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Abstract

Introduction

The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates
lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treat-
ment of breast tumour cells with metformin on phosphatidylcholine (PtdCho) metabolism
which plays a key role in membrane synthesis and intracellular signalling has been examined.

Methods

MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and
[*H-methyl]choline and [**C(U)]glucose incorporation and lipid accumulation determined in
the presence and absence of lipase inhibitors. Activities of choline kinase (CK), CTP:phos-
phocholine cytidylyl transferase (CCT) and PtdCho-phospholipase C (PLC) were also mea-
sured. [*H] Radiolabelled metabolites were determined using thin layer chromatography.

Results

Metformin-treated cells exhibited decreased formation of [*H]phosphocholine but increased
accumulation of [®H]choline by PtdCho. CK and PLC activities were decreased and CCT
activity increased by metformin-treatment. ['*C] incorporation into fatty acids was
decreased and into glycerol was increased in breast cancer cells treated with metformin
incubated with ['*C(U)]glucose.

Conclusion

This is the first study to show that treatment of breast cancer cells with metformin induces
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profound changes in phospholipid metabolism.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.
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lular signal transduction. The most abundant structural phospholipid in eukaryote cells is
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phosphatidylcholine (PtdCho) [1] whilst phosphatidylinositol (PtdIns) is a more minor mem-
brane component but generates inositol 2,4,5 triphosphate for signal propagation downstream
of many growth factor receptors including the tyrosine kinase human epithelial receptor family
(HER) [2]. Ptdins and PtdCho are also important sources of the secondary messenger diacyl-
glycerol [3] which is generated from the respective phospholipid by the action of phospho-
lipid-specific phospholipase C (PLC).

Aberrant PtdCho metabolism is a characteristic of many cancers [4] due to changes in the
activity of degradative enzymes including phospholipase C [5] and anabolic enzymes especially
choline kinase [6,7]. Both choline kinase [6,7] and PtdCho-PLC [8] are essential for tumour
progression and have been identified as potential cancer treatment targets[8,9].

Cancer cells have a high demand for fatty acids required for the synthesis of phospholipids
for both new membrane synthesis and signalling. In contrast to normal cells, which generally
utilise dietary fatty acids, many cancer cells exhibit a lipogenic phenotype involving increased
activity of lipid metabolising enzymes, including fatty acid synthase (FAS) [10,11], in part
induced by increased activation of Akt/mTor pathway [12]. Whilst the high fluxes of other
pathways in tumour cells generates metabolites such as tricarboxylic acid [13] providing abun-
dant sources of acetyl CoA for conversion to fatty acids. Fatty acid synthase (FAS) catalyses the
synthesis of the long chain fatty acid from acetyl CoA and the resulting palmitic acid is then
utilised in the production of cell phospholipids [14].

Metformin (1,1-dimethylbiguanide) is used in the treatment of type 2 diabetes (T2DM) as it
lowers blood glucose levels, sensitises target cells to insulin [15] and decreases gluconeogenesis
by the liver [16]. Metformin has been shown to improve the survival of cancer patients [17]
whilst cancer risk in diabetic patients, which is increased compared with non-diabetic patients,
has been shown to be decreased by treatment with metformin [18,19].

Metformin has consistently been shown to activate AMPK [20,21] which is believed to be
triggered through inhibition of cytochrome 1 and consequent reduction in intracellular ATP
concentration [20]. Other pathways including Akt, which regulates glucose metabolism [22]
and lipid metabolism [23], have been shown to be modulated in the breast cancer cell line
MDA-MB-231 by treatment with metformin but this appears to be cell-type dependent [21].
Inhibition of energy metabolism by treatment of prostate cancer cells with metformin has
recently been shown to inhibit lipogenesis [24]. Other studies have demonstrated that metfor-
min directly interferes with fatty acid synthesis in breast cancer cells by decreasing FAS activity
[25]. The ability of metformin to inhibit cancer cell growth has been attributed in part to its
inhibition of lipogenesis via activation of AMPK [26].

As metformin can modulate both glucose and fatty acid metabolism, which are key to the
formation of the phospholipid precursor diacylglycerol, we have examined the effect of metfor-
min on the rate of accumulation of PtdCho in breast cancer cells and the activities of Key
enzymes involved in the formation (CK and CCT) and breakdown of PtdCho (PtdCho-PLC).

Materials and Methods
Materials

All chemicals were obtained from Sigma-Aldrich (Poole UK) unless otherwise stated. [*H-
methyl]Choline chloride (60-90Ci/mmol, 1mCi/ml) was obtained from American Radiola-
beled Chemicals Inc. (USA) and D-["*C(U)]Glucose (9.25-13.3GBq)/mmol) from Perkin
Elmer (Beaconsfield UK). The phospholipase C inhibitor D609 [27],the triglyceride lipase
inhibitor Atglistatin [28] and the acetyl CoA carboxylase o inhibitor TOFA [29] were obtained
from Cambridge Biosciences (UK) and used at concentrations previously determined. Tissue
culture media was obtained from Invitrogen (Paisley UK). Phosphate-buffered saline (PBS)
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was obtained from Fisher Scientific in 10X concentrated solution and diluted 10 fold with dis-
tilled water.

Tissue culture

The breast cancer cell lines BT474, MDA-MB-468 and SKBr; were obtained from the Ameri-
can Tissue Culture Collection (LGC Standards, Teddington UK) and maintained in Dulbecco’s
Modified Eagles medium supplemented with penicillin (10,000units/100ml)/Streptomycin
(10,000pg/100ml) and 10% foetal bovine serum in a CO, incubator with humidified CO,:air
(5%:95%) at 37°C.

[*H-methy]Choline cellular incorporation

Cells were grown until confluent in 75cm? tissue culture flasks (Nunclon, Thermo Scientific
UK) and seeded (1x10° cells per flask) into 25cm? flasks. After 24h cells the media was replaced
with either fresh medium or fresh medium with metformin (4mM) [21]. The flasks were then
incubated for 72h unless otherwise stated.

[*H-methy]lcholine chloride uptake and phosphorylation: Media was replaced with 0.5ml
of media containing [*H-methyl]choline chloride (185KBq/ml) and incubated at 37°C for
15min then washed rapidly 4x with ice cold phosphate buffered saline (PBS). The cells were
then detached with 0.3ml of a solution of 0.05% trypsin: EDTA (Gibco UK) and neutralised
with 0.3ml of medium. The cells were centrifuged at 1000g for 5min at 4°C and the media
removed and retained. The cells were fractionated into lipid and aqueous phases by resuspen-
sion in 0.25ml of methanol (MeOH): CHCI; (2:1) and placing on ice for 1h after which
0.125ml of CHCl; and 0.125ml of Tris buffer (10mM) were added. The phases were then sepa-
rated by centrifuging at 10,000g for 5min. The aqueous (upper phase) was then collected and
the lipid (lower phase) placed in a scintillation vial (Perkin Elmer UK) with 3ml of scintillation
fluid (Ultima Gold, Perkin Elmer UK) mixed and the activity counted on a TRI-CARB 2100TR
liquid scintillation counter (Perkin-Elmer UK). Phosphorylated and non-phosphorylated [*H-
methyl] Choline in the aqueous phase and the retained media were then determined as
described below.

Determination of Phosphorylated [*H-methyl] Choline by precipitation

To determine the amount of phosphorylated [?H-methyl]choline in the aqueous phase and
medium the samples were made up to 1ml with water and 200ul of sample added to 3ml of
scintillation fluid in a scintillation vial and counted. A further 200ul was mixed with 200ul of
ZnSO, (5% w/v) and 200ul of 0.3M Ba(OH),. The mixture was then repeatedly mixed on a vor-
tex mixer for 5min then centrifuged at 10,000g for 2min to pellet the precipitated phosphates.
The radioactivity in a 200ul sample of the supernatant (containing non-phosphorylated [*H-
methyl] Choline) was determined and the difference between the two samples, after allowing
for dilution, was the amount of phosphorylated radioactivity [30].

Determination of rate of [°H-methyl]choline incorporation into lipid

Cells were seeded into 25cm? flasks, treated with metformin (4mM) for 72h then pulsed with
[’H-methyl]choline as described for ‘[?H-methy]lcholine chloride uptake and phosphoryla-
tion’. After washing with ice-cold PBS the cells were incubated for 0 and 1h with fresh 0.5ml of
non-radioactive medium (chase) after which the media was collected and the cells washed 2x
with 0.2ml PBS and the washes pooled with the medium. Radioactivity was counted in the
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pooled media/ washes. The cells were trypsinised and radioactivity in the cells was determined
after fractionation into lipid and aqueous phases as described above.

Determination of ['*C(U)]-glucose incorporation into lipids and glycerol

Cells were set up and treated as described for ‘[3H-methy]Choline cellular incorporation’
except they were incubated with media containing [14C(U)]glucose (185KBq/ml) for 2h then
washed 5x with ice-cold PBS. The cells were detached by treatment with trypsin and after addi-
tion of medium, transferred to microfuge tubes and centrifuged at 400g for 5min. They were
then washed 2x with ice-cold PBS and the washes and media pooled and radioactivity counted.
The cells were then fractionated into lipid and aqueous fractions as described above ([*H-
methy]Choline cellular incorporation). The radioactivity in a 50ul sample of the lipid fraction
was counted and the solvent from the remainder evaporated. The lipids were then subjected to
saponification by addition of KOH (10M) in water: ethanol (1:10) and heating to 70°C for
20min [31]. The fatty acids and glycerol were then separated into lipid and aqueous fractions
[32] and radioactivity counted in the aqueous phase (glycerol) and the lipid phase.

Thin layer chromatography (TLC)

Composition of lipid-phase: Lipid phase extracts were subject to TLC on aluminium backed sil-
ica-gel plates (Merck, Germany) using a mobile phase of chloroform/methanol/acetone/acetic
acid/water (40:14:15:12:7 v/v) (modification of [33]. The plates were cut into 7mm pieces
placed in scintillation vials. The silica gel was loosened by treatment with 0.1ml of NaOH (1M)
and neutralised with HCI. After addition of scintillation fluid the bare aluminium pieces were
removed and the samples counted. Standards consisting of pure phosphatidylcholine and lyso-
phosphatidylcholine were run and visualised using iodine vapour. The two lipids appeared as
streaks with R¢values in the range 0.28-0.47 and 0.73-1.0 respectively.

Separation of aqueous phase components: Aqueous phase extracts were separated on alu-
minijum backed silica plates using a mobile phase consisting of 0.5% saline/methanol/NH,OH
(49:49:2 v/v) [34] and silica loosened and counted as described for the lipid phase. Standards
consisting of [*H]-Choline and [SH]—Phosphocholine ([PH]PCho) were run and treated as for
the cell extracts, betaine and glycerophosphocholine were run and detected using iodine
vapour and cytidine diphosphate choline (CDP-choline) was visualised using a UV lamp
(UVP, Cambridge UK).

Enzyme assays

Cell lysis. Cells were seeded in 25cm” flasks and treated with metformin as described
above ([3H—methy] Choline cellular incorporation). After metformin treatment cells were
detached with trypsin followed by addition of medium then transferred to microfuge tubes.
They were then pelleted by centrifugation at 400g for 5min at 4°C, washed with PBS then sus-
pended in 200pl of homogenisation buffer consisting of 20mM Tris-HCI (pH 7.5) 0.25mM
sucrose, 0.5mM dithiothreitol, ImM aminohexanoic acid and 1mM phenylmethanesulfonyl
fluoride. The cells were then lysed by drawing up and down a 25guage needle 10 times. For the
CK assay debris was removed by centrifugation at 20,000g for 10min.

Choline kinase (CK) assay. To 100ul of CK assay buffer [35] consisting of 40mM Tris-
HCI (pH 7.5), 2mM ATP, 10mM MgCl,, 0.25mM choline and [?H]methyl-choline chloride
(74KBq) was added 20pl of cell lysate. After vortex mixing the mixture was incubated in a
water bath at 37°C for 1h. The reaction mixture was then diluted with 0.3ml of water and
unreacted [*H]choline removed by addition 100yl of the ion-pairing agent tetraphenylboron
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(TPB) in heptan-4-one (5mg/ml) [36]. [3H]phosphocholine formed was determined as
described above ‘Determination of Phosphorylated [*H-methyl] Choline by precipitation’.

CTP:phosphocholine cytidylyltransferase (CCT) assay. Cells were treated and lysed as
described. A 50ul sample of complete lysate was reserved and the remainder centrifuged at
20,000g for 15min at 4°C. The supernatant was discarded and the pellet (membrane fraction)
was suspended in 100pl of homogenisation buffer. CCT activity was assayed in both the com-
plete lysate (total activity) and the membrane fraction by addition of 20l to 100yl of CCT reac-
tion buffer consisting of 65mM Tris-Hcl pH7.5, 3mM CTP, 10mM MgCL,, 2mM EDTA,
45mM NaCl, 0.25mM phosphocholine and [*H] phosphocholine (37KBq) [37]. After vortex
mixing the mixture was incubated in a water bath at 37°C for 1h. The reaction was then
stopped by heating to 100°C for 2min. The product, [’H] CDP-choline, was separated from
[*H]-phosphocholine using TLC as described above for aqueous phase components. Non-
radioactive CDP-choline was run on the outer lanes of the TLC plate and visualised using UV
to guide removal of the silica from the enzyme assay samples. These were scraped into scintilla-
tion vials and [’H]CDP-choline determined using scintillation counting.

Phosphatidylcholine specific Phospholipase C activity (PtdCho PLC). PtdCho-PLC
activity was determined using a kit (Red phosphatidylcholine-specific phospholipase C assay
kit, Amplex, Invitrogen Ltd Paisley UK) following the manufacturer’s instructions.

Protein assay. Protein determination was carried out on all lysate preparations for nor-
malisation of the enzyme assays using the bicinchoninic assay (Sigma-Aldrich, UK.

Cell cycle distribution

Cells were seeded in 25cm2 flasks and incubated at 37°C for 24h then treated with 4 mM met-
formin for 24, 48 or 72h then harvested by treatment trypsin and after addition of medium
transferred to 1.5ml microfuge tubes. They were then centrifuged at 400g for 5min and the
supernatant discarded. After two PBS washes they were re-suspended in 0.3ml PBS followed by
fixation with 70% ice-cold ethanol during vortexing. The fixed cells were kept at -20°C prior to
flow cytometry analysis. For the cell cycle analysis, fixed cells were adjusted to 5x10” cells/ml
and washed 2 times with PBS supplemented with 1% albumin. Then the cells were centrifuged
at 1000g for 5mins and resuspended in 1ml of staining buffer containing 50ug/ml propidium
iodoide, 50ug/ml ribonuclease A, 0.1% v/v triton-x-100 in PBS and incubated for 15 min at
room temperature. The stained nuclei were kept at 4°C and protected from light. Flow cytome-
try was performed using 488 nm laser light on a FACSCalibur flow cytometer (Becton Dickin-
son) and CELLQuest software (Becton Dickinson) equipped for fluorescence detection,
forward, 90° angle light scatter and doublet discrimination. The data analysis was done with
Flowjo cell cycling software.

Statistics

Statistical differences between means were determined using the student’s t test. Tracer incor-
poration experiments were carried out at least three times with duplicate samples. Enzyme
assay experiments were carried out 2 or more times with triplicate or more samples.

Results

TLC was carried out to identify the [*H]choline-containing metabolites and lipids in the aque-
ous and lipid cell fractions of cells after incubation with [*’H-methyl]choline followed by a 1h
chase. The two lipid standards, phosphatidylcholine and lyso-phosphatidylcholine appeared as
streaks with Rf values between 0.28-0.47 and 0.73-1.0 respectively. In lipid samples from
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control and metformin-treated cells all the [*H] appeared between 0.7 and 0.87 indicating that
none was present in lyso-PtdCho.

The standards for the aqueous phase Rf values were: Choline 0-0.1; PCho 0.24-0.34; CDP-
choline 0.53-0.59 GPC 0.47-0.57; betaine 0.53-0.69. All activity in the aqueous phase extracts
of both control and metformin-treated cells appeared at or below an Rf of 0.34 indicating that
only [*H]Choline and [*H]PCho were present in the aqueous phase extracts. Incubation
medium from the 60min chase incubations were also subjected to TLC and phosphate precipi-
tation. For all cell lines [°H] in medium from the efflux consisted of [’H]Choline and [°H]
PCho.

The total [*H]choline uptake, shown in Fig 1A, by metformin-treated cells was significantly
decreased (t = 5.26, p<0.001) in MDA-MB-468 cells but not by either BT474 or SKBr; cells.
Cellular [’H]choline phosphorylated, shown in Fig 1B, was significantly decreased by all three
cell lines after 72h treatment with metformin (BT474 t = 3.57, p<0.01; MDA-MB-468 t = 4.93,
p<0.01; SKBr3 t = 2.6.t<0.05). Choline kinase activity was determined in each cell line, shown
in Fig 1C, and found to be significantly decreased after treatment with metformin (BT474
t=4.82, p<0.01; MBA-MB-468 t = 6.45, p<0.001; SKBr3 t = 6.54, p<0.001).

Incorporation of [*H]choline into the lipid fraction was measured after a 15min pulse with
[*H]choline in medium and a 1h incubation in non-radioactive medium. Fig 2A shows the
incorporation of [*H]choline by the lipid extract fraction of BT474 (t = 4.18, p<0.01),
MDA-MB-468 (3.42, p<0.01) and SKBr3 (t = 3.2, p<0.05) cells is increased after 72h treat-
ment with metformin compared with untreated cells. Similarly [?H]choline incorporation was
increased in metformin-treated cells compared with untreated cells at the end of the 15min
pulse period with no chase (results not shown). Fig 2B shows that the longer incubation period
of MDA-MB-468 cells for 5days with metformin also increased [*H]-choline accumulation by
lipids (t = 12, p<0.001). Results are shown expressed as [?’H-methyl]choline uptake by lipid as
a percentage of total cell uptake. Similar trends were seen when the results were expressed as
[’H]-methyl]choline uptake normalised to mg of protein (S1 Fig).

The higher rate of accumulation of [*H]choline into lipid in metformin-treated cells may be
due to decreased rate of degradation or increased rate of synthesis of PtdCho or both. The for-
mation of CDP-choline catalysed by CCT is the rate limiting step for PtdCho formation. Total
CCT activity was increased in BT474 (t = 3.2, p<0.05) and MDA468 cells (t = 9.6, p<0.001)
and membrane-associated CCT activity was increased in cell lines treated with metformin
(BT474 (t = 5.6, p<0.02), MDA-MB-468 (t = 8, p<0.001), SKBr3 (t = 6.55, p<0.01)). The
activity of the catabolic enzyme PtdCho-phospholipase C was significantly decreased (BT474
t=3.22, p<0.05; MDA-MB-468 6.16, p<0.01; SKBr; t = 9.5, p<0.001) by treatment with met-
formin (results shown in Fig 3) for 72h.

CCT and PtdCho-PLC activity were also determined after 24h treatment of MDA-MB-468
cells with metformin. PtdCho-PLC activity was significantly (t = 15, p<0.001) decreased by a
24 h treatment with metformin (66 + 3) compared with control cells (100 + 1.3) but in contrast
to the 72h treatment with metformin membrane CCT activity was not significantly (t = 0.8, not
significant) changed (control: 100 + 15; metformin treated for 24h: 108 + 23).

The formation of PtdCho from CDP-choline requires diacylglycerol (DAG) which can be
formed by several routes including the breakdown of PtdCho and other phospholipids by PLC,
de novo synthesis from dihydroxyacetone phosphate and release from triacylglycerol by tri-
glyceride lipase.

The lower level of PtdCho-PLC activity in the metformin-treated cells, compared with con-
trol cells, suggests that PtdCho-specific PLC activity isn’t a source of increased DAG in metfor-
min-treated cells. Further, treatment of MDA-MB-468 cells with the phosphatidylcholine-
phospholipase C inhibitor D609 (100uM) [27] actually resulted in more [*H]choline in the
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Fig 1. Total [°H-methy]choline uptake (A), cellular phosphorylated [*H-methy]choline (B) in untreated (solid)
and metformin-treated (white) breast tumour cells incubated with [*H-methyl]choline for 15min (Units:
Radioactive counts normalised to protein content and expressed relative to untreated cells). Choline kinase
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activity in lysates of untreated (black) and metformin-treated (white) breast tumour cells (C) (Units: [3H]PCho
formed in 1h normalised to protein content and expressed relative to untreated cells).

doi:10.1371/journal.pone.0151179.9001

lipid fraction of the metformin-treated cells (t = 3.2, p<0.01) (results shown in Fig 4) suggest-
ing that PtdCho-PLC activity breaks down the newly formed PtdCho.

The effect of inhibition of de-novo synthesis of DAG was determined by treatment of con-
trol and metformin-treated MDA-MB-468 cells with the acetyl-CoA carboxylase inhibitor,
TOFA (20uM) [29] for 4h and choline incorporation into the lipid fraction measured. Lipid
[’H]choline incorporation (Fig 5A) was found to be decreased by 70% by control cells (t = 5.3,
p<0.01) and about 30% by metformin-treated cells (t = 2.85, p<0.05) incubated with TOFA
(40pM). This corresponds with the decreased fatty acid synthesis from [14C]glucose in metfor-
min-treated cells. Triacylglycerol breakdown produces DAG but treatment of both control and
metformin-treated MDA-MB-468 cells with the inhibitor agliastatin (Fig 5B) did not reduce
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Fig 2. Proportion of [3H-methyl]choline accumulated in the lipid fraction by untreated (black) and
metformin-treated (white) breast cancer cells during a 15minute incubation with [*H-methyl]choline
followed by a 1h chase (medium replaced with non-radioactive medium) expressed as a percentage
of total cell [*H-methyl]choline uptake. (A) BT474, MDA-MB-468 and SKBr3 cells treated with Metformin
for 72 h and (B) MDA-MB-468 cells treated with metformin for 24, 72 and 120h.

doi:10.1371/journal.pone.0151179.9002
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Fig 4. Proportion of [*H-methyl]choline accumulated in the lipid fraction by untreated (control) and
metformin-treated MDA-MB-468 breast cancer cells incubated for 4h with the PtdCho-PLC specific inhibitor
D609 expressed as a percentage of total cell uptake (A).

doi:10.1371/journal.pone.0151179.9004

the lipid [*H]choline incorporation suggesting that triacylglycerol breakdown is not an impor-
tant source of DAG for PtdCho synthesis.

The proportion of ['*C] that was accumulated in the lipid fraction of metformin-treated
MDA-MB-468 cells (5.4 + 1.4%) was significantly less (t = 6.1, p<0.001) than that by untreated
cells (11 + 1.7%) after incubation with [14C(U)]glucose for 2h. To discriminate the amount
incorporated into glycerol and into fatty acids the lipid fraction was saponified to release the
glycerol from fatty acids and the fractions separated. The results are shown in Fig 6. The
amount of activity associated with glycerol was significantly increased (t = 3.2, p<0.05) by met-
formin treatment compared with untreated cells but the amount in the lipid extract (fatty
acids) was found to be greatly decreased (t = 8.2, p<0.001).

PtdCho synthesis may vary through the cell cycle so control and metformin-treated
MDA-MB-468 cells were subject to cell cycle analysis. Treatment with metformin for 48
(p=10.8,t<0.001) and 72h (t = 12.7, p<0.001) but not 24h resulted in a significant increase in
cells in Go/G, with a concomitant decrease in cells in S-phase after 48 (t = 13.7, p<0.001) and
72h (t = 13, p<0.001) metformin treatments compared with controls (Fig 7).

Discussion

This study has demonstrated that treatment of breast cancer cells with metformin is associated
with modifications in the activity of the enzymes choline kinase, CCT and PtdCho-PLC with
corresponding changes in the incorporation of choline into Pcho and PtdCho. Metformin
treatment was also found to be associated with modulated fatty acid and glycerol formation
from glucose. These metformin associated changes are summarised in Fig 8.

Metformin is currently undergoing clinical trials [38] for the treatment of cancer, however
the mechanism of metformin’s tumour growth inhibition is poorly understood [38]. Malignant
transformation has been shown to be associated with increased cellular PCho [4] content
which is attributed to increased choline kinase activity in breast cancer [6,7]. Previous studies
have shown that choline kinase [39] and phospholipase C activity [40] are important in cell
survival and their inhibition results in decreased cancer cell proliferation. Decreased choline
kinase and phospholipase C activities associated with metformin treatment, demonstrated in
this study, may be amongst the mechanisms of tumour cell growth inhibition induced by
metformin.

In agreement with previous studies [38] including studies of breast cancer cells [41], treat-
ment of cells with metformin was found to induce G; arrest in tumour cells which was
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Fig 5. Proportion of [3H-methyl]choline accumulated in the lipid fraction by untreated (control) and
metformin-treated MDA-MB-468 breast cancer cells incubated for 4h with the ACC inhibitor TOFA (A) or
incubated for 4h with the lipase inhibitor agliastatin (B).

doi:10.1371/journal.pone.0151179.9005

apparent after 48 and 72h of treatment. Previous studies have demonstrated that PCho content
correlates with S-phase fraction [36,42]. PCho content was lower in cells treated with metfor-
min for 72h corresponding with the lower S-phase fraction in these cells. However inhibition
of choline kinase and cell cycle distribution by metformin may be independent events.
Saponification of the lipid fraction of cells incubated with [**C]glucose facilitated determi-
nation of the fraction of glucose-derived ['*C] activity associated with fatty acids and glycerol.
The latter, which is derived from glyceraldehyde-3-phosphate during glycolysis, was increased
corresponding with increased glucose utilisation by tumour cells treated with metformin [21,
43]. Increased glucose utilisation in breast cancer stem cells treated with metformin has been
shown to be accompanied by increased lactic acid production [43] but decreased ATP synthe-
sis. Zakikhani et al [44] have also shown that metformin treatment of MCF7 breast cancer cells
increased glycolysis and concomitantly lactate production but decreased the concentration of
tricarboxylic acid (TCA) cycle intermediates including citrate (TCA) which is a major source
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Fig 6. Incorporation of [**C] radioactivity into lipid and glycerol by control and metformin-treated cells
incubated with [**C-Ulglucose for 2h after saponification of cell lipid fraction (units [14C]
incorporation/mg protein (x1000)).

doi:10.1371/journal.pone.0151179.9006

of fatty acids as well as of ATP. Here the glucose derived fatty acid fraction from lipids derived
from [**C]glucose was found to be greatly decreased in cells treated with metformin.

Cancer cells exhibit enhanced fatty acid synthesis which is essential for the production of
complex lipids e.g. phospholipids for cell signalling and growth [45]. PtdCho-PLC degradation
of PtdCho is a source of DAG [46]. Abalsamo et al [27] have shown that PtdCho PLC, but not
PLD is increased in breast cancer cells compared with non-tumour cells and that inhibition of
PLC by D609 induces cell cycle arrest. CCT is controlled by intracellular DAG level [47, 48].
Here PLC activity was found to be decreased by treatment of breast cancer cells with metfor-
min however the increase in lipid produced from de novo synthesised glycerol may increase
DAG content so increasing CCT activity. Alternatively, increased membrane CCT activity,
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Fig 7. Cell cycle distribution in MDA-MB-468 cells treated with metformin for 24h (white), 48h
(speckle) and 72h (squares).

doi:10.1371/journal.pone.0151179.g007
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Fig 8. Alterations in phosphatidylcholine metabolism and conversion of glucose to fatty acid and glycerol associated with metformin treatment.
(Abbreviations: PtdCho, phosphatidylcholine; PCho phosphocholine; CDP-choline, cytidine tri-phosphate—choline; CK, choline kinase; CCT, CTP:
phosphocholine cytidylyltransferase; DAG diacylglycerol; PLC phospholipase C; TCA, tricarboxylic acid; Gly-3-P, glyceraldehyde-3-phosphate.

doi:10.1371/journal.pone.0151179.g008

which is evident at 72h but not 24h, may be a compensatory effect of decreased accumulation of
choline by PtdCho observed at 24h but which then results in a higher rate of accumulation at
later time points. This mechanism has previously been described for liver cells treated with the
AMPK activator AICAR [49]. Houweling et al [49] observed that membrane CCT activity was
increased in hepatocytes treated with AICAR though they did not report increased accumulation
of choline by PtdCho. However as PtdCho accumulation is a net effect of anabolism and catabo-
lism its accumulation may not always be evident in response to increased CCT activity.

Although de novo fatty acid synthesis is decreased by treatment with metformin, [*H]cho-
line accumulation into PtdCho is increased indicating that alternative sources of fatty acids
must be utilised by breast cancer cells treated with metformin. Possible sources include those
derived from the extracellular fluid and ones synthesised from acetate. Breast cancer cells have
been shown to utilise fatty acids present in serum in the incubation medium [50]. Acetyl-CoA
for de novo synthesis of fatty acids can be formed by the acetyl CoA synthase (ACSS) catalysed
ligation of acetate with CoA [50]. A recent study has shown that exposure of breast cancer cells
to hypoxia which, in common with metformin induces metabolic modifications by increased
AMPK activity, exhibited enhanced fatty acid synthesis from acetate by increasing the expres-
sion of an isoform of ACSS. Schug el al [51] also demonstrated that hypoxia decreased the con-
version of glucose to fatty acids whilst maintaining glycerol-3-phosphate production for lipid
synthesis.
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Increased lipid incorporation of [?H]choline incorporation was detected in each cell line
treated with metformin, but the magnitude of the effect was greater in MDA-MB-468 and
BT474 cells than in SKBr3 cells. Studies e.g. [52] have shown that ER status can influence fatty
acid synthesis whilst metformin-treatment can be beneficial in patients refractory to anti-HER
treatment [53]. Although biologically the cell lines are distinct in their receptor expression
(MDA-MB-468 cells are triple negative cells (don’t express the oestrogen (ER+) or progester-
one (PR+) receptors or HER-2) but over-express EGFR, BT474 and SKBr3 cells over-express
HER-2 but not EGFR. BT474 cells are ER+ and PR+ and SKBr3 are ER- and PR -) no single
receptor differences between the cell lines could account for the relatively lower effect of met-
formin on lipid incorporation of [?H]choline incorporation.

Several studies have shown that anticancer treatment response [36, 54-55] is accompanied
by reductions in tumour PCho content which is considered a potential marker of treatment
response. Decreased PCho in metformin-treated cells compared with untreated cells suggests
that monitoring PCho levels or choline utilisation using NMR spectroscopy or [''C]choline/
['®F] Fluoro-choline positron emission tomography (PET) respectively [56] may be useful
imaging methods for detecting response of tumours treated with metformin.

In conclusion we have shown that treatment of breast cancer cells with metformin increases
accumulation of choline by phospholipid, increases CCT activity and decreases choline kinase
and PLC activity. We have also shown that the glycerol fraction derived from glucose is
increased by breast cancer cells treated with metformin which may contribute to increased lev-
els of DAG for PtdCho formation. We have also confirmed that the formation of glucose-
derived fatty acids is decreased in metformin treated cells. Techniques that measure phosphati-
dylcholine metabolism including [''C]choline-PET may be useful in measuring cancer cell
response to metformin.
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