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Summary. Background: The mechanism underpinning fac-

tor XII autoactivation was originally characterized with

non-physiological surfaces, such as dextran sulfate (DS),

ellagic acid, and kaolin. Several ‘natural’ anionic activat-

ing surfaces, such as platelet polyphosphate (polyP), have

now been identified. Objective: To analyze the autoactiva-

tion of FXII by polyP of a similar length to that found in

platelets (polyP70). Methods and results: PolyP70 showed

similar efficacy to DS in stimulating autoactivation of

FXII, as detected with amidolytic substrate. Western blot-

ting revealed different forms of FXII with the two acti-

vating surfaces: two-chain aFXIIa was formed with DS,

whereas single-chain FXII (scFXII; 80 kDa) was formed

with polyP70. Dissociation of scFXII from polyP70 abro-

gated amidolytic activity, suggesting reversible exposure

of the active site. Activity of scFXII–polyP70 was

enhanced by Zn2+ and was sensitive to NaCl concentra-

tion. A bell-shaped concentration response to polyP70 was

evident, as is typical of surface-mediated reactions. Reac-

tion of scFXII–polyP70 with various concentrations of

S2302 generated a sigmoidal curve, in contrast to a hyper-

bolic curve for aFXIIa, from which a Hill coefficient of

3.67 was derived, indicative of positive cooperative bind-

ing. scFXII–polyP70 was more sensitive to inhibition by

H-D-Pro-Phe-Arg-chloromethylketone and corn trypsin

inhibitor than aFXIIa, but inhibition profiles for

C1-inhibitor were similar. Active scFXII–polyP70 was

also able to cleave its physiological targets FXI and

prekallikrein to their active forms. Conclusions: Autoacti-

vation of FXII by polyP, of the size found in platelets,

proceeds via an active single-chain intermediate. scFXII–
polyP70 shows activity towards physiological substrates,

and may represent the primary event in initiating contact

activation in vivo.

Keywords: blood coagulation; factor XII; hemostasis;

polyphosphates; zymogens.

Introduction

Activation of the contact pathway occurs upon reciprocal

proteolytic cleavage of factor XII and prekallikrein (PK)

to their active forms, FXIIa and kallikrein, in the pres-

ence of a negatively charged surface. In turn, FXIIa

cleaves FXI that is tethered to an anionic or membrane

surface, generating active FXIa. FXIa initiates a series of

ordered cleavages that feed into the prothrombinase com-

plex and ultimately generate thrombin. FXI and PK

require a non-enzymatic cofactor, high molecular weight

kininogen (HK), to facilitate binding of these proteins to

the activating surface, whereas FXII directly associates

with the surface via the fibronectin domains in the heavy

chain [1–4]. Zinc ions induce conformational changes in

FXII [5–9] and HK [10–12], enhancing the interaction of

these proteins with the anionic surface.

The function of FXII as a coagulation factor was con-

tested for many years, as a deficiency in humans is not

associated with a bleeding diathesis. It has now been

hypothesized, through the use of mouse models, that

FXII-driven coagulation is not essential for normal hemo-

stasis, but mediates pathophysiological thrombus forma-

tion [13,14]. More recently, monoclonal antibodies

(mAbs) directed against FXII have been shown to inhibit

thrombus formation in primate thrombosis models [15].

These studies have redefined the function of FXII in vivo

and highlighted it as a target for novel anticoagulant

agents that could potentially prevent nascent thrombus

growth with minimal bleeding complications. In addition
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to its role in coagulation, FXII is likely to function in

innate immunity [16], and indeed several lines of evidence

indicate that these processes are inextricably linked [17–
19]. A second question concerning the function of FXII

in vivo was the absence of a suitable charged surface to

stimulate activation. Several potential ‘natural’ activators,

including platelet polyphosphate (polyP) [20,21], micro-

particles derived from platelets and erythrocytes [22],

RNA [23], misfolded proteins [24], collagen [25] and mast

cell heparin [26], have now been identified. PolyP is an

anionic polymer of phosphate residues that is secreted

from the dense granules of human platelets upon activa-

tion by agonists such as thrombin, ADP, and collagen

[21,27]. Platelet polyP is of a defined size of 60–100 phos-

phate units in length [21], unlike the extremely long poly-

mers found in bacteria [28]. Platelet polyP has been found

to stimulate FXII-driven procoagulant activity in vitro

[20,29] and in vivo [21] and to upregulate bradykinin-dri-

ven inflammation [21].

Binding of FXII to an anionic surface induces autoacti-

vation, via cleavage at Arg353–Val354. This generates the
active protease aFXIIa, an 80-kDa enzyme consisting of

a heavy and a light chain linked by a disulfide bond. Fur-

ther proteolytic cleavage at Arg334–Asn335 generates

bFXIIa, a solution-phase derivative largely composed of the
protease domain. bFXIIa cleaves PK, but has negligible activ-
ity towards FXI, whether surface-bound or in solution [30].
The mechanism of FXII autoactivation was characterized
prior to the identification of physiological surfaces that were
able to support this reaction [5,31,32]. The aim of this study
was to define the ability of polyP, of similar chain length to
that found in platelets, to stimulate autoactivation of FXII
under physiological conditions. We show that autoactivation
of FXII on a ‘natural’ activating surface proceeds via an
active single-chain intermediate that is capable of cleaving
both synthetic and physiological targets.

Materials and methods

Materials

FXII, aFXIIa, FXI, PK, kallikrein, horseradish peroxidase

(HRP)-conjugated polyclonal antibody against FXII,

HRP-conjugated antibody against FXI and HRP-conju-

gated antibody against PK were from Enzyme Research

Laboratories (Swansea, UK). PolyP of average chain

length 65 (polyP65) and C1-inhibitor (C1-Inh) were from

Sigma-Aldrich (Irvine, Scotland). Dextran sulfate (DS)

with an average Mr of 500 000 and EDTA were from

Fisher Scientific (Loughborough, UK). L-Pyr-Pro-Arg-

p-nitroanilide (L-2145) and H-D-Pro-Phe-Arg-chlorometh-

ylketone (PCK) were from Bachem AG (Bubendorf,

Switzerland), and H-D-Pro-Phe-Arg-pNA-2HCl (S2302)

was from Quadratech (Epsom, UK). Corn trypsin inhibitor

(CTI) was from Haematological Technologies (Vermont,

NE, USA). NuPAGE 4–12% Bis-Tris gels, NuPAGE LDS

sample buffer, reducing agent and Mops running buffer

were from Life Technologies (Paisley, UK). Pierce spin

cups with cellulose acetate filters were from Fisher-Scienti-

fic, Loughborough, UK. Unless otherwise stated, the buffer

used throughout was 50 mM Tris-HCl (pH 7.4) and

100 mM NaCl. Polymethacrylate beads (Sepabeads EC-

HA) were a kind gift from Residion SRL (Milan, Italy).

Experiments were performed with either polyP65 or polyP70
(a kind gift from BK Giulini). Comparable results were

obtained with both preparations of polyP, which, for sim-

plicity, will be described as polyP70 throughout the article.

The concentration of polyP70 is expressed in terms of

monomer concentration throughout the article [20,33].

Chromogenic assays

FXII autoactivation FXII (50 nM) was added to 96-well

microtiter plates (Greiner, Stonehouse, UK) alone or in the

presence of either polyP70 (70 lM) or DS (1.5 lg mL�1)

with or without 10 lM ZnCl and with or without 1 mM

EDTA. This assay was performed in 50 mM Tris-HCl

(pH 7.4) buffer containing either 100 mM or 140 mM NaCl.

The chromogenic substrate S2302 (0.5 mM) was added, and

generation of activity was monitored at 405 nm every 30 s

for 2 h at 37 °C in an ELx 808 plate reader (Bio-Tek,

Potton, UK). Experiments were performed over a range of

polyP70 (0–2 mM), NaCl (0–1 M) and ZnCl2 (0–100 lM)
concentrations. A discontinuous assay for FXII autoacti-

vation was performed by incubating FXII (50 nM) alone,

with polyP70 (70 lM) or with DS (1.5 lg mL�1) at 37 °C.
At various time points (0–120 min), the reaction was

stopped by the addition of 1 M NaCl, and FXII activity

was quantified with S2302 (0.5 mM) as described above.

Gradients from the initial linear sections of absorbance vs.

time graphs were calculated and plotted against the inhibi-

tor, polyP70, NaCl or ZnCl2 concentrations with GRAPH-

PAD PRISM 5.03 (La Jolla, CA, USA). Data were analyzed

by linear regression, and accurate line-fitting was estab-

lished by analysis of residual data.

For western blot analysis of FXII autoactivation, FXII

(50 nM) was incubated alone or in the presence of 70 lM
polyP70 or 1.5 lg mL�1 DS with or without 10 lM ZnCl2
for 60 min at 37 °C. Reducing sample buffer was added,

and samples were boiled for 10 min prior to being

resolved on 4–12% NuPAGE gels and transferred to a

poly(vinylidene difluoride) membrane. FXII was detected

with a polyclonal antibody conjugated to HRP (Enzyme

Research Laboratories). A commercial preparation of

aFXIIa (50 nM) was included in the western blot as a

positive control.

FXII binding studies PolyP70 was immobilized on pri-

mary amine-containing polymethacrylate beads by the use

of 1-ethyl-3-(3-[dimethylamine]propyl) carbodiimide as

previously described [34]. FXII (2 lg) in binding buffer

(50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 0.1% bovine
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serum albumin [BSA]) was incubated with polyP70-labeled

beads or BSA-labeled (control) beads for 30 min before

centrifugation in Pierce spin cups at 1677 9 g for 30 s to

collect the flow-through. The beads were washed twice in

binding buffer before elution with a high-salt buffer

(50 mM Tris-HCl, pH 7.4, 1 M NaCl, 0.1% BSA). Sam-

ples were then separated on 4–12% gels and subjected to

western blot analysis as described above.

Single-chain FXII (scFXII)–polyP70 and aFXIIa activity

FXII (50 nM) was incubated with polyP70 (70 lM) in the

presence of increasing concentrations of S2302 substrate

(0–500 lM). The activity of aFXIIa (50 nM) was moni-

tored under comparable conditions. From the raw data,

the slope of the linear portion of the reaction was derived

with GRAPHPAD PRISM 5.03 by linear regression, and plot-

ted against the substrate concentration. The data were

then fitted to an allosteric sigmoidal model of enzyme

kinetics in the case of scFXII–polyP70, or the classic

Michaelis–Menten equation in the case of aFXIIa [35].

Inhibition studies

FXII (50 nM) in the presence of polyP70 (70 lM) or

aFXIIa (50 nM) was incubated with various concentra-

tions of CTI (0–500 nM), PCK (0–5 lM), or C1-Inh

(0–400 nM), and activity was monitored with S2302

(0.5 mM). Gradient values were derived and normalized

to activity in the absence of inhibition. Data were then

analyzed by non-linear regression (log[inhibitor] vs. nor-

malized response variable slope), allowing the IC50 values

to be determined.

FXI activation

FXI (35 nM) was incubated with or without FXII (50 nM)

and with or without polyP70 (70 lM), and activity was quan-

tified with a chromogenic substrate, L-2145. Additional

samples were removed at 100 min, and western-blotted with

an HRP-conjugated polyclonal antibody against FXI.

PK activation

PK (50 nM) was incubated with or without FXII (3 nM)

and with or without polyP70 (70 lM), and activity was

quantified with S2302. Both kallikrein and aFXIIa cleave

S2302; to control for this, the activating concentration of

FXII (3 nM) was included with or without polyP70 (70 lM).
Samples were removed at 60 min and western-blotted with

an HRP-conjugated polyclonal antibody against PK.

Data analysis

All data were analyzed with GRAPHPAD PRISM 5.03. Experi-

ments were performed in triplicate, and results are

presented as the mean � standard deviation of at least

three separate repeats. Statistical analyses were performed

with t-tests, with P < 0.05 considered to be statistically

significant.

Results

scFXII shows enzymatic activity when bound to polyP70

PolyP70 (70 lM) was found to be a potent stimulator of

FXII autoactivation, as determined in a continuous reac-

tion with a chromogenic substrate (Fig. 1A). Autoactiva-

tion of FXII was analyzed at 60 min by SDS-PAGE

under reducing conditions and western blotting with an

antibody against FXII (Fig. 1B). DS generated a two-

chain active enzyme, composed of a 50-kDa chain and a

30-kDa chain; the bands observed were of the same molec-

ular masses as those obtained with a commercial prepara-

tion of aFXIIa. In contrast, although FXII incubated

with polyP70 was capable of cleaving an amidolytic sub-

strate, it was detected as a single band at 80 kDa. We per-

formed a second chromogenic reaction under

discontinuous conditions (Fig. 1C), in which FXII

was incubated with polyP70 or DS for various times

(0–100 min). The reaction was stopped with NaCl (1 M) to

disrupt binding of FXII(a) to the activating surface. FXII

incubation with DS resulted in substantial cleavage of

S2302, but, in contrast, no FXIIa activity was detected in

preparations of FXII and polyP70. To confirm dissociation

of the scFXII–polyP70 complex by high salt concentra-

tions, we performed binding assays in which polyP70 was

directly coupled to polymethacrylate beads (Fig. 1D).

FXII was depleted in the flow-through fraction, reflective

of binding to immobilized polyP70, and was subsequently

eluted with 1 M NaCl. No binding of FXII to control

beads was observed. The transition metal ion Zn2+ is

known to enhance the association of FXII with activating

surfaces such as DS [5,36]. We analyzed the contribution

of Zn2+ to the interaction of FXII and polyP70 by per-

forming the continuous assay in the absence and presence

of 10 lM Zn2+ and 1 mM EDTA. Zn2+ dramatically

accelerated the activity generated by scFXII–polyP70, and

this effect was negated by EDTA (Fig. 1E). No significant

differences in activity were noted with EDTA alone or

when EDTA included in the reaction containing Zn2+.

The accelerated reaction in the presence of Zn2+ did not

drive formation of the of two-chain aFXIIa by polyP70, as

shown by western blotting (Fig. 1C). The activity of

scFXII–polyP70 was compromised at 140 mM NaCl, but,

interestingly, the effect of NaCl was overcome by addition

of Zn2+ (Fig. 1E). These results suggest that the two acti-

vating surfaces, polyP70 and DS, induce FXII activity by

different mechanisms. They indicate that association of

polyP70 with FXII generates an active single-chain inter-

mediate with substantial activity towards an amidolytic

substrate in the absence of proteolytic cleavage to aFXIIa.
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The optimal polyP70 polymer concentration for efficient

autoactivation of FXII was 70–140 lM (Fig. 2), as deter-

mined with the continuous assay described above. As

shown in Fig. 1E, the concentration of NaCl in the reac-

tion had a dramatic impact on autoactivation of FXII by

polyP70. We investigated this more comprehensively, and

found maximal autoactivation of FXII by polyP70 at low

NaCl concentrations (10–50 mM); however, considerable

activity was still detectable at physiological NaCl concen-

trations (Fig. 2). The strong dependence on the concen-
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Fig. 1. Activation of FXII by polyphosphate (polyP). (A) FXII (50 nM) alone or in the presence of either polyP70 (70 lM) or dextran sulfate

(DS) (1.5 lg mL�1) was added to the chromogenic substrate S2302 (0.5 mM). The reaction was monitored in a plate reader at 405 nm and

37 °C. (B) FXII (50 nM) alone or in the presence of either polyP70 (70 lM) or DS (1.5 lg mL�1) � 10 lM ZnCl was incubated for 60 min at

37 °C. Samples were separated on 4–12% gels alongside preformed aFXIIa (50 nM) before western blotting with an antibody against FXII. (C)

FXII (50 nM) was incubated at 37 °C for various times up to 120 min with polyP70 (70 lM), with DS (1.5 lg mL�1), or in the absence of a sur-

face. After incubation, 1 M NaCl was added before quantification of activity with S2302 (0.5 mM). (D) FXII was bound to polymethacrylate

beads labeled with polyP or bovine serum albumin (control). Starting material (SM), flow-through (FT) and high salt (HS) eluent were sepa-

rated on 4–12% gels, and detected with an antibody against FXII. (E) FXII (50 nM) alone or in the presence of 70 lM polyP70 � 10 lM
ZnCl � 1 mM EDTA was added to 0.5 mM S2302, and the reaction was monitored as above in standard buffer containing either 100 mM or

140 mM NaCl. Data are expressed as mean � standard deviation; n = 4.
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tration of NaCl reflects the ionic nature of the interaction

between FXII and polyP70, as shown in Fig. 1D. We

found that the optimal Zn2+ concentration for enhancing

autoactivation of FXII by polyP70 was 10 lM (Fig. 2).

The presence of physiological concentrations of Zn2+

enhances the generation of scFXII–polyP70 activity and

can diminish the effect of NaCl on the reaction.

Comparison of scFXII–polyP70 activity with aFXIIa activity

We next conducted a set of experiments to investigate the

kinetics of the reaction of scFXII–polyP70 with S2302 in

comparison with a commercial preparation of aFXIIa.

aFXIIa produced a classic hyperbolic curve that, when

analyzed by use of the Michaelis–Menten equation, gave

a Km of 77 lM (Fig. 3). In contrast, a sigmoidal curve

was obtained with scFXII–polyP70 over a range of S2302

concentrations (10–400 lM) (Fig. 3), from which it was

impossible to derive a Km. The data were fitted to sigmoi-

dal substrate velocity curves (GRAPHPAD PRISM), and the

Hill coefficient determined to be 3.67, indicative of posi-

tive cooperative binding of polyP70 to FXII.

Sensitivity of scFXII–polyP70 to inhibition

We then studied inhibition of scFXII–polyP70 by a pept-

idyl inhibitor (PCK), a small protein inhibitor (CTI) and

a physiological inhibitor (C1-Inh) of FXIIa. FXII and

polyP70 (70 lM) or aFXIIa were incubated with

increasing concentrations of inhibitors (Fig. 4). Activity

was quantified with S2302 at each inhibitor concentration

tested. We found that scFXII–polyP70 was inhibited

substantially faster by CTI than the two-chain form,

aFXIIa (IC50 of 23.1 � 0.06 nM vs. 304.4 � 0.06 nM,

respectively). Similar results were obtained with PCK,

with lower IC50 values for scFXII–polyP70 than for

aFXIIa (IC50 of 533.8 � 0.08 nM vs. 2212 � 0.03 nM).

Interestingly, no difference was noted in the inhibition of

scFXII–polyP70 and aFXIIa by C1-Inh (IC50 of

113 � 0.1 nM vs. 104.4 � 0.09 nM).
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Fig. 2. Formation of single-chain FXII–polyphosphate (polyP)70. In all reactions 50 nM FXII was added to 0.5 mM S2302 in the presence of

70 lM polyP70, unless otherwise stated. The concentration of polyP70 in the reaction was varied from 0 to 2 mM. The concentration of NaCl in

the buffer was varied from 10 to 1000 mM, or ZnCl2 was included in the reaction buffer at various concentrations (0–100 lM). Results are

expressed as mean � standard deviation; n = 3.
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© 2014 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.

PolyP induces activity in single-chain FXII 1517



scFXII–polyP70 cleaves physiological substrates

We tested the ability of scFXII–polyP70 to cleave its phy-

siological targets, FXI and PK. FXI with or without

FXII and with or without polyP70 (70 lM) was incubated

with a chromogenic substrate for FXI, and the activity

was quantified over a period of 2 h. Very little FXIa

activity was observed upon incubation of zymogen FXI

and FXII, but inclusion of polyP70 dramatically acceler-

ated activation (Fig. 5A). Western blotting revealed the

presence of FXIa when FXI was incubated with FXII

and polyP70 but not when it was incubated with FXII

alone. In the absence of FXII, polyP70 was unable to

directly stimulate autoactivation of FXI, consistent with

previous observations [21].

Similar experiments conducted with PK showed genera-

tion of kallikrein activity when PK was incubated with

FXII, indicating reciprocal activation of these proteases

even in the absence of an activating surface (Fig. 5B).

Inclusion of polyP70 dramatically accelerated the cleavage

of PK, and bands of kallikrein at 50 kDa and 38/35 kDa

were detected by western blotting. Interestingly, polyP70

was not efficient at stimulating PK autoactivation, but

these experiments were conducted in the absence of the

cofactor HK, which facilitates binding of PK to an acti-

vating surface. The chromogenic substrate S2302 can be

cleaved by both kallikrein and FXIIa. We therefore exam-

ined cleavage of S2302 at various FXII concentrations;

minimal cleavage of S2302 was observed until the

concentration of FXII exceeded 25 nM in the presence of

polyP70 (data not shown). These data clearly show that

scFXII–polyP70 has the capacity to cleave downstream

physiological targets in addition to amidolytic substrates.

Discussion

FXII is known to autoactivate when bound to negatively

charged surfaces. The mechanism of autoactivation has

been studied with several non-physiological surfaces,

such as DS [31,37], ellagic acid [38], and kaolin [39].

These studies provided valuable insights into the mecha-

nism underpinning FXII autoactivation, but the surfaces

were included at relatively high concentrations, and

experiments were performed at low ionic strength. In

this study, we analyzed autoactivation of FXII by the

‘natural’ surface polyP at physiological pH and ionic

strength. It has been established that longer-chain polyP,

such as those found in bacteria, are substantially more

efficient at stimulating contact activation [33]. However,

the aim of this study was to evaluate the ability of

polyP of approximately the size found in platelets to

activate FXII [21,27]. We have shown that autoactiva-

tion of FXII by polyP70 generates an active single-chain

intermediate form of FXII (scFXII), presumably by

inducing a conformational change in FXII that allows

the active site of the enzyme to open. If the interaction

of polyP70 and FXII is disrupted by high salt concentra-

tions, enzymatic activity is lost, indicating that the con-

formational change in scFXII–polyP70 is reversible.

scFXII–polyP70 is capable of cleaving synthetic and phy-

siological targets, specifically FXI and PK, to their

active forms, indicating that it may participate in biolog-

ical reactions and could provide the initial stimulus for

generating two-chain aFXIIa in vivo.

FXII is classified as a coagulation protein, but it clos-

est homolog is hepatocyte growth factor [40], and it is

also structurally analogous to the fibrinolytic proteins

tissue-type plasminogen activator (t-PA) and single-chain

urokinase plasminogen activator [41]. Interestingly, t-PA

is not considered to be a ‘true zymogen’, as it shows

catalytic activity, ~ 8% of that of the two-chain form,

as a single-chain protein (single-chain t-PA [sct-PA])

[42–44]. Fibrin functions as a cofactor for sct-PA, accel-

erating its intrinsic enzymatic activity to such a degree

that the cleaved and uncleaved forms are indistinguish-

able [45]. ‘Zymogen activation’ can therefore be
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achieved by direct cleavage of sct-PA by plasmin or by

binding of sct-PA to fibrin [45]. The results presented

here indicate that a similar mechanism may exist for

activation of zymogen FXII. The enzymatic activity of

aFXIIa is 4200-fold higher than that of FXII [46].

However, our data reveal that, when FXII is bound to

its ‘cofactor’, polyP70, there is a substantial increase in

enzymatic activity, roughly equivalent to that of the

same concentration of cleaved aFXIIa. The hypothesis

that FXII could show amidolytic activity in its single-

chain form was first proposed by Ratnoff and Saito

[32], after they exposed FXII to Sephadex–ellagic acid.

They found that cleavage of FXII was minimal, but

that coagulant and amidolytic properties could be

detected. This suggests that binding of FXII to a nega-

tively charged surface, at least to ellagic acid and

polyP70, is sufficient to induce a conformational change

that exposes the active site of the protein.

The FXII heavy chain contains two surface binding

regions, one in the fibronectin type I domain between

Thr134 and Arg153 [2], and one at an N-terminal site

located between Glu5 and Glu15 [1]. By use of a series of

FXII deletion mutants, an additional discontinuous

region (Pro313–Arg334, Leu334–Arg353) was identified

that can participate in surface binding [4]. Autoactivation

of FXII and cleavage by kallikrein is also enhanced by

binding of a mAb to the kringle domain of FXII, indicat-

ing that multiple mechanisms may promote FXII activa-

tion [47]. The cooperative binding kinetics observed for

FXII autoactivation by polyP70 may be explained by the
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existence of multiple binding sites for anionic surfaces,

and require further studies to define the number and loca-

tion of these sites.

Generation of scFXII–polyP70 activity was dependent

on the concentration of activating surface, with an opti-

mal concentration of 70–130 lM polyP70. Higher concen-

trations of polyP70 were inhibitory, consistent with a

template mechanism of activation. Substantial amidolytic

activity was detected at low ionic strength (50 mM), but

even at physiological salt concentrations, scFXII–polyP70

showed significant activity. These observations are consis-

tent with our previous reports on polyP activation of

FXII in plasma [20,21]. Zinc ions bind to FXII, and are

known to enhance autoactivation by several surfaces,

including DS [5] and phosphatidylinositol phosphate [36].

FXII has the capacity to bind a maximum of four zinc

ions, with high affinity (0.6 lM), to a single class of inde-

pendent, non-interacting binding sites [36]. In plasma, the

concentration of Zn2+ is 5–20 lM; the majority is bound

to albumin, with only 0.25–1 lM being available as free

ion [48]. However, the concentration of Zn2+ in platelets

is 30–60-fold higher [49], and is sensitive to changes in

the extracellular concentration [50]. It has been suggested

that concentrations of ~ 10 lM free Zn2+ could be readily

achieved in the circulation following platelet activation

[51,52], and concomitant release of polyP and Zn2+ from

activated platelets may facilitate FXII activation in vivo.

In line with previous reports on autoactivation of FXII

by DS [5], our experiments indicate that, in the presence

of Zn2+, the impact of NaCl on the interaction of FXII

and polyP70 activity is diminished.

It has previously been shown that autoactivation of

FXII can be induced by low molecular mass polysaccha-

rides, but the rate is dramatically accelerated with poly-

saccharides of 10 000 Da and above [31]. The increased

level of autoactivation is explained by the existence of

multiple binding sites for FXII on larger polysaccharide

chains. In this study, we used polyP of an average chain

length of 70. By assuming a P–O bond length of 1.5 �A,

we can derive the length of polyP70 as ~ 20 nm. The

diameter of FXII is 5–6 nm (Mr = 80 000), based on the

assumption that the protein molecule is approximately

spherical [31]. These calculations are approximate; how-

ever, they imply that up to four FXII molecules could

bind per chain of polyP70, which may account for the lev-

els of autoactivation and activity observed.

scFXII–polyP70 was markedly more sensitive to inhibi-

tion by CTI and PCK than two-chain aFXIIa. Interest-

ingly, there was no difference in the inhibition of

scFXII–polyP70 and aFXIIa by the serpin C1-Inh. It is

interesting to speculate on the differences in inhibition of

scFXII-polyP70 by these inhibitors, which are markedly

different in structure and mode of inhibition. It is possi-

ble that, in the case of C1-Inh, the polyanion binding

site negates the effect of polyP70, whereas with PCK a

charge interaction may occur between the arginine of the

peptide-based inhibitor PCK and polyP70, drawing it

into the active site and facilitating inhibition. CTI is a

unique inhibitor, which is relatively specific for trypsin

and FXIIa, however, like PCK the reactive site region of

CTI has a net positive charge due to an abundance of

arginine residues [53]. The positive charge associated

with the reactive sites of CTI and PCK could help to

explain the rapid inhibition of scFXII–polyP70 by these

inhibitors.

These results are the first to document the mechanism

of autoactivation of FXII by a ‘natural’ surface under

physiological conditions. Our data indicate that when

FXII is in complex with its cofactor, polyP70, it can show

enzymatic activity in the absence of proteolytic cleavage.

These data provide novel insights into the subtleties that

regulate FXII autoactivation by naturally occurring anio-

nic surfaces. It remains to be established whether binding

of other physiological activators of FXII, such as RNA

and misfolded proteins, induces similar enzymatic activity

in the single-chain form of FXII. Complex formation

between polyP released during platelet activation and

plasma FXII may provide the initiating event to stimulate

reciprocal activation of PK, subsequently leading to gen-

eration of aFXIIa by kallikrein.
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