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Chaotic, informational and 
synchronous behaviour of multiplex 
networks
M. S. Baptista1,*, R. M. Szmoski2,*, R. F. Pereira3,* & S. E. de Souza Pinto4,*

The understanding of the relationship between topology and behaviour in interconnected networks 
would allow to charac- terise and predict behaviour in many real complex networks since both are 
usually not simultaneously known. Most previous studies have focused on the relationship between 
topology and synchronisation. In this work, we provide analytical formulas that shows how topology 
drives complex behaviour: chaos, information, and weak or strong synchronisation; in multiplex net- 
works with constant Jacobian. We also study this relationship numerically in multiplex networks of 
Hindmarsh-Rose neurons. Whereas behaviour in the analytically tractable network is a direct but not 
trivial consequence of the spectra of eigenvalues of the Laplacian matrix, where behaviour may strongly 
depend on the break of symmetry in the topology of interconnections, in Hindmarsh-Rose neural 
networks the nonlinear nature of the chemical synapses breaks the elegant mathematical connec- tion 
between the spectra of eigenvalues of the Laplacian matrix and the behaviour of the network, creating 
networks whose behaviour strongly depends on the nature (chemical or electrical) of the inter synapses.

Complex networks1–3 serve as a model for a broad range of phenomena. Brain4,5, social interactions6, and lin-
guistics7 are all examples of systems represented by complex networks. In general, networks are useful models for 
studying systems that have a spatial extension. For instance, insect populations whose interaction between them 
produces the extinction of one of them8, the interaction between proteins9 and the interaction between gears10. 
These networks can be represented by a multiplex network of coupled complex subnetworks11–18.

In the case of the brain5, interconnections between complex subnetworks are typically made by chemical syn-
apses while intraconnections can be formed by both chemical and electric synapses19. For brain research19,20 and 
brain-based cryptography21, the interest is to understand the inter and intracouplings such that the units in the 
complex networks are sufficiently independent (unsynchronous) to achieve independent computations. However, 
the networks must be sufficiently connected (synchronous) such that information is exchanged between subnet-
works and integrated into coherent patterns22.

The academic community has dedicated much attention to elucidate the interplay between topology and 
behaviour in multiplex networks. In particular, the action of the inter and intracoupling strengths in the synchro-
nisability of optimally evolved multiplex network graphs23, and in the synchronisation of multiplex networks of 
dynamical oscillators11,24–27 or neurons19,28–30. Authors have shown an intricate interplay between different aspects 
of the network topology with weak or strong (not full) synchronisation, which was shown to be dependent on 
the ratio between interlinks with all the links in networks of phase oscillators27, on the number of interlinks in 
networks of Rössler oscillators24 and neural networks30, and on the ratio between inter and intra links in networks 
of heterogeneous maps26. Synchronisation was also shown to depend exclusively or complementarily on the elec-
tric or chemical couplings in two coupled neurons31 and in neural networks20,28,30,32. In particular, in the work of 
ref. 28, it was shown semi-analytically that the stability of the complete synchronous manifold depends on the 
Laplacian matrix of the electric synapses, the degree of chemical synapses, and the type of chemical synapses 
(inhibitory or excitatory). The relationship between topology and the diffusive behaviour in multiplex networks 
composed by two coupled complex networks of ODEs with constant Jacobian was made clear in ref. 11. Analytical 
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results for the stability analysis of the full synchronisation manifold for two equal networks coupled by constant 
coupling strengths were also considered in33,34.

In this work, we elucidate the interplay among the topological aspects previously described to be relevant in 
the study of synchronisation (i.e., the eigenvalues of the Laplacian, the ratio α between inter degree and the num-
ber of nodes of the subnetworks, and the inter and intra coupling strengths) and complex behaviour in multiplex 
networks of two undirected coupled equal complex networks. We will show analytically how topology drives and 
is related not only to weak or strong forms of synchronisation, but also to other complex forms of behaviour: 
chaos and information transmission. Thus, providing an innovative set of mathematical tools to study how complex 
behaviour emerges in multiplex networks. This achievement was possible because we were able to analytically cal-
culate, for the first time, one of the most challenging quantities in nonlinear systems, the complete spectrum of 
Lyapunov Exponents for a class of multiplex networks with constant Jacobian. This intricate relationship was also 
studied numerically in multiplex neural networks.

Our results show that in fact the ratio α is the determinant factor for the complex behaviour of the network, 
which also explain why the ratio between inter and intra or the number of interlinks has been previously seem 
to drive synchronisation24,26,27,30. We also show that synchronisation and information, whose quantifiers depend 
on the spectral gap of the Laplacian, will depend exclusively or complementarily on the inter and intra coupling 
strengths as observed in30,31, and demonstrated in28. For networks with constant Jacobian, synchronisation and 
information will depend exclusively on either the intra or the intercoupling strengths, if the two networks have 
symmetric interconnections, and will depend complementarily on both intra and interconnections, if the two 
networks have asymmetric interconnections. For the multiplex neural networks, we find that intra and inter 
couplings will complementarily cooperate to complex behaviour if the two neural complex networks are coupled 
by inter chemical and excitatory synapses. If intercouplings are of the inhibitory nature, behaviour will mainly 
depend on the intracoupling. Therefore, it is the excitatory chemical synapses that promote integration between 
intra (local) and inter (global) synapses in neural networks. On the other hand, in the networks with constant 
Jacobian, integration between inter and intra comes about by the break of symmetry caused by the asymmetric 
configuration. Moreover, for this configuration, a bottle-neck effect appears for an appropriately rescaled inter-
coupling strength. In this case, an increase in the synchronisation level of the network leads to an increase in the 
capacity of the network to exchange information.

Methods
Each complex network connects with each other in two ways, by a symmetric or an asymmetric interlink configu-
ration. For the symmetric case, each node in a subnetwork can have at most one connection with a corresponding 
node in the other equal subnetwork (See Fig. 1). The general asymmetric configuration presents nodes in one 
network that can randomly connect to other nodes in the other network. The considered network configurations 
are models of extended space-time chaotic systems35–38 or chemical chaos39,40. It is also a model for two types of 
structures found in real neural networks41. The one with stronger community structure (small first eigenvalue 
of Laplacian matrix, or strong intracouplings), and the one with a high level of bipartiteness, i.e., two similar 
complex networks strongly connected by intercouplings (larger last eigenvalue of the Laplacian matrix, or strong 

Figure 1. Examples of symmetric network topologies with N = 10 and ℓ12 = 10 considered in this work. 
Subnetworks have a ring topology in (A), a star topology in (B), and an all-to-all topology in (C). Black lines 
represent intra links, and Gray (red online) lines represent inter links.
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intercoupling). From the spectral analysis performed in ref. 20 about the C. elegans and the human brains, one 
can conclude that these systems have communities with similar structure. Therefore, the simplest mathematical 
model for a multiplex network of many similar communities intercoupled (such as the brain), would be to con-
sider networks formed by coupling two topologically equal networks.

We consider two types of dynamics for the nodes of the network. The shift map (see Sec. “Extension to con-
tinuous networks” for networks with continuous-time descriptions), forming a discrete network of diffusively 
connected nodes, and the Hindmarsh-Rose (HR) neuron42, connected with inter chemical and intra electrically 
synapses.

Let X represents the state variables of a network with N =  2N1 nodes formed by two equal coupled complex 
networks composed each of N1 nodes that are coupled by 12 “long-range” inter-connections. The dynamical 
description of the nodes is given by either the discrete-time function =F x x( ) 2 (mod 1)n

i
n

i( ) ( )  or the 
continuous-time function f(xi), representing the Hindmarsh-Rose neuron model.

The discrete network of shift maps is described by
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Laplacian matrices and T stands for the transpose. G represents the Laplacian of the two uncoupled complex 
networks and its intra links (the Laplacian matrix A) and L represents the inter-couplings Laplacian matrix 
between the complex networks. D1 and D2 represent the identity degree of the adjacency matrices B and BT, 
respectivelly, representing the inter couplings. Their components are defined as = ∑ BD( )ii j ij1  and 

= ∑ BD( )ii j ij
T

2 , with null off diagonal terms. It can be written in an even more compact form by

= −+x x Mx2 (mod 1), (2)n n n1
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The network of HR neurons represented by the coupling in the first coordinate is described by

∑ ∑ε γ= − − −
= =

 ( )x f G x x V C S xx( ) ( ),
(3)
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where f1 represents the first component of the HR vector flow dynamics, x(i) is a vector with components 
x x x( , , )i i i

1
( )

2
( )

3
( )  representing the variables of neuron i, G is the Laplacian for the intra electrical couplings, and C 

(with components Cij) is an adjacency matrix representing the inter chemical couplings. The chemical synapses 
function S is modelled by the sigmoidal function =

+ λ− −Θ
S x( ) ,( )e

1
1

1 x syn1
 with Θ syn =  − 0.25, λ =  10 and Vsyn =  2.0 

for excitatory and Vsyn =  − 2.0 for inhibitory.
In the brain, short-range connections among neurons happen by electric synapses, due to the potential dif-

ference of two neighbouring neuron body cells. In this work, the intra electrical synapses are mimicking this 
local interaction. Long-range connections are done by the chemical synapses, the inter connections in this work. 
However, to compare results between the HR networks and the discrete networks, the two subnetworks of HR 
neurons will have equal topologies, a configuration unlikely to be found in the brain, but that can however allow 
analytical insight into small brain circuits.

As a measure of chaos, we consider the sum of the positive Lyapunov exponents of the network, denoted by 
HKS. As a measure of the ability of the network to exchange information, we consider an upper bound for the 
Mutual Information Rate (MIR) between any two nodes in the network:

λ λ= −I (4)C 1 2

in which λ1 and λ2 represent the two largest positive Lyapunov exponents of the network. We assume that 
these two largest Lyapunov exponents are approximations for the two largest expansion rates (or finite-time 
finite-resolution Lyapunov exponents) calculated in a bi-dimensional space43 composed by any two nodes of the 
network. Equation (4) is constructed under the hypothesis that given two time-series, x1(t) and x2(t), an observer 
is not able to have a infinite resolution measurement of a trajectory point, but can only specify the location of a 
x1 ×  x2 point within a cell belonging to an order-T Markov partition, and thus the correlation of points decay to 
approximately zero after T iterations. For dynamical networks such as the ones we are working with, measure-
ments can be done with higher resolution and it is typical to expect that the expansion rates on any 2D subspace 
formed by the state variables of two nodes are very good approximations of the 2 largest Lyapunov exponents of 
the network. Such a choice implies that IC in Eq. (4) is an invariant of the network and it represents the maximal 
rate of mutual information that can be realised when measurements are made in any two nodes of the network, 
and no time-delay reconstruction is performed. Details about the equivalence between Lyapunov exponents and 
expansion rates can be seen in ref. 43, and an explicitly numerical comparison can be seen in ref. 44. An extension 
of Eq. (4) to measure upper bounds of MIR in larger subspaces of a network (composed by group of nodes or 
multivariable subspaces) can also be seen in ref. 43.
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Synchronisation is detected by various approaches. Linear stability of the synchronous manifold for complete 
synchronisation in the discrete network will be calculated analytically. For both types of networks, the level of 
weak synchronisation will be estimated by the value of HKS, since the higher HKS is (and the larger with respect to 
IC), the less synchronous nodes in the network are. Notice also that if HKS =  IC, the network is generalised syn-
chronous and possesses only one positive Lyapunov exponent. For the network of Hindmarsh-Rose neurons, we 
measure synchronisation by calculating the order parameter r and the local order parameter δr as introduced in 
ref. 45, the order parameter calculated considering the phase difference between all pair of nodes in the continu-
ous network, as an estimation for the synchrony level of the network. Inter and intra coupling strengths promote 
global phase synchronisation and cluster phase synchronisation if r and δr are large, respectively. Comparing the 
results of the following Hindmarsh-Rose networks section and the parameter spaces of Figs 7,8, and 9 in the 
Supplementary Material, one will conclude that for the inhibitory networks the smaller the sum of the LEs is the 
larger the order parameter r is, and the larger IC is the smaller δr is. Thus, enhancement of global phase synchro-
nisation (quantified by r) decreases the level of chaos in the network, and local phase synchronisation (quantified 
by δr) enhances exchange of information between nodes (IC). The phase φi of a node i is calculated using the 
equation for its derivative φ = −

+


 x x x x

x x
2 1 1 2

1
2

2
2

 derived in refs 46,47.

Results
Shift map networks. To calculate the Lyapunov exponents of the discrete network (see Sec. “Extension to 
continuous networks” for an extension to continuous networks), we recall that since the map produces a constant 
Jacobian  + M([2 ]) the Lyapunov spectra of the synchronisation manifold described by = =x x xn n

i
n

j( ) ( ) is equal 
to the spectra of Lyapunov exponents of the network (where typically ≠x xn

i
n

j( ) ( ) ). In addition, the Lyapunov 
exponents of the synchronisation manifold are simply the Lyapunov exponents of the Master Stability Function 
(MSF)48, the equations that describe the variational equations of Eq. (1) linearly expanded around the synchroni-
sation manifold (assuming ξ= +x xn

i
n n

i( ) ( ) ) and diagonalised, producing N equations in the m eigenmodes:

δ µ δ= −+ [2 ] , (5)n
m

m n
m

1

where μm represents the eigenvalues of M ordered by magnitude, i.e., µ µ µ µ= ≤ ≤ … ≤ −0 , , N0 1 2 1. The 
ordered Lyapunov exponents are given by the logarithm of the absolute value of the derivative of the MSF in (5), 
which leads to

λ µ= −+ log 2 , (6)m m1

In this work, we consider two network configurations. Firstly, the symmetric configuration, when the two 
networks are connected by 12 undirected interlinks, and each node in a network connects to at most one corre-
sponding node in the other subnetwork. Secondly, the asymmetric configuration, when the two networks are 
connected by only one undirected random interlink. So, D1 =  D2.

For the symmetric configuration12 (see also ref. 28), we have that
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=
= ++
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where µ i2  are the unordered eigenvalues of M (i =  0, 1, 2, … , N1 −  1) and ωi represents the ordered set of eigenval-
ues of the Matrix A (such that ωi+1 ≥  ωi, and ω0 =  0), whose unordered spectra is given by ω = 
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for a closed ring topology, or ω1 =  0, ωi =  1 (for i =  1, … , N1 −  2), and ωN−1 =  N1 for a star topology, and ω1 =  0, 
ωk =  N1, for all-to-all topology. The inter degree α represents the effective connection that every node in one 
subnetwork will have with the other. If 2γα < εω1, then μ1 =  2γα, otherwise μ1 =  εω1. Complete synchronisation 
of the shift map network is linearly stable if  µ− <2 11 , however notice that our study considers coupling 
ranges outside of the complete stability region. The second largest eigenvalue, μ1, and therefore IC (and the stabil-
ity of the synchronous manifold) will only depend on the inter connections if

γ
εω
α

<
2

, (8)
1

and these quantities will only depend on the intra connections if this inequality is not satisfied.
It is fundamental to mentioning that the eigenvalues obtained in Eq. (7) using the expansion in12 provide val-

ues that are exact in the topologies considered in this work (demonstration to appear elsewhere). Consequently, 
the Lyapunov exponents calculated by Eq. (6) are also exact.

For the symmetric configuration, if inequality (8) is satisfied, λ γ= − ( )log 2 1
N2

12

1
, or λ =2  

εω−log (2 )1 , otherwise. Since λ = log (2)1 , then the upper bound for the MIR exchanged between any two 
nodes in this network, assuming λ > 02 , is given by
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ε
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= −
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I log 1
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,
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1

otherwise.
Therefore, the upper bound for the MIR will either depend on γ or on ε. If λ2 ≤  0, then IC =  λ1 =  log(2).
For the asymmetric configuration12, we have that
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for i =  1, 2, … , N1 −  1. If µ µ< 1 2, then µ µ= 1 1 and µ µ= 2 2, otherwise µ µ= 1 2 and µ µ= 2 1. Complete synchro-
nisation is linearly stable if  µ− <2 11 . If

γ
εω
α

< , (12)
1

the second largest eigenvalue and, therefore, IC (and the stability of the synchronous manifold) will only depend 
on the interconnection. If this inequality is not satisfied, these quantities will depend mutually on both types of 
connections. Since α always appears in the second largest eigenvalue, the smallest its value the largest will be IC. 
Our analytical results are valid for all asymmetric configurations considered in ref. 12, however in this paper we 
focus on the “bottleneck” configuration, where there is only one random interlink.

For the asymmetric bottle neck configuration, if inequality (12) is satisfied, λ γ= − ( )log 2 1
N2
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1
, or 
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1
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otherwise.
Therefore, the upper bound for the MIR will either depend on γ, if inequality (12) is satisfied, or on both cou-

plings if this inequality is not satisfied. If λ ≤ 02 , then IC =  λ1 =  log(2).
Figure 2(A–D) are parameter spaces (ε ×  γ) showing whether inequality (8) (A–C) or inequality (12) (D) are 

satisfied (white) or not (black). Figure 2(E–H) show the value of IC. In Fig. 2(E–G) we show results for the sym-
metric configuration. IC will only depend on the intercoupling γ if inequality (8) is satisfied, and will only depend 
on the intracoupling ε if this inequality is not satisfied. In Fig. 2(H), for the bottleneck configuration, IC will only 
depend on the inter coupling if this inequality is satisfied, but will depend on both inter and intra couplings if this 
inequality is not satisfied. The sum of Lyapunov exponents is given by µ= + ∑ −=H P log(2) log( 1 /2 )KS m

P
m1 , 

where P represents the number of positive Lyapunov exponents of the network. From this equation, it becomes 
clear that if N1 is increased and the topology considered makes ωi to increase proportional to N1, but the ratio α is 
maintained (meaning that inter connections grow only proportional to N1), then the term εωi becomes predom-
inant in HKS, and as a consequence, chaos in the network becomes more dependent on ε than on γ. To illustrate 
this argument, let us consider the symmetric configuration and assume that ε and γ are sufficiently small such 
that all Lyapunov exponents are positive. Then, the summation to calculate HKS has N terms and 

εω γα= − ∑ +=
−H N log(2) ( )KS i

N
i0

11 . Thus, the term with ε dominates for larger N1. This becomes even more 
evident, if the topology is an all-to-all: ε γ= − − − H N N Nlog (2) ( 1)KS 1 12. The predominance of the intra in 
comparison to the inter coupling can be seem in all panels of Fig. 2(I–L), for a network of two coupled ring sub-
networks. Similar results to other network configurations can be seen in Supplementary Material. This analytical 
illustration gives us a clear view of the behavioral changes as one goes from one network (γ =  0) to 2 coupled 
networks (γ >  0). Half of the Lyapunov exponents decrease their absolute values. The consequences for HKS and 
IC depend on the values of ε and the topology being considered, as can be seen in Fig. 2 by following a vertical line 
for a growing value of γ. Since complete synchronisation is linearly stable if  µ− <2 11 , then the stability of the 
synchronisation manifold will also depend on the satisfaction of inequality (12).

Extension to continuous networks. These results can be extended to linear networks of ODEs. As an 
example, consider a continuous network of 1D coupled linear ODEs described by α= +� ��x xM[ ] . Then, the 
Lyapunov exponents of this system are equal to the Lyapunov exponents of the synchronisation manifold and its 
transversal modes, and therefore are equal to λm+1 =  α −  μm.
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Hindmarsh-Rose networks. The Lyapunov Exponents of the HR neural networks are calculated numer-
ically. For symmetric HR neural networks with inhibitory inter connections, HKS is mostly dependent only on 
the electrical intra coupling, as can be seen from Fig. 3(A,E,I) (for coupled ring complex networks), and the 
results shown in Supplementary Material, for other networks. The quantity IC is also mostly dependent on the 
electrical intra coupling in asymmetric configurations with inter inhibitory synapses (see Fig. 3(B,F)), but for the 
asymmetric and inhibitory configuration (Fig. 3(J)), IC values depend mutually on both inter and intra couplings. 
Therefore, in most of the cases studied, neural networks formed by complex networks connected with inhibitory 
connections will have a behaviour (HKS and IC) that mainly depends on the intra electric coupling. If inter con-
nections are excitatory, both HKS and IS are a non-trivial function of the inter and intra coupling, as it can be seen 
in Fig. 3(C,D,G,H,K,L). The inter degree α is also determinant for the similar behaviours observed in symmetric 
neural networks (for both inhibitory and excitatory) of different sizes, as one can check by verifying how similar 

Figure 2. Results for networks of shift maps, with two coupled rings. (A–C) White (black) region indicates 
values of ε and γ for which inequality (8) is satisfied (not satisfied). (D) Colour code same as in (A–C), but 
based on inequality (12). (E–H) color code shows the value of IC. (I–L) Sum of positive Lyapunov exponents. 
N =  10 and ℓ12 =  5 in (A,E,I), N =  20 and ℓ12 =  10 in (B,F,J), N =  30 and ℓ12 =  15 in (C,G,K), N =  10 and ℓ12 =  1 
in (D,H,L). In (L), the maximal value of γ equal to 2.5 was chosen to allow that the range of values for the 
quantity γα is the same in figures (I–L).
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the parameter spaces of Fig. 3(A,B) are with the ones in Fig. 3(E,F), or the parameter spaces of Fig. 3(C,D) and 
the ones in Fig. 3(G,H)).

To understand why if different neural networks have equal inter-degree  N/12 1, then they will have similar 
parameter spaces for HKS and IC, we consider the conjecture of ref. 49 that shows that Lyapunov exponents and 
Lyapunov Exponent of the synchronisation manifold (LESM) (defined by x(i) =  x(j) =  xs) are connected.  
Then, we remark that if each neuron in the network has the same inter-degree, k, then = N k/12 1 .  
This is a necessary condition in order to obtain a Master Stability Function (MSF) of the network as derived in28. 
The linear stability of this network and the ith LESM of this network will depend on a function 

γ γ µ εωΓ = − − − − ′ −′k S x x V S x k( ) ( ) ( )( )s s
syn

s
i i1 1 1 , where µ ′i  represents the eigenvalues of the Laplacian 

matrix B. Inhibition or excitation contributes to the stability of the MSF and to the LESM through the term 
γ µ− − ′′x V S x k( ) ( )( )s

syn
s

i1 1 . If the coupling is inhibitory, all the terms in the function Γ  will be negative, and 
they all typically contribute to making the network more stable and to have smaller values of LESM. But both 
terms, γk S x( )s1  and γ µ− − ′′x V S x k( ) ( )( )s

syn
s

i1 1 , can be neglected, since S is nonzero during a spike and ′S  is only 
nonzero at the moment of the beginning of a spike. Therefore, the stability of the synchronisation manifold, as 

Figure 3. N =  10 and ℓ12 =  5 for (A–D), N =  20 and ℓ12 =  10 for (E–H), and N =  10 and ℓ12 =  1 for (I–L). Sum 
of positive Lyapunov exponents shown in left column and IC shown in right column for two coupled rings of 
Hindmarsh-Rose neurons with inter inhibitory coupling (in (A,B,E,F,I,J)) and inter excitatory coupling (in 
(C,D,G,H,K,L)).
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well as the LEs and IC (using49) will mainly depend on the value of the intra coupling ε (see also Fig. 5 in ref. 28). 
If, however, the coupling is excitatory, we cannot neglect the term γ µ− − ′′x V S x k( ) ( )( )s

syn
s

i1 1 . If two networks 
with different sizes have the same k for each neurone, then the eigenvalues of B for the larger network will be the 
same of the ones for the smaller network but appearing with multiplicity given by the dimension of the matrix. If 
the two different networks have the same topology, then some of the smallest eigenvalues of A for the larger net-
work might be similar. These smallest eigenvalues contribute to making the term εωi small, but with a magnitude 
comparable to the magnitude of the term γ µ− − ′′x V S x k( ) ( )( )s

syn
s

i1 1 . Thus, if k is made constant, larger net-
works might present similar parameter spaces for HKS and IC.

Therefore, the nonlinearity of the coupling function has a major contribution to behaviour, and should be 
taken into consideration when studying other types of neural networks.

The bottleneck effect. In the bottleneck configuration, the inter-degree decreases to 1/N1. This results in 
a value of γα smaller when compared to this value for symmetric configurations. Consequently, given two net-
works, one symmetric and another asymmetric, both with the same N1 and the same γλ2, the value of λ2 for the 
asymmetric bottleneck configuration will be larger than λ2 for the symmetric configuration, which leads to that 
IC for the asymmetric case is smaller than IC for the symmetric case. However, if we rescale γ used in the asym-
metric bottleneck configuration to keep the quantity γα constant in all our simulations, the term εω1 appearing 
in μ1 will compensate λ2 when inequality (12) is satisfied, finally producing an asymmetric network that has a 
larger value of IC than the corresponding symmetric one. Regarding the neuronal networks, the bottleneck effect 
is evident as one compare Fig. 3(L) (asymmetric) with Fig. 3(D,F). No bottleneck effect was verified for inhibitory 
inter synapses. Concluding, a decrease in synchronisation can increase the capacity of the network to exchange 
information.

Extension to larger multiplex networks. Knowing that our result in Eq. (7) are exact, it is possible to cal-
culate analytically the eigenvalues of arbitrarily large networks. As an example, consider a subnetwork Ω(0) with N1 
nodes and whose eigenvalues of the matrix A are denoted by ωi. Assume we construct a symmetric network, denoted 
by Ω(1), constructed by coupling two of these equal subnetworks Ω(0) with a given α and γ. If μi (i =  1, … , N)  
represent the ordered eigenvalues of Ω(1), then we can construct a network Ω(2) formed by two networks Ω(1) 
coupled by inter connections with the same γ and α parameters of Ω(1), and whose eingenvalues of the matrix M 
are given by µ εω µ εω γα µ εω γα µ εω γα= = + = + = + .+ + +   , 2 , 2 , 4i i i i i i i i4

(2)
4 1
(2)

4 2
(2)

4 3
(2)  Ones sees that if ε, γ, and 

α are preserved during the growing of the network (into a hierarchical network), the action of couplings a subnet-
work into another subnetwork is to enlarge the spectral radius of the matrix M of the full network, a direct conse-
quence of the inter-coupling strengths.

Discussion
A topic of research that has attracted great attention in multiplex networks was the search for a better understand-
ing of how weak or strong synchronisation (not full) is linked to the various aspects of the network topology. 
Previous works have provided complementary, but not unified conclusions regarding this relationship. One of the 
difficulties into clarifying this matter is that the relationship between the spectrum of eigenvalues of the connect-
ing Laplacian matrix and the synchronous behaviour of the network is poorly understood when the network is in 
a typical natural state and there is no full synchronisation. Our main contribution in this work was to understand 
this relationship when a multiplex network is out of full synchronisation, but have also provided conditions for 
the stability of the full synchronous state. We went a step further and have also understood how relevant aspects 
of the network topology are related to chaos and information transmission. Thus, providing an innovative set of 
mathematical tools to study how and why higher level complex behaviour emerges in multiplex networks.
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