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Summary

Signalling C-type lectin receptors (CLRs) are
crucial in shaping the immune response to fungal
pathogens, but comparably little is known about
the role of these receptors in bacterial, viral and
parasitic infections. CLRs have many diverse func-
tions depending on the signalling motifs in their
cytoplasmic domains, and can induce endocytic,
phagocytic, antimicrobial, pro-inflammatory or
anti-inflammatory responses which are either pro-
tective or not during an infection. Understanding
the role of CLRs in shaping anti-microbial immu-
nity offers great potential for the future develop-
ment of therapeutics for disease intervention. In
this review we will focus on the recognition of
bacterial, viral and parasitic pathogens by CLRs,
and how these receptors influence the outcome of
infection. We will also provide a brief update on the
role of CLRs in antifungal immunity.

Introduction

The innate immune system provides the first line of
defence against microbial attack, and is induced by
recognition of microbial components, known as pathogen-
associated molecular patterns (PAMPs) or microbial-
associated molecular patterns (MAMPs), by pattern
recognition receptors (PRRs). PAMPs are highly con-
served and generally unique to microbes (Akira et al.,

2006). Fungal PAMPs consist primarily of cell wall
carbohydrate structures, while bacterial PAMPS range
from lipoproteins, lipopolysaccharide (LPS), flagellin and
peptidoglycan to bacterial nucleic acid structures. Viruses
on the other hand are mainly recognized through their
nucleic acids, such as double (dsRNA) or single stranded-
RNA (ssRNA) and viral DNA, although surface envelope
glycoproteins can also be recognized. Although the
PAMPs are not as well characterized, parasites, particu-
larly helminths such as Schistosoma mansoni and
Trichuris muris, or protozoa, such as Leishmania infantum
and Plasmodium berghei, are also recognized by mam-
malian PRRs (McGuinness et al., 2003; Broz and
Monack, 2013; Drummond and Brown, 2013).

PRR recognition of a PAMP can lead to the activation
of intracellular signalling pathways that elicit innate
responses against pathogens and direct the development
of adaptive immunity. Also important to mention is the
recognition of damage-associated molecular patterns
(DAMPs) by PRRs. Molecules released by stressed cells
or cells undergoing necrosis can act as danger signals
and promote inflammatory responses (see for example
Yamasaki et al., 2008). PRRs of relevance here are the
signalling trans-membrane C-type lectin receptors
(CLRs), which are widely recognized to play an essential
role in antifungal immunity (see Hardison and Brown,
2012 for a recent review). Less well recognized is their
role in immunity to other microorganisms. This review will
therefore focus on the role of signalling CLRs in immunity
to bacteria, viruses, helminths and protozoa, and will only
briefly discuss the most recent advances in our under-
standing of their role in antifungal immunity. Furthermore,
we have included certain important CLRs in which the
signalling pathway is unclear, particularly those from
Group VI. The structures of selected CLRs that will be
discussed are represented in Fig. 1.

C-type lectin receptors: general overview

CLRs comprise a large family of receptors which bind
carbohydrates, through one or more carbohydrate rec-
ognition domains (CRDs), or which possess structurally
similar C-type lectin-like domains (CTLDs) which do
not necessarily recognize carbohydrate ligands. CLRs

Received 7 November, 2013; revised 6 December, 2013; accepted 9
December, 2013. *For correspondence. E-mail jennifer.hoving@
uct.ac.za; Tel. (+27) (0) 214066035; Fax (+27) (0) 214066029.
The copyright line for this article was changed on 7 October 2014
after original online publication.

Cellular Microbiology (2014) 16(2), 185–194 doi:10.1111/cmi.12249
First published online 10 January 2014

© 2013 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

cellular microbiology

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aberdeen University Research Archive

https://core.ac.uk/display/77050497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jennifer.hoving@uct.ac.za
mailto:jennifer.hoving@uct.ac.za
http://creativecommons.org/licenses/by/4.0/


are divided into 17 groups based on features including
phylogeny and structure (Zelensky and Gready, 2005).
Discussed in this review are CLRs from groups II
(calcium-dependent lectins with single CRDs), group V
(calcium-independent receptors with single CTLDs)
and group VI (calcium-dependent lectins with multiple
CRDs) (see Table 1). Based on their signalling potential,
CLRs can be further subdivided into (i) activation
Syk-coupled CLRs with immunoreceptor tyrosine-
based activation motif (ITAM) domains, (ii) inhibitory
CLRs with immunoreceptor tyrosine-based inhibition
motif (ITIM) domains or (iii) CLRs without clear ITAM or
ITIM domains such as MR, DEC-205 and DC-SIGN
(Zelensky and Gready, 2005; Sancho and Reis e Sousa,
2012).

Activation of CLRs can induce intracellular signalling
pathways in two ways: firstly through indirect signalling,
where receptors such as macrophage-inducible C-type
lectin (Mincle or CLEC4E), Dectin-2 (CLEC6A) and

C-type lectin domain family 5A (CLEC5A) associate with
ITAM containing adaptor molecules such as Fc Receptor
γ-chain (FcRγ) or DAP12.

The second mechanism employed by Dectin-1 (or
CLEC7A) and DNGR-1 (CLEC9A) involves direct
signalling through ITAM-like motifs located within the cyto-
plasmic tail of these receptors (Rogers et al., 2005;
Geijtenbeek and Gringhuis, 2009). Signalling via both
mechanisms involves the recruitment to phosphorylated
tyrosine residues of spleen tyrosine kinase (Syk), which in
turn co-ordinates a complex of CARD9, B cell lymphoma
10 (Bcl10) and mucosa-associated lymphoid tissue
lymphoma translocation protein 1 (Malt1). Furthermore,
apoptosis-associated speck-like protein containing a
CARD (ASC) has also been shown to be phosphorylated
in a Syk- and Jnk-dependent manner (Hara et al., 2013).
Protein kinase C-δ (PKCδ) is also an essential element in
this pathway (Strasser et al., 2012). Signalling from
Dectin-1 and other lectins also involves additional path-

Fig. 1. Recognition of microorganisms by signalling CLRs. Cartoon representation of the C-type lectin receptors discussed in the text. Also
shown is the microbes they recognize, the major intracellular signalling pathways utilized by these receptors, and the responses they induce.
ITAM indicates receptors utilizing immunoreceptor tyrosine-based activation motifs; ITIM indicates receptors utilizing immunoreceptor
tyrosine-based inhibitory motifs. CR (cysteine-rich domain), FNII (fibronectin domain).
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ways, such as the Syk-independent activation of Raf-1
(Gringhuis et al., 2009). These signalling pathways lead to
activation of several downstream molecules, including
NFκβ and mitogen-activated protein kinases (MAPK),
eventually triggering cellular responses, including phago-
cytosis, DC maturation, chemotaxis, the respiratory
burst, inflammasome activation, and cytokine and other

mediator production (Drummond et al., 2011; Strasser
et al., 2012). Moreover, these receptors can also drive
the development of adaptive immunity, particularly T
helper (Th)1 and Th17 CD4+ and CD8+ T cell adaptive
responses, although some CLRs are also capable of
driving Th2 immunity (Kerrigan and Brown, 2011; Sancho
and Reis e Sousa, 2012).

Table 1. Selected CLRs mentioned in this review.

CLR Ligands Ligand origin Selected references

Group II: Calcium-
dependent CRD

Dectin-2 α-mannans
O-linked mannobiose-

rich
glycoprotein

M. tuberculosis
S. mansoni
SEA
C. albicans
Malassezia spp.
HDM allergens

Ritter et al., 2010; Meevissen et al.,
2012; Ishikawa et al., 2013;
Prasanphanich et al., 2013; Salazar
et al., 2013

CLECSF8 TDM M. bovis
K. pneumonia

Miyake et al., 2013; Steichen et al.,
2013

Mincle α-mannose
mannitol-linked

glyceroglycolipid
mannosyl fatty acids
TDM

M. tuberculosis
C. albicans
Malassezia spp.

Ishikawa et al., 2009; Lee et al., 2012;
Sancho and Reis e Sousa, 2012;
Ishikawa et al., 2013

DC-SIGN High mannose
SlpA

HIV-1
Measles
Dengue
Mycobacterium spp.
Influenza A
SEA
Leishmania spp.
Helicobacter pylori
Lactobacillus spp.

Gringhuis et al., 2007; Konstantinov
et al., 2008; Geijtenbeek and
Gringhuis, 2009; Mesman et al.,
2012; Avota et al., 2013; Chen
et al., 2013; Harman et al., 2013;
Hillaire et al., 2013

SIGNR3 High mannose and fucose L. infantum
SEA

Powlesland et al., 2006; Meevissen
et al., 2012; Lefevre et al., 2013;
Prasanphanich et al., 2013

SIGNR1 High mannose and fucose SEA Galustian et al., 2004; Meevissen
et al., 2012; Prasanphanich et al.,
2013

MGL Lewis X SEA Van Vliet et al., 2005; Meevissen et al.,
2012; Tundup et al., 2012

DCIR unknown HIV-1 Sancho and Reis e Sousa, 2012

Group V: Calcium-
independent
non-CRD

Dectin-1 β-glucans L. infantum
C. albicans
Mycobacterium spp.

Hardison and Brown, 2012; Lefevre
et al., 2013

CLEC5A Unknown Dengue virus
JEV

Chen et al., 2012; Drummond et al.,
2013

DNGR-1
(CLEC9A)

F-actin Vaccinia virus
Herpes simplex virus

Iborra et al., 2012; Zelenay et al., 2012

Group VI: Calcium-
dependent multiple
CRD

Mannose
Receptor (MR)

High mannose
Omega-1
ManLam

SEA
Trichuris muris
Mesocestoides corti
HDM allergens
Mycobacterium spp.
K. pneumonia
S. pneumonia
F. tularesis

Kang et al., 2005; Deschoolmeester
et al., 2009; Geijtenbeek and
Gringhuis, 2009; Everts et al., 2012;
Meevissen et al., 2012; Mishra
et al., 2013; Prasanphanich et al.,
2013; Salazar et al., 2013

DEC-205
(CD205)

PLA Y. pestis Zhang et al., 2008

Relevant references are indicated in text.
HDM, house dust mite; HIV, human immunodeficiency virus; JEV, Japanese encephalitis virus ManLam, mannosylated lipoarabinomannan;
PLA, plasminogen activator; SEA, schistosoma egg antigen; SlpA, surface layer A protein; TDM, trehalose-6,6′-dimycolate.
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While signalling through ITAM-bearing receptors results
in cell activation, ITIM-bearing receptors usually mediate
inhibitory functions. For example, DCIR contains an
ITIM in its cytoplasmic tail which recruits tyrosine
phosphatases (SHP-1 and SHP-2) following ligand
binding to modulate the signalling pathways induced by
other PRRs, such as inhibition of TLR8- or TLR9-induced
cytokine production (Geijtenbeek and Gringhuis, 2009).
However, the function of inhibitory CLRs is not always
clear cut as these receptors can also have activa-
tion functions, thereby mediating cellular activation. They
may either recruit novel substrates to their cytoplas-
mic domains or inhibit other inhibitory receptors
(Redelinghuys and Brown, 2011).

The role of C-type lectins in microbial recognition
and immunity

Bacteria

The role of CLRs in anti-bacterial immunity has been best
characterized for M. tuberculosis (MTB). Multiple CLRs
including Dectin-1, DC-SIGN, mannose receptor (MR),
and Mincle have been implicated in MTB control in vitro,
however each of these CLRs appears to be redundant in
controlling infection in vivo. For example, Dectin-1 was
shown to be required for the production of IL-12p40 by
splenic DCs in response to mycobacteria in vitro, but
was redundant during infection in vivo (Rothfuchs et al.,
2007; Court et al., 2010; Marakalala et al., 2010). MR
binds to mannose-capped lipoarabinomannan (ManLAM)
on the surface of M. tuberculosis, mediating bacterial
phagocytosis and limiting phagosome–lysosome fusion
within macrophages, but loss of the MR did not influence
antimycobacterial immunity in vivo (Schlesinger et al.,
1994; Kang et al., 2005; Court et al., 2010). Mincle medi-
ates recognition of mycobacterial cord factor, trehalose-
6,6′-dimycolate (TDM), and was shown to be essential for
driving immune responses to TDM in vivo, including
granuloma formation (Ishikawa et al., 2009). Yet Mincle
knockout mice had normal granulomas and did not show
obvious defects during live MTB infection (Lee et al.,
2012; Heitmann et al., 2013). DC-SIGN recognizes
ManLAM and α-glucan, preventing DC maturation and
the production of IL-10 (Geijtenbeek et al., 2003;
Geurtsen et al., 2009). Although mice deficient in a
murine homologue for DC-SIGN, SIGNR3−/− showed
defects in early control of MTB, they mounted an efficient
anti-mycobacterial adaptive immune response with
granulomatous lesions comparable to wild-type controls
(Tanne et al., 2009).

Despite the apparent redundancy of these receptors in
vivo, the shared CLR downstream signalling pathway
involving CARD9 is critical for protection, as CARD9−/−

mice present with uncontrolled bacterial replication and
exacerbated neutrophilic pulmonary inflammation, which
is followed by death (Dorhoi et al., 2010). This suggests
either that a combination of CLRs or an unknown CLR is
essential for protection against MTB. Recently studies
have shown that Mincle can form a receptor complex with
CLECSF8 (CLEC4D or MCL) and FcεRIγ, and this
heterotrimeric complex is proposed to be the functionally
optimal form for these CLRs (Lobato-Pascual et al.,
2013). However, the role of CLECSF8 in live MTB infec-
tion has not been defined.

Recently, CLECSF8 was also shown to be important
in the resolution of pneumonia caused by Klebsiella
pneumoniae (Steichen et al., 2013). CLECSF8−/− mice
were more susceptible than wild-type mice to pneu-
monic sepsis, with increased bacterial burdens, hyper-
inflammation and severe lung pathology which correlated
with a massive accumulation of neutrophils. These results
suggest that CLECSF8 plays an important role in resolu-
tion of inflammation, and is the first report describing a
physiological function for this CLR.

In addition to M. tuberculosis, DC-SIGN also interacts
with a wide range of other bacterial pathogens including
M. leprae, Helicobacter pylori and Lactobacillus species
(Geijtenbeek and Gringhuis, 2009). Lactobacillus reuteri
and L. casei have been shown to bind DC-SIGN and
induce regulatory T-cells (Smits et al., 2005), while
surface (S) layer A protein (SlpA) on the surface of
L. acidophilus has been identified as a ligand of this
CLR (Konstantinov et al., 2008). The MR also recognizes
a number of other mannose-expressing bacterial
species, including M. kansasii, K. pneumonia, Strepto-
coccus pneumoniae and Francisella tularensis. However,
the MR seems not to be essential during infection with
these pathogens in vivo (Geijtenbeek and Gringhuis,
2009).

Other less well characterized CLRs have also been
shown to recognize bacteria. DEC-205, for example,
is a member of the mannose receptor family and
binds to plasminogen activator (PLA) on the surface of
Yersinia pestis, which mediates bacterial attachment
(Lähteenmäki et al., 1998). This CLR was found to
promote dissemination of this pathogen, and this had
detrimental implications for the host (Zhang et al., 2008).

Viruses

Viruses are abundant, rapidly evolving pathogens which
pose a continual challenge to the host immune system.
Unlike the predominantly protective responses that CLRs
mediate to other pathogens, viral recognition by CLRs
tends to favour transmission, infection and inflammation.
Recognition of HIV by DC-SIGN is a well characterized
example of the detrimental effect of CLR signalling in
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response to a virus. Firstly, binding of HIV-1 to DC-SIGN
not only modulates TLR-induced IL-10 production by
signalling via Raf-1, but also impairs T cell proliferation
and TLR-induced dendrite formation of DCs (Gringhuis
et al., 2007). Secondly, HIV gp120 facilitates DC-SIGN-
mediated viral entry into the cells, results in infected CD4+

target cells (Harman et al., 2013) and accelerated DC
apoptosis, negatively affecting DC maturation which
would normally promote pathogen recognition by the
immune system (Chen et al., 2013). Therefore, preventing
HIV from binding to mucosal DCs by blocking CLRs could
potentially prevent HIV transmission.

DC-SIGN ligands are not limited to HIV but include a
range of other viruses, such as Cytomegalovirus, Dengue
virus, Ebola virus, Hepatitis C virus, SARS-coronavirus,
West Nile virus and the Measles virus (Mesman et al.,
2012; Avota et al., 2013; Hillaire et al., 2013). More
recently, DC-SIGN was shown to assist in the replication
of Influenza A virus, by binding to glycans on haemagglu-
tinin, promoting viral binding to cells and internalization in
vitro (Hillaire et al., 2013). However, the contribution
of DC-SIGN was dependent on the extent of the
glycosylation of viral haemagglutinin.

Viral exploitation of CLRs can also induce pro-
inflammatory cytokines leading to severe pathology for
the host. Previously, MR and CLEC5A have been shown
to bind Dengue virus in vitro leading to infection of
macrophages and inflammasome activation respec-
tively. Unlike conventional CLRs which are involved
in Dengue virus entry into target cells, CLEC5A
regulates virus-induced pro-inflammatory cytokines
and blocking CLEC5A-mediated signalling attenuates
pro-inflammatory cytokine production by infected macro-
phages, reducing mortality, and maintaining host immu-
nity, leading to resolution of infection. This indicates that
CLEC5A is critical in regulating inflammatory reactions
triggered by pathogens. The elevated levels of TNF-α
during infection were associated with DAP12 activation,
suggesting that CLEC5A directly interacts with the
Dengue virion (Chen et al., 2008). Similarly, Japanese
encephalitis virus (JEV) also binds CLEC5A directly, and
induces neuro-inflammation through DAP12 activation
in macrophages. Blocking CLEC5A reduced neuronal
damage, pro-inflammatory cytokine secretion, blood-brain
barrier permeability, and cellular infiltration into the central
nervous system (CNS) in vivo (Chen et al., 2012).
Together these studies suggest that CLR blockage could
alleviate tissue damage and increase survival of patients
with virus-induced inflammatory diseases.

In contrast to these detrimental roles, CLRs can also
induce protective responses. This is exemplified by
DNGR-1 (CLEC9A) in the control of both vaccinia (Iborra
et al., 2012) and Herpes Simplex (Zelenay et al., 2012)
viruses. DNGR-1 is expressed by a subset of DC’s and

detects dead cells, promoting antigen cross-presentation
to CD8+ T cells. Although DNGR-1-deficient DCs are acti-
vated following interaction with virus-infected cells, they
are no longer capable of cross-presenting antigens. This
results in weaker CD8+ T-cell responses, delayed lesion
resolution and a higher viral load, suggesting that tissue
damage sensing by DNGR-1 is a key component in anti-
viral immunity.

Another example of protective responses mediated
by CLRs is the role of DCIR during infection with
Chikungunya virus (Long et al., 2013). DCIR−/− mice
developed more severe inflammatory disease with a
skewed cytokine response both in vivo and in vitro. Thus
the inhibitory functions of this receptor play an important
role in suppressing pathological inflammatory responses
induced by this pathogen (Long et al., 2013).

Helminths

Helminth parasites drive host CD4+ Th cells toward Th2
and anti-inflammatory responses, and induce alternative
activation of macrophages. Helminth glycans are thought
to play a critical role in driving these responses, and
given the large number of glycan moieties they possess;
it is likely that many CLRs are involved in immunity
to these pathogens. Soluble egg antigen (SEA) of
Schistosoma mansoni cercariae was the first parasite-
specific ligand for DC-SIGN described (Meyer et al.,
2005). Subsequently, glycoproteins from SEAs of seve-
ral schistosome species (S. mansoni, S. hematobium,
S. japonicum) have been described as ligands for
DC-SIGN (van Die et al., 2003).

Other signalling CLRs have been shown to recognize
SEA or S. mansoni glycans, although not all of the
actual ligands have been identified. Among these,
Dectin-2 recognizes an unknown ligand in SEA;
SIGNR1, SIGNR3 and MR all recognize Lewis x and
high-mannose N-glycans; and macrophage galactose
lectin (MGL) recognizes Lewis x, LDN and LDN-F in
SEA (Meevissen et al., 2012; Prasanphanich et al.,
2013). Furthermore, MR recognizes Omega-1 in SEA
and conditions DCs for Th2 priming (Everts et al., 2012).
Dectin-2, in particular, was the first Syk-coupled CLR to
be associated with helminth infections, and plays a role
in regulating helminth immune responses by indirectly
reducing Th2-mediated pathology. Here, Dectin-2 was
found to induce active IL-1β secretion by activating the
Nlrp3 inflammasome in response to S. mansoni SEA
(Ritter et al., 2010).

Other CLRs have also been implicated in anti-helminth
immunity but their role in vivo is less clear. For example,
murine SIGNR1 (a homologue of DC-SIGN) binds SEA in
vitro, but SIGNR1−/− mice mount a normal response during
S. mansoni infection. Both MGL and DC-SIGN are able to
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recognize SEA antigens, but the importance of these
interactions in vivo is still unknown (Meevissen et al.,
2012; Tundup et al., 2012). Similarly, MR was shown to
bind Trichuris muris excretory/secretory proteins but did
not affect parasite clearance, as MR−/− mice cleared the
infection normally (Deschoolmeester et al., 2009).

Notably, a recent publication has shown a role for MR
against Mesocestoides corti, a tape worm that releases
glycan antigens within the CNS causing neurocysticer-
cosis (Mishra et al., 2013). In vivo, MR−/− mice have
increased survival, with accumulation of regulatory granu-
locytic myeloid cells and reduced T cell numbers. There-
fore, the pathogenesis of neurocysticercosis appears to
be directly attributable to the immune response against
the parasite induced by MR. Although these in vivo results
should be interpreted with caution due to the fact that a
microRNA (miR-511-1) is encoded within the MR gene
and co-regulated with MR, possibly influencing the
observed phenotype (Tserel et al., 2011).

In the context of Th2 immunity, CLRs also play a key
role in promoting allergic responses. Of particular im-
portance are MR, DC-SIGN and Dectin-2 (Salazar
et al., 2013). While, MR and DC-SIGN both recognize
Dermatophagoides pteronyssinus group 1 antigen (Der
p 1) from house dust mite (HDM), Dectin-2 recognizes
both HDM (D. farinae and D. pteronyssinus) and mold
(Aspergillus fumigatus) extracts. Dectin-2 was found to
trigger the generation of cysteinyl leucotrienes (cys-LT),
which mediated pulmonary inflammation. In absence of
LTC4 synthase (a critical enzyme in cys-LT generation) or
the cys-LT receptor, pulmonary inflammation was reduced
(Barret et al., 2009).

Protozoa

Several CLRs have been implicated in the recognition of
Leishmania species, but their role is only starting to be
understood. DC-SIGN and L-SIGN (a close homologue of
DC-SIGN which also recognizes high-mannose glycans)
molecule have both been shown to recognize Leishma-
nia, but the receptors differ in their ability to interact with
these organisms, depending on the species and the stage
of parasite maturation (Caparros et al., 2005). Dectin-1
and MR have been shown to be crucial for the ‘killing’
response against L. infantum, by inducing ROS in
macrophages and triggering Syk-coupled secretion of
IL-1β (Lefevre et al., 2013). SIGNR3, on the other hand,
has been lined with parasite survival both in vivo and in
vitro, by inhibiting the LTB4/IL-1β axis (Lefevre et al.,
2013). As LTB4 is known to play a crucial role in the
mechanisms responsible for killing Leishmania, specifi-
cally through the activation of IL-1β; it has been suggested
that elevated LTB4 benefits the host while reduced
LTB4 benefits the pathogen. These studies highlight the

divergent but essential roles of CLRs in Leishmania
pathogenesis.

CARD9 has recently been linked to cerebral malaria
(CM), where its expression was upregulated in a mouse
model induced by Plasmodium Berghei (Hafalla et al.,
2012). However, CARD9−/− mice were not protected from
infection, suggesting that CM develops independently of
CARD9 despite its upregulation during disease. In con-
trast, striking protection against CM was observed when
DNGR-1+ DCs were depleted. Protection was associated
with reduced numbers of CD8+ cells, reduced parasite
burdens in the brain and reduced IFN-γ levels (Piva et al.,
2012). More recently a study using DCIR−/− mice also
demonstrated significant survival compared with wild-
type controls. Protection was associated with reduced
CD8+ cells and reduced brain inflammation, highlighting
the activation functions of some inhibitory receptors
(Redelinghuys and Brown, 2011; Maglinao et al., 2013).
Although the specific mechanism underlying this protec-
tion is unknown, it is clear that CLRs play a critical role
in CM.

Fungi

Innate and adaptive immune responses to fungi are pri-
marily mediated by CLRs, with Dectin-1 being the best
characterized in the context of fungal infections (Hardison
and Brown, 2012). For fungal infections innate and adap-
tive immune responses are primarily regulated by CLRs.
Due to the rapid increase of advances made in this field
we will discuss some of the recent studies which have
dissect CLR-mediated mechanisms involved in antifungal
immunity. Dectin-1 recognizes β-glucan and induces mul-
tiple cellular functions through its cytoplasmic signalling
domain, and is essential for protective immune response
to Candida albicans and other fungi in mice and humans.
Recently we have discovered that the requirement for
Dectin-1 in the control of C. albicans is strain specific, as
different C. albicans strains have variations in the compo-
sition and nature of their cell walls which only become
apparent during infection in vivo (Marakalala et al., 2013).
Dectin-1-mediated protection to C. albicans infections has
also recently been attributed to the production of type I
IFN by renal infiltrating DCs, a response which required
Syk, CARD9 and IRF5 (del Fresno et al., 2013). Other
signalling CLRs which play important roles include
Dectin-2, Mincle, DC-SIGN and the MR (Hardison and
Brown, 2012).

The influence of the fungal microbiota on immune regu-
lation is another recent area of progress. The mammalian
intestinal microbiota was found to include a myriad of
fungal species, with over 100 known and 100 novel fungal
species being identified (Iliev et al., 2012). Mice lacking
Dectin-1 were shown to have increased susceptibility to
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dextran sodium sulfate (DSS) induced colitis when spe-
cific fungal species were present in their gastrointestinal
tract. Moreover, a polymorphism of Dectin-1 was identified
which associated with patients presenting with severe
ulcerative colitis (Iliev et al., 2012). Similarly, SIGNR3 rec-
ognition of fungi was shown to influence immune regula-
tion in the gut, as SIGNR3−/− mice exhibit an exacerbated
DSS-induced colitis compared with wild-type controls
(Eriksson et al., 2013). Together, these studies highlight
the importance of fungal recognition by CLRs and the role
this plays in maintaining intestinal immune homeostasis
and control of disease.

As we have already discussed, CLRs are important
in initiating innate immunity and link pathogen recogni-
tion to the development of adaptive immunity. More
recently, the concept of innate immune memory or
‘trained immunity’ has emerged and challenged conven-
tional paradigms of T and B cell-mediated adaptive
memory. Essentially, trained immunity is induced after a
primary infection or vaccination, confers protection inde-
pendently of T or B cells, mediated by innate immune
cells such as NK cells and monocytes/macrophages,
and increases resistance to infection by the same or
other pathogens (Netea et al., 2011; Netea, 2013).
Trained immunity can be distinguished from immune
priming due to the fact that after recovery from infection,
innate immune responses do not return to the steady-
state level. This is due to the epigenetic reprogramming
of innate immune cells rather than the short-lived
change of state seen in immune priming. Dissecting the
mechanisms involved in trained immunity provides an
exciting new approach to protection against infection. A
role for CLRs in trained immunity has recently been
described, where the reprogramming of monocytes by
Dectin-1/ Raf-1 signalling prevented infection with
C. albicans and other organisms (Quintin et al., 2012).
Insights into trained immunity triggered by CLRs could
therefore form the basis for novel strategies in immuno-
therapy and vaccination.

Lastly, it is well established that collaboration between
CLRs and TLRs initiates optimal antifungal responses. In
fact, the collaborative responses induced by Dectin-1 and
TLR2 was one of the first collaborative PRR responses
ever described (Hardison and Brown, 2012). A more
recent example of the importance of such collaboration is
the recognition of Fonsecaea pedrosoi. This organism,
which causes chromoblastomycoses, was shown to be
recognized by CLRs, but not TLRs, and this resulted in
defective inflammatory responses and susceptibility to
infection. Amazingly, exogenous administration of TLR
agonists restored protective inflammatory responses and
led to clearance of the infection in vivo (Sousa et al.,
2011). This approach is now being tested in humans
(G.D.B., unpubl. data).

Conclusions

It is well established that CLRs play an important role in
recognizing fungi and orchestrate both innate and adap-
tive immune responses to these pathogens. Recent dis-
coveries have revealed an ever increasing repertoire of
pathogens that are also recognized by these receptors,
including bacteria, helminths and protozoa. Moreover, we
are discovering that CLRs play key roles in autoimmunity,
allergy and in maintaining homeostasis. Yet we are only
just beginning to understanding the importance of these
receptors, and the next few years are likely to yield a
wealth of exciting new breakthroughs.
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