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A key stage in both the use of polymer rods in Split Hopkinson Pressure Bar (SHPB) testing and in
establishing the material properties of these rods is the experimental determination of the propagation
coefficient. An analytical investigation of the experimental arrangements used to ascertain the propa-
gation coefficient is reported. A wave model for longitudinal waves that incorporates both viscoelastic
material properties and the effect of lateral motion of the rod is used to provide a closed form solution for
the attenuation coefficient and phase velocity of a polymer rod. The load pulse at the end of a bar is
approximated for the coaxial impact of two types of striker (steel bearing balls and short viscoelastic
rods). The propagation coefficient is then calculated from simulated strain histories along the bar. These
calculated propagation coefficients are compared to the closed form solution. This enables the errors
associated with different experimental arrangements to be assessed virtually and thereby provides
guidance for future experimental programmes. The effects of overlapping waves and signal noise are
investigated also. The experimental techniques are validated by the analysis and the importance of
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lateral inertia on the choice of experimental set-up is highlighted.

© 2012 Elsevier Ltd. Open access under CCBY license,

1. Introduction and background

The propagation coefficient describes how a wave changes
shape as it travels along a rod. The aim of the analytical investi-
gation reported here is to obtain better understanding of and
guidance for the experimental techniques used to determine the
propagation coefficient from impact tests on a viscoelastic rod.

The dynamic testing of materials and components often
involves modelling the propagation of stress waves in slender rods.
For example, during SHPB tests the forces and displacements at the
two bar—specimen interfaces are determined by strain measure-
ments at locations along the bars. The specimen to be tested is
placed between input and output bars, both of which are instru-
mented with strain gauges. The input bar is impacted with a striker
bar resulting in an incident stress wave propagating through the
bar. At the input bar/specimen interface (front face), part of the
incident wave is reflected back through the input bar (the reflected
wave) and part is transmitted through the specimen to the output
bar (the transmitted wave). The stress, strain and strain-rate in the
specimen are determined from analysis of these three propagating
waves. Under favourable circumstances the stress wave at the
strain gauge is assumed to have the same shape as that at the end of
the bar so the wave analysis requires only a simple time shift of the
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measured signals. This is the case when the bar geometry, the bar
material, and the frequency content of the stress waves result in
negligible dispersion and attenuation of the signals. Usually, when
this is the case, bars of sufficient length are chosen so that the
incident and reflected waves can be recorded on the input bar
without overlapping each other. Consequently, no wave separation
is required and post-processing of test data is straightforward. A
more detailed discussion on the theories and assumptions gov-
erning the classical SHPB technique can be found in reference [1].

As polymer rods have much lower mechanical impedance than
metal rods, they are often employed in the SHPB apparatus when
testing soft (low strength or low impedance) materials at inter-
mediate strain-rates. Wave propagation in elastic bars only involves
dispersion due to three-dimensional effects (geometric dispersion).
However, additional dispersion and damping of the propagating
waves occurs with viscoelastic bars due to their frequency-
dependent and dissipative properties [2—7]. When viscoelastic
bars are employed, in general modelling the dispersion and
attenuation of stress waves in the bars is essential to generate
accurate data for the specimen. Furthermore, the waves tend to be
more dispersive and so it becomes more necessary to employ wave
separation techniques [3,4]. Polymer rods are not generally
supplied with specified frequency-dependent mechanical proper-
ties. This is because these properties are a function of the envi-
ronmental history of the rod as well as the manufacturing
conditions. Impact tests on the rods are therefore always required
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before the rods are used within the SHPB arrangement. During
these preliminary tests, it is common practice to determine the
propagation coefficient and to calculate the complex Young's
modulus from this propagation coefficient. The accuracy with
which the propagation coefficient is calculated from strain histories
will affect the accuracy of all future tests carried out with the bars.
Since Blanc developed the method of deriving the propagation
coefficient from two non-overlapping measurements of a wave in
a polymer rod [6,7], different experimental methods to determine
the propagation coefficient of polymer bars have been documented
[5,8,9].

Generally, wave propagation has been analysed in the frequency
domain. The analysis often involves a complex Young’s modulus
combined with e.g. the one-dimensional wave equation (see e.g.
Ref. [5]). For greater accuracy at higher frequencies, Zhao and Gary
[10] employed a nine-parameter rheological model and accounted
for both dispersion and attenuation effects by generalising the
Pochhammer—Chree equation for elastic bars to viscoelastic bars.
The difficulties associated with the technique are discussed in Ref.
[11], where approximations to the Pochhammer—Chree equation
for viscoelastic bars are employed to extend the usable frequency
range beyond that for the one-dimensional theory. For many
studies on longitudinal stress waves in polymer rods, the one-
dimensional wave theory is appropriate for the frequency range
considered and so is retained for simplicity, e.g. see Refs. [8,9,12,13].

Time-domain analysis of wave propagation in polymer rods has
received less attention. However, the viscoelastic effect has been
incorporated in the one-dimensional wave equation [14], which is
valid within a certain frequency range. Experimentally, this range
can prove limiting. The effect of lateral inertia was incorporated
into a wave model for elastic bars by Love a century ago (see Refs.
[15,16]). The wave model employed for analyses here was proposed
recently [17] as a viscoelastic equivalent to Love’s theory for elastic
waves. The material properties are modelled as a standard linear
solid (SLS) rheological model. This wave model simplifies to the
one-dimensional solution for waves in polymer rods derived by
Wang et al. [14] if the Poisson ratio is set to zero. The predictions
simplify to Love’s equation for stress waves in elastic bars when
rate dependency is removed from the material model. However, the
new wave equation has certain limitations associated with both the
simplicity of the rheological model it employs and the limitations
associated with Love’s theory for elastic bars. The Love’s theory will
diverge from test data at higher frequencies since it does not take
cross-section warping into account [18]. Clearly, this must also be
the case for an equivalent to Love’s theory for viscoelastic bars. The
Pochhammer—Chree equation provides accurate dispersion
predictions for long finite bars over a much wider range of
frequencies, but the solution cannot be expressed in closed form.
The retrieval of model parameters is therefore more difficult.
Nonetheless, the variation of both the phase velocity and the
attenuation coefficient with frequency that is reported in a number
of experimental and theoretical investigations (e.g. Ref. [10]) is well
approximated by the wave model used here.

The advantage of the wave equation in Ref. [17] is that the
propagation coefficient can be calculated directly in terms of the
constants of the rheological model, the Poisson ratio, density and
the bar diameter. Simulated impact tests are conducted using this
“known” propagation coefficient and the resulting strain histories
at positions in the virtual bar are used to recalculate the propaga-
tion coefficient. The exact and re-calculated propagation coeffi-
cients are then compared to quantify errors. Additionally, it is
shown that the new wave equation captures the experimentally
observed behaviour well enough to be an extremely practical tool.
By adjusting the parameters of the rheological model, good
agreement with experimental data can be achieved. In particular,

there exists a maximum in the phase velocity—frequency rela-
tionship. This phenomenon has been noted experimentally, e.g. Ref.
[5], and analytically, e.g. Ref. [10]. At low frequencies viscous
components in the material model cause the phase velocity to
increase with frequency. However, the geometric effect becomes
dominant with increasing frequency. The subsequent reduction of
the phase velocity with increasing frequency imposes limitations
on the frequency range over which the propagation coefficient can
be determined accurately with certain experimental techniques.

The force pulses resulting from the impacts of steel bearing balls
and viscoelastic striker bars on the end of a viscoelastic Hopkinson
bar are approximated. Both scenarios are used in impact tests to
obtain the propagation coefficient or material properties, e.g. see
Refs. [5,19]. The longitudinal collinear impact of a spherical steel
bearing ball on a strain-gauged polymer bar is the most popular
method for determining experimentally the propagation coeffi-
cient of a polymer bar [5]. Alternatively, a short polymer rod can be
employed as the impacting projectile, although this often requires
the use of wave separation techniques [9]. A comparative study of
the accuracy and stability of the two methods is reported here. The
methodology of the investigation is to compare the propagation
coefficient that is derived from simulated strain histories to that of
the closed form solution. First, analytical solutions are derived for
the force pulses at the tip of a rod that is impacted by either a steel
bearing ball or a short viscoelastic rod. The strain records at loca-
tions along the bar are calculated via the analytical wave propa-
gation coefficient. These strain records are then used to re-
determine the analytical wave propagation coefficient. Noise and
other experimental factors are considered and the errors in re-
evaluating the propagation coefficient are quantified. Bussac et al.
[20] used analytical models to quantify the errors associated with
predicting forces and displacements in bars from strain and
velocity records at other positions in the bar. Background noise,
imprecise measurements and imprecise knowledge of the disper-
sion relationship were all considered. The focus here is on the
techniques that are likely to provide the best estimate of the
propagation coefficient before this coefficient is used to predict
forces and displacements.

2. The wave model

In the frequency domain, the general solution for a longitudinal
wave propagating along a rod is

(X, 0) = P(w)e "X 4 N(w)eV(@X, (1)

where  is circular frequency, P(») and N(w) are the strains cor-
responding to waves propagating in the positive and negative x
directions respectively at x = 0 and the tilde denotes a complex
variable. y(w) is the propagation coefficient defined as

- . . W
Y(w) = a(w) +ik(w) = a(w)ﬂﬁ, (2)
where « (w) is the attenuation coefficient and « (w) is the wave
number. The attenuation coefficient quantifies the reduction of
magnitude of a propagating wave while the wave number is related
to the phase velocity ¢ (w) and quantifies the dispersion of waves of
different frequencies.

The propagation coefficient can be predicted using a wave
theory when the material properties of the rod are known. For all
simulations reported here, the bar material is assumed to have the
properties of a standard linear solid (SLS) model. This rheological
model consists of a Maxwell model acting in parallel with a Hoo-
kean spring as illustrated in Fig. 1. E; and E,, are the Young moduli of
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Fig. 1. Standard linear solid rheological model.

the purely elastic part and the Maxwell part respectively and the
parameter 4 is defined by

Mm = 0Em, (3)

where 7y, is the viscoelastic damping constant. The material
properties of Fig. 2 are derived from impact tests on a PMMA. Both
the experimental and analytical values for the complex Young
modulus are plotted in Fig. 2. In the SLS model E; = 4.95 GPa,
Em = 1.04 GPaand § = 1.97 x 10~ s. A constant Poisson ratio of 0.38
is used based on test data and the density is 1190 kg m~>. All the
bars have a 20 mm diameter. The complex elastic modulus can be
defined from the constants in the SLS model according to

((Ea + Em)iw + %)

(% 4 iw)

For the wave model employed here, the attenuation coefficient
and wave number have been derived as [17]:

E(w) = (4)

a? = %(A—B); (5)
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Fig. 2. Complex modulus of elasticity. Black lines are experimental data and grey lines
are the SLS viscoelastic model.

2 _ po?
~ 2E,

The parameters A and B in Eqgs. (5) and (6) are frequency-
dependent functions of the bar diameter and material properties:

(A+B). (6)

212
A= E 2,21;(; ' 2122 2 @
Em\ prikiw 2,2 prekiw”
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B _ Ea Ea Ea (8)
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where k is the radius of gyration, p is density and » is the Poisson
ratio. The authors wish to point out that there was a typing error in
the equation for parameter B in Ref. [17]. Eq. (8) above is correct.

Eqgs. (5) and (6) are used to predict changes in shape of propa-
gating waves. The impact scenarios that generate the stress waves
are described next.

3. Impact forces due to bearing ball and rod projectiles

To obtain approximate impact force pulses at the end of the bar,
it is assumed that the force can be related to the axial strain by

F(x,w) = AE(w)&(x, w), (9)

where A is the cross-sectional area. Although Eq. (9) is only exact for
aone-dimensional rod, here it is assumed to be sufficiently accurate
to obtain approximate strain histories at the impacted end of the
bar. Eq. (9) is generally assumed to be accurate enough for SHPB
tests wherein the frequency content of the signals is such that there
is little advantage in considering the variation of stress and strain
through the cross-section of the bars in terms of the accuracy of
their end forces. It should be stressed that the one-dimensional
assumption inherent to Eq. (9) is only employed to obtain the
end conditions of the bar being impacted. Incorporation of the
effect of lateral inertia when determining the contact force at the
tip of the rod is an extremely difficult task that has not been
attempted elsewhere to the authors’ knowledge. Once the strain at
the end of the bar is defined, subsequent stress wave analysis
employs the propagation coefficient defined by Eqs. (5) and (6) and
therefore includes lateral inertia.

3.1. Axial impact of a bearing ball on a viscoelastic rod

Some elements of the derivation of the coaxial elastic impact of
a bearing ball on a circular rod are revised here to clarify aspects of
the viscoelastic analysis that follow. The problem of the axial
impact of a steel bearing ball on a steel bar was first solved by
Eubanks et al. [21] and experimental results were later provided by
Barton et al. [22]. The analysis is detailed for example by Graff [16].
An illustrative diagram of the impact is shown in Fig. 3. The
equation governing the problem was defined in terms of an
“approach” or penetration, ¥, from which the contact force could be
determined. The “approach” is a measure of the amount by which
the two bodies approach each other and is defined as

Y(t) = up(t) —us(0,t) = B+ 6> (10)

The total motion of the bar tip consist of a gross displacement of
the tip (which is given by u7) and an additional local deformation
caused by the ball contact surface which is given as (,. Also the total
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Fig. 3. Schematic illustration of the longitudinal impact of a ball and bar.

motion of the ball is equal to the gross displacement of its centre u,
minus a local deformation 1 caused by the bar’s contact surface.
The gross displacement of the bar tip is obtained by the elementary
wave solution. Assuming classical Hertzian contact between a steel
ball and a steel rod tip, the relationship between the contact force
and the approach is (see Refs. [16,21,22])

F(t) = KyA(t), (11)

where K is a constant given by the material and geometric prop-
erties of the contacting surfaces, defined as:

1/2
T Tl (12)
3mp1 +p2
where, R is the radius of the sphere and
1-42 112
P = (a-n) 1)7 p2 = (A-v) (13)

TE 1 TCEz

where, vy, E1 and v, E3 are the Poisson’s ratio and Young’s modulus
of the rod and the ball respectively.

The governing equation for the approach took the form of
a second order non-linear differential equation [16,21]:

VAW + A = 0, (14)

where, A1 and A; are constants given by the geometry and material
properties of the contacting bodies [16]. The approach is calculated
by solving Eq. (14) numerically and the contact force can then be
obtained from Eq. (11).

A common way of solving problems that incorporate viscoelastic
behaviour is to define the material properties and governing
equations in the frequency domain. However, for the case of an
elastic ball striking a viscoelastic rod, this is not possible due to the
non-linearity of Egs. (11) and (14). In order to obtain an end force on
the bar and start the wave analysis in the rod using Eq. (9), the
“approach” that corresponds to the impact is needed. No solution to
the approach for a steel bearing ball striking a viscoelastic rod is
currently available. Instead, the “approach” corresponding to a rigid
sphere striking a viscoelastic half-space is used. The solution to this
problem was derived by Hunter [23] and is defined in Appendix A.

In order to calculate the end force on the viscoelastic rod, first
a new time-domain function g (t) is defined from the “approach”
calculated according to Hunter [23] as

g(t) = yA(t). (15)

Then, for elastic impacts, Eq. (11) may then be re-written as
F(t) = K g(¢). (16)

Eq. (16) is valid for the elastic deformations only as K is a constant
defined by Egs. (12) and (13). As K is a function of the material
properties and geometric parameters only, it is possible to trans-
form Eq. (16) into the frequency domain. Substituting for the
constant elastic modulus in K with the viscoelastic frequency-
dependent elastic modulus, the elastic constant K can be replaced
by the operator K(), i.e.

F(w) = K(w)g(w). (17)

In order to obtain the contact force using Eq. (17) and thereby start
the wave analysis using Eq. (9), the following steps were carried
out:

1. An approximate “approach” y (t) is calculated in the time-
domain. This “approach” is for a rigid sphere striking a visco-
elastic half space and is derived in Appendix A.

2. g(t) is calculated from Eq. (15) and its Fourier transform g(w) is
determined.

3. The frequency domain operator K() that relates g(w) to the
contact force is calculated, based on the geometry and material
properties of both the viscoelastic rod and the steel bearing
ball.

4. F(w) is calculated using Eq. (17) and used to obtain an
approximate contact force at the end of the rod.

Despite the differences between the experimental set-up and
the analytical scenario that was used to estimate the approach, the
analytical solutions are surprisingly similar to those seen experi-
mentally. This is illustrated in by comparing Figs. 4 and 5. Note that
compressive strains are shown as positive in all figures. The strains
in Fig. 4 are those prescribed at the end of the rod in simulations,
defined according to the above technique while Fig. 5 shows
measured strains taken approximately at the mid-length of
a 20 mm diameter, 1 m long PMMA bar. Fig. 4(a) and 5(a) show the
effect of using bearing balls with diameters of 4 mm, 6 mm and
10 mm at the same impact velocity of 2.5 m s~' (experimental
impact velocities are approximate in Fig. 5). Figs. 4(b) and 5(b)
show the impact of a 10 mm diameter bearing ball at varying
impact velocities of 1.5, 2.5 and 3.5 m s~ It is clear from both
figures that the impact velocity has a large effect on the amplitude
but a small effect on the period of the strain signals. The diameter of
the projectile has a notable effect on both the amplitude and period
of the strain history. In Fig. 4, the change in slope towards the end of
the strain history (e.g. at approximately 1 x 104 s in Fig. 4(b)) is
associated with the loss of contact between the projectile and the
rod. The frequency content of the experimental and simulated
pulses are compared in Fig. 6 for a 10 mm bearing ball impacting at
2.5 m s~ ! and 3.5 m s~ L The frequency content is plotted for the
simulation data at both the end of the bar (Fig. 6(a) and (b)) and
approximately mid-way along the bar (Fig. 6(c) and (d)). The
experimental strains are recorded mid-way along the bar. The
frequency contents of the simulated pulses are good approxima-
tions of the test data. Fig. 7 shows the strain histories that are
predicted half way along a 1 m long bar resulting from the impact of
a 6 mm diameter steel bearing ball projectile at 2.5 m s~ 1.
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Fig. 4. Simulated strain histories at the end of the viscoelastic bar: (a) Impact velocity = 2.5 m s~ !, bearing ball diameter = 4 mm (black line), 6 mm (grey line), 10 mm (dashed line);
(b) Bearing ball diameter = 10 mm, impact velocity = 1.5 m s~ ' (black line), 2.5 m s~! (grey line), 3.5 m s~! (dashed line).

3.2. Viscoelastic impact of a cylindrical striker and a semi-infinite
Hopkinson bar

Herein, for the collinear impact of two viscoelastic rods, the
force pulse and the strain at the impacted end of the bar are
calculated in the complex frequency domain using the equations
derived by Bussac et al. [24] assuming one-dimensional wave
theory and the SLS rheological model. However, the propagation
coefficient that is employed in all equations here is that described
in Section 2. This leads to slight differences between the force
pulses employed in Ref. [24] and those used here. The simulated

a x 10

351

2571

Strain

0.5}

)

3
4

Time (seconds) x 10

Strain

strain histories differ further since the wave model described in
Section 2 is again employed to simulate the wave propagation. The
equation for the contact force derived by Bussac et al. [24] is out-
lined in Appendix B.

Fig. 8 illustrates the strain records that are predicted in a PMMA
rod when impacted by a shorter striker bar. This figure will be
discussed in more detail later. At this point it is worth highlighting
the high frequency components that are evident in the rising part of
the wave at the first gauge position. Such high frequency compo-
nents tend to be a feature of test results (e.g. see Ref. [24]) but are
not present in the analytical predictions in Ref. [24] due to the one-

x10°

3
Time (seconds) x10*

Fig. 5. Experimental strain histories at 200 mm from the end of the PMMA bar: (a) Impact velocity = 2.5 m s, bearing ball = 4 mm (black line), 6 mm (grey line), 10 mm (dashed
line); (b) Bearing ball = 10 mm, impact velocity = 1.5 m s~! (black line), 2.5 m s~! (grey line), 3.5 m s~! (dashed line).
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strains are at the tip of the rod. For (c) and (d) the simulated strains are mid-way along the bar.

x10°

strain

5+
1 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1 1.2
Time (seconds) x10°
x 107
101
5 v
£
So
(2}
5t
2 3 4 5 6 7 8 9 10
Time (seconds) x 107

Fig. 7. Simulated strain history at the mid-length of a 1 m long bar as a result of a bearing ball impact. The grey line is the incident pulse and the black line is the reflection.
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Fig. 8. Simulated strain histories at three locations on a 1 m long bar as a result of impact by a 350 mm bar (strains artificially attenuated after three cycles).

dimensional wave model employed. They are present in the
simulations here because the propagation coefficient incorporates
the effect of lateral inertia [17]. These high frequency components
are attenuated substantially as the wave propagates along the bar.

4. Two methods for calculating the propagation coefficient

Two experimental methods for determining the propagation
coefficient have been investigated. Both experimental methods
have been simulated in the same way. An end force on the bar is
specified for the particular impact scenario. The axial strain is
determined from this contact force according to Eq. (9). Eq. (1) is
then used to calculate the strain at any strain gauge location along
the bar. Note that reflections from the ends are incorporated in the
total strain history. It is assumed for all simulations that strain
propagates along the bar with the propagation coefficient defined
by Egs. (5) and (6).

The first experimental method (Method 1) relies on the
recording of waves travelling in one direction without overlap from
an opposite travelling wave. The solution for this case was first
provided by Blanc [6,7] using the Fourier transforms of a wave at
two different positions. Typically a bearing ball impact test is per-
formed on a bar and a single strain gauge location half way along
the bar is used to measure both the incident (¢ (t)) and reflected (&g
(t)) pulses. Experimentally, it is important to ensure that the posi-
tive travelling incident wave and its reflection are measured
completely without overlap at the gauge position. If the gauge is
located a distance d from the free end of the bar, a transfer function
can be defined in terms of these two measured waves [5], i.e.

oo R(W)
A= "% =

The attenuation coefficient and wave number for the bar can
then be determined according to

e—27(w)d (18)

arg [H(w)] In [I:I(w)}
2d 2d

A propagation coefficient that is determined experimentally
using Eq. (19) contains all material and geometric effects on both

k(w) = — and a(w) = (19)

dispersion and attenuation. Generally, it is recommended that
a number of tests are carried out in order to reduce errors [5].

The second method (Method 2) permits overlap of opposite
travelling waves in the strain readings used to determine the
propagation coefficient. Lundberg and Blanc [8] produced a general
solution for the propagation coefficient using two independent
measurements and one known boundary condition, i.e. zero strain at
the free end. In the general solution, the propagation coefficient was
expressed in terms of the Fourier transform of the strain reading at
two positions on the bar. This solution has been extended by
Hillstrém et al. [9] for the case of three independent strain
measurements irrespective of the end condition. As well as consid-
ering the general case for gauges positioned at random distances
from each other, a closed form solution for the propagation coeffi-
cient was provided for the special case where the distance between
the gauges is equal. This closed form solution [9] was given as

F-xx (-1 (20)

where

x =05 @ (21)
1)

and %1, ¥, and g5 are the Fourier transforms of the strain readings at

the three gauge stations. £ may be related to the propagation
coefficient through

= (22)

where h is the distance between the gauges.

5. Results and discussion

The wave model described in Section 2 has been used to
simulate the wave propagation in a PMMA rod resulting from the
two impact scenario described in Section 3, i.e. the collinear impact
of either steel bearing balls or viscoelastic striker bars. The simu-
lated strain readings have then been used to re-create the propa-
gation coefficient by either Method 1 or Method 2, as described in
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Section 4. The time increment used in all calculations is 1 ps. A
number of cases have been simulated. The effects of bar length and
noise when using Method 1 are discussed first. Then Method 2 is
discussed and particular attention is given to both noise and the
need to apply an exponential window to the strain histories.

5.1. Method 1, 1 m bar

The results of the simulation of a 6 mm diameter steel bearing
ball striking a 1 m long PMMA bar at 2.5 m s~ are shown in Fig. 7.
The two strain histories that are plotted represent the separate
forward and backward moving incident and reflected waves half
way along the bar. The attenuation coefficient and phase velocity
for the bar are plotted in Fig. 9. If the two separate strain histories
shown in Fig. 7 are used to re-create the propagation coefficient,
the result is identical to the analytical propagation coefficient
illustrated in Fig. 9 over the frequency range shown. However, in
areal test a single measurement is used to define both the incident
and reflected wave, i.e. the sum of these waves gives the strain on
the bar according to Eq. (1). Therefore, the waves were added
together to give the strain history on the bar then the waves were
split by visual inspection as would be done in an experiment (Note
that the term “split” is used here to distinguish the procedure from
wave separation). It was simply assumed that the incident wave
was fully recorded in the strain signal before 0.6 ms and that only
the reflected wave contributed to the signal after this time. Zeroes
were added to the beginning or end of the split strain records. The
propagation coefficient was then re-evaluated using these split
strain histories and Egs. (18) and (19). The result is plotted in Fig. 9
together with the actual analytical propagation coefficient. There is
excellent agreement between the exact analytical and re-created
phase velocity to approximately 73 kHz. The re-created attenua-
tion coefficient first deviates from the analytical value between 40
and 45 kHz, and the differences become large beyond about 55 kHz.

The process was then repeated but with the strain history split
at 0.55 ms instead of 0.6 ms. The result is again plotted in Fig. 9. This
time the re-created attenuation coefficient first deviates from the

Attenuation coefficient (1/m)
N
T

0 1 1 1

analytical value at about 25 kHz, with differences becoming large
beyond 30 kHz. The reason that the re-created attenuation coeffi-
cients in Fig. 9 diverge from the analytical value at higher
frequencies can be understood by close inspection of the strains in
Fig. 7. It can be observed that due to dispersion of the incident pulse
a “minor” overlap with its reflection is present. This can be seen in
the lower diagram of Fig. 7 which shows an enlarged version of the
apparently “separated pulses” in the upper diagram. High
frequency components (of the order of 80 kHz) of the incident wave
are still propagating forward at the strain gauge position when the
reflected wave arrives. Fig. 9 shows that geometric effects cause the
phase velocity to reduce with frequency after about 20 kHz. The
high frequency components therefore travel along the bar at low
speeds so that there is a significant time extension or “spreading
out” of the loading pulse as it propagates. This phenomenon is due
to geometric dispersion and so is quite distinct from the “tail” that
is often present in viscoelastic waves due to stress relaxation that is
described in Refs. [2,24].

Since the force history resulting from a bearing ball impact will
always contain some high frequency components, some overlap
between the incident and reflected wave may be difficult to avoid
for 1 m long bars. In the simulations here, the high frequency
components that cause the overlap have amplitudes of about one
thousandth of the incident pulse itself. Experimentally, this level of
signal is just about detectable with a 12 bit data acquisition board
and easily detectable with a 16 bit board, but may be obscured in
a test by the presence of background noise from e.g. amplifiers. This
overlap can lead to substantial errors in the attenuation coefficient
at frequencies beyond about 25 kHz. Careful inspection of the strain
records may improve the accurate frequency range to approxi-
mately 50 kHz, which is greater than the usual frequency range for
test data. It is unlikely that a propagating pulse in a Hopkinson bar
test will contain frequency contents as high as 40 kHz. For the strain
history split at 0.6 ms, at about 40 kHz the error margin in calcu-
lating the attenuation coefficient is only approximately +3%. The
simulation suggests that it is possible to determine the phase
velocity accurately up to frequencies over 70 kHz. However, the
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Fig. 9. Attenuation coefficient and phase velocity predicted using Method 1 and a 1 m bar. Strain history is split at 0.6 ms (dashed lines) and 0.55 ms (grey lines). The solid black

lines are the closed form solution.
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simulation does not include experimental effects such as
misalignment and noise. Furthermore the wave model that is used
is not expected to be accurate at these high frequencies.

5.2. Method 1, 1 m bar with added noise

The effect of noise on Method 1 was investigated by adding
white noise with mean amplitude of 1% of the maximum strain
magnitude (i.e. random noise with a uniform probability density
function between the limits of +2%). The simulated strain gauge
reading with added noise was then split into two parts at 0.6 ms in
order to define the incident and reflected pulses recorded in a test.
The result of this on the attenuation coefficient and phase velocity
is shown in Fig. 10. The error in the attenuation coefficient is now
approximately +3% at 12 kHz and grows to roughly +50% at about
25 kHz. The presence of noise has a significant effect on the result
by reducing significantly the accurate frequency range of the
propagation coefficient that is calculated. The third trace in Fig. 10
was calculated with the added noise and a tenth order Butterworth
low pass filter with a cut-off frequency of 40 kHz (Note that
a 40 kHz low pass filter will attenuate the power of a sinusoid by
3 dB at the cut off frequency but will have an attenuating effect at
frequencies lower than this). Lower cut-off frequencies of e.g.
10—20 kHz limit the useful frequency range in themselves. The
40 kHz filter was tried and led to some improvement in the
calculated phase velocity. However, there was no significant impact
on the accuracy of the attenuation coefficient.

5.3. Method 1, 2 m bar

In order to avoid the problem of overlapping waves that was
evident for a 1 m long bar, the impact of a 6 mm diameter steel
bearing ball striking a 2 m long PMMA bar at 2.5 m/s was simulated.
The strain at a position half way along the bar was split into two
portions to represent the incident and reflected waves as before,
again by visual inspection, at a time of 1.3 ms. No noise was added
to the strain histories. The simulated strain history half way along
the bar is plotted in Fig. 11 for both the 1 m and 2 m long rods. The
propagation coefficient calculated from the 2 m long bar is plotted
in Fig. 12. As can be seen by comparing Figs. 9 and 12, although it
was possible to re-create the attenuation coefficient with negligible
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strain

-6 1 1 1 1 )
0 0.5 1 1.5 2 2.5
Time (seconds)

Fig. 11. Simulated strain histories at the mid-lengths of 1 m long (black line) and 2 m
long (grey line) bars as a result of impact from a steel ball bearing.

errors up to 40 kHz for the 1 m bar, this was only possible up to
22.5 kHz for the 2 m long bar. Between 22.5 and 40 kHz the error for
the 2 m bar is generally around 5—10% but reaches 25% at certain
frequencies. The reason the longer bar has resulted in larger
errors can be seen in the two magnitude—frequency plots in
Fig. 13. Fig. 13(a) contains the magnitude—frequency plots for the
incident and reflected waves for the 2 m long bar, while the same
information for the 1 m long bar is plotted in Fig. 13(b). For the 2 m
bar, the amplitude of the signal in the reflected wave is very low
beyond a frequency of about 20 kHz. This coincides roughly with
the growth of errors in Fig. 12. A particular “jump” in the error
margin in both the phase velocity and the attenuation coefficient
occurs at about 27 kHz in Fig. 12. This can be attributed the fact that
the magnitude of the incident and reflected waves are very low at
this frequency (Fig. 13(a)).

Overall, increasing the bar length has reduced the frequency
range over which the propagation coefficient can be determined
accurately. This highlights the difficulties associated with deter-
mining the propagation coefficient using methods that require
waves to be recorded without overlap from reflections. In order to
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Fig. 10. Attenuation coefficient and phase velocity predicted using Method 1 and a 1 m bar with added noise and no filtering (grey line) or filtering at 40 kHz (dashed line).
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Fig. 12. Attenuation coefficient and phase velocity predicted using Method 1 and a 2 m bar (grey line).

avoid overlap, longer bars and greater distances between gauges
should be used. However, this can result in low magnitudes and
a loss of accuracy for high frequency components. Clearly both
these effects and the frequency range during impact tests and
subsequent SHPB tests need to be considered.

5.4. Method 2, 1 m long bar

In order to investigate Method 2, the impact of a 350 mm
PMMA striker bar on a 1 m long bar was considered. Both the bars
have the same 20 mm diameter and the impact was at 4 m s~ .
Strain readings at three equidistant points on the 1 m bar were
simulated. The distance between each gauge location (h in Eq. (22))
was 0.25 m. The strain histories at the three “gauge stations” are
shown in Fig. 8. Three complete cycles of incident and reflected
waves were simulated. At the end of the third cycle there are no
further reflections, as if the pulse that is propagating back and
forward is completely removed by a perfect momentum trap. This

a x10

Magnitude

0 10 20 30 40
Frequency (kHz)

artificial attenuation is to avoid either the use of long time periods
in the simulations or truncation of the signals. It was estimated
that it would take roughly 60 ms for the signals to attenuate to 1%
of their initial amplitude. The artificial attenuation permits the
calculations to be carried out for a time period of 3.5 ms. The
attenuation coefficient and phase velocity that were calculated
using these signals are in such excellent agreement with the
analytical values that they cannot be distinguished if plotted
together on Fig. 14.

5.5. Method 2, 1 m long bar with added noise

It is well established that methods for determining the propa-
gation coefficient which allow wave overlapping are extremely
sensitive to noise [9]. This has been observed when determining
the viscoelastic properties of polymers [8] and when separating
overlapping waves in viscoelastic bars [4,20]. The effects are severe
for polymer materials with low damping [8]. The errors are
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Fig. 13. Incident (grey) and reflected (black) strain magnitude versus frequency for (a) the 2 m and (b) 1 m long bars.
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Fig. 14. Attenuation coefficient and phase velocity predicted using Method 2. The solid black lines are both the analytical solution and the recalculated values for the
simulated strains in Fig. 8 without added noise. The grey lines were calculated after adding noise. The dashed lines were calculated after adding noise and filtering at

40 kHz.

reduced by taking several readings and determining a least
squares solution [9]. The aim here is simply to compare a multiple
gauge method that allows overlapping waves with one that aims
to measure waves without overlap. Uncorrelated noise was added
to the strain histories in the same way as described in Section 5.2.
The propagation coefficient was then determined from the noisy
strain histories. The resulting attenuation coefficient and phase
velocity are plotted in Fig. 14. The error in the attenuation coeffi-
cient can be as much as 85%, even at frequencies below 10 kHz.
The error in the phase velocity is also substantially greater than
that for Method 1. The third trace in Fig. 14 was calculated with the
added noise and a low pass filter with a cut off frequency of
40 kHz. Filtering at this or lower values of e.g. 10—20 kHz gave
little improvement in the accuracy of either the attenuation
coefficient or the phase velocity.

5.6. Method 2, effect of exponential windowing

Two numerical difficulties arise when analyzing the wave
propagation using the FFT. The first difficulty is associated with
periodicity problems in the time-domain [25] and causes difficul-
ties if the strain pulses do not attenuate to zero. Test data cannot be
attenuated to zero in the way the simulated strains were in Section
5.4. For Fourier analysis, it is therefore necessary to employ a time
window long enough to capture the strain readings until they
attenuate to zero experimentally. Otherwise, the data is truncated
as shown in Fig. 15, where the simulation time is stopped after
a period of 3.5 ms. It is not possible to re-evaluate the propagation
coefficient using the strain histories in Fig. 15 and the solution given
by Egs. (20)—(22) using Fourier transforms. If this is attempted, no
sensible solution is obtained. However, applying an exponential
window e~?" and then taking the Fourier transform is equivalent to
using Laplace rather than Fourier transformations and does not
require the free response of the system to attenuate to zero within
the time window [26].

Additionally, Hillstrom et al. [9] identified certain “critical
frequencies” where the values of the experimentally determined
viscoelastic properties have poor accuracy. This occurs when the
distance between gauges is an integral multiple of half the wave-
length of the propagating wave and causes difficulties when
separating overlapping waves [3]. Hillstrém et al. [9] proposed that
this effect could be alleviated by taking additional readings and

distributing the measurement points non-uniformly. Other inves-
tigators have employed time-domain wave separation at these
critical frequencies [4]. However, Bussac et al. [20] illustrated how
this problem may be avoided by working in the Laplace instead of
the Fourier domain.

The strain simulations shown in Fig. 15 were multiplied by an
exponential window e~f before performing the FFT on the results,
with ¢ = 27/NAt [27], where N is the number of sample points and
At is the time increments of 1 ps. The benefits of exponential
windowing are shown in Fig. 16. Despite the truncation of the
signals in Fig. 15, a sensible estimate of the propagation coefficient
can be achieved. For comparison, in Fig. 16 the analytical frequency
domain phase velocity and attenuation coefficient are plotted
together with the analytical Laplace domain values and those
calculated from the strain histories in Fig. 15. The exponential
window has little effect on the phase velocity, but adds artificial
damping to the system so the attenuation coefficient is increased.
Clearly there are some errors in both the phase velocity and
attenuation coefficient. These errors can be reduced by taking the
strain recordings over longer periods.

Strain

Time (seconds) x10°

Fig. 15. Simulated strain histories on a 1 m long bar at three positions as a result of
impact by a 350 mm bar.
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Fig. 16. Analytical attenuation coefficient and phase velocity in the frequency (solid black lines) and Laplace (dotted lines) domains and the recalculated values (grey lines) using the

strain histories in Fig. 15.

6. Conclusions

The analytical investigations illustrate that the propagation
coefficient can be determined accurately using either methods
that rely on measuring waves without overlap from end reflec-
tions (Method 1), or those that allow overlapping waves and
incorporate wave separation techniques (Method 2). To avoid
overlap for Method 1, it is important to consider the length of
the stress relaxation tail associated with viscoelastic stress
waves [5,24]. However, the inclusion of lateral inertia effects in
the analytical model has shown that geometric dispersion can
result in greater increases to the period of the stress wave. If the
incident and reflected waves are measured at the same strain
gauge, the time at which the strain history is split into a forward
and backward moving wave can have a large effect on the
maximum frequency that the propagation coefficient can be
determined to. It was somewhat surprising that the propagation
coefficient was re-calculated better from the 1 m bar simulation
than the 2 m bar simulation. This was due to the reduction in
amplitude of the higher frequency components. There are
opposing factors associated with the increasing period of the
wave and the damping of high frequencies. Clearly, the optimum
distance between gauges, or the optimum bar length, will
depend on the material properties and the bar diameter. If the
noise is kept to a low level, it is possible to obtain very accurate
propagation coefficients up to higher frequencies than required
in SHPB testing using Method 1. However, the inclusion of 1%
mean amplitude random noise brings the accurate upper
frequency down to approximately 10—15 kHz. Note that this
applies to a single test rather than averaging from a number of
tests. The same level of noise has a much more detrimental
effect on Method 2 than Method 1. For bar materials with
a low loss modulus (so that signals do not attenuate to zero
rapidly), it is not possible to determine the propagation
coefficient using Method 2 when there is 1% mean amplitude
random noise. For these materials, the need to use exponential
windowing with Method 2 has been highlighted.
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Appendix A. The “approach” for a rigid sphere impacting
a viscoelastic half-space

Hunter [23] defined the governing equations for the problem of
the mechanical contact between a rigid spherical indenter and
a general viscoelastic half-space. As the steel ball is much stiffer
than the viscoelastic material, in order to determine the approach it
is assumed to be rigid. The solution then takes the form of a single
integro-differential equation for the time before the rigid spherical
indenter achieves maximum compression of the viscoelastic half
space and a pair of coupled non-linear integro-differential equa-
tions for the time after maximum compression [23]. A numerical
scheme for solving these equations has been produced by Calvit
[28]. The general solution to the impact problem was only feasible
on a numerical basis. However, for the special case where the
material properties could be assumed to be “almost” elastic within
the impact period, an approximate analytical solution was provided
which is valid provided T/ < 1, where T is the total duration of
impact [23]. For the cases considered here T/f is often in the region
of approximately 5. However, Calvit [28] showed that for room
temperature tests on PMMA the general shape of the approach
history does not vary significantly when viscous effects are
included. For impact periods in the region of 200 ps, the period only
varied by about 5% between the elastic and viscoelastic models.
Hunter’s approximate analytical solution is therefore used here to
approximate the approach. The viscoelastic effect is included when
relating the approach to the contact force and after contact, when
viscous effects dominate the relaxation process.

The analytical solution is defined in terms of a parameter Z that
can be related to the approach in different ways for the periods
before and after the maximum compression. For the period of time
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before maximum compression the approximate governing equa-
tion was given as [23]

12
8upR'” 2 ¢ <t (A1)

D
740 (zfv)zfm

where, t, is the time at maximum compression, M is the mass of
the indenter, v is the Poisson’s ratio of the viscoelastic material, R is
the radius of the indenter and V is the initial impact velocity. up is
the dynamic shear modulus of the viscoelastic model and is taken
as (Ea + Em)/2(1 + v). During this period before maximum
compression, the approach is defined as

2
vy = — 7, (A2)

where, ri(t) is the radius of the contact circle formed by the
indenter and the viscoelastic half-space.

For the period after maximum compression the approximate
equation of motion is

1
Z-07'(32+V) 8upR® 3

= mzi, t>tm (A3)

and the approach may be defined from Z according to

Y(t) = e 2tmz(p), (A4)

Egs. (A1) and (A3) were solved numerically using the
Runge—Kutta method with a time increment of 1 ps. The approach
was then determined from Egs. (A2) and (A4) before the force at the
end of the bar was calculated.

Appendix B. Viscoelastic impact of a cylindrical striker and
a semi-infinite Hopkinson bar

The equation for the contact force for the collinear impact of two
viscoelastic rods assuming one-dimensional wave theory and the
SLS rheological model was derived by Bussac et al. [24] as

Fe(t) = [1— H(t — to)]Fo(t). (B1)

In Eq. (B1) contact first occurs at time t = 0, H (t) is the Heaviside
step function and ty is the time when separation occurs (when the
forcing term first becomes negative). Fy (t) is the time-domain
forcing term calculated from the frequency domain function

P (@) = Z1V1 1 +RC 1—e 21k (B2)
PP 2w 14 Reem2nily

where Z;, Ly, V; and ¥, are the impedance, length, impact velocity
and propagation coefficient of the striker, respectively. R¢ is termed
the reflection coefficient in Ref. [24] and reduces to zero for bars of
the same impedance, which is the case considered here.

From Egs. (B1) and (B2), in order to determine F((t) the inverse
Fourier transform of F,(w) must first be determined. Bussac et al.
[24] proposed a method to invert this function for the general case
of any impedance ratio between the striker and bar. Herein, the end
force (Eq. (B1)), end strain (Eq. (9)) and strain histories along the
bar (Eq. (1)) are all calculated in the complex frequency domain (or
Laplace domain) before strain histories are converted to the time-
domain. For two bars with the same mechanical impedance tj in Eq.
(B1) is infinite, but the contact force tends to zero (see Ref. [24]).

References

[1] Gray Il GT. Classic split-Hopkinson pressure bar testing. In: Kuhn H, Medlin D,
editors. ASM metals handbook. Mechanical testing and evaluation, vol. 8.
Materials Park, Ohio: ASM International; 2000. p. 462—76.

Zhao H, Gary G, Klepaczko JR. On the use of a viscoelastic split Hopkinson

pressure bar. Int ] Impact Eng 1997;19:319—30.

Zhao H, Gary G. A new method for the separation of waves. Application to the

SHPB technique for an unlimited duration of measurement. ] Mech Phys Solids

1997;45:1185—-202.

Bacon C. Separation of waves propagating in an elastic or viscoelastic Hop-

kinson pressure bar with three-dimensional effects. Int ] Impact Eng 1999;22:

55—69.

Bacon C. An experimental method for considering dispersion and attenuation

in a viscoelastic Hopkinson bar. Exp Mech 1998;38:242—9.

Blanc RH. Détermination de I'’équation de comportement des corps viscoé-

lastiques linéaires par une méthode d’impulsion, Doctoral Thesis, Université

d’Aix-Marseille; 1971.

Blanc RH, Progress in pulse testing methods for viscoelastic solids. In:

Proceedings of the 2nd national congress on theoretical and applied

mechanics, Varna, Bulgarian Academy of Science Publication, Sofia, 1976, vol.

22; 1973. pp. 555—564.

Lundberg B, Blanc RH. Determination of mechanical properties from the two

point response of an impacted linearly viscoelastic rod specimen. ] Sound Vib

1988;126:97—-108.

Hillstrom L, Mossberg M, Lundberg B. Identification of complex modulus from

measured strains on an axially impacted bar using least squares. ] Sound Vib

2000;230:689—707.

[10] Zhao H, Gary G. A three-dimensional analytical solution of the longitu-
dinal wave propagation in an infinite linear viscoelastic cylindrical bar.
Application to experimental techniques. ] Mech Phys Solids 1995;43:
1335—48.

[11] Benatar A, Rittel D, Yarin AL. Theoretical and experimental analysis of longi-
tudinal wave propagation in cylindrical viscoelastic rods. ] Mech Phys Solids
2003;51:1413-31.

[12] Mousavi S, Nicolas DF, Lundberg B. Identification of complex moduli and
Poisson’s ratio from measured strains on an impacted bar. ] Sound Vib 2004;
277:971-86.

[13] Mousavi S, Welch K, Valdek U, Lundberg B. Non-equilibrium split Hopkinson
pressure bar procedure for non-parametric identification of complex
modulus. Int ] Impact Eng 2005;31:1133-51.

[14] Wang L, Labibes K, Azari Z, Pluvinage G. Generalization of split Hopkinson bar
technique to use viscoelastic bars. Int ] Impact Eng 1994;15:669—86.

[15] Love AEH. A treatise on the mathematical theory of elasticity. 4th ed. Cam-
bridge: Cambridge University Press; 1927.

[16] Graff KF. Wave motion in elastic solids. York: Dover, New; 1991.

[17] Aleyaasin M, Harrigan ]J. Wave dispersion and attenuation in viscoelastic
polymeric bars: analysing the effect of lateral inertia. Int ] Mech Sci 2010;52:
754—7.

[18] Green WA. Dispersion relations for elastic waves in bars. In: Sneddon IN,
editor. Progress in solid Mechanics, vol. 1. Amsterdam: North-Holland; 1960.
p. 225-61.

[19] Liu Q, Subhash G. Characterization of viscoelastic properties of polymer bar
using iterative deconvolution in the time domain. Mech Mater 2006;38:
1105-17.

[20] Bussac M-N, Collet P, Gary G, Othman R. An optimisation method for sepa-
rating and rebuilding one-dimensional dispersive waves from multi-point
measurements. Application to elastic or viscoelastic bars. ] Mech Phys Solids
2002;50:321-50.

[21] Eubanks RA, Muster D, Volterra E. An investigation of the dynamic properties
of plastics and rubber like materials; June 1952. Office of Nav. Res., Depart-
ment of the Navy, Contract No. N7 ONR 32911, Tech. Rep. No.1.

[22] Barton CS, Volterra EG, Citron SJ. On elastic impacts of spheres on long rods.
In: Proc. 3rd U.S Natn. Cong. Appl. Mech.; 1958. pp. 89—94.

[23] Hunter SC. The Hertz problem for a rigid spherical indenter and a viscoelastic
half-space. ] Mech Phys Solids 1960;8:219—34.

[24] Bussac M-N, Collet P, Gary G, Lundberg B, Mousavi S. Viscoelastic impact
between a cylindrical striker and a long cylindrical bar. Int ] Impact Eng 2008;
35:226—-39.

[25] Gopalakrishnan S, Martin M, Doyle JF. A matrix methodology for spectral
analysis of wave propagation in multiple connected Timoshenko beams.
J Sound Vib 1992;158:11—-24.

[26] Kausel E, Roésset JM. Frequency domain analysis of undamped systems. ] Eng
Mech 1992;118:721-34.

[27] Wilcox DJ. Numerical Laplace transformation and inversion. Int ] Electr Eng
Educ 1978;15:247—64.

[28] Calvit HH. Numerical solution of the problem of impact of a rigid sphere unto
a linear viscoelastic half-space and comparison with experiment. Int J Solids
Struct 1967;3:951—-66.

[2

3

[4

[5

[6

[7

8

[9



	On the propagation coefficient of longitudinal stress waves in viscoelastic bars
	1. Introduction and background
	2. The wave model
	3. Impact forces due to bearing ball and rod projectiles
	3.1. Axial impact of a bearing ball on a viscoelastic rod
	3.2. Viscoelastic impact of a cylindrical striker and a semi-infinite Hopkinson bar

	4. Two methods for calculating the propagation coefficient
	5. Results and discussion
	5.1. Method 1, 1 m bar
	5.2. Method 1, 1 m bar with added noise
	5.3. Method 1, 2 m bar
	5.4. Method 2, 1 m long bar
	5.5. Method 2, 1 m long bar with added noise
	5.6. Method 2, effect of exponential windowing

	6. Conclusions
	Acknowledgement
	Appendix A. The “approach” for a rigid sphere impacting a viscoelastic half-space
	Appendix B. Viscoelastic impact of a cylindrical striker and a semi-infinite Hopkinson bar
	References


