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Graph construction plays a vital role in improving the performance of graph-based dimension reduction (DR) algorithms. In this
paper, we propose a novel graph construction method, and we name the graph constructed from such method as samples’ inner
structure based graph (SISG). Instead of determining the 𝑘-nearest neighbors of each sample by calculating the Euclidean distance
between vectorized sample pairs, our new method employs the newly defined sample similarities to calculate the neighbors of
each sample, and the newly defined sample similarities are based on the samples’ inner structure information. The SISG not only
reveals the inner structure information of the original sample matrix, but also avoids predefining the parameter 𝑘 as used in the
𝑘-nearest neighbormethod. In order to demonstrate the effectiveness of SISG, we apply it to an unsupervisedDR algorithm, locality
preserving projection (LPP). Experimental results on several benchmark face databases verify the feasibility and effectiveness of
SISG.

1. Introduction

Dimensionality reduction (DR) [1–4] has been intensively
used as an effective approach to analyze high-dimensional
data, especially face images. In particular, graph-based DR
receives more and more attention recently in the fields of
pattern recognition and machine learning. It is stated that
most existing DR methods [5–11] actually fall into the graph
embedding framework [12]. In graph embedding algorithms
graph construction plays a vital role, because graph is an
effective tool to reveal the structure information hidden in the
original data. So it is worthwhile to study graph construction
[13–17] and develop novel construction approaches to con-
struct more reasonable graphs for graph-based DR methods.
Jebara et al. [14] presented the so-called 𝑏-matching graph,
which is an alternative approach to the traditional 𝑘-nearest
neighbor graph.The authors in [15, 17] focused on developing
a way of combining different graphs so that a better graph
will be given a heavier weight. However, we point out that

the traditional graph construction method suffers from the
following two issues.

(1) The 𝑘-nearest neighbors of each sample are based
on the Euclidean distance between every two vec-
torized samples. However, samples’ inner structure
information is not taken into consideration by the
traditional graph construction method, and such
information can be utilized to construct better graphs
for dimension reduction algorithms.

(2) The sameneighbor parameter 𝑘 (or 𝜀) [18, 19] has to be
predefined for all samples before constructing graphs.
This may cause the difficulty of parameter selection
and it is not reasonable to set the same parameter
value for all samples.

To mitigate the shortcomings of the traditional graph
construction method, in this paper we present a samples’
inner structure based graph construction method, and we
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name the graph constructed from such method as samples’
inner structure based graph (SISG). In this new method
we first use the column similarity to determine the nearest
neighbors of each column for sample matrices. Then we use
the sample similarity measured by the number of nearest
neighbor columns between sample pairs to determine the
nearest neighbors of each sample. This strategy not only
avoids the stiff criterion (predefining the same parameter
𝑘 for all samples) as used in the traditional graphs but
also utilizes every sample’s inner structure information. We
summarize the favorable and attractive characteristics of
SISG as follows.

(1) SISG preserves samples’ intrinsic features by using
the inner structure information of sample matrices to
construct graph.

(2) SISG uses the newly defined sample similarities to
calculate the neighbors of each sample. This strategy
avoids predefining the neighbor parameter 𝑘 (or 𝜀) in
traditional graph construction methods.

(3) The edge weights of SISG are determined by the
sample similarities between sample pairs. If the sam-
ple similarity between two samples is high, the edge
weights between these two samples will be big. This
means the greater the sample similarity between two
samples is, the more important the corresponding
edge is in the graph.

(4) Both the weighted adjacency matrix and the adja-
cency matrix of SISG are generally asymmetric. This
characteristic may be more reasonable for capturing
the relationship among samples.

(5) The construction method of SISG is very general. It
can be applied to many graph-based DR algorithms.

The rest of this paper is organized as follows. Section 2
briefly reviews traditional graph construction and locality
preserving projection (LPP). Section 3 firstly presents SISG’s
construction method and then applies SISG to LPP. In
Section 4 we perform a series of the experiments to evaluate
the feasibility and effectiveness of SISG. This is followed by
the conclusions made in Section 5.

2. Related Work

2.1. TraditionalGraphConstruction. Let𝐴 = {𝐴
1
, . . . , 𝐴

𝑁
} be

a set of𝑁 sample matrices, which are taken from an (𝑛 × 𝑚)
dimensional image space. Then, the original samples were
transformed into their vectorial forms, and we denote these
vectors by 𝑋 = {𝑥

1
, . . . , 𝑥

𝑁
}, 𝑥
𝑖
∈ 𝑅
𝐷. The weighted graph

can be denoted by 𝐺 = {𝑉, 𝐸,𝑊}, where 𝑉 corresponds to
the vectors in the set𝑋, 𝐸 is the set of edges, each of which is
between one sample pair, and the matrix𝑊 contains weight
values of the edges among sample pairs. The construction
process of the graph 𝐺 normally consists of two steps.

The first step is the construction of edges, which includes
the two categories of 𝜀-neighborhood and 𝑘-nearest neighbor
[12, 19].

𝜀-Neighborhood: 𝑥
𝑖
and 𝑥

𝑗
are connected if ‖𝑥

𝑖
−𝑥
𝑗
‖ < 𝜀,

where ‖ ⋅ ‖ is the Euclidean distance in 𝑅
𝐷 and 𝜀 is a local

threshold parameter.
𝑘-Nearest neighbor: 𝑥

𝑖
and 𝑥

𝑗
are connected if 𝑥

𝑖
is one

of the 𝑘-nearest neighbors of 𝑥
𝑗
or 𝑥
𝑗
is one of the 𝑘-nearest

neighbors of𝑋
𝑖
.

The second step is the calculation of the weight value for
each edge. The weight value of 𝑊

𝑖𝑗
can be calculated by the

following two ways [12]:
(1) heat kernel

𝑊
𝑖𝑗

=

{{{

{{{

{

exp(−

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑡
) , if 𝑥

𝑖
and 𝑥

𝑗
are neighbors,

0, otherwise,
(1)

where 𝑡 is the width parameter in the heat kernel;

(2) simple minded

𝑊
𝑖𝑗
= {

1, if 𝑥
𝑖
and 𝑥

𝑗
are neighbors,

0, otherwise.
(2)

2.2. Locality Preserving Projection. The aim of locality pre-
serving projection (LPP) [20] is tomap the sample set in high-
dimensional space into the low-dimensional one, in which
the local manifold structures of high-dimensional space are
preserved. This means if the original points 𝑥

𝑖
and 𝑥

𝑗
in

the high-dimensional space are neighbors, the corresponding
points 𝑦

𝑖
and 𝑦

𝑗
in the projected low-dimensional space

are also neighbors. Suppose the projection from the high-
dimensional space to the low-dimensional one is 𝑦

𝑖
= 𝛼
𝑇
𝑥
𝑖
,

where𝛼 is the projection vector; the objective function of LPP
is given in [20]

∑

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑖
− 𝑦
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑤
𝑖𝑗
= ∑

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑇
𝑥
𝑖
− 𝛼
𝑇
𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

= 2𝛼
𝑇
𝑋𝐿𝑋
𝑇
𝛼. (3)

In (3) the weighted adjacency matrix𝑊 can be computed
by either (1) or (2). The matrix 𝐷 is a diagonal one 𝐷

𝑖𝑖
=

∑
𝑗
𝑤
𝑖𝑗
, and 𝐿 = 𝐷 − 𝑊. The constraint 𝛼𝑇𝑋𝐷𝑋𝑇𝛼 = 1 was

added so that the arbitrary scaling in the embedding can be
removed. The minimization problem in (3) thus becomes

𝛼
∗
= arg min

𝛼
𝑇
𝑋𝐷𝑋
𝑇
𝛼=1

𝛼
𝑇
𝑋𝐿𝑋
𝑇
𝛼. (4)

LPP can be solved by the generalized eigenvector
approach [20]:

𝑋𝐿𝑋
𝑇
𝛼 = 𝜆𝑋𝐷𝑋

𝑇
𝛼. (5)

3. Samples’ Inner Structure Based
Graph (SISG)

As discussed in Section 1, the traditional graph construction
method suffers from twomain issues: the stiff criterion prob-
lem and the loss of inner structure information of samples.
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INPUT: Sample set 𝐴 = {𝐴
1
, . . . , 𝐴

𝑖
, . . . , 𝐴

𝑁
}, where 𝐴

𝑖
is a sample matrix.

OUTPUT: The weighted adjacency matrix𝑊SISG of SISG
Algorithm:
for 𝑖 = 1 to𝑁 (𝑁 is the number of the training samples)

for 𝑗 = 1 to𝑁
for 𝑙 = 1 to𝑚 (𝑚 is the column number of sample matrix)

if exp{−𝐶(𝐴𝑙
𝑖
, 𝐴
𝑙

𝑗
)/𝑡} > (1/𝑛)∑

𝑁

𝑘=1
exp{−𝐶(𝐴𝑙

𝑖
, 𝐴
𝑙

𝑘
)/𝑡}

𝐺
𝑙

𝑖𝑗
= 1;

else
𝐺
𝑙

𝑖𝑗
= 0;

end if
end for

end for
for 𝑗 = 1 to𝑁

𝑆
𝑖𝑗
=

𝑚

∑

𝑙=1

𝐺
𝑙

𝑖𝑗
;

if 𝑆
𝑖𝑗
>
󵄩󵄩󵄩󵄩𝑆𝑖⋅

󵄩󵄩󵄩󵄩1/
󵄩󵄩󵄩󵄩𝑆𝑖⋅

󵄩󵄩󵄩󵄩0

𝑊
SISG
𝑖𝑗

= 𝑆
𝑖𝑗
⋅ [

[

− exp(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑡
)]

]

;

(𝑋
𝑖
is the vectorization representation of 𝐴

𝑖
)

else
𝑊

SISG
𝑖𝑗

= 0;
end if

end for
end for

Algorithm 1: Construction of SISG.

To overcome these limitations to some extent, in this section
we first present a new approach to graph construction, and
graphs constructed by this new approach are called samples’
inner structure based graph (SISG); thenwe incorporate SISG
into LPP, which forms a new algorithm called SISG-LPP.

3.1. The Construction of SISG. Given a set of 𝑁 sample
matrices 𝐴 = {𝐴

1
, . . . , 𝐴

𝑁
}, which is taken from an (𝑛 ×

𝑚) dimensional image space, we let 𝑋 = {𝑥
1
, . . . , 𝑥

𝑁
}, 𝑥
𝑖
∈

𝑅
𝐷, denote the vector pattern of image set 𝐴, and let 𝑙

(𝑙 = 1, 2, . . . , 𝑚, and 𝑚 is the maximum column number of
the sample matrix) be the column number of each sample
(Algorithm 1). 𝐴𝑙

𝑖
denotes the 𝑙th column of sample matrix

𝐴
𝑖
. SISG can be denoted by SISG = {𝑉, 𝐸, 𝑆,𝑊

SISG
}, where

𝑉 corresponds to the vectors in the set 𝑋, 𝐸 is the adjacency
matrix of SISGwhichdenotes the edge set between the sample
pairs, 𝑆 is the sample similarity matrix of SISG which denotes
sample similarities between sample pairs, and 𝑊

SISG is the
weighted adjacency matrix which denotes the weight values
of the edges between sample pairs.There are two steps to build
a SISG, as detailed below.

Step 1. For the 𝑙th columns of all the samples, we calculate the
nearest neighbors of each column.

Definition 1 (column similarity). Column similarity is calcu-
lated by the column similarity function: exp{−𝐶(𝐴𝑙

𝑖
, 𝐴
𝑙

𝑗
)/𝑡},

where 𝐶(𝐴
𝑙

𝑖
, 𝐴
𝑙

𝑗
) = ‖𝐴

𝑙

𝑖
− 𝐴
𝑙

𝑗
‖/∑
𝑁

𝑘=1
‖𝐴
𝑙

𝑖
− 𝐴
𝑙

𝑘
‖ and 𝑡 is

the width parameter in the heat kernel. Let 𝐺𝑙 denote the
adjacency matrix of all samples’ 𝑙th columns:

𝐺
𝑙

𝑖𝑗

=

{{{

{{{

{

1, if exp
{

{

{

−
𝐶(𝐴
𝑙

𝑖
, 𝐴
𝑙

𝑗
)

𝑡

}

}

}

>
1

𝑛

𝑁

∑

𝑘=1

exp{−
𝐶 (𝐴
𝑙

𝑖
, 𝐴
𝑙

𝑘
)

𝑡
} ,

0, otherwise.
(6)

The meaning of (6) is as follows: for the 𝑙th column of
the sample matrix 𝑖 (𝐴𝑙

𝑖
), if the column similarity between

this column and 𝐴
𝑙

𝑗
is greater than the mean of column

similarities between𝐴𝑙
𝑖
and all other samples’ 𝑙th column,𝐴𝑙

𝑗

will become a neighbor of 𝐴𝑙
𝑖
, and we place an edge between

𝐴
𝑙

𝑖
and 𝐴𝑙

𝑗
; that is, 𝐺𝑙

𝑖𝑗
= 1.

Figure 1 shows the 3 nearest column neighbors of𝐴𝑙
𝑖
, and

the black rectangular boxes in the sample matrices represent
the 𝑙th column of each sample.

Step 2. Determine every sample’s neighbors by the sample
similarity between sample pairs, and calculate the weight
value for each neighbor pair .

In this step, the original samples are transformed into
their forms representation, and we denote these vectors by
𝑋 = {𝑥

1
, . . . , 𝑥

𝑁
}, 𝑥
𝑖
∈ 𝑅
𝐷.
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Figure 1: The 3 nearest neighbors of Sample 𝐴
𝑖
’s 𝑙th column.

Definition 2 (sample similarity). Sample similarity is deter-
mined by the number of column neighbors between sample
pairs.

We let 𝑆
𝑖𝑗
denote the number of column neighbors of

sample 𝑥
𝑖
for 𝑥
𝑗
. So, 𝑆

𝑖𝑗
= ∑
𝑚

𝑙=1
𝐺
𝑙

𝑖𝑗
(𝑚 is the maximum

column number of a sample matrix) means the number of
column neighbors of sample matrix 𝐴

𝑖
for sample matrix

𝐴
𝑗
. It is noted that 𝑆

𝑖𝑗
is normally not equal to 𝑆

𝑗𝑖
, and this

characteristic is simply shown in Section 3.2. Consequently,
the sample similarity of sample 𝑥

𝑖
for 𝑥
𝑗
is described by 𝑆

𝑖𝑗
.

When deciding which samples can be the nearest neigh-
bors of sample 𝑥

𝑖
, we only consider those samples whose

sample similarity with sample 𝑥
𝑖
is nonzero.This is because if

there are no nearest neighbor columns between two sample
matrices, these two sample matrices will not be similar at
all, and thus they cannot become neighbors. The weighted
adjacency matrix𝑊SISG of the SISG is constructed according
to the following equation:

𝑊
SISG
𝑖𝑗

=

{{{

{{{

{

𝑆
𝑖𝑗
⋅ [

[

− exp(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑡
)]

]

, if 𝑆
𝑖𝑗
>

󵄩󵄩󵄩󵄩𝑆𝑖⋅
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑆𝑖⋅
󵄩󵄩󵄩󵄩0

,

0 otherwise,
(7)

where 𝑆
𝑖
⋅ is a vector and 𝑆

𝑖
⋅ = [𝑆
𝑖𝑗
], 𝑗 = 1, . . . , 𝑁−1. 𝑆

𝑖
⋅ denotes

the sample similarity of sample 𝑥
𝑖
for all other samples. ‖ ⋅ ‖

0

represents the 𝐿
0-norm, which is the number of nonzero

entries in a vector. So ‖𝑆
𝑖
⋅‖
0
denotes the number of nonzero

elements in vector 𝑆
𝑖
⋅ . ‖ ⋅ ‖
1
represents the 𝐿1-norm, which is

a linear combination of the absolute values of all entries in a
vector. So ‖𝑆

𝑖
⋅‖
1
is the sum of all entries in vector 𝑆

𝑖
⋅ .

The meaning of (7) is as follows: if the sample similarity
between samples 𝑥

𝑖
and 𝑥

𝑗
is greater than themean of sample

similarities between 𝑥
𝑖
and all samples, then 𝑥

𝑗
becomes a

neighbor of 𝑥
𝑖
, and we put an edge between them; that is,

𝐸
𝑖𝑗
= 1.
The weight value of the edge between 𝑥

𝑖
and 𝑥

𝑗
is the

heat kernel multiplied by the sample similarity between
samples 𝑥

𝑖
and 𝑥

𝑗
. By doing this, the greater the sample

similarity between samples 𝑥
𝑖
and 𝑥

𝑗
, the more important

the corresponding edge in 𝑊
SISG. The meaning of 𝑊SISG

𝑖𝑗
is

as follows: the weight value between 𝑥
𝑖
and 𝑥

𝑗
is proportional

to their sample similarity and inversely proportional to their
Euclidean distance.

3.2. Characteristic of SISG. Both the weighted adjacency
matrix𝑊SISG and adjacencymatrix𝐸 are asymmetric inmost
situations, and the symmetric ones are only special cases.This
characteristic is more reasonable for effectively capturing and
fitting the relationship among samples.

For 𝐴𝑙
𝑖
, the mean of column similarities between this

column and all other samples’ 𝑙th column is calculated as
follows:

𝑀
𝑙

𝑖
=
1

𝑛

𝑁

∑

𝑘=1

exp{−
𝐶 (𝐴
𝑙

𝑖
, 𝐴
𝑙

𝑘
)

𝑡
} . (8)

For 𝐴𝑙
𝑗
, the mean of column similarities between this

column and all other samples’ 𝑙th column is calculated as
follows:

𝑀
𝑙

𝑗
=
1

𝑛

𝑁

∑

𝑘=1

exp
{

{

{

−
𝐶(𝐴
𝑙

𝑗
, 𝐴
𝑙

𝑘
)

𝑡

}

}

}

. (9)

(1) The following situations may arise when calculating
the column similarity.

(1.1) if

exp
{

{

{

−
𝐶(𝐴
𝑙

𝑖
, 𝐴
𝑙

𝑗
)

𝑡

}

}

}

> 𝑀
𝑙

𝑖
,

exp
{

{

{

−
𝐶(𝐴
𝑙

𝑗
, 𝐴
𝑙

𝑖
)

𝑡

}

}

}

> 𝑀
𝑙

𝑗
,

(10)

𝐴
𝑙

𝑖
and 𝐴

𝑙

𝑗
become column neighbors of each

other.
(1.2) if

exp
{

{

{

−
𝐶(𝐴
𝑙

i, 𝐴
𝑙

𝑗
)

𝑡

}

}

}

≤ 𝑀
𝑙

𝑖
,

exp
{

{

{

−
𝐶(𝐴
𝑙

𝑗
, 𝐴
𝑙

𝑖
)

𝑡

}

}

}

≤ 𝑀
𝑙

𝑗
,

(11)

𝐴
𝑙

𝑖
is not a column neighbor of 𝐴𝑙

𝑗
, and vice

versa.
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(1.3) if

exp
{

{

{

−
𝐶(𝐴
𝑙

𝑖
, 𝐴
𝑙

𝑗
)

𝑡

}

}

}

> 𝑀
𝑙

𝑖
,

while exp
{

{

{

−
𝐶(𝐴
𝑙

𝑗
, 𝐴
𝑙

𝑖
)

𝑡

}

}

}

≤ 𝑀
𝑙

𝑗
,

(12)

𝐴
𝑙

𝑗
is a column neighbor of 𝐴𝑙

𝑖
while 𝐴𝑙

𝑖
is not a

column neighbor of 𝐴𝑙
𝑗
.

(2) The following situations may arise when calculating
the column similarity.

(2.1) if

𝑆
𝑖𝑗
>

󵄩󵄩󵄩󵄩𝑆𝑖⋅
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑆𝑖⋅
󵄩󵄩󵄩󵄩0

, 𝑆
𝑗𝑖
>

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
⋅

󵄩󵄩󵄩󵄩󵄩1
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
⋅

󵄩󵄩󵄩󵄩󵄩0

, (13)

sample 𝐴
𝑖
and sample 𝐴

𝑗
become neighbors of

each other.
(2.2) if

𝑆
𝑖𝑗
≤

󵄩󵄩󵄩󵄩𝑆𝑖⋅
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑆𝑖⋅
󵄩󵄩󵄩󵄩0

, 𝑆
𝑗𝑖
≤

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
⋅

󵄩󵄩󵄩󵄩󵄩1
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
⋅

󵄩󵄩󵄩󵄩󵄩0

, (14)

sample 𝐴
𝑖
is not a neighbor of sample 𝐴

𝑗
, and

vice versa.
(2.3) if

𝑆
𝑖𝑗
>

󵄩󵄩󵄩󵄩𝑆𝑖⋅
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑆𝑖⋅
󵄩󵄩󵄩󵄩0

, 𝑆
𝑗𝑖
≤

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
⋅

󵄩󵄩󵄩󵄩󵄩1
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
⋅

󵄩󵄩󵄩󵄩󵄩0

, (15)

sample 𝐴
𝑗
is a neighbor of sample 𝐴

𝑖
while

sample 𝐴
𝑖
is not a neighbor of sample 𝐴

𝑗
.

If all the columns of 𝐴
𝑖
(𝐴
𝑙

𝑖
, 𝑙 = 1, 2 . . . , 𝑚) and all

the columns of 𝐴
𝑗
(𝐴
𝑙

𝑗
, 𝑙 = 1, 2 . . . , 𝑚) meet (1.1) or (1.2),

𝑆
𝑖𝑗
will equal 𝑆

𝑗𝑖
. Furthermore, if (2.1) or (2.2) can always

be met for arbitrary 𝐴
𝑖
and 𝐴

𝑗
(𝑖, 𝑗 = 1, . . . , 𝑛), 𝑊SISG

𝑖𝑗
=

𝑊
SISG
𝑗𝑖

. This is because the edge weights of SISG depend on
the sample similarity of each sample. In this case, both the
weighted adjacency matrix 𝑊SISG and the adjacency matrix
𝐸 are symmetric.

If the condition in (1.3) is met, 𝑆
𝑖𝑗
will not be equal to 𝑆

𝑗𝑖
.

Furthermore, if (2.1) or (2.2) can always be met for arbitrary
𝐴
𝑖
and 𝐴

𝑗
(𝑖, 𝑗 = 1, . . . , 𝑛), the adjacency matrix 𝐸 will be

symmetric, but 𝑊SISG
𝑖𝑗

will not be equal to 𝑊
SISG
𝑗𝑖

and the
weighted adjacency matrix𝑊SISG will be asymmetric.

Apart from the two cases discussed in the above two
paragraphs, both the weighted adjacency matrix 𝑊SISG and
adjacency matrix 𝐸 are normally asymmetric.

We should notice that for all the columns of 𝐴
𝑖
(𝐴
𝑙

𝑖
, 𝑙 =

1, 2 . . . , 𝑚) and all the columns of 𝐴
𝑗
they must meet (1.1)

or (1.2) at the same time, but (1.1) can never be met alone.
Because𝑀𝑙

𝑖
is themean of column similarities, it is impossible

that all the column similarities between any two columns 𝐴𝑙
𝑖

and 𝐴
𝑙

𝑗
are both greater than 𝑀

𝑙

𝑖
. For similar reasons, (1.2),

(2.1), and (2.2) can never be met alone either.
Fromwhat has been discussed above, we can see that both

the weighted adjacencymatrix𝑊SISG and adjacencymatrix𝐸
are generally asymmetric, and symmetric ones are just their
special cases, which are very rare situations.

3.3. SISG-LPP. The construction method of SISG is very
general. So SISG can be used in many graph-based dimen-
sionality reduction algorithms. In this subsection, we use
SISG in state-of-the-art unsupervised DR algorithm, locality
preserving projection (LPP), to develop a new DR algorithm
called SISG-LPP.

Similar to LPP, the goal of SISG-LPP is preserving the
local manifold structures in high-dimensional space. Given
a set of 𝑁 samples 𝑋 = {𝑥

1
, . . . , 𝑥

𝑁
}, 𝑥
𝑖
∈ 𝑅
𝐷, in high-

dimensional space, we try to find a transformation matrix
which can map these 𝑁 points to a set of points 𝑦

1
, . . . , 𝑦

𝑁

in low-dimensional space. Assuming that the projection is
𝑦 = 𝛼

𝑇
𝑥, where 𝛼 is the projection vector, the objective

function of SISG-LPP is given in

∑

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑖
− 𝑦
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑊
SISG

= ∑

𝑖𝑗

(𝑦
2

𝑖
+ 𝑦
2

𝑗
− 2𝑦
𝑖
𝑦
𝑖
)𝑊

SISG

= ∑

𝑖𝑗

𝑦
2

𝑖
𝑊

SISG
𝑖𝑗

+∑

𝑖𝑗

𝑦
2

𝑗
𝑊

SISG
𝑖𝑗

−∑

𝑖𝑗

𝑦
𝑖
𝑦
𝑗
𝑊

SISG
𝑖𝑗

−∑

𝑖𝑗

𝑦
𝑗
𝑦
𝑖
𝑊

SISG
𝑖𝑗

= ∑

𝑖𝑗

𝑦
2

𝑖
𝐷
𝑖𝑖
+∑

𝑖𝑗

𝑦
2

𝑖
𝐷
󸀠

𝑗𝑗
−∑

𝑖𝑗

𝑦
𝑖
𝑦
𝑗
𝑊

SISG
𝑖𝑗

−∑

𝑖𝑗

𝑦
𝑗
𝑦
𝑖
𝑊

SISG
𝑖𝑗

= 𝛼
𝑇
𝑋((𝐷

𝑖𝑖
+ 𝐷
󸀠

𝑗𝑗
) − (𝑊

SISG
𝑖𝑗

+ (𝑊
SISG
𝑖𝑗

)
𝑇

))𝑋
𝑇
𝛼

= 𝛼
𝑇
𝑋(𝐷 −𝑊)𝑋

𝑇
𝛼

= 𝛼
𝑇
𝑋𝐿𝑋
𝑇
𝛼.

(16)

In the above, 𝑊SISG is an asymmetric matrix, but 𝑊 =

𝑊
SISG
𝑖𝑗

+ (𝑊
SISG
𝑖𝑗

)
𝑇 is a symmetric matrix. Let 𝐷

𝑖𝑖
and 𝐷

󸀠

𝑗𝑗

denote the diagonal matrices; the entries of 𝐷
𝑖𝑖
are column

sums of 𝑊SISG, and the entries of 𝐷󸀠
𝑗𝑗
are column sums of

(𝑊
SISG
𝑖𝑗

)
𝑇. 𝐷 = 𝐷

𝑖𝑖
+𝐷
󸀠

𝑗𝑗
is the diagonal matrix whose entries

are column sums of 𝑊. So, 𝐿 = 𝐷 − 𝑊 is the Laplacian
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matrix. Because 𝐷 provides a measure on the “importance”
of the data points, we impose the following constraint:

𝛼
𝑇
𝑋(𝐷
𝑖𝑖
+ 𝐷
󸀠

𝑗𝑗
)𝑋
𝑇
𝛼 = 𝛼

𝑇
𝑋𝐷𝑋

𝑇
𝛼 = 1. (17)

Thus, the optimization objective of SISG-LPP is

𝛼
∗
= arg min

𝛼
𝑇
𝑋𝐷𝑋

𝑇
𝛼=1

𝛼
𝑇
𝑋𝐿𝑋
𝑇
𝛼. (18)

The solutions of (18) can be obtained by solving the
generalized eigenvalue decomposition problem [21]. That is
to say, the projection vectors of (18) are actually the eigen-
vectors which correspond to the first 𝑙 smallest eigenvalues of
𝑋𝐿𝑋
𝑇
𝛼 = 𝜆𝑋𝐷𝑋

𝑇
𝛼 [22].

4. Experiments

In order to intuitively illustrate the construction process and
the properties of SISG, we created an experiment to elucidate
structure changes of SISG during the construction process.
In addition, the experiment was also designed to show the
differences between SISG and the 𝑘-nearest neighbor graph.

In order to show the visualization effect of SISG, we
compared the visualization effect of SISG-LPP, LPP [20], PCA
[5], and NPE [11] on the ORL database [23].

To investigate the influence of parameters on the classifi-
cation performance of learning algorithms, we designed an
experiment to show the sensitivity of LPP to the neighbor
parameter 𝑘.

In order to test and evaluate the effectiveness of SISG
and SISG-LPP, we conducted a series of face recognition
experiments on three well-known databases.

4.1. Experiment for the Structure of SISG. In this experiment,
we hope to demonstrate the structure changes of SISG during
the construction process. By comparing the structure of 𝑘-
nearest neighbor graph and that of SISG, we will be able
to illustrate differences between them. This experiment was
conducted on the well-known ORL database [23]. The ORL
database contains 400 images from 40 different persons (ten
for each person). All images are gray scale and the size of each
image is 112 × 92 pixels. Figure 6(a) shows 10 sample face
images for one person in ORL.

First, we design a dataset containing ten images selected
from the ORL database. Among all these images, six of them
belong to the same person (in our dataset, images 2, 3, 4, 6, 7,
and 9 belong to the same person) and the rest were selected at
random.Then, we visualize the sample similarity matrix (𝑆

𝑖𝑗
)

of SISG, the adjacency matrix (𝐸) of SISG, and the traditional
𝑘-nearest neighbor graph for the dataset, as shown in Figures
2, 3(a), and 3(b). Finally, we compare the adjacency matrix of
SISG and the 𝑘-nearest neighbor graph.

In Figure 2, those numbers without parentheses display
the sample similarity between sample pairs. Sample similarity
is described by the number of column neighbors between
sample pairs. The value of Row 2 and Column 6 of Figure 2
is 16, and the value of Row 6 and Column 2 is 19, which,
respectively, means that 16 columns of Image 𝐴
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Figure 2: The sample similarity matrix of SISG.

column neighbors of Image 𝐴
2
and 19 columns of Image

𝐴
2
become column neighbors of Image 𝐴

6
. After calculating

the sample similarities, we determine each nearest neighbor
according to sample similarity. When determining the near-
est neighbors of each sample, we do not consider such sample
pairs which are not similar to each other at all. For example,
the value of Row 1 and Column 3 of Figure 2 is zero, which
means Image𝐴

3
is impossible to become a neighbor of Image

𝐴
1
.
Black squares in Figures 3(a) and 3(b) indicate the two

samples which are connected by them are neighbors. From
Figures 3(a) and 3(b) we can see the following.

(1) The 𝑘-nearest neighbor graph is symmetric while the
SISG is asymmetric. For example, we can observe
from (a) that Image 𝐴

9
is a neighbor of Image 𝐴

5
but

Image 𝐴
5
is not a neighbor of Image 𝐴

9
.

(2) SISG can more accurately reflect the relationship
between samples. From (a) we can see that images
which became neighbors generally belong to the same
person. For example, from the second row of (a)
we can see that Images 𝐴

3
, 𝐴
4
, 𝐴
6
, 𝐴
7
, and 𝐴

9
are

neighbors of Image 𝐴
2
, and from the third row of

(a) we also can see that Images 𝐴
2
, 𝐴
4
, and 𝐴

7

are neighbors of 𝐴
3
. We know that, in our dataset,

Images𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
6
, 𝐴
7
, and𝐴

9
belong to the same

person, so this example shows that the SISG makes
similar samples become neighbors.

(3) The 𝑘-nearest neighbor graph does not very success-
fully reflect the relationship between samples.We also
take Image𝐴

2
as an example; from the second row of

(b) we can observe that Images 𝐴
3
, 𝐴
6
, 𝐴
7
, 𝐴
8
, and

𝐴
9
are neighbors of Image 𝐴

2
, but in fact, Images

𝐴
8
and 𝐴

2
do not belong to the same person. From

the third row of (b) we can also see that Images
𝐴
1
, 𝐴
2
, 𝐴
6
, 𝐴
9
, and 𝐴

10
are neighbors of Image 𝐴

3
,

but in fact, Images 𝐴
1
, 𝐴
3
, and 𝐴

10
do not belong to

the same person.
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Figure 3: Visualization of the adjacency matrix of SISG (a) and the 𝑘-nearest neighbor (𝑘 = 5) graph (b).

0 500 1000 1500 2000 2500

0

1000

2000

3000

4000

−1000

−2000

−3000

−4000
−1500 −1000 −500

(a)

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

0

200

400

600

800

−1000

−800

−600

−400

−200

(b)

0

0

500

1000

1500

2000

2500

3000

−1000
−1000

−500

−500−1500−2000

(c)

0 500 1000 1500

0

200

400

600

800

−1000
−800

−600

−400

−200

−500−1500

(d)

Figure 4: The 2-dimensional visualization of the four algorithms on the ORL database. (a) SISG-LPP, (b) LPP, (c) NPE, and (d) PCA.
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Figure 5: Influence of the parameter 𝑘 on the classification perfor-
mance of LPP.

(a)

(b)

(c)

Figure 6: Sample face images from one person. (a) ORL, (b) YALE,
and (c) the Illumination subset of PIE.

4.2. Face Manifold Visualization. In this experiment, we
compare the visualization effect of SISG-LPP, LPP, PCA,
and NPE. We randomly selected 4 people from the ORL
database and 10 samples from each person. Then we mapped
all these samples to the 2-dimensional subspace using these
algorithms. From Figure 4(a) we can see that SISG-LPPmore
effectively separates the 4-class samples in its 2-dimensional
reduction subspace. In contrast, in the subspaces of LPP
(Figure 4(b)) andNPE (Figure 4(c)), the samples are not very
well separated, andmore than half of the samples overlapped.
From Figure 4(d) we can see that in the subspace of PCA, the
samples are basically entangled together.

4.3. Parameter Sensitivity of LPP. Since SISG does not have
the neighbor parameter 𝑘, in this experiment, we only
investigate the sensitivity of LPP to the neighbor parameter 𝑘.
During this experiment, the set of images selected from face
databases were partitioned into different sample collections.
We use 𝐺

𝑚
/𝑃
𝑛
to indicate that for each person in the face

database 𝑚 images were selected at random for training
and the remaining 𝑛 images were employed for testing. We
conducted this experiment on 𝐺

6
/𝑃
4
in the ORL database.

From Figure 5 we can see that LPP is very sensitive to

the neighbor parameter 𝑘. In contrast, SISG-LPP does not
have neighbor parameter 𝑘, so it is much less sensitive to the
parameter than LPP.

4.4. Face Recognition. To evaluate the proposed SISG and
SISG-LPP algorithm, we compare the performance of SISG-
LPP with LPP on three face databases. Here, we adopt
the benchmark face databases ORL [23], YALE [24], and
the subset of CMU PIE [25] to conduct experiments on
face recognition. There are faces of 15 people in the YALE
database, and each person has 11 face images with size 100 ×
100. The CMU PIE database contains 41,368 images from
68 people, and the word PIE means Pose, Illumination, and
Expression.The size of images in the PIE database is 217×178.
In this research, we use the Illumination subset of the CMU
PIEdatabase to conduct our experiment; we select 16 different
images per person from the Illumination subset. Figures 6(a),
6(b), and 6(c) showpart of the face images inORL, YALE, and
the Illumination subset of PIE, respectively.

As described above, we use 𝐺
𝑚
/𝑃
𝑛
to indicate that 𝑚

images from each person are randomly selected as the
training data and the remaining 𝑛 images are used for testing.
For each division with𝐺

𝑚
/𝑃
𝑛
, 50 random splits are generated

and the final performance of the algorithm being tested is
obtained by averaging the results of 50 classification accuracy
values. The neighbor parameter 𝑘 for LPP is set to𝑚 − 1.

Firstly, for each person we select 𝑚 (𝑚 = 5, 6) images
from theORLdatabase andYALEdatabase, respectively. Four
divisions are considered: 𝐺

5
/𝑃
5
, 𝐺
6
/𝑃
4
on the ORL database

as well as 𝐺
5
/𝑃
6
, 𝐺
6
/𝑃
5
on the YALE database; 50 random

splits are generated and the final results of the four divisions
are obtained by taking the mean of the 50 classification
accuracy values. The accuracy values versus the numbers of
reduced dimensions are shown by Figure 7.

From Figures 7(a) and 7(b) we can see that SISG-LPP
outperforms LPP for all divisions, and from Figure 7(b) we
can observe that SISG-LPP significantly outperforms LPP
when the number of the reduced dimensions is relatively
low. From Figures 7(c) and 7(d) we can find that SISG-LPP
outperforms LPP for most of the situations.

Themean accuracy values of LPP and SISG-LPP on ORL,
YALE, and the Illumination subset of PIE database are listed
in Tables 1∼3, respectively.

From the results shown in Tables 1∼3, one can find the
following.

(1) The overall accuracy values of all algorithms are
improved at various degrees when the number of
training samples is increased.

(2) From the results shown in Tables 1 and 2, one can see
that the recognition accuracy values of SISG-LPP are
much higher than that of LPP when the number of
training samples is relatively small. For instance, the
accuracy of SISG-LPP on the division 𝐺

3
/𝑃
7
of the

ORL database is 15.69%higher than that of LPP, while
the accuracy of SISG-LPP on the division 𝐺

8
/𝑃
2
is

only 1.33% higher than that of LPP.
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Figure 7:The recognition accuracy values of SISG-LPP and LPP versus the dimensions. (a)𝐺
5
/𝑃
5
of the ORL database, (b)𝐺

6
/𝑃
4
of the ORL

database, (c) 𝐺
5
/𝑃
6
of the YALE database, and (d) 𝐺

6
/𝑃
5
of the YALE database.

Table 1: Mean accuracy values of LPP and SISG-LPP on the ORL database. The numbers in parentheses are the corresponding feature
dimensions with the best results after dimensionality reduction.

𝐺
2
/𝑃
8

𝐺
3
/𝑃
7

𝐺
4
/𝑃
6

𝐺
5
/𝑃
5

𝐺
6
/𝑃
4

𝐺
7
/𝑃
3

𝐺
8
/𝑃
2

LPP 55.53 (55) 59.41 (95) 76.42 (46) 82.70 (32) 85.63 (59) 88.13 (45) 90.40 (37)
SISG-LPP 65.88 (61) 75.10 (55) 79.88 (48) 83.87 (52) 85.99 (67) 89.70 (63) 91.73 (57)

Table 2: Mean accuracy values of LPP and SISG-LPP on the YALE database. The numbers in parentheses are the corresponding feature
dimensions with the best results after dimensionality reduction.

𝐺
2
/𝑃
9

𝐺
3
/𝑃
8

𝐺
4
/𝑃
7

𝐺
5
/𝑃
6

𝐺
6
/𝑃
5

𝐺
7
/𝑃
4

𝐺
8
/𝑃
3

LPP 61.36 (25) 67.42 (32) 74.67 (37) 77.20 (34) 78.51 (17) 79.37 (46) 81.33 (69)
SISG-LPP 66.93 (25) 71.63 (35) 75.43 (45) 78.36 (26) 79.33 (47) 80.20 (55) 82.40 (61)
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Table 3: Mean accuracy values of LPP and SISG-LPP on the Illumination subset of PIE database. The numbers in parentheses are the
corresponding feature dimensions with the best results after dimensionality reduction.

𝐺
2
/𝑃
14

𝐺
3
/𝑃
13

𝐺
4
/𝑃
12

𝐺
5
/𝑃
11

𝐺
6
/𝑃
10

𝐺
7
/𝑃
9

𝐺
8
/𝑃
8

LPP 81.88 (88) 91.91 (110) 95.88 (134) 98.31 (155) 99.17 (169) 99.58 (184) 99.90 (195)
SISG-LPP 80.75 (90) 92.98 (122) 96.32 (145) 98.55 (154) 99.33 (168) 99.62 (182) 99.94 (199)

(3) SISG-LPP outperforms LPP in all divisions with
𝐺
𝑚
/𝑃
𝑛
on the ORL and YALE databases. SISG-LPP

outperforms LPP formost of the divisionswith𝐺
𝑚
/𝑃
𝑛

on the Illumination subset of PIE database.

5. Conclusions

In this paper, we present a new graph construction method,
and we name the graph constructed by this method as
samples’ inner structure based graph (SISG). Unlike the tra-
ditional graph constructionmethod, SISG avoids predefining
neighbor parameter 𝑘 (or 𝜀). Moreover, SISG can also well
preserve intrinsic features of samples by using samples’ inner
structure information to construct graph. Both the weighted
adjacencymatrix and the adjacencymatrix of SISG are gener-
ally asymmetric, whichmay bemore reasonable for capturing
the relationships among samples. For the sake of proving
that the construction method of SISG is very general, we
incorporated it into a state-of-the-art DR algorithm, locality
preserving projection (LPP), and thus developed a novel
DR algorithm SISG-LPP. Finally, several experiments are
conducted on three well-known face databases. Experimental
results verified the effectiveness and feasibility of the SISG
and SISG-LPP algorithms.
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