSITIVE RESTRICTION DIGESTION

Restriction enzyme digests were performed on 1 µg of genomic DNA extracted from tissues. Primers (Table A3 in Appendix) were designed to cover short and long fragments of the bovine and human CGI in the UCP1 promoter. In the bovine, two restriction enzymes were chosen recognizing the sequence CCGG, HpaII in which digestion is prevented by methylation, and MspI which is not methylation sensitive and acts to correct for incomplete digestion. Two sets of PCR primers were employed, the first with a product size of 288 bp and containing only one CCGG site and a second with product of 407 bp containing five CCGG sites. In the human, two sets of primers amplifying a short (173 bp; one CCGG) and long (426 bp; eight CCGG) region covering part of the human CpG island, were employed. For these digests 1 µg of genomic DNA was incubated with 10 units of *Hpa*II (Fermentas) in the buffer provided (33 mM Tris-acetate, 10 mM Mg-acetate, 66 mM K-acetate, 0.1 mg/ml BSA) in a reaction volume of 50 µl for 4 h at 37°C before the enzyme was heat inactivated at 65°C for 20 min. One microgram aliquots of genomic DNA were also mock-digested under the same conditions but with nuclease free water added instead of HpaII. A final aliquot was digested using 1 unit of MspI (Fermentas) according to the manufacturer's instructions. The resulting digests were analyzed by quantitative real-time PCR (qRTPCR) using primers for the long and short fragments mentioned above. About 18S mRNA was used as a reference gene with primers (Table A3 in Appendix) which amplify a fragment that does not contain a CCGG motif. The human UCP1 enhancer region does not possess the sequence CCGG so Tail was used which cuts ACGT but is blocked by CpG methylation. Complete digestion was gauged using MnlI which cuts CCTC(N)7.

METHYLATED CYTOSINE MAPPING

Bisulfite conversion of genomic DNA prepared from tissues was carried out essentially as described by Clark et al. (1994). The modified DNA was purified using a desalting column (Promega Wizard

DNA Clean-Up system; Promega, Madison, WI, USA) Methylation was quantified by pyrosequencing using Pyro Q-CpG software (Biotage, Charlottesvile, VA, USA) and performed by The Genome Centre, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ. Primer sequences and descriptions are provided (**Table A3** in Appendix), products destined to be pyrosequenced were amplified with 5'-biotin-labeled primers to allow purification before sequencing.

REAL-TIME PCR

Total RNA was extracted from cultured cells and tissue by use of TRI reagent (Sigma, Poole, UK). Before qRTPCR, samples were treated with RNA-free DNase to remove contaminating genomic or plasmid DNA. Complementary DNA was generated using the cDNA synthesis kit from Qiagen. qRTPCR was performed using Sybr green (Qiagen) according to the manufacturer's instructions in Rotor Gene 3000 (Corbett Research, Cambridge, UK). The sequences of the primers used for qRTPCR are given in **Table A3** in Appendix. Expression levels for all genes were normalized to the internal control 18s rRNA using the $\Delta\Delta C_t$ method (Livak and Schmittgen, 2001).

RESULTS

IDENTIFICATION OF CpG ISLANDS

UCP1 homologs from vertebrate species with sufficient genomic data were determined using BLAT at the UCSC genome browser. To ensure that the upstream region of true UCP1 orthologs were compared, the conserved synteny of the UCP1 locus in vertebrates was employed to unequivocally identify the upstream untranslated region of UCP1 in vertebrates. In all species examined the coding region for UCP1 is flanked by TBC1D9 upstream and ELMOD2 downstream (Figure A1 in Appendix). Only those annotated UCP1 genes which were located in the conserved gene triplet TBC1D9-UCP1-ELMOD2 were considered. This resulted in 29 vertebrate UCP1 genes analyzed (see Table A1 in Appendix). A approximately 500 bp sequence with sequence similarity to the human UCP1 enhancer was identified in 20 eutherian mammals but was absent in Marmoset, Pika, Ground Squirrel, Shrew, and Hedgehog (Table 1). The enhancer was also absent from the marsupial Opossum, monotreme Platypus, Xenopus, and Zebrafish. A previous study was similarly unable to identify the enhancer in 10 Kb upstream UTR of the marsupial M. domestica (Jastroch et al., 2008). The enhancer sequence was within the -5 kb of the UTR except for Tenrec in which the enhancer sequence started at -5.486 Kb (Table A2 in Appendix).

Using a bioinformatic approach, we identified CGI in the UCP1 promoter of different species, fulfilling the criteria originally described by Gardiner-Garden and Frommer (1987). The results clearly demonstrate the existence of a positionally conserved CpG island in the UCP1 5' UTR in 20 mammalian species (**Table 1**). By reducing the stringency of the algorithm, an additional five species (rat, shrew, opossum, pika, platypus, and Zebrafish) have identifiable CGI which still fulfill the criteria of Gardiner-Garden and Frommer. From this analysis only two species, Mouse and *Xenopus* do not have a detectable CGI. The positions of the CGI were within 1 kb upstream of the UCP1 translational start site (TSS)

except for the European Hedgehog in which the CpG island was located downstream of the TSS.

CpG METHYLATION OF THE BOVINE AND HUMAN UCP1 CpG ISLAND

The high conservation of the CpG island in the proximal UCP1 promoter across evolutionary time in vertebrates suggests that this region may be of regulatory importance. We therefore next examined the methylation state of the proximal promoter in human and the bovine tissues, in order to establish whether BAT-specific expression of UCP1 is dictated by CpG methylation state of the UCP1 promoter. UCP1 mRNA expression in bovine white adipose tissue (WAT, subcutaneous), BAT (perirenal), and liver were determined by qRTPCR. BAT had significantly greater (200-fold) UCP1 expression than WAT or liver (Figure 1A; p < 0.001). The high expression of UCP1 in BAT was not unexpected since these samples were taken shortly after birth (8 h) and previous studies, including our own in ruminants, have shown that UCP1 expression is at its highest around parturition in response to the cold extrauterine environment (Symonds and Lomax, 1992). Previous studies have demonstrated that UCP1 expression is high in human fetal BAT (Gavrilova et al., 1988).

Methylation sensitive restriction digests were carried out on genomic DNA extracted from neonatal bovine BAT, subcutaneous WAT, and liver, fetal human BAT, and adult human WAT, (omental and subcutaneous) to determine differences in methylation state between the tissues. Methylation of the bovine proximal promoter CpG island was low in all tissues with a 407 bp product being less than 2% methylated and a 288 bp product less than 12%. (Figure 1B). There was no significant difference in methylation state of the CpG island between bovine tissues. It was expected that the 407 bp fragment would be more susceptible to methylation sensitive digestion as this contained more restriction sites, increasing the probability that a methylated site would be encountered by the enzyme. In the human proximal promoter CpG island, methylation state of fetal BAT was also low (<14%) but was significantly (p < 0.05) higher (173 bp product, 14%: 426 bp product, 4% methylated) than WAT from both depots which were unmethylated (Figure 1C). A similar methylation sensitive restriction digestion approach (see Materials and Methods) demonstrated that the methylation state of a region of the human enhancer was much higher (55–60%) than the proximal promoter CpG island (Figure 1D). The primers amplified a region that contains this sequence which also lies at the consensus CRE homologous to CRE3 in the mouse.

We next employed bisulfite mapping in order to confirm the apparent low levels of methylation in the bovine CpG island, in the bovine tissues. CGI are difficult to analyze using PCR bisulfite mapping due to the problem of designing primers and although we attempted to amplify 44 CpGs in and around the bovine CpG island we were only able to produce reliable results for 12 CpGs. In agreement with the methylation sensitive restriction digests, all of these CpGs had methylation levels less than 20% with the majority below 10% with no significant differences between the tissue types (**Figure 1E**). For comparison, the values for CpG methylation of the mouse enhancer around CRE3 determined by bisulfite mapping in our previous studies (Shore et al., 2010) have been included in **Figure 1E** to emphasize the relatively low methylation

(A) bovine UCP1 mRNA expression by qRTPCR. Methylation sensitive restriction digest determination of (B) bovine, (C) human CpG islands, (D) human enhancer, and (E) bisulfite mapping determination of the percentage methylation of 12 CpGs within the bovine CpG island, in adipose tissues and liver. UCP1 mRNA (A) is expressed relative to ribosomal 18S mRNA. The data are presented as a percentage methylation compared to each respective mock methylated sample for the (B) bovine 288 bp (□) and the 407 bp (■) products and (C) human 173 bp (□) and the 426 bp (■) products and (D) human enhancer (see Materials and Methods). The amount of UCP1

promoter DNA was quantified by qPCR relative to ribosomal 18S DNA. **(E)** CpG dinucleotide methylation in the *Ucp1* proximal promoter in newborn bovine brown (\Box) and subcutaneous white adipose tissue (\blacksquare), and liver (\square). For comparison, values for the mouse enhancer (ENH) BAT, WAT, and liver are presented. DNA was extracted, bisulfite modified, amplified by PCR, and pyrosequenced to determine CpG methylation over positions 1–12 of the *Ucp1* promoter (see Materials and Methods). Missing liver values are due to failed analyses. Values are means \pm SEM from at least three replicates except for **(D)** which represents the average of duplicates \pm SD *** BAT significantly greater than other tissues (p < 0.001).

	CpG	Enhancer (human position –3488) as described in del Mar Gonzalez-Barroso et al. (2000), Jastroch et al. (2008), Shore et al. (2010)	Putative regulatory region (human position –2095)
Human	High stringency	Yes	Yes
Chimp	High stringency	Yes	Yes
Orangutan	High stringency	Yes	Yes
Macaque	High stringency	Yes	Yes
Marmoset	High stringency	Х	Х
Mouse Lemur	High stringency	Yes	Yes
Tree Shrew	High stringency	Yes	Yes
Pika	Low stringency	Х	Х
Rabbit	High stringency	Yes	Yes
Guinea pig	High stringency	Yes	Yes
Rat	Low stringency	Yes	Х
Mouse	Х	Yes	Х
Ground Squirrel	High stringency	Х	Х
Shrew	Low stringency	Х	Х
Hedgehog	High stringency	Х	Х
Mega Bat	High stringency	Yes	Yes
Micro Bat	High stringency	Yes	Х
Dog	High stringency	Yes	Х
Cat	High stringency	Yes	Х
Giant Panda	High stringency	Yes	Yes
Horse	High stringency	Yes	Yes
Cow	High stringency	Yes	Yes
Pig	High stringency	yes	Х
Tenrec	High stringency	Yes	Yes
Elephant	High stringency	Yes	Yes
Opossom	Low stringency	Х	Х
Platypus	Low stringency	Х	Х
Xenopus	Х	Х	Х
Zebrafish	Low stringency	Х	Х

Table 1 | Occurrence and position of CpG island, enhancer and putative regulatory region in relation to the start of UCP1 transcription in 27 vertebrate species.

High stringency regions represent CpG islands identified by the CpGLH algorithm with default settings, low stringency regions represent CpG islands identified by the CpGLH algorithm with relaxed settings (see Materials and Methods). Putative Regulatory Region represents a 500 bp region conserved in some species containing multiple consensus response elements.

state of the bovine CpG island. There was insufficient human BAT to carry out a similar bisulfite mapping analysis.

THE POSITION OF A CONSERVED 5' UPSTREAM ENHANCER REGION AND A PUTATIVE REGULATORY REGION IN THE PROMOTER OF UCP1 IN VERTEBRATES

Since methylation CpG state of the UCP1 promoter was unable to explain brown adipose-specific expression, we next turned our attention to the bioinformatics analysis of the promoter region. Conservation of a 320 bp enhancer in a 10 Kb region upstream of the UCP1 TSS has been previously reported in eutherians, including the Afrotherian species but not in the marsupial *M. domestica*, (Jastroch et al., 2008). We extended this study to include non-mammalian vertebrates (**Table 1**). Surprisingly, although we could detect the enhancer box in the 10 kb sequence upstream of the TSS in 20 eutherian species, it was not present in five eutherians (Marmoset, Pika, Ground Squirrel, Shrew, Hedgehog) despite BAT-specific UCP1 expression in these species. The low coverage (approximately $2\times$) of four of these (Pika, Ground Squirrel, Shrew and Hedgehog) is likely to be insufficient to confidently conclude the lack of this enhancer. However Marmoset has increased coverage $(6\times)$ and provides greater confidence of the loss of enhancer in mammalian species. Within the marmoset genome the nearest gap upstream of the UCP1 gene is estimated to be 54,083 bp upstream, suggesting that the lack of predicted enhancer is not due to missing sequence data. As expected the enhancer box was not detected in the marsupial Opossum, the monotreme, Platypus, or non-mammalian vertebrates (Xenopus, Zebrafish). Within the mammalian species possessing a 5' distal enhancer there was remarkable conservation of response element sequences that have been shown to regulate UCP1 transcription in rodent studies, as previously noted by Jastroch et al. (2008; Figures A3–A5 in Appendix). The enhancer sequence was within the -5 kb of the UTR except for Tenrec in which the enhancer sequence started at -5.486 Kb (**Table A2** in Appendix). The presence of a conserved enhancer sequence upstream of pig UCP1 is possibly unexpected. The UCP1 gene was predicted to have become a pseudogene approximately 20 million years ago (Berg et al., 2006). If the sole role of the enhancer is associated with UCP1 expression, it would be predicted that following pseudo-genization that purifying selection of UCP1 enhancer would be relaxed, resulting in degeneration of conservation by accumulation of mutations. However, the pig enhancer remains well conserved. Pairwise percent identify of Human-cow enhancer is 78.5% and is only slightly lower in Human-pig (75.9%). This suggests a possible additional role for the enhancer in pig or that the expression of a truncated form of UCP1 is transcribed in pig.

A second conserved putative regulatory region of approximately 500 bp was noted (Human -2095; usually placed 2200– 2700 bp upstream of the TSS in most species) which although present in 14 of the eutherian species, was absent in the nine vertebrate species that we could not find the enhancer, with the exception of rodents (**Table 1**; **Table A2** in Appendix; **Figures A3** and **A4** in Appendix).

Pairwise comparison of bovine-mouse, or bovine-human promoters using Rvista (Loots et al., 2002) highlighted this conserved putative regulatory region between the human and bovine approximately 2.5 Kb upstream, but not between bovine and mouse (**Figure 2**). As expected, a highly conserved peak is visible at approximately -3.6 Kb within the conserved enhancer region and contained the conserved transcription factor binding sites previously mentioned above. A second conserved region approximately -1.1 to -1.6 kb is conserved between bovine and human but is missing in mouse and rat genomes. The putative regulatory region also contained a number of conserved transcription factor binding sites (CEBP, CREB, DR1, DR3, DR4, PPAR) suggesting the presence of control elements that may be important in regulating species-specific UCP1 expression.

DISCUSSION

The recent discovery of BAT in adult humans has excited interest in combating obesity by stimulating the expression and activity of UCP1 in brown adipocytes in order to increase energy expenditure. In order to manipulate energy expenditure it is necessary to understand the precise transcriptional regulation of UCP1 and although there have been recent advances in the transcriptional factors and co-regulators required for activating the brown adipogenic gene expression, the mechanisms responsible

for the species-specific and tissue-specific expression of UCP1 are unknown. The vast majority of studies have been carried out in rodents which retain neonatal brown depots into adulthood. In humans neonates, significant amounts of BAT are found in the perirenal and axillary depots, disappearing in adults but being replaced by the recently discovered supraclavicular depots. We and others have reported a similar developmental disappearance of BAT from the perirenal depot in ruminants (Lomax et al., 2007). We have proposed that tissue-specific expression may be dictated by the methylation of specific CpGs in cyclic AMP response elements in the UCP1 enhancer unit (Shore et al., 2010). An alternative suggestion is that methylation of CpGs in CGI in the promoter may confer tissue-specific expression of UCP1 (Kiskinis et al., 2007).

Using a bioinformatic approach we were able to identify a CpG island conserved across 26 of 28 mammalian including marsupials and monotremes (Figure 2). Additionally a CpG island can be identified upstream of the Zebrafish UCP1 transcription start site suggesting a more ancient origin and that this CpG island predates the divergence of mammals. In the context of the evolution of the CGI in the UCP1 promoter, it is therefore unlikely that the retention of the CpG island is related to the acquisition of BAT-specific expression since this is a feature only of mammals. This conclusion was supported by our study using methyl sensitive restriction digestion and qPCR which demonstrates that the methylation state of the bovine CpG island does not appear to account for the differential expression of UCP1 shown by qPCR between BAT and WAT and that the CpG island remains essentially demethylated in BAT, WAT, and liver tissues regardless of the level UCP1 expression. These low methylation states were confirmed by pyrosequencing analysis of the region. Though it is possible that some of the unsequenced CpGs show differential methylation levels, we show that there is not a wide ranging difference in methylation state compared with differences in UCP1 expression. These findings were confirmed in the human tissues where there were also low levels of methylation and no apparent difference between fetal BAT and adult WAT promoter methylation despite well documented difference in UCP1 expression between these tissues (Lean and James, 1986).

We have previously observed in mice that CpG dinucleotide methylation of the Ucp1 distal enhancer exhibits tissue-specific patterns in murine tissue and cell lines and suggested that adipose tissue-specific Ucp1 expression involves demethylation of CpG dinucleotides found in regulatory CREs in the Ucp1 enhancer, as well as modification of histone tails (Shore et al., 2010). The control of UCP1 expression by a complex series of response elements in the 5' distal enhancer has been studied in the rodent and human promoter (del Mar Gonzalez-Barroso et al., 2000; Rim and Kozak, 2002) where this enhancer is necessary for both response to drugs and tissue-specific expression. However the observation that marsupial M. domestica expresses UCP1 in response to beta adrenergic stimulation despite there being no identifiable enhancer suggests that other regulatory mechanisms exist (Jastroch et al., 2008). We confirmed this observation and have demonstrated that the enhancer is also absent from the other species Marmoset, Pika, Ground Squirrel, Shrew, and Hedgehog despite evidence that of

BAT-specific expression of UCP1 in these species (Rothwell and Stock, 1985; Loncar, 1990; Liu et al., 1998; Suzuki et al., 2006; Kitao et al., 2007). All of the nine species lacking an identifiable enhancer also lacked the putative regulatory region but further studies are necessary to characterize this region (**Figure 2**). Taken together the results do not support a role for either CpG island methylation or the presence of an enhancer unit, in tissue-specific regulation of UCP1 expression.

Our previous study suggested that the loss of adrenergic stimulation of UCP1 expression in perirenal adipose tissue from newborn ruminants is associated with a decrease in the expression of the PPARy coactivator PGC1a (Lomax et al., 2007) suggesting that the transcriptional machinery in ruminants may fail to activate the enhancer after birth. In rodents cAMP response elements are present in both the enhancer and the proximal promoter (Rim and Kozak, 2002). We have previously demonstrated using mouse cell lines, that the exact combination of transcription factors binding to cAMP response elements, governs the brown adipocyte-specific expression of PGC1a and UCP1, in response to cAMP stimulation (Karamanlidis et al., 2007; Karamitri et al., 2009). Further studies in rodents have also suggested synergistic relationships between the transcriptional factors, PPARy, PPARa, and PGC1a in brown adipogenesis (Rim et al., 2004; Xue et al., 2005). Therefore, the species differences in the presence of an enhancer and the patterns of brown fat thermogenesis may depend on the specific combinations and trans-activational prowess of transcription factors, rather than the exact structure of 5' upstream elements. Further studies are required to identify the role of transcription factors activating the CREB and PPAR response elements identified in the bovine PRR (Figure 2; Figure A2 in Appendix) in the regulation of thermogenesis in different species.

CONCLUSION

The results presented here demonstrate that mammals possess a highly conserved CpG island close to the transcription start site on the UCP1 promoter but that methylation of the CpG island does not appear to account for tissue-specific expression of UCP1 in these species. The evolution of the enhancer element appears to be separate from the thermoregulatory function of BAT with species lacking an enhancer being able to increase UCP1 expression in response to cold stimulus, or as in the pig, retain the enhancer despite UCP1 becoming a pseudogene. Therefore, although previous studies in rodents have proposed that regulation of UCP1 expression is mainly targeted at response elements in a complex enhancer, a comparative approach suggests that despite clear evidence of conservation of regulatory elements in the UCP1 5' untranslated region, this does not appear to be related to speciesor tissues-specific expression of UCP1. This suggests that the control of mammalian thermogenesis in BAT is not simply due to the evolution of UCP1 promoter elements but the result of a complex interplay between transcriptional regulators and response elements on the UCP1 promoter.

ACKNOWLEDGMENTS

The work was supported by the BBSRC and the University of Nottingham.

REFERENCES

- Berg, F., Gustafson, U., and Andersson, L. (2006). The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets. *PLoS Genet.* 2:e129. doi:10.1371/journal.pgen.0020129
- Bray, N., Dubchak, I., and Pachter, L. (2003). AVID: a global alignment program. *Genome Res.* 13, 97–102.
- Cannon, B., and Nedergaard, J. (2004). Brown adipose tissue: function and physiological significance. *Physiol. Rev.* 84, 277–359.
- Cassard-Doulcier, A. M., Gelly, C., Bouillaud, F., and Ricquier, D. (1998). A 211-bp enhancer of the rat uncoupling protein-1 (UCP-1) gene controls specific and regulated expression in brown adipose tissue. *Biochem. J.* 333(Pt 2), 243–246.
- Clark, S. J., Harrison, J., Paul, C. L., and Frommer, M. (1994). High sensitivity mapping of methylated cytosines. *Nucleic Acids Res.* 22, 2990–2997.
- del Mar Gonzalez-Barroso, M., Pecqueur, C., Gelly, C., Sanchis, D., Alves-Guerra, M. C., Bouillaud, F., et al. (2000). Transcriptional activation of the human ucp1 gene in a rodent cell line. Synergism of retinoids, isoproterenol, and thiazolidinedione is mediated by a multipartite response element. J. Biol. Chem. 275, 31722–31732.
- Gardiner-Garden, M., and Frommer, M. (1987). CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282.
- Gavrilova, O. F., Mironov, A. S., Nikolaevskaia, E. E., Rodionov, O. A., and Khurges, E. M. (1988). Genetic mapping of the ilv7434 mutation providing threonine deaminase resistance to isoleucine inhibition in Escherichia coli. *Genetika* 24, 13–22.
- Hughes, D. A., Jastroch, M., Stoneking, M., and Klingenspor, M. (2009). Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis. *BMC Evol. Biol.* 9:4. doi:10.1186/1471-2148-9-4
- Jastroch, M., Withers, K. W., Taudien, S., Frappell, P. B., Helwig, M., Fromme, T., et al. (2008). Marsupial uncoupling protein 1 sheds light on the evolution of mammalian non-shivering thermogenesis. *Physiol. Genomics* 32, 161–169.

- Karamanlidis, G., Karamitri, A., Hazlerigg, Docherty. Κ., D G., and Lomax, M. A. (2007). C/EBPbeta reprograms white 3T3-L1 preadipocytes to а Brown adipocyte pattern of gene expression. J. Biol. Chem. 282, 24660-24669.
- Karamitri, A., Shore, A. M., Docherty, K., Speakman, J. R., and Lomax, M. A. (2009). Combinatorial transcription factor regulation of the cyclic AMP-response element on the Pgclalpha promoter in white 3T3-L1 and brown HIB-1B preadipocytes. J. Biol. Chem. 284, 20738–20752.
- Kiskinis, E., Hallberg, M., Christian, M., Olofsson, M., Dilworth, S. M., White, R., et al. (2007). RIP140 directs histone and DNA methylation to silence Ucp1 expression in white adipocytes. *EMBO J.* 26, 4831–4840.
- Kitao, N., Yahata, T., Matsumoto, T., Okamatsu-Ogura, Y., Omachi, A., Kimura, K., et al. (2007). Molecular cloning and tissue distribution of uncoupling protein 1 (UCP1) in plateau pika (Ochotona dauurica). J. Vet. Med. Sci. 69, 1065–1068.
- Klingenspor, M., Fromme, T., Hughes, D. A. Jr., Manzke, L., Polymeropoulos, E., Riemann, T., et al., (2008).
 An ancient look at UCP1. *Biochim. Biophys. Acta* 1777, 637–641.
- Lean, M. E. J., and James, W. P. T. (1986). "Brown adipose tissue in man," in *Brown Adipose Tissue*, eds P. Trayhurn and D. G. Nicholls (London: Edward Arnold), 339–365.
- Liu, X. T., Lin, Q. S., Li, Q. F., Huang, C. X., and Sun, R. Y. (1998). Uncoupling protein mRNA, mitochondrial GTP-binding, and T4 5'-deiodinase activity of brown adipose tissue in Daurian ground squirrel during hibernation and arousal. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 120, 745–752.
- Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. *Methods* 25, 402–408
- Lomax, M. A., Sadiq, F., Karamanlidis, G., Karamitri, A., Trayhurn, P., and Hazlerigg, D. G. (2007). Ontogenic loss of brown adipose tissue sensitivity to beta-adrenergic

stimulation in the ovine. *Endocrinology* 148, 461–468.

- Loncar, D. (1990). Immunoelectron microscopical studies on synthesis and localization of uncoupling protein in brown adipocytes: evidence for cotranslational transport of uncoupling protein into mitochondria. *J. Struct. Biol.* 105, 133–145.
- Loots, G. G., Ovcharenko, I., Pachter, L., Dubchak, I., and Rubin, E. M. (2002). rVista for comparative sequence-based discovery of functional transcription factor binding sites. *Genome Res.* 12, 832–839.
- McKinnon, C. M., and Docherty, K. (2001). Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. *Diabetologia* 44, 1203–1214.
- Mzilikazi, N., Jastroch, M., Meyer, C. W., and Klingenspor, M. (2007). The molecular and biochemical basis of non-shivering thermogenesis in an African endemic mammal, Elephantulus myurus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R2120– R2127.
- Nedergaard, J., Bengtsson, T., and Cannon, B. (2007). Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452.
- Rim, J. S., and Kozak, L. P. (2002). Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene. J. Biol. Chem. 277, 34589–34600.
- Rim, J. S., Xue, B., Gawronska-Kozak, B., and Kozak, L. P. (2004). Sequestration of thermogenic transcription factors in the cytoplasm during development of brown adipose tissue. J. Biol. Chem. 279, 25916–25926.
- Rothwell, N. J., and Stock, M. J. (1985). Thermogenic capacity and brown adipose tissue activity in the common marmoset. *Comp. Biochem. Physiol. A Comp. Physiol.* 81, 683–686.
- Sakurai, H., Era, T., Jakt, L. M., Okada, M., Nakai, S., and Nishikawa, S. (2006). In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility. *Stem Cells* 24, 575–586.

- Shore, A., Karamitri, A., Kemp, P., Speakman, J. R., and Lomax, M. A. (2010). Role of Ucp1 enhancer methylation and chromatin remodelling in the control of Ucp1 expression in murine adipose tissue. *Diabetologia* 53, 1164–1173.
- Suzuki, D., Murata, Y., and Oda, S. (2006). Cloning of putative uncoupling protein 1 cDNA in a coldintolerant mammal, the house musk shrew (Suncus murinus). *Zool. Sci.* 23, 1009–1015.
- Symonds, M. E., and Lomax, M. A. (1992). Maternal and environmental influences on thermoregulation in the neonate. *Proc. Nutr. Soc.* 51, 165–172.
- Xue, B., Coulter, A., Rim, J. S., Koza, R. A., and Kozak, L. P. (2005). Transcriptional synergy and the regulation of Ucp1 during brown adipocyte induction in white fat depots. *Mol. Cell. Biol.* 25, 8311–8322.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 03 October 2012; paper pending published: 02 November 2012; accepted: 10 December 2012; published online: 03 January 2013.

Citation: Shore A, Emes RD, Wessely F, Kemp P, Cillo C, D'Armiento M, Hoggard N and Lomax MA (2013) A comparative approach to understanding tissue-specific expression of uncoupling protein 1 expression in adipose tissue. Front. Gene. **3**:304. doi: 10.3389/fgene.2012.00304

This article was submitted to Frontiers in Epigenomics and Epigenetics, a specialty of Frontiers in Genetics.

Copyright © 2013 Shore, Emes, Wessely, Kemp, Cillo, D'Armiento, Hoggard and Lomax. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

APPENDIX

Table A1 | Genome builds of species investigate.

Common name	Latin name	Genome build	
Human	Homo sapiens	March 2006 hg18	
Chimp	Pan troglodytes	March 2006 panTro2	
Orangutan	Pongo pygmaeus abelii	July 2007 ponAbe2	
Rhesus	Macaca mulatta	January 2006 rheMac2	
Marmoset	Callithrix jacchus	June 2007 calJac1	
Mouse lemur	Microcebus murinus	June 2003 micMur1	
TreeShrew	Tupaia belangeri	December 2006 tupBel1	
Pika	Ochotona princeps	July 2008 ochPri2	
Rabbit	Oryctolagus cuniculus	May 2005 oryCun1	
Guinea pig	Cavia porcellus	February 2008 cavPor3	
Rat	Rattus norvegicus	November 2004 rn4	
Mouse	Mus musculus	July 2007 mm9	
Ground squirrel	Spermophilus tridecemlineatus	February 2008 speTri1	
Shrew	Sorex araneus	June 2006 sorAra1	
Hedgehog	Erinaceus europaeus	June 2006 eriEur1	
Megabat	Pteropus vampyrus	July 2008 pteVam1	
Microbat	Myotis lucifugus	March 2006 myoLuc1	
Dog	Canis lupus familiaris	May 2005 canFam2	
Cat	Felis catus	March 2006 felCat3	
Giant panda	Ailuropoda melanoleuca	AilMel 1.0 December 2009	
horse	Equus caballus	September 2007 equCab2	
Cow	Bos taurus	November 2009 bosTau6	
Pig	Sus scrofa	SGSC Sscrofa9.2	
Tenrec	Echinops telfairi	July 2005 echTel1	
Elephant	Loxodonta africana	July 2008 loxAfr2	
Opossum	Monodelphis domestica	January 2006 monDom4	
Platypus	Ornithorhynchus anatinus	March 2007 ornAna1	
Xenopus tropicalis	Xenopus tropicalis	August 2005 xenTro2	
Zebrafish	Danio rerio	July 2007 danRer5	

3) from the 29 vertebrate species	
and putative regulatory region (PI	
otional start site of enhancer region	
itions relative to the UCP1 transcri	
coordinates and start/stop posi-	
Table A2 Gent	examined.

Human Hg19 4 High stringency NM_021833 141481052 14148955 14148955 1 Chimp PanTio2 4 High stringency N-Samchr4.145.006.a 141481052 14148955 14148105 141418105 14141	021833 141481052		coordinate	coordinate	coordinate	coordinate	start relative position	relative position	start relative position	stop relative position
Chimp PanTroz 4 High stringency N-Scanchr4.145.006.a 144322263 144332101 - Orangutan ponAbe2 4 High stringency N-Scanchr4.145.006.a 144322263 144332101 - Marmoset called High stringency N-Scanchr6.134.002.a 133012794 133023077 - Marmoset called High stringency N-Scanchr6.016.a 133012794 133023077 - Marmoset called High stringency N-Scanchr6.016.a 133023071 - Marmoset called High stringency N-Scanchr6.136.0016.a 133023071 - Marmoset called High stringency N-Scanchr6.136.0016.a 133023071 - Marmoset called High stringency N-Scanchr6.136.0016.a 133023071 - Marmoset called High stringency N-Scanchr6.16.0016.a 1330734 + Marmoset carbord GenesCaffold_1671 Low stringency N-Scanchr6.14.00149 + Rat	200101111	141489959 -	141493442	141493950	141492054	141492731	-3483	-3991	-2095	-2772
Orangutan ponAbe2 4 High stringency N-Scanchr4.983.1 145586899 145599241 - Maranoset nhMac2 5 High stringency N-Scanchr6.134.002.a 5237320.48 523732343 + Marmoset nicMur1 GeneScaffold_1087 High stringency N-Scanchr6.134.002.a 5237320.48 523732343 + Marmoset nicMur1 GeneScaffold_1087 High stringency N-Scanchr6.134.002.a 5237320.48 5237323.43 + Tree Shrew ucpPril GeneScaffold_3061 Low stringency N-Scanchr6.134.002.a 532732.048 523732.43 + Rabbit ory/Cur1 15 High stringency N-Scanchr6.0000000.463.48 14371 + Rat nr4 19 Low stringency N-SCOCUG0000000.453.48 56556.51 + Rat nr4 19 N-MOLOS N-MOLOS 1932428 + + Rat nr4 19 N-MOLOS N-MOLOS N-MOLOS 19324561 + Rat <td>canchr4.145.006.a 144322263</td> <td>144332101 -</td> <td>144335822</td> <td>144336333</td> <td>144334440</td> <td>144335115</td> <td>-3721</td> <td>-4232</td> <td>-2339</td> <td>-3014</td>	canchr4.145.006.a 144322263	144332101 -	144335822	144336333	144334440	144335115	-3721	-4232	-2339	-3014
Macaque rheMac2 5 High stringency N-Scanchr5.134.002.a 133022077 - Marmoset calJac3 3 High stringency N-Scanchr5.134.002.a 133012794 133022077 - Mouse Lemur mic/Mur1 GeneScaffold_1087 High stringency N-Scanchr5.134.002.a 52372048 52372343 + Tee Shrew upBel1 GeneScaffold_1087 High stringency N-Scanchr5.134.002.4 52372048 52372343 + Pika upBel1 GeneScaffold_3067 High stringency N-Scanchr5.134.002.4 52827 3489 500899 - Rabbit oryCun1 15 High stringency N-Scaffold_3452 High stringency N-Scaffold_3452 1491 1493 1493 1491 -	canchr4.983.1 145986899	145999241 —	146002758	146003264	146001158	146001693	-3517	-4023	-1917	-2452
Marmoset callac3 3 High stringency N-Scanch/3.6.016.a 52372048 52372243 ++ Mouse Lemur mic/Mur1 GeneScaffold_1087 High stringency NS/MICG0000008999 4785 11471 ++ Tree Shrew tubBel1 GeneScaffold_1087 High stringency ENS/MICG00000042 25827 3437 - Pika on/Cur1 15 Low stringency ENS/CIC0000003297 24001933 2600449 + Rabbit on/Cur1 15 Mouse ENS/CIC00000004634 482498 5055621 - Rat m4 19 Low stringency NM.012682 26527548 26537541 - Mouse mm9 8 X NM_0046333 38541247 58522355 + Mouse mm9 8 X NM_012682 26537548 26535621 - Mouse mm9 8 NM_012682 NM_012682 26527548 26535621 - Mouse mm9 8	canchr5.134.002.a 133012794	133023077 -	133026214	133026725	133024970	133025515	-3137	-3648	-1893	-2438
Mouse Lemur mic/Mur1 GeneScaffold_1087 High stringency ENS/NIGG0000008399 4785 11471 + Tree Shrew upBe11 GeneScaffold_1067 High stringency ENS/NIGG000000423 25827 32487 - Pika ochPri1 GeneScaffold_2061 Low stringency ENS/DFG000000243 482498 500699 - Rabbit GeneScaffold_3061 Low stringency ENS/DFG00000002239 24010439 + Rabbit GeneScaffold_3450 High stringency ENS/DFG0000000239 24010439 + Rab mm9 8 X NM 07882 24010439 + Mouse mm9 8 X NM 07882 26557543 26535621 + Mouse mm9 8 X NM 07882 243147 56535621 + Mouse mm9 8 NM 07882 2401143 + + Mouse mm9 8 Stringency ENS/MC0000000351 24111491 + Mo	canchr3.6.016.a 52372048	52373243 +	p/u	p/u	n/d	p/u	p/u	p/u	p/u	p/u
Tree Shrew tupBel1 GeneScaffold_4806 High stringency ENSTBEG000000042 25827 3787 - Pika ochPri1 GeneScaffold_3061 Low stringency ENSCPRG0000004534 482498 500869 - Rabbit oryCun1 15 High stringency ENSCP060000001969 19528283 19534394 - Rat m4 19 Low stringency NM 012682 26535621 - Rat m4 19 Low stringency NM 012682 26535621 - Rat m4 19 Low stringency NM 012682 26535621 - Shrew sorAin GeneScaffold_1671 Low stringency ENSCF00000003104 313456 - Nicro Bat preVam1 GeneScaffold_1671 Low stringency ENSCF000000005182 241 4846 + Megebbag eriEur1 scaffold_1671 Low stringency ENSCF000000005182 241 4846 + Mege Bat preVam1 GeneScaffold_1671 Low string	SMICG0000008999 4785	11471 +	15010	15507	13790	14315	-3539	-4036	-2319	-2844
Pika ochPri1 GeneScaffold_3061 Low stringency ENSOPRG0000004634 482498 500669 - Rabbit oryCun1 15 High stringency ENSOPRG0000004634 482498 500669 - Rat nm9 sarfrold_7 High stringency ENSOP000001969 19528233 19534334 - Rat mm9 8 NM 19 Low stringency ENSCP00000001969 19528233 19534334 - Mouse mm9 8 NM 000102031 313462 85812355 + Mouse mm9 8 NM 000103043 313456 + Mouse mm9 8 NM 000000000000000000000000000000000000	STBEG0000000042 25827	37487 —	41768	42362	40139	40400	-4281	-4875	-2652	-2913
Rabit oryCun1 15 High stringency ENSOCUG0000002397 24001433 24101443 + Rat md 19 scaffold_7 High stringency ENSCPOG0000001969 19528283 1953434 - Rat md 19 Low stringency ENSCPOG0000001969 19528283 1953434 - Mouse mm9 8 X NM_009483.3 26827355 + Mouse mm9 8 X NM_009483.3 355363.1 - Mouse mm9 8 X NM_009483.3 355363.1 - Mouse mm9 8 X NM_00943.3 313466 + Findedeptig eriEur1 GeneScaffold_1677 High stringency ENSFL0G0000005182 2137 4846 + Mega Bat pteVam1 GeneScaffold_2289 High stringency ENSFL0G0000005182 5290786 + Micro Bat myoLuc1 GeneScaffold_2289 High stringency ENSFL0G00000005182 5290786	SOPRG0000004634 482498	50 0869	p/u	p/u	p/u	p/u	p/u	p/u	p/u	p/u
Guinea pig cavPor3 scaffold_7 High stringency RNSCPOG0000001969 19528283 1953434 - Rat rrd 19 Low stringency NM 012682 26535621 - Mouse mm9 8 X NM 002682 26537548 26535621 - Mouse mm9 8 X NM 002682 26537548 26535621 - Round Squirel speTir1 GeneScaffold_3452 High stringency ENSTG000000000000000000000000000000000000	SOCUG0000002297 24001193	24010449 +	23996292	23996791	23997600	23997868	-4901	-4402	-3593	-3325
Rat rnd 19 Low stringency NM 012682 26537543 26537543 26535621 - Mouse mm9 8 X NM_0094633 26537548 26537555 + Mouse mm9 8 X NM_0094633 85814247 85822355 + Ground Squirrel speTin1 GeneScaffold_1671 Low stringency ENSTRG00000001304 313456 339106 - Hedgebog refEur1 scaffold_2289 High stringency ENSTRG00000001381 114991 119682 - Micro Bat myoLuci GeneScaffold_1696 High stringency ENSTAG0000001381 119982 + Micro Bat myoLuci GeneScaffold_5996 High stringency ENSTAG00000003674 63872 68908 + Dog canFam2 19 High stringency NM 001003046 5283508 5290786 + Hors equ/cab2 2 High stringency NSAMEG00000029592 5290786 + Cat High stringen	SCPOG0000001969 19528283	19534394 —	19537941	19538470	19536829	19537347	-3547	-4076	-2435	-2953
Mouse mm9 8 X NM_009463.3 85812247 85822355 + Ground Squirel speTirl GeneScaffold_1671 Low stringency ENSSTGG0000003104 313456 339106 - Shrew sorAni GeneScaffold_1671 Low stringency ENSSTGG000000385 5257 10644 - Nega Bat pteVam1 GeneScaffold_1671 Low stringency ENSSTRG00000016781 114991 119682 - Miga Bat pteVam1 GeneScaffold_2598 High stringency ENSFVG00000016781 114991 119682 - Micro Bat myOLuc1 GeneScaffold_2598 High stringency ENSMLLG0000003054 633726 63973 - Dog calfam2 19 High stringency NM_00103046 520786 + + Dog calfand 1114333 10439451 147373 10439451 + Dog calfand Figh stringency ENSMLG000000302862 9031780 9031780 90317382 Cat f	012682 26527548	26535621	26537717	26538206	p/u	p/u	-2096	-2585	p/u	p/u
Ground Squirrel speTirl GeneScaffold_3452 High stringency ENSSTGG0000003104 313456 339106 - Shrew sorAri GeneScaffold_1671 Low stringency ENSSARG000000385 5257 10644 - Hedgehog ertEur1 scaffold_1571 Low stringency ENSSARG0000005182 241 4846 + Mega Bat pre/am1 GeneScaffold_5996 High stringency ENSPVAG00000055182 10644 - Micro Bat myoLuc1 GeneScaffold_5996 High stringency ENSPVAG0000003574 63372 63903 - Dog canFam2 19 High stringency NM 001003046 5290786 + Dog canFam2 19 High stringency NSAMLL00000032869 40351 + Dog canFam2 19 High stringency NSAMLL00000032869 40351 + Dog canFam2 19 High stringency NSAMLE000000032869 40351 + Cat fel(Cat4 B1 High stringency	_009463.3 85814247	85822355 +	85811607	85812107	p/u	p/u	-2640	-2140	p/u	p/u
Shrew sorAri GeneScaffold_1671 Low stringency ENSSAFG000000085 5257 10644 - Hedgehog eriEur1 scaffold_252 452 High stringency ENSSAFG0000005182 241 4846 + Mega Bat pre/am1 GeneScaffold_5096 High stringency ENSVAG0000005182 241 4846 + Micro Bat myoLuc1 GeneScaffold_5096 High stringency ENSVL160000005574 63872 63908 - Dog cart felCat4 B1 High stringency NM 001003046 5287086 5290786 + Dog cart felCat4 B1 High stringency NM 001003046 538720 63903 - Dog cart B1 High stringency NM 001003046 530378 104394541 + Horse equ/Cab2 2 High stringency NSCanchrB111033.a 104394501 14773822 + Horse equ/Cab2 2 High stringency NSCanchrB1110033.a 104394541 + <td>SSTOG0000003104 313456</td> <td>339106 -</td> <td>p/u</td> <td>p/u</td> <td>p/u</td> <td>p/u</td> <td>p/u</td> <td>p/u</td> <td>p/u</td> <td>p/u</td>	SSTOG0000003104 313456	339106 -	p/u	p/u	p/u	p/u	p/u	p/u	p/u	p/u
Hedgehog eriEur1 scaffold_252.452 High stringency ENSEUG0000005182 241 4846 + Mega Bat preVam1 GeneScaffold_2289 High stringency ENSPL/G0000005781 114991 119682 - Micro Bat myoLuci GeneScaffold_2289 High stringency ENS/LUG000000574 63872 638908 - - Dog canf fant2 19 High stringency NM 001003046 538720 639038 - - Dog canf held1 GL19356.1 High stringency NM 001003046 532837901 104394541 + Cat High stringency NScanch/B1.1.1.03.3. 104394501 + + Horse end/Cab2 2 High stringency NM_001166528 17467450 17473322 + Pig stringency NScanch/B.1.0.032166 NScanch/B.0377a 70485 - Fig stringency NScanch/B.1.01166528 17467450 17473322 + Fig stringency NScanch/B.8.037a <td>SSARG0000000985 5257</td> <td>10644 –</td> <td>p/u</td> <td>p/u</td> <td>p/u</td> <td>p/u</td> <td>p/u</td> <td>p/u</td> <td>p/u</td> <td>p/u</td>	SSARG0000000985 5257	10644 –	p/u	p/u	p/u	p/u	p/u	p/u	p/u	p/u
Mega Bat pteVam1 GeneScaffold_2289 High stringency ENSPV4G0000016781 114991 119682 – Micro Bat myoLuc1 GeneScaffold_5996 High stringency ENSMLUG000000574 63872 638008 – Dog cant Fam2 19 High stringency NM 001003046 5283068 5290786 + Cat felCat4 B1 High stringency NM 0010030546 53872 68908 - Cat felCat4 B1 High stringency NM 0010032869 40351 48866 + Horse equ/Cab2 2 High stringency NM_00106528 40351 43856 + Pice b5 High stringency NM_00106528 17467450 17473322 + Pig susScr2 8 High stringency NScanch8.8.037.a 70485 - Pig susScr2 8 High stringency NScanch8.1.11.8058 56135088 - Pig susScr2 8 High stringency	SEEUG0000005182 241	4846 +	p/u	p/u	p/u	p/u	p/u	p/u	p/u	p/u
Micro Bat myoLuc1 GeneScaffold_5996 High stringency NNLUG0000005574 63872 68908 - Dog cart tielCart B1 High stringency NM 001003046 5280508 5290786 + Cart tielCart B1 High stringency NM 001003046 5280508 5290786 + Cart tielCart B1 High stringency NSAMEG0000002869 403511 4387901 104394541 + Horse equ/Cab2 2 High stringency ENSAMEG0000002869 40351 48868 - Horse equ/Cab2 2 High stringency NSECAG0000002869 40351 1245450 - Pige susScr2 8 High stringency NSench18.837.73 7485480 - - Flence echTel1 GeneScaffold_7417 High stringency NSETEG00000010924 63037 70485 - Flence echTel1 GeneScaffold_7417 High stringency NSETEG00000000727 56118058 56135088<	SPVAG0000016781 114991	119682 -	122609	123123	121691	121957	-2927	-3441	-2009	-2275
Dog canFam2 19 High stringency NM 001003046 5283508 5290786 + Cat felCat4 B1 High stringency N-SanchrB1.11033.a 104387901 104394541 + Giant panda ailMel1 GL193536.1 High stringency N-SanchrB1.11033.a 104387901 104394541 + Horse equCab2 2 High stringency ENSAMEG000002869 40351 48686 - Horse equCab2 2 High stringency N-ScanchrB.11033.a 10438780 17473822 + Forw bosTau6 17 High stringency N-ScanchB.8037.a 7488882 - Forme echTel1 GeneScaffold_7417 High stringency N-ScanchB.8037.a 7488882 - Tenrec echTel1 GeneScaffold_7417 High stringency N-ScanchB.8037.a 7488882 - Tenrec echTel1 GeneScaffold_7417 High stringency N-ScanchB.8037.a 7488882 - Tenrec echTel1 GeneS	SMLUG0000009574 63872	- 80689	70701	71160	p/u	p/u	- 1793	-2252	p/u	p/u
Cat felCat4 B1 High stringency N-ScanchrB1.11.033.a 104387901 104387401 + Giant panda ail/lei11 GL193536.1 High stringency ENSAMEG0000002869 40351 48666 - Horse equCab2 2 High stringency ENSAMEG0000002869 40351 48666 - Horse equCab2 2 High stringency ENSECA60000002869 40351 4373822 + Horse equCab2 2 High stringency N.Con166528 17473822 + Finec ech1al1 GeneScaffold_7417 High stringency N.Scanchr8.1037.a 7458888 70485 + Tenrec ech1al1 GeneScaffold_7417 High stringency ENSTEG00000007077 66118068 66136088 - Coposom monDom 5 5 Low stringency ENSANDDG00000000772 138908757 138925466 + Platypus on stringency ENSAND0DG00000000772 8717808 66136088 - Dossom monDom	001003046 5283508	5290786 +	5279305	5279811	p/u	p/u	-4203	-3697	p/u	p/u
Giant panda ailMel1 GL193536.1 High stringency ENSAMEG0000002869 40351 48686 - Horse equCab2 2 High stringency ENSECAG00000028692 90911780 90919989 + Horse equCab2 2 High stringency ENSECAG00000028662 90911780 90919989 + Cow bosTau6 17 High stringency NM_001166528 17473322 + Pig susScr2 8 High stringency NS.037.a 7458882 74591948 + Tenrec echTel1 GeneScaffold_717 High stringency NS.037.a 74588882 74591948 + Tenrec echTel1 GeneScaffold_717 High stringency NS.05760000001924 63037 70485 - Elephant loxAfr3 scaffold 14 High stringency ENSAFG0000000172 138908757 138925466 + Platypus nmAnd1 Ultra33 Low stringency ENSANDDG000000172 138908757 138925466 +	canchrB1.11.033.a 104387901	104394541 +	104383258	104383501	p/u	p/u	-4643	-4400	p/u	p/u
Horse equCab2 2 High stringency ENSECAG0000026962 90911780 90919989 + Cow bosTau6 17 High stringency NM_001166528 1747382 + Pig susScr2 8 High stringency NM_001166528 17467450 17473822 + Pig susScr2 8 High stringency N-Scanchr8.8.037.a 7458882 74591948 + Tenrec echTe11 GeneScaffold_717 High stringency ENSEFEG00000010924 63037 70485 - Elephant loxAfr3 scaffold14 High stringency ENSLAFEG0000000177 56118058 56135088 - Dossom monDom 5 5 Low stringency ENSANDDG0000000172 13808757 138925466 + Platypus onAnal Ultra33 Low stringency ENSAND0000000172 819355 -	SAMEG0000002869 40351	48686 -	52280	52804	50675	51166	-3594	-4118	-1989	-2480
Cow bosTau6 17 High stringency NM_001166528 17467450 17473822 + Pig susScr2 8 High stringency N-Scanchr8.8.037.a 7458882 74591948 + Tenrec echTe11 GeneScaffold_7417 High stringency N-Scanchr8.8.037.a 74588882 70485 - Elephant loxAfr3 scaffold1741 High stringency ENSLAFG00000007074 66118058 66135088 - Dossom mmDom 5 5 Low stringency ENSANDG0000000772 138063757 138925466 + Platypus onAna1 Ultra33 Low stringency ENSANDG000000000000000000000000000000000000	SECAG00000026962 90911780	90919989 +	90907788	90908113	90908976	90909697	-3992	-3667	-2804	-2083
Pig susScr2 8 High stringency N-Scanchr8.8.037.a 74588822 74591948 + Tenrec echTel1 GeneScaffold_7417 High stringency ENSETEG0000010924 63037 70485 - Elephant loxAfr3 scaffold14 High stringency ENSLAFG00000007077 66118058 66135088 - Dossom monDom 5 5 Low stringency ENSMODG000007077 138003757 138025466 + Platypus onAna1 Ultra33 Low stringency ENSANDG00000017294 877070 891895 -	_001166528 17467450	17473822 +	17463388	17464315	17465820	17466444	-4062	-3135	-1630	- 1006
Tenrec echTel1 GeneScaffold_7417 High stringency ENSETEG0000010924 63037 70485 - Elephant loxAfr3 scaffold 14 High stringency ENSLAFG0000001077 56118058 56135088 - Dpossom monDom 5 5 Low stringency ENSMODG00000172 138003757 138925466 + Platypus onAha1 Ultra33 Low stringency ENSAMODG000015294 877070 891895 -	canchr8.8.037.a 74588882	74591948 +	74586513	74587108	p/u	p/u	-2369	-4840	p/u	p/u
Elephant IoxAfr3 scaffold 14 High stringency ENSLAFG00000007077 56118058 56135088 - Opossom monDom 5 5 Low stringency ENSMODG000000172 138908757 138925466 + Platypus onnAnal Ultrad33 Low stringency ENSOAR00000015294 877070 891895 -	SETEG00000010924 63037	70485 —	75971	76373	73472	73688	-5486	5888	-2987	-3203
Opossom monDom 5 5 Low stringency ENSMODG000000172 138926757 138926466 + Platypus ornAna1 Ultra33 Low stringency ENSOANG0000015294 877070 891895 -	SLAFG0000007077 56118058	56135088	56139273	56139912	56137582	56138101	-4185	-4824	-2494	-3013
Platypus ormAna1 Ultra33 Low stringency ENSOANG0000015294 877070 891895 –	SMODG0000000172 138908757	138925466 +	p/u	p/u	p/u	p/u	p/u	p/u	p/u	p/u
	SOANG0000015294 877070	891895 -	p/u	p/u	p/u	p/u	p/u	p/u	p/u	p/u
Xenopus xentro2 16 X NM UU1113882.1 101.034 11348 +	001113882.1 1007554	1013326 +	p/u	p/u	p/u	p/u	p/u	p/u	p/u	p/u
Zebrafish danRer7 1 Low stringency NM 199523.2 53870179 53884602 +	199523.2 53870179	53884602 +	p/u	p/u	p/u	p/u	p/u	p/u	p/u	p/u

Table A3 Primer sequences for QPCR quantification of mRNA and methylation sensitive restriction digests, bisulfite specific PCR, a	nd
pyrosequencing.	

Primer name	Primer sequence (5′–3′)	PCR annealing temp (°C)	CpG positions
QPCR QUANTIFICATIO	DN OF mRNA		
Bov UCP1F	CACTAGGGAAGGACCGTCAG	55	
Bov UCP1 R	TTCCCGAGGAGGACTAGGTT	55	
Hom UCP1 F	TGCCCAACTGTGCAATGAA	56	
Hom UCP1 R	TCGCAAGAAGGAAGGTACCAA		
18S F	GTAACCCGTTGAACCCCATT	56	
18S R	CCATCCAATCGGTAGTAGCG	56	
OPCR QUANTIFICATIO	ON OF METHYLATION SENSITIVE RESTRICTION DIGEST	S	
Bov Long F	GCATCGAGGGTAGAGCGTAG	56	
Bov Long R	GTGTCCCACCATCCTGACTC	56	
Bov Short F	TCCGGCGATATAAGTCATCC	56	
Bov Short R	CTCTCCGACTTCTGCCCAGT	56	
Hom L and S F	CCAAAGGGTGACAGAAGGTG	56	
Hom Long R	CAGCAAACCCGATTTCTGTT	56	
Hom Short R	GTCCCTCCCATTCCCATTC	56	
BISULFITE SPECIFIC P	CR (PRIOR TO PYROSEQUENCING)		
Bov Pyro F	GGAGGTAGGTAGGGGGTTGT	56	1,2,3,4,5,6
Bov Pyro R	BIO-AAAACCTACCCCCCAAAACAC	56	1,2,3,4,5,6
Bov Pyro F	GGGGATTAGGGTTTTAGTTTTAAAGGT	52	7,8,9,10
Bov Pyro R	BIO-CCCCCACCTACCACCTAAA	52	7,8,9,10
Bov Pyro F	GTGGTGTTTAGTGGGAAGGTGATTATG	52	11 and 12
Bov Pyro R	BIO-ACCTTTAAAACTAAAACCCTAATCCC	52	11 and 12
Mouse Pyro F	GATGTTTTTGTGGTTTGAGTGTA	58	1,2,3,4
Mouse Pyro R	BIO-TCCCCAAAAAATCTAATTTCTAC	58	1,2,3,4
Mouse Pyro F	TTTTGGGGGTAGTAAGGTTAAT	53.3	5 and 6
Mouse Pyro R	BIO-TATTACCCAACAAAAACTTTCC	53.3	5 and 6
PYROSEQUENCING P	RIMERS		
Bov Pyro S1	TTTAGAGTTAGGGTTGGTTA		1,2,3,4,5,6
Bov Pyro S2	TGTTTTGTTTGGTTTTTTAT		7,8,9,10
Bov Pyro S3	GGTTGTTATTTTAGTTGAGA		11 and 12
Mouse Pyro S1	TTGTGAAATGAGTGAGTAA		1
Mouse Pyro S2	TGGTGTTTTATATTTTAAG		2
Mouse Pyro S3	TAGGTAAGTGAAGTTTGTTG		3
Mouse Pyro S4	ATTTTTGATTATATTGAATT		4
Mouse Pyro 5–6	TTTTTGTTTTGAGTTGATA		5 and 6

BIO indicates biotinylation and CpG position represents CpG dinucleotides successfully pyrosequenced in the bovine (Bov) and human (Hom) proximal promoters.

	CRE	PPRE	CRE	
Human	CACTCCTTTGCTACGTCATAAAGGG	-TCAGTTGCCCTTGCTCAT	CTGACCTATTCTTTACCTCT	CTGCTTCTTCTTGT
Chimp	CACTCCTT <mark>T</mark> GCTACGTCATAAA <mark>G</mark> GG	-TCAGTTGCCCTTGCTCAT	ACTGACCTATTCTTTACCTCTC	CTGCTTCTTCTTGT
Orangutan	CACTCCTTTGCTACGTCATAAAGGG	-TCAGTT <mark>G</mark> CCCTTGCTCAC <i>I</i>	ACTGACCTATTCTTTACCTCTC	CTGCTTCTTCTTGT
Rhesus Macaque	CA <mark>T</mark> TCCTT <mark>T</mark> GCTACGTCATAAAGGG	-TCAGTTGCCCTTGCTCAC#	ACTGACCTATTCTTTACCTCTC	CTGCTTCTTCTTGT
Mouse Lemur	CACTCCTT <mark>A</mark> GCTACGTCATAAAAGG	-TCAG <mark>G</mark> TGCCCTTGCTCAC <i>P</i>	ACTGACCTATTCTTTACCCCTC	CCTTTGT
Tree Shrew	CCTTGCTTCGCTACGTCACACGAGG	-TCAGTTACCC <mark>C</mark> TGC <mark>C</mark> CACC	CTGACCTATTCTTTGCCTCT(CCACTTCTTCCTTGT
Rabbit	CT <mark>CTTC</mark> CCT <mark>GCTACGTCAT</mark> GAAAGA	-CAGGCC <mark>ACC</mark> TTTGCTCACA	ACTGACCTA <mark>G</mark> TCTTTACC <mark>C</mark> CTC	GCCCCTTG <mark>CT</mark> C <mark>TG</mark> A
Guinea Pig	TGCTGCTTCGCTCTATCCCAGG	-TCAGT <mark>G</mark> ACCTCTGCTCAC	CTGCACTGTTCTCAGCCTCTC	CCACTTCTTAGT
Rat	CGCTCCTTTGCGACGTCACAGTGGG	-TCAGT <mark>C</mark> ACCCTTG <mark>A</mark> TCACA	ACTGCACCAGTCTTCACCTT	CCACGCTTCCT
Mouse	CACTCCTCTACAGCGTCACAGAGGG	- <mark>TCAGT</mark> C <mark>ACCCTTG</mark> AC <mark>CACA</mark>	CTGAACTAGTCGTCACCTTTC	CCACTCTTCCT
Macro Bat	CGC <mark>CCTT</mark> AGCTACATCTCAGAGG-	-TCCGTTCCCCTTGCTCACA	ACTGACCT ^C TTCTTTACCTC	CCACGTCTTTGT
Micro Bat	C <mark>CT</mark> TCCTT <mark>A</mark> GCTACGTCATGGAAGA	-CCCGCTACCCTTTCCCACA	ACTGACCTATTCTTTACCTC	ICC <mark>CTTCTTTGT</mark>
Dog	CACTCCTTACCTACGTCATGGAAGG	-TCTGTTACCCCTGCTCCT	A-TGACCTCTCCTTTACCT7	IGG <mark>CTTC</mark> CC <mark>TG</mark> G
Cat	CATTCCTTATCCACGTCATAAAAGG	-G <mark>C</mark> TGTTACCCTTG <mark>G</mark> TCACA	CTGACCTATTCTTCACCTCT	CGTCTTTGT
Giant Panda	CACTCCTGAGTTACATCATAAAAAG	-TC <mark>TGTTACCCTTGCTCAC</mark> A	TTGACCTATTCTTCACCTCT	CTTTGT
Horse	CACGCCTTAGCTACGTCGTAAAATG	- <u>TCCGTTAC</u> TCTTGCTCACA	CTGACCTGTCCTTTACTTCT	fat <mark>ctt</mark> ctt <mark>ctttgt</mark>
Cow	CATCCCGTAGCTACGTCACGAAAGC	-TCTGCTGCCCTTGCTCACA	CTGCCCTGTTCTTTACCTCTC	CTACTTCTTTGT
Pig	CACCCCTTAGCTATGTCCTAAAAGT	-CCAGCTGCCCTTGCTCC	TTCACCTGTTCTTCACCTCT	TACTTCTTTGT
Elephant	AACTCCTTTGCTATGTTATAAAAGG	TTCAGTTACCCTTGCTCACA	CTGACCTACTCTTTACCTCT	CACTTCTACTT
Tenrec	AACTGCTTTGCTACGTCACAGATGG	-C <mark>CAAT</mark> C <mark>ACCCTTGCTCAC</mark> C	CTGACCTACTCTTTGCCTCT	CGCTTCTACGT
consensus	cactcCtt gctacgTcataaaagg	tcagttaCcctTgctCaca	acTgacCtattCtttaCctctc	e gett – Ctttgt
EICLIDE A2 Portiol olign	ment of concerned onhoncer region in 20	vertebrete energies, energyim	ntoly 2000 kp of human LICB1	For gonomo
coordinates and full alignment	ent, see Appendix.	vertebrate species, approxima	atery – 3800 bp of numan UCP1.	ror genome

A Enhancer n Human Cow Mouse Rat consensus	region AACTTGCTGCCACTCCTTTG AACTGGCCCCATCCCGAC ACTTGCTGTCATCCTGTA ACCTTGCTGCCCCCCCTTG AACTTGCTGCCCCCCCTTG AACTtGCtgcCactCCtttg	CRE CTACGTCATAAAGGGTCAGT CTACGTCACGAAAGCTCAGT CACGTCACACAGGGTCAGT CGACGTCACACAGGGTCAGT CtaCGTCAcaaagGgTCGGt	PPRE TCCCTTGCTCATACTGACC CCCTTGCTCACACTGCC CACCTTGACCACACTGAAC CACCTTGATCACACTGCAC gCCCTTG LCACACTG C	CRE TATTETTTACCTCTCTCT TTTTTTTACCTCTCTACT TACTCTCACCTTTCCACT SACTCTCACCTTTCCACT TACTCTCACCTTCCACG ta TCTT ACCT TC ACT	TOTTCTTTGTGCCAGAA TCTTGTGCCAGAG CTTCCTGCCAGAA CTTCCTGCCAGAA C TT TGCCAGAA	GAG <mark>T</mark> AGAAATOTGA GAGCAGACCCCTGA GAGCAGAAATCAGA - GCA <mark>TGAATC</mark> ACG GAGCAGAAATC GA
Human Cow Mouse Rat consensus	TI CCTTTGGGGATACCACCCT GCTCTGGGGACACCCCCC CTCTCTGGGGATATCACCC TCTCTGGGGATACCCCCC C CTCTGGGGATACCCCCCC	RE CTCCCCTACTGCTCTCCAA CTCCCCTACTGTTCTCCAA CACCCCTACTGCTCTCTCCA CACCCTACTGCTCTCTCCAC C CCCCTACTGCTCTCTCCAC	PPRE ACCTGAGGCAAACTTTCCC ACCTGAGGCAAACTTTCCC TTATGAGGCAAACTTTCTT GAGGCAAACTTTCCC acctGAGGCAAACTTTCCc	IACTTCCCAGAGCCTGTCA IACTTCCCAGAGCCTGC ACTTCCCAGAGGCTCT-G CACTTCTCAGAGGCTCTGA ACTTCCCAGAGCTCTCA	NBRE E CAACTOT AACCAACC CAACTOTAAC-CACC CCCCACCAACCCAAC CCCCACCAACCCAAC CCCACCA	RE-2 TGCTCCTTGGAAT TGGTCCTTGGAAT CTTTCCTCAGAC CTTTCTTTGGAAT CTTCCTTGGAAT
B Putative Re Human Cow Horse Guinea Pig consensus	egulatory Region CCAAGGGGAA CCATATGTAC CCAAGGGGAA GAATATGCC ACAAGGAG GAAGGACATGAC CGAAAGGAGAGAGGACAGGAC gcAAgggGaagggA AtGgaC	CCDCATC-TTTTCATGCAGG GTTTTCC-TTTTCATGCAAGG TCTCACT-CTTTCATGCGAG CCTTACTCCTCTCACAGGAT ccT a TTT AtgggAge	SAATGTGA <mark>IGGATTTGCAAT</mark> SAATTTGCGAT GAATTTGCAGAT AATGGCTTGAAAGTGCCAT GAATg tgGAttTGCGAT	TATGTTTTAAAAGTACTAC TATGCTTTAAAACCACGTC/ TATGCTGTAAAACCACGTC/ TTA-TTTAAAGTCGCT-C/ TATGCTTTAAAACCACCAC/	AGACAGAACCACTG <mark>A</mark> GA AGAT GAACCACTGTGA AGCT GAACCCCTGTGA AGAG GAAGOACTGTGG AGATAGAACCACTGTGA	NAGATTCA NAGACAATGCATA NGATTCA NAGACTCA NAGA tCA
Human Cow Horse Guinea Pig consensus	T <mark>GGGTAC</mark> CT TTGGGGTGAG GGCTCGGT <mark>GGGTTGGG</mark> TTGTG GGCTAGGGTTTGGTTGTG GGGTAGGATGGGTGG GGGTA GggTtgGG TGtG	GACIGGGATTAACCIGTIG GGITGGGGATTATCCAGTIG GGITGGIGATTAACCIITGCG/ ACCIGGGGATTAACCATAGG gg IGGggATTAACC ttG/	ATAGCAGAGGTTCACTAGAG ACAGC <mark>GGTTCA AT GCAGAGGTTCACTAGAG AC<mark>A-CAGAGGCTCTCGAG</mark> AtagCAGAGGTTCactagag</mark>	TCAACAAGGAATAAGG-TC TTACCAAGGAAAAATGCTC TTATCAAGGCCTCATG ttaacaaggaataatg tco	I <mark>CCTCTT TACA</mark> CTTTA(- CCTTTTAT CAT CCCTTTTATACAT - TTA CCTTTTATACAT - TTA CCTTTTATACAT - TTA CCTTTTATACATTTT	STCATACTATACC TATAAC STCATACTATCCC IACTTA-TACATG ytcata TAtacc
Human Cow Horse Guinea Pig consensus	-AACATTCTTAACCACTGCTT AAACATTCCCAATCTGCTT AAACATTCTCCAATCTCTGCTT AAACATTCTCATCTCTCA AAACATTCTCAT aAACATTCtcAatc ctgctt	AGCCATCAGCCTCACAACAT AGCCATCATCCTCACAACCT AGCCATAAGCCTCACAACCT AGCCATAAGCCTCACAACCT CTCACACTCT agccatcagcCTCACAaccT	AACAACTCCATCATAGTTGT AATAACTCTACCACAGGTGC AATAACTCCCCCACAGGGC CATAACTCCAACAAGAGCTAT aAtAACTCCAACAAGAGCTAT	ACTCCCTAAGATCACCAAC ACTCCCTAAGGTGATCAAT CTCCCTAAGATGACCAAT TTCCCTTGGATCTCCAAG aCTCCCTaaGaT acCAAt	AATGTTAG TATGTTAG ACTGTTAG AACTTAG aatgTTAG	
FIGURE A4 (A rat, and mouse, transcription fac	Alignment of conserved en approximately –3800 bp of ctor binding sites taken from	hancer region in human, b human UCP1. Positions of Jastroch et al. (2008) (B) F	oovine, alignment of c known –2200 to –27 Partial alignment, see	conserved putative regula '00 bp of human UCP1. F e Appendix.	atory region (PRR) app or genome coordinate	proximately as and full

>Human
ttataatctggtctcagaagccacatggcatcagttctgtattattctattggtca
aaacattcataagcctg-ccagatgcaaggggaaggcatatgtaccctcatc-ttttg
atgggaggaatgtgatggatttgcaattatgttttaaaactactacaGAC
AGAACCACTGAGAAAGATTCATGGGTA-GCTTTGGGGTGAGGACT-GGGAATTA
ACCTGTTGATAGCAG-AGGTTCACTAGAGTCAACAAGGAATAAGGT-CTCCTC
TTGTACACTTTAGTCATACTA-TACCAACATTCTTAACCACTGCTTAGCCATCAGCC
TCACAACATAACAACTCCATCATAGTTGTACTCCCTAAGATCACCAACAATGTTAGAGTC
AAATCCGGTAGGTTTTTCTTTGTTTTTGTCCTCCTGACATTTTTT
CTAAACTTGACACTGGTCAGACCCAATCTTTCTTT-AATCATATTCTTAAA
TACCAGTTCTATCACTGGATATGTT
AGAACCACTGAGAAAGATTCATGGGTA-GCTTTGGGGTGAGGACT-GGGAATTA
AAATCCGGTAGGTTTTTTTCTTTGTTTTTTTGTCCTCCTGACATTTTTTT
ACTGTTTCT
TGTTCTCACTCTACCTTTGACAAAGCCATTCTTTCCAGACTATAACTCTGGGTCTGGGTC
CCCCTATGGTTTGGCCCTTGAACTCTTTTCCTAGTCCTATTTGACTAGCCCCATTTTCCC
GTGAAAAGCATGCCCCTTTCATTGCATCCATATCATGACTACCAAATA
>Orangutan
ttataatctggtctcagaagccacatggcatcagttctgtattattctattggtca
aagcattcataagcctg-ccagatatggatcctcatc-ttttg
atgggaggaatgtgatggatttgcaattatgttttaaaaccactacaGAT

AGAACCA	.CTGAGAAAGATTCATGAGTA-GCTTTGGGGTGAGGACT-GGGAA
ACCTGTI	GATAGCAG-AGGTTCACTTGAGTCAGCAAGAAATAAGGT-CTC
TTGTACA	CTTTAGTGATACTA-TACCAACATTCTTAACCACTGCTTAGCCATCA
TCACAAT	CTAACAACTCCATGATAGTTGTACTCCCTAAGATCACCAACAATGTTAGA
AAATCCG	GTAGGTTTTGACATTT
CTAAACI	TGACACTGGTCACACCCAGTCTTTCTTT-AATCATATTCTT
TACCA	GTTCTATCACTGGATATGTT
	ACTGTT
TGTTCTC	ACTCTACCTTTGACAAAGCCATTCTTTCCAGACT
>Rhesus	Macaque
ttataat	ctggtctcagaagccacatggcatccatcagttctgtattattctattgg
aagcatt	cataagcctg-ccagatgcaaggggaaggcacatggaccctcatc-tt
atggga-	gaatgtgatggatttgcaattatgttttaaaaCTACTACA
AGAACCA	.CTGAGAAAGATTCATGGGTA-GCTTTGGGGTGAGGATT-GGGAA
ATCCGTT	GAT-GCAG-AGTTTCACTAGAGTCAGCAAGGAATAAGGC-CTC
ACGGACA	TTTTAGTCATACTC-TACCAACATTCTTAGCCACTGCTTAGCCatca
gcacaac	ctaacaactccatcatagttgtactccctaagatcaccaacaatcttaga
aaatcca	.gtaggttttgacattt
ctaaact	tgacactggtcaagacccaatctttattt-aatcatgttctt
tacta	gctctatcactggata
	tc
tgttctc	actctacctttgacaaggccattctttccagact
AACCATT	
ATAACAC	
A CA A DOA	
M = M M + M	
AGAATCA	,,,
AGAATCA	
ACCAGTI TTATGCA	
AGAATCA ACCAGTI TTATGCA TCACAAC	TTTTAGTCATCCTACTTTGGGCACGCTCAACCTCTGCTTGGCCGTCA

ТGTCCTAAA'	TCTACCTTTGGCAAGGCC	-ACIGITIC
>Tree_Shre	ew	
		CT-TTTA
ATAGGAAGA AGAACCACT ACAAATTG- TTATACATG TTACAACCT	ATGTTATGGTTTTCCTTTTGAAGCTACTAT GAGAAAATTTTGTGGATA-GGATTGGGGTGAAGTT ATAGAAG-AGGTTCCCTAGAGATAACACAGGATGA TTCATCATACCATGCCCAACATTCTCAACCTCTGCTTA AATAACTCTACCATAATTTTATTCCCTAAAATCACCAGTAA	GCA T-GAGGAGT. TCC-CTCCT GCCATCAG- TGT
AGGA	 	
>Rabbit AGGA	AT	
>Rabbit AGGA	ATCAG-AGGTACAATGGAGTTAG-AAAGAGCAG	
>Rabbit AGGA ACC-GTTG- CTATTTATT	ATCAG-AGGTACAATGGAGTTAG-AAAGAGCAG TTAGTCATTTTACACTAGGCATTCCTGCTTA	
>Rabbit AGGA AGGA ACC-GTTG- CTATTTATT TCACAACCT	ATCAG-AGGTACAATGGAGTTAG-AAAGAGCAG ACAGCAG-AGGTACAATGGAGTTAG-AAAGAGCAG TTAGTCATTTTACACTAGGCATTCCTGCTTA AATGATTCCATCACAGTTGTGCTTCCTAACATCACCAATAA	
>Rabbit >Rabbit AGGA ACC-GTTG- CTATTTATT TCACAACCT AAACCTATT CTACACTTG	ATCAG-AGGTACAATGGAGTTAG-AAAGAGCAG TTAGTCATTTTACACTAGGCATTCCTGCTTA AATGATTCCATCACAGTTGTGCTTCCTAACATCACCAATAA CAGCTTTAGTTTTTGTCCTCTT ACATTGGTAA-AGACTTGCATCTTCTTC-ACTCA	
>Rabbit AGGA AGGA ACC-GTTG- CTATTTATT TCACAACCT AAACCTATT CTACACTTG TACCAG	ATCAG-AGGTACAATGGAGTTAG-AAAGAGCAG TTAGTCATTTTACACTAGGCATTCCTGCTTA AATGATTCCATCACAGTTGTGCTTCCTAACATCACCAATAA CAGCTTTAGTTTTTGTCCTCT ACATTGGTAA-AGACTTGCATCTTCTTC-ACTCA	
>Rabbit AGGA ACC-GTTG- CTATTTATT TCACAACCTA AAACCTATT CTACAACTTG TACCAG	ATCAG-AGGTACAATGGAGTTAG-AAAGAGCAG TTAGTCATTTTACACTAGGCATTCCTGCTTA AATGATTCCATCACAGTTGTGCTTCCTAACATCACCAATAA CAGCTTTATTGGTAA-AGACTTGCATCTTCTTC-ACTCA	GAGGATT TGCCCCT GCCATCAGC TGC-AAAGG GACATTCAT TATTCTCAA
>Rabbit AGGA ACC-GTTG- CTATTTATT TCACAACCTA AAACCTATT CTACACTTG TACCAG	ATCAG-AGGTACAATGGAGTTAG-AAAGAGCAG TTAGTCATTTTACACTAGGCATTCCTGCTTA AATGATTCCATCACAGTTGTGCTTCCTAACATCACCAATAA CAGCTTTAGTTTTTGTCCTCTT ACATTGGTAAAGACTTGCATCTTCTTC-ACTCA	
>Rabbit AGGA ACC-GTTG- CTATTTATT TCACAACCTA AAACCTATT CTACACTTG TACCAG	ATCAG-AGGTACAATGGAGTTAG-AAAGAGCAG TTAGTCATTTTACACTAGGCATTCCTGCTTA AATGATTCCATCACAGTTGTGCTTCCTAACATCACCAATAA CAGCTTTATTGGTAA-AGACTTGCATCTTCTTC-ACTCA	GAGGATT TGCCCCT GCCATCAGC TGC-AAAGG GACATTCAT TATTCTCAA

>Guinea_Pig
cagcatcetcaggcetg-tcaggtggaaaaggaggaggacaggagceettactgetete acaggataaatgGCTTGAAAGTGCCATTTTA-TTTAAAGTCGCTCAGAG AGAAGCACTGTGGAAGACTCAGGGGTA-GGATGGGTGGGAGCT-GGGGATTA ACCATAGGACACAG-AGGCTCTCTGGAGTTATCAAGGGCTGATGC-CTTTGC TCACATTTTTAACTTATACATGAAACATTCTCAGTC TCACACTCTCATAACTCCAACAAAGCTATGTTCCCTTGGATCTCCAAGAACATTAGACCC AAATCCAGTAGCCTGTGTCTGTCTGTCGGTCTATCTCTTTGTCACCTCCTGACATTTATT GCAAACTTGACACTGAAGCCCCAGCCCTTCTTT-CAATATAGTCTCAAA TACCA-AGTTCTAAGACCCTACATGCT
ACTGTTTCT TGTCCTAACTCTACCTGTGGCCA-GTCATTCTTTCCAGACCACTGTTTCT
>Macro_Bat TTATGATCCAGCCTCGGAAACTACATAGCATCAGCTCCGTCTTATCCTATTGGTCA AAGCGTTTACAAGCCGGCCCAGAAGTGAGGGGGGGGAGGAACATGGACCCTCACC-TTTTG ATGGGAGAGACTTGGAATTATGCTTTAAAACTACTACAGAT GGAAGCACCCATGAAGG-GGTTCAGGGGTAGGGGTTGGGGTTGTGAGTTGGGGGGATTA GCCAGCCAGCCATAGCAGAAAGCTCACTAGCGTTGGCAAGAAATGAT
GACCCTTCTT
>Giant_Panda tcatgatctagcctcagaaaccacatagcatcagttctgtcttaatctgttggtta aagcattcacaagcctgcccagatgcaaggggaagggacatggaccctcacc-cttta acagga-gaatgtgtGATTATGCTTTAAAACAACTACAGGT GGAA-CATTGTGAACGATTCAGG-TTA-GGGTCGGGTTGTGGGTT-GAGGACTA ACCAGTTGATAGCTAACTCTCTAGAGTTAGCTAGGAAAAATGC-CCCCCC

CI	AAACTTCATGCTAGTCAAGACCCCACCCTTCCTTAAATTATATTCTCAA .CCATGGTTCCATGACCGGATACACT
	AA
 >H	orse
	catcagttctgtcttattctattggtc
ac	gcattcataagcctgcccagatacaaggaggaaggacatggactctcact-cttt
at	gggaggaatttgagattatgctgtaaaaccactacaGC
GG	AACCGCTGTGAAGGATTCAGGGCTA-GGGTTTGGTTGTGGGTT-GGTGATT
AC	CTTTCGATGGCAG-AGGTTCACTAGAGTTAGCAAGGAAAAATGCTCCCCT
ΤT	ATACA-TTTAGTCATAGTATGCCAAACATTCTCAATCTCTGCTTAGCCATAAGC
ТС	ACAACCTAATAACTCCGCCACAGCGGCCCTCCCTAAGATGACCAATACTGTTAGAGC
AA	ATCCAATAGGCTTTTCTTTGTTTTTGTCCTATTTTGACATT-CT
СІ	AAACTTCACACTAGTTAAGACCTCATTCTTCCTTATGTTCTCAA
ΤA	CCACGGTTCTATGACTGGAAACTCTTTttttcctctattttatatttgggttgttgc
ac	agcatggctaacaagtagtgtaggtccgcaatcaggatctgaacccatgaacctgag
са	ctgaaacagagcatgccaaacttagccactatgccacgggctggct
ΤT	TCCTAACTTTACCTTTGACCAAGCTGTTCGTCCCAGACCATAACTCTGGGTAC
-C	TCTATGGCTTGGTCCTTGACCCCCTTTTCCTAGTTCCATT
>C	
71	
АС	
A1 CC	
ОС ТС	CAGTTGACAGCGGTTCACCT
тт	ATGCATTATAACAAACATTCCCAATCTGCTTAGCCATCATC
TC	ACAACCTAATAACTCTACCACAGCTGCACTCCCTAAGGTGATCAATTATGTTAGAGG
AA	ATCCAATACTTTGACATTTT
СТ	GAACATTACAGTATGACTACTTGACAGACCCAACCCTTCATT-AATTATATTCTCAA
ТC	ССАТАСТТСТАТССТСАССАС

-CCCTATAGC	TTGACCCTTC	GACCCCTT:	TTCCTAGTCC	CATTATAC	TCATTCCC2	ATGTAA
>Tenrec	TCTTTTCTTC	JCATTCATA	ALIGCIG	ACTUTUAAA	ATA	
						-TGGTC(
AATGGAAGAG	CGGAAAACTO	GCGIGCA GTTGGGAT'	ЧОЛС ЛАССС ГАТССТТСАА	ACCIGGAL	CTGTGGGG	LATIC PAGATAC
AGAACCACGG	TGATGAA	TCCAGAG	AGA-GGT	'TTGGGGGGG	GAGGGTCA	AGGATC
AGC-ATTG	-GTAG(CAA-AGGT	ICACTAGAGC	TGGCAAGG	AACA	
>Elephant						
>Elephant		gccacata-	catca	.gctctttta	 atattcta	ttggtt
>Elephant tatcattcat	ctcaaaag gagcctgccc	gccacata-	catca		atattcta1	ttggtt
>Elephant tatcattcat		gccacata- cagatgcaa ttgagatt	catca agggggagggg catgttttaa		atattctat	ttggtt TAGATA
>Elephant tatcattcat aaagaa AGAACAACTG		gccacata- cagatgcaa ttgagatt ATCCAGGG2	catca aggggagggg atgttttaa ATA-GGG	.gctctttta acgtgtgtc .aactactac	atattcta caTGTGGG AGGGTC-A	Ltggtt TAGATA
>Elephant tatcattcat aaagaa AGAACAACTG AAC-ATTG		gccacata cagatgcaa ttgagatt ATCCAGGGZ CAG-AGCT	catca aggggagggg atgttttaa ATA-GGG FCACTAGAGC	gctctttta acgtgtc aactactac TTTGGGTGA	atattctat caTGTGGG AGGGTC-AZ	Ltggtt FAGATA AGGATT -CCACC
>Elephant >Elephant tatcattcat aaagaa AGAACAACTG AAC-ATTG CCATACATTT		gccacata agatgcaa ttgagatt ATCCAGGG ZAG-AGCT TACACTTA	catca aggggagggg catgttttaa ATA-GGG FCACTAGAGC	gctctttta acgtgtc aactactac TTTGGGTG <i>I</i> TGGCAAGG <i>I</i> CTGTCTCT	atattctat caTGTGGG AGGGTC-AA AATAATAT	Ltggtt FAGATA AGGATT -CCACC
>Elephant tatcattcat aaagaa AGAACAACTG AAC-ATTG CCATACATTT TTGAACCCTA	ctcaaaaa gagcctgccc t GTAAGGA -GTAGC TATACT AAAATGCCAC	gccacata- cagatgcaa -ttgagatt ATCCAGGG7 CAG-AGCT CAG-AGCTTA CCGTAGTTC	catca aggggagggg atgttttaa ATA-GGG FCACTAGAGC ATGTTCTTCA GTTCTCCATA	acgtgtttta acgtgtc aactactac TTTGGGTGA TGGCAAGGA CTGTCTCT ACATCACCA	atattctat caTGTGGG AGGGTC-AA AATAATAT ICTTAGCTA	Ltggtt FAGATA AGGATT -CCACC ACCAGC FACATC
>Elephant tatcattcat aaagaa AGAACAACTG AAC-ATTG CCATACATTT TTGAACCCTA AAACCCAACA	ctcaaaac gagcctgccc t GTAAGGA -GTAGC TATACT AAAATGCCAC GATTTT	gccacata- cagatgcaa ttgagatt ATCCAGGGA CAG-AGCT ACACTTAA CCGTAGTTC	catca aggggagggg atgttttaa ATA-GGG ICACTAGAGC ATGTTCTTCA GTTCTCCATA	actttta acgtgtc aactactac TTTGGGTGA TGGCAAGGA CTGTCTCT ACATCACCA	atattctat caTGTGGGG AGGGTC-AZ AATAATAT ICTTAGCTZ AGTAATGT CTTAACZ	Ltggtt FAGATA AGGATT -CCACC ACCAGC FACATC
>Elephant tatcattcat aaagaa AGAACAACTG AAC-ATTG CCATACATTT TTGAACCCTA AAACCCAACA CTGAACTTGA		gccacata cagatgcaa ttgagatt ATCCAGGGA CAG-AGCT CACACTTAA CCGTAGTTCA	catca agggggagggg atgttttaa ATA-GGG TCACTAGAGC ATGTTCTTCA GTTCTCCATA CTTTATT GGGCCAACCT	gctctttta acgtgtc aactactac TTTGGGTGA TGGCAAGGA CTGTCTCT ACATCACCA TGGGTCCTC CTTCTTC	atattctat caTGTGGG AGGGTC-AZ AATAATAT ICTTAGCTZ AGTAATGT CTTAACZ	Ltggtt FAGATA AGGATT -CCACC ACCAGC FACATC ATCTCT CTTCAA
>Elephant tatcattcat aaagaa AGAACAACTG AAC-ATTG CCATACATTT TTGAACCCTA AAACCCAACA CTGAACTTGA TACCGTTGTT		gccacata agatgcaa ttgagatt ATCCAGGGA CAG-AGCT CACACTTAA CGTAGTTC GGTTTAAC	catca aggggagggg tatgttttaa ATA-GGG TCACTAGAGC ATGTTCTTCA GTTCTCCATA GGGCCAACCT	gctctttta acgtgtc aactactac TTTGGGTGA TGGCAAGGA CTGTCTCTC ACATCACCA 'TGGGTCCTC 'CTTCTTC	atattctat caTGTGGGT AGGGTC-AA AATAATAT ICTTAGCTA AGTAATGT CTTAACA	Ltggtt FAGATA AGGATT -CCACC ACCAGC FACATC ATCTCT CTTCAA
>Elephant tatcattcat aaagaa AGAACAACTG AAC-ATTG CCATACATTI TTGAACCCTA AAACCCAACA CTGAACTTGA TACCGTTGT	ctcaaaaa gagcctgcco t GTAAGG GTAGC TATACI AAAATGCCAC GATTTT CGCI CTATGGCTGG	gccacata agatgcaa ttgagatt ATCCAGGGA CAG-AGCT CAG-AGCT CGTAGTTC CGTAGTTC CGTTTAAC GATACACT	catca aggggagggg atgttttaa ATA-GGG ICACTAGAGC ATGTTCTTCA GTTCTCCATA CTTTATT GGGCCAACCT	actatta acgtgtc aactactac TTTGGGTGA TGGCAAGGA CTGTCTCT ACATCACCA TGGGTCCTC CTTCTTC	atattctat caTGTGGGG AGGGTC-AA AATAATAT ICTTAGCTA AGTAATGT CTTAACA ATC	Ltggtt FAGATA AGGATT -CCACC ACCAGC ACCAGC ATCTCT CTTCAA
>Elephant tatcattcat aaagaa AGAACAACTG AAC-ATTG CCATACATTT TTGAACCCTA AAACCCAACA CTGAACTTGA TACCGTTGTT	ctcaaaaq gagcctgccc t	gccacata agatgcaa ttgagatt ATCCAGGGA CAG-AGCT CAGTAGTTC CGTAGTTC GGTTTAAC GATACACT	catca aggggagggg atgttttaa ATA-GGG CCACTAGAGC ATGTTCTTCA GTTCTCCATA GTTCTCCATA GGGCCAACCT	actactactac acgtgtc aactactac TTTGGGTGZ TGGCAAGGZ CTGTCTCTC ACATCACCZ TGGGTCCTC CTTCTTC	atattctat caTGTGGGG AGGGTC-AA AATAATAT ICTTAGCTA AGTAATGT CTTAACA ATC	Ltggtt FAGATA AGGATT -CCACC ACCAGC FACATC ATCTCT CTTCAA IGTTTC

FIGURE A5 | Sequence of the conserved enhancer region in 20 vertebrate species.