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Inbreeding avoidance among interacting females and males is not always observed despite inbreeding depression in offspring

fitness, creating an apparent “inbreeding paradox.” This paradox could be resolved if selection against inbreeding was in fact

weak, despite inbreeding depression. However, the net magnitude and direction of selection on the degree to which females

and males inbreed by pairing with relatives has not been explicitly estimated. We used long-term pedigree data to estimate

phenotypic selection gradients on the degree of inbreeding that female and male song sparrows (Melospiza melodia) expressed

by forming socially persistent breeding pairs with relatives. Fitness was measured as the total numbers of offspring and grand

offspring contributed to the population, and as corresponding expected numbers of identical-by-descent allele copies, thereby

accounting for variation in offspring survival, reproduction, and relatedness associated with variation in parental inbreeding.

Estimated selection gradients on the degree to which individuals paired with relatives were weakly positive in females, but

negative in males that formed at least one socially persistent pairing. However, males that paired had higher mean fitness than

males that remained socially unpaired. These analyses suggest that net selection against inbreeding may be weak in both sexes

despite strong inbreeding depression, thereby resolving the “inbreeding paradox.”
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Mating decisions enacted by individual organisms fundamentally

shape the course of evolution because they shape social and repro-

ductive interactions and influence the frequencies of alleles and

genotypes contributed to subsequent generations, thereby driving

and reinforcing social and sexual selection (e.g., Kirkpatrick and

Barton 1996; Wolf et al. 1999; Kokko et al. 2003; Weir et al.

2011; Lyon and Montgomerie 2012). One influential mating de-

cision is whether to inbreed, either by self-fertilization (Jarne

and Charlesworth 1993; Charlesworth 2006) or by mating with

some non-self relative (i.e., biparental inbreeding, Parker 2006;

Szulkin et al. 2013). Inbreeding has pervasive short- and long-term

evolutionary consequences because it increases homozygosity of
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Figure 1. (A) “Selection on inbreeding”: individuals that pair with more closely related mates (i.e., higher pairwise coefficient of kinship

k) are widely postulated to have lower fitness than individuals that pair with less closely related mates, driving evolution of inbreeding

avoidance. (B) “Selection on being inbred,” typically termed “inbreeding depression”: individuals that are themselves inbred (i.e., have

a higher coefficient of inbreeding f) and hence whose parents were closely related (i.e., high k) commonly have lower fitness than

individuals that are less inbred. (C) An individual’s initial fecundity could be positively correlated with the degree to which it inbreeds

(solid line). Its resulting contribution of descendant organisms to subsequent generations could be positively correlated (thick dashed

line) or only weakly negatively correlated (thick dotted line) with the degree to which it inbreeds, despite weak or strong inbreeding

depression in offspring survival (causing the differences in slope between the thick solid, dashed, and dotted lines). However, due to the

intrinsic transmission advantage of an allele that increases inbreeding, individuals that pair with closer relatives could still contribute

more identical-by-descent allele copies to subsequent generations, even if they contribute fewer descendant organisms (thin vs. thick

dotted lines). (D) The magnitude and direction of selection on inbreeding could potentially differ between males (solid lines) and females

(dashed lines) measured in terms of numbers of descendant organisms (thick lines) or identical-by-descent allele copies (thin lines).

resulting offspring and can alter genetic (co)variances, responses

to selection, speciation rates, and population persistence, and

might facilitate evolution of social traits expressed among inter-

acting relatives (Michod 1979; Charlesworth and Charlesworth

1987; Breden and Wade 1991; Wolf et al. 1999; Keller and

Waller 2002; Charlesworth 2006; van Buskirk and Willi 2006;

Charlesworth and Willis 2009; Wright et al. 2013; Wolak

and Keller 2014). Comprehensive understanding of any result-

ing evolutionary dynamics therefore necessitates understanding

the evolution of inbreeding itself (Michod 1979; Charlesworth

and Charlesworth 1987; Goodwillie et al. 2005; Charlesworth

2006). This in turn requires the total net fitness consequence of

inbreeding expressed through any particular form of mating, and

hence the direction and magnitude of “selection on inbreeding,”

to be quantified (Fig. 1A; Jarne and Charlesworth 1993; Good-

willie et al. 2005; Busch and Delph 2012; Sletvold et al. 2013;

Stone et al. 2014).

Evidence from numerous domesticated, experimental, and

wild populations of animals and plants shows that inbreeding

frequently causes inbreeding depression, defined as reduced fit-

ness of inbred offspring produced through selfing or biparental

inbreeding (Lynch and Walsh 1998; Keller and Waller 2002;

Charlesworth and Willis 2009). Survival and reproductive suc-

cess of inbred individuals can be substantially reduced, causing

strong “selection against being inbred” (Fig. 1B, e.g., Willis 1993;

Kruuk et al. 2002; Grueber et al. 2010; Wagenius et al. 2010;
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Sletvold et al. 2013; Benesh et al. 2014; Reid et al. 2014). It

is widely assumed that the existence of “selection against being

inbred” (i.e., inbreeding depression, Fig. 1B) will cause “selec-

tion against inbreeding” (Fig. 1A), and thereby drive evolution of

inbreeding avoidance mechanisms, including choice among re-

lated and unrelated potential mates (Tregenza and Wedell 2000;

Jennions et al. 2004; Hansson et al. 2007; Jamieson et al.

2009; Ala-Honkola et al. 2011; Szulkin et al. 2013) as well as

dispersal (Pusey and Wolf 1996; Lehmann and Perrin

2003; Szulkin and Sheldon 2008) and self-incompatibility

(Charlesworth and Charlesworth 1987; Goodwillie et al. 2005;

Busch and Delph 2012). Consequently, numerous studies have

tested for avoidance of biparental inbreeding through pre-

copulatory and/or post-copulatory mate choice in wild and experi-

mental populations of birds, mammals, fish, and insects. Although

some studies have observed inbreeding avoidance (e.g., Pizzari

et al. 2004; Firman and Simmons 2007; Bretman et al. 2009;

Fitzpatrick and Evans 2014; Liu et al. 2014), other studies have

not, even when strong inbreeding depression is evident (e.g.,

Keller and Arcese 1998; Jennions et al. 2004; Reid et al. 2006,

2015a,b; Hansson et al. 2007; Edvardsson et al. 2008; Jamieson

et al. 2009; Rioux-Paquette et al. 2010; Ala-Honkola et al. 2011;

Billing et al. 2012; Olson et al. 2012; Robinson et al. 2012; Tan

et al. 2012; Ihle et al. 2013; Szulkin et al. 2013; Reynolds et al.

2014).

This apparent “inbreeding paradox” of inbreeding depres-

sion but no inbreeding avoidance through non-random mating or

fertilization might arise because the widely held assumption that

inbreeding depression (e.g., Fig. 1B) will inevitably cause selec-

tion against biparental inbreeding (e.g., Fig. 1A), and hence drive

evolution of mating strategies that reduce inbreeding, is simplis-

tic (Kokko and Ots 2006; Olson et al. 2012; Szulkin et al. 2013).

This assumption is immediately complicated because inbreed-

ing and resulting inbreeding depression are expressed in different

generations. Inbreeding occurs when two relatives mate, while

inbreeding depression is defined as reduced fitness of resulting

inbred offspring compared to outbred offspring (Charlesworth

and Charlesworth 1987; Lynch and Walsh 1998; Charlesworth

and Willis 2009). Selection on the degree to which individuals

inbreed, and the consequent dynamics of alleles underlying in-

breeding or inbreeding avoidance, will therefore depend on the

lifetime numbers of inbred and outbred offspring that individu-

als produce, not only on the relative fitness of those offspring

as affected by inbreeding depression. This complexity is explic-

itly recognized in the context of selfing (e.g., Porcher and Lande

2005; Busch and Delph 2012; Stone et al. 2014), but has been less

widely considered in the context of biparental inbreeding (Keller

and Arcese 1998; Jamieson et al. 2009; Olson et al. 2012). Here,

there is no clear theoretical expectation that individuals that in-

breed will necessarily conceive fewer offspring than individuals

that outbreed; the occurrence of inbreeding depression in offspring

fitness does not mean that parents’ initial fecundities will neces-

sarily decrease with the degree to which they inbreed (e.g., Keller

1998; Kruuk et al. 2002; Firman and Simmons 2007; Schørring

and Jäger 2007; Edvardsson et al. 2008; Grueber et al. 2010; Tan

et al. 2012; Liu et al. 2014). Indeed, individuals that inbreed might

potentially conceive or rear more offspring than individuals that

outbreed (Fig. 1C), for example, if avoiding inbreeding imposes

direct costs of time, energy, or failure to mate (Keller and Arcese

1998; Kokko and Ots 2006), if optimal reproductive timing or

location are correlated across relatives leading to assortative pair-

ing (Robinson et al. 2012; Reid et al. 2015b), or if inbreeding is

associated with expression of beneficial social traits (Breden and

Wade 1991; Schørring and Jäger 2007). It consequently cannot be

assumed that individuals that inbreed will necessarily leave fewer

long-term descendants than individuals that outbreed, or hence

that there will be selection against biparental inbreeding, even if

inbred offspring have low fitness due to inbreeding depression

(Fig. 1C).

Furthermore, the basic assumption that inbreeding depres-

sion in offspring fitness will necessarily drive evolution of in-

breeding avoidance ignores the potential evolutionary advantage

of an allele that increases the degree of biparental inbreeding

(Waser et al. 1986; Kokko and Ots 2006; Parker 2006; Szulkin

et al. 2013), which is analogous to the widely recognized evo-

lutionary advantage of an allele that increases selfing (Lande

and Schemske 1985; Goodwillie et al. 2005; Charlesworth 2006;

Busch and Delph 2012; Stone et al. 2014). The potential advantage

arises because inbred offspring can inherit an identical-by-descent

copy of an allele that is present in a focal parent from the parent’s

related mate as well as from the focal parent itself, meaning that

parents are more closely related to inbred offspring than to outbred

offspring (Lynch and Walsh 1998, p. 136). Consequently, even if

individuals that inbreed contribute fewer direct descendant organ-

isms to future generations than individuals that outbreed, those de-

scendants might still contribute more identical-by-descent copies

of any allele carried by the focal individual, potentially increasing

the frequency of alleles that increase biparental inbreeding (all

else being equal, Waser et al. 1986; Parker 2006; Duthie and Reid

2015; Fig. 1C).

In addition, selection on biparental inbreeding is widely pos-

tulated to be sex-specific, because costs of producing inbred off-

spring with low fitness might be greater for the resource-limited

sex (typically females) than for the mate-limited sex (typically

males, Lehmann and Perrin 2003; Pizzari et al. 2004; Kokko and

Ots 2006; Parker 2006; Fig. 1D). Any evolutionary response to

selection on inbreeding by one sex might then be constrained

by divergent selection on inbreeding by the other sex. Over-

all, understanding the evolutionary dynamics of biparental in-

breeding therefore requires quantification of the degree to which
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females and males that inbreed to greater or lesser degrees through

any particular form of mating contribute more or fewer descen-

dants or identical-by-descent allele copies to future generations

(Fig. 1D). However, while numerous studies have estimated in-

breeding depression in components of fitness in wild populations

where biparental inbreeding occurs (thereby estimating “selection

on being inbred,” Fig. 1B; e.g., Keller 1998; Keller and Waller

2002; Szulkin et al. 2007; Jamieson et al. 2009; Grueber et al.

2010; Wagenius et al. 2010; Billing et al. 2012; Reid et al. 2014),

the overall magnitude and direction of sex-specific selection on

the degree to which individuals inbreed through any particular

form of mating (i.e., “selection on inbreeding,” Fig. 1D) has not

been explicitly estimated.

In reproductive systems where females and males form dis-

tinct socially persistent breeding pairs and provide substantial

biparental care to dependent offspring, one key component of an

individual’s overall expression of inbreeding is its coefficient of

kinship (k) with the mate with which it forms such a breeding pair

(hereafter “social pairing,” Appendix S1). Some degree of extra-

pair reproduction commonly occurs in such systems, potentially

allowing females to adjust the coefficient of inbreeding (f) of their

offspring, and allowing males to accrue additional reproductive

success (Reid et al. 2011b, 2015a). However, most females and

males typically accrue most direct reproductive success by pro-

ducing offspring with their socially paired mate (Webster et al.

1995; Griffith et al. 2002; Lebigre et al. 2012). Furthermore, the k

between socially paired mates might shape the evolution and ex-

pression of social traits such as parental care (e.g., Michod 1979;

Breden and Wade 1991; Wolf et al. 1999), and constrain or facil-

itate further reproduction by relatives (Waser et al. 1986; Duthie

and Reid 2015). The “social pair” therefore constitutes one fun-

damental unit of social and genetic structure that arises through

pre-copulatory mate choice, and the degree to which individuals

pair with more or less closely related mates could substantially

affect an individual’s fitness measured as the numbers of direct

descendants and identical-by-descent allele copies contributed to

subsequent generations.

Numbers of descendants and expected identical-by-descent

allele copies contributed to any specific generation or timepoint

through reproduction by any focal individual can be calculated

from long-term pedigree data. In general, fitness is often appro-

priately measured across one zygote-to-zygote generation (Wolf

and Wade 2001). However, when phenotypic traits of interest are

expressed by adults and early offspring survival depends largely

on parental phenotype and hence genotype, fitness might be ap-

propriately measured across one adult-to-adult generation (e.g.,

the number of adult offspring left by each adult, Wolf and Wade

2001). In addition, for traits pertaining to mating decisions and

reproductive strategies expressed by adults where selection is

hypothesized to stem from consequent variation in offspring sur-

vival or reproductive success (as for inbreeding by parents and

consequent inbreeding depression in offspring), it can also be in-

formative to measure fitness across two generations (i.e., adult

to grand-offspring), thereby explicitly incorporating variation in

offspring fitness associated with expression of parental traits (Day

and Otto 2001; Kokko et al. 2003; Hunt et al. 2004; Reid et al.

2005). In such circumstances, a useful overall approach is to mea-

sure fitness to multiple successive stages spanning one and two

generations.

We used multi-generational pedigree data from free-living

song sparrows (Melospiza melodia) to quantify phenotypic varia-

tion in female and male fitness in relation to individuals’ k with the

mates with which they paired, and thereby estimate sex-specific

selection on the degree to which individuals formed socially per-

sistent breeding pairs with relatives. We measured the fitness of

individual adults as the relative numbers of genealogical descen-

dants contributed across up to two complete generations. We addi-

tionally estimated the fitness of any allele carried by an individual

adult as the number of identical-by-descent copies expected to be

contributed through these descendants, by weighting each descen-

dant by its k with the focal adult. We thereby consider the validity

of the widely prevailing assumption that there will necessarily be

“selection against inbreeding” (e.g., Fig. 1A) in systems where

inbreeding depression (i.e., “selection against being inbred,”

Fig. 1B) is observed, and consequent selection for mechanisms

that reduce the degree of biparental inbreeding expressed through

formation of socially persistent breeding pairs among relatives.

Methods
STUDY SYSTEM

Song sparrows form socially persistent breeding pairs, where both

sexes contribute to territory defense and parental care. A resident

song sparrow population inhabiting Mandarte island, BC, Canada,

has been studied intensively since 1975 (Smith et al. 2006) and

recently numbered 30 ± 12 SD breeding pairs. Previous analyses

of long-term pedigree data showed substantial inbreeding depres-

sion in embryo, juvenile and adult survival, and in reproductive

success (Keller 1998; Keller et al. 2008; Reid et al. 2011b, 2014,

2015a). Individuals whose parents were closely related therefore

have low fitness (e.g., Fig 1B). However, despite this inbreed-

ing depression, there is little evidence of inbreeding avoidance

expressed through non-random social pairing (Keller and Arcese

1998; Reid et al. 2006, 2015b), or through non-random extra-pair

reproduction by females (Reid et al. 2015a,b). These observa-

tions present an apparent “inbreeding paradox” (i.e., inbreeding

depression but no inbreeding avoidance, Keller and Arcese 1998),

as has also been noted in some other wild vertebrate populations

(e.g., Hansson et al. 2007; Jamieson et al. 2009; Billing et al.

2012).
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DATA COLLECTION

Each year, all nests on Mandarte were located and all offspring

were marked with unique combinations of metal and color bands

approximately six days post-hatch. Mandarte, lies within a large

natural song sparrow meta-population, is surrounded by numer-

ous other similarly small subpopulations, and regularly receives

immigrants (1.1 per year on average, Smith et al. 2006). New

immigrants were mist-netted and color-banded. All adults (i.e.,

�1year-old) alive in each year were identified and all socially

persistent pairings that formed and attempted to breed, and the

outcomes of all breeding attempts, were documented (Smith et al.

2006; Reid et al. 2006, 2014, 2015b; Sardell et al. 2010). The

relatively high local recruitment rates, and general absence of

Mandarte-banded individuals on surrounding islands, suggest that

emigration from Mandarte is infrequent and hence that the fitness

of resident adults can be accurately measured (Reid et al. 2005;

Wilson and Arcese 2008).

Both sexes can first breed aged one year, and social pair-

ings can rear up to three broods per year of up to four off-

spring per brood (Smith et al. 2006). Median adult life span is

two–three years (maximum nine years, Lebigre et al. 2012), cre-

ating overlapping reproductive generations. Social pairings fre-

quently persist across consecutive breeding attempts and years,

but both sexes can repair following mortality of their previous

mate, and sometimes divorce a surviving mate and repair both

within and between years (Smith et al. 2006; Reid et al. 2015b).

All adult females alive in each year formed at least one social

pairing. However, because the adult sex ratio was often male-

biased, some adult males remained socially unpaired (3–67% per

year, Sardell et al. 2010). These males occasionally sired extra-

pair offspring reared by other social pairings (Sardell et al. 2010;

Lebigre et al. 2012, see Results). Neither socially paired nor so-

cially unpaired males care for extra-pair offspring that they sire,

but socially paired males do care for extra-pair offspring pro-

duced by their paired female (i.e., offspring that they did not sire)

alongside within-pair offspring that they did sire. Both sexes typi-

cally accrue most direct reproductive success through within-pair

offspring produced with their socially paired mates rather than

through extra-pair reproduction (Reid et al. 2011a,b; Lebigre et al.

2012).

PEDIGREE AND KINSHIP

To construct a pedigree from which k between paired females

and males could be calculated, field observations were initially

used to link all offspring banded during 1975–2012 to their so-

cially paired parents (i.e., the female and male that provided care,

Keller 1998; Reid et al. 2008, 2014). To identify true genetic

sires and thereby minimize pedigree error, virtually all offspring

banded during 1993–2012 and their potential parents were geno-

typed at 160 polymorphic microsatellite loci (Sardell et al. 2010;

Reid et al. 2014, 2015a; Nietlisbach et al. 2015). Bayesian parent-

age analyses confirmed that all mothers were correctly identi-

fied from parental behavior, and assigned genetic sires to >99%

of banded chicks with >99% individual-level statistical confi-

dence (Sardell et al. 2010; Reid et al. 2015a). Overall, 72% of

chicks were assigned to the male that was socially paired to

their mother (i.e., within-pair paternity). All genetic paternity

assignments were used to correct the pedigree for extra-pair pa-

ternity that occurred during 1993–2012 (Reid et al. 2014). To

further reduce remaining pedigree error, paternity of individu-

als hatched before 1993 that survived to breed was also genet-

ically verified so far as available samples allowed (Reid et al.

2014).

Standard algorithms were used to calculate k between so-

cially paired mates, thereby measuring the probability that two

homologous alleles drawn from the two mates will be identical-

by-descent relative to the pedigree baseline (Keller 1998; Lynch

and Walsh 1998, p. 135). Each individual’s own f, which mea-

sures the probability that two homologous alleles within the

individual will be identical-by-descent (and equals k between

the individual’s genetic parents), was also calculated (Lynch and

Walsh 1998, p. 135). Although the full pedigree presumably con-

tains error stemming from unknown extra-pair paternity prior

to 1993, approximately 86% of pre-1993 links (i.e., all mater-

nal links and 72% of paternal links) will be correct assuming

a similar extra-pair paternity rate to that observed subsequently.

Utilizing the full pedigree therefore provides more informative

estimates of k among post-1993 breeders than the alternative as-

sumption that the 1993 breeders are all unrelated (Reid et al.

2011b). Effects of remaining pre-1993 pedigree error on esti-

mates of k and f among contemporary sparrows quickly become

trivial with increasing depth of genetically verified pedigree (Reid

et al. 2014, 2015a). The song sparrow dataset therefore per-

mits relatively accurate estimation of k between contemporary

Mandarte-hatched females and males that formed socially per-

sistent breeding pairs, and of these individuals’ f values, relative

to the defined baseline. Values of k = 0, 0.0625, 0.125, and 0.25

equate to pairings between unrelated individuals and between out-

bred first-cousins, half-sibs, and full-sibs (or equivalent relatives),

respectively.

Inbreeding coefficients of immigrants are undefined relative

to the pedigree baseline (Keller 1998; Reid et al. 2006). How-

ever, microsatellite genotypes suggest that immigrants are not

closely related to existing Mandarte natives (Keller et al. 2001).

Immigrant-native pairings were therefore defined as outbreeding

(k = 0, Reid et al. 2006, 2011b; Keller et al. 2008). Immigration

is sufficient to prevent inbreeding from rapidly accumulating and

to maintain variation in k, such that all non-immigrant males and

females had some opportunity to pair with a range of different

relatives throughout their lives (Reid et al. 2015a,b).
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LIFETIME DEGREE OF INBREEDING

We quantified the degree to which each individual participated

in socially persistent breeding pairs with relatives as the mean k

between each focal individual and the socially paired mate with

which it made each breeding attempt (i.e., each nest in which

eggs were laid) during its lifetime (hereafter ƙmate). The number of

observations that contributed to ƙmate for each individual therefore

increased with the number of breeding attempts made (Appendix

S1). However, ƙmate is an unbiased metric of the lifetime degree

of inbreeding that individuals expressed through social pairing,

and does not simply regress more to the population mean k with

increasing breeding attempts because social pairings frequently

persisted across multiple successive breeding attempts and years

rather than forming afresh for each attempt (Appendix S1).

LIFETIME REPRODUCTIVE SUCCESS AND ALLELIC

FITNESS

Each adult female’s fitness was measured as its lifetime repro-

ductive success (LRS), counting its total number of (1) banded

offspring, (2) adult offspring, (3) banded grand-offspring, and

(4) adult grand-offspring. These four measures (hereafter four

“generational timepoints”) hierarchically incorporate (1) a fe-

male’s total fecundity; (2) variation in survival of a female’s off-

spring to age one year, thereby capturing inbreeding depression

in offspring survival, resulting from inbreeding expressed by the

focal female through its total within-pair and extra-pair reproduc-

tion, and measuring fitness through one complete adult-to-adult

life cycle; (3) the lifetime number of banded offspring produced

by a female’s offspring, thereby capturing inbreeding depression

in offspring reproductive success, resulting from total inbreed-

ing expressed by the focal female; and (4) survival of a female’s

grand-offspring to age one year, thereby measuring fitness through

two complete adult-to-adult life cycles. LRS measured to banded

offspring might incorporate some variation in early offspring sur-

vival due to the offspring’s own f rather than solely reflecting a

female’s own intrinsic fecundity (Reid et al. 2015a). However,

early offspring survival depends substantially on parental care in

passerine birds, and is therefore partly a parental trait.

Each adult male’s fitness was measured as its LRS to the same

four generational timepoints, counting genealogical offspring and

grand-offspring. Specifically, LRS was measured as the numbers

of banded and adult offspring that each male sired (including

extra-pair offspring sired) not as offspring that he reared (i.e.,

excluding extra-pair offspring produced by the male’s socially

paired female), and as banded and adult offspring of the sired

offspring (i.e., each male’s true grand-offspring).

The “allelic value” of each offspring and grand-offspring

relative to each of its parents and grandparents was calculated

as twice the parent-offspring or grandparent-grand-offspring k,

respectively (computed from the pedigree, Appendix S2). Allelic

value therefore measures the number of copies of an autoso-

mal allele that is present in a focal parent or grandparent that is

expected to be present identical-by-descent in a particular off-

spring or grand-offspring (assuming weak selection on any allele,

Michod 1979). It increases as functions of the degrees to which

focal parents inbreed and are themselves inbred (Appendix S2;

Lynch and Walsh 1998, p. 136). For reference, allelic values of an

outbred offspring and grand-offspring relative to an outbred par-

ent or grand-parent are 0.5 and 0.25, respectively, with inbreeding

in one or both generations causing higher values (Appendix S2;

Lynch and Walsh 1998, p. 136).

Lifetime allelic fitness (LAF) was then calculated for each

adult female and male as the sum of the allelic values of all

their banded or adult offspring or grand-offspring. Total LAF

was divided by (1 + fi), where fi is the focal female or male’s

own f, thereby quantifying LAF per copy of any autosomal al-

lele expected to be present identical-by-descent within each focal

individual (hereafter “LAFf,” Appendix S2).

In age-structured populations with overlapping generations,

it can be valuable to measure variation in individuals’ annual

fitness rather than lifetime fitness (Engen et al. 2011), but the

appropriate measure of “annual fitness” becomes unclear when

one objective is to measure fitness in terms of grand-offspring.

However, we additionally explored whether overall relationships

between LRS and LAFf measured to banded offspring and ƙmate

arose because females or males with higher ƙmate produced more

banded offspring per breeding year and/or survived for more

breeding years (Appendix S3).

STATISTICAL ANALYSES

To estimate sex-specific “selection on inbreeding” (e.g., Fig. 1D),

linear selection gradients (β) on the degree to which individu-

als formed socially persistent breeding pairs with relatives were

calculated by regressing w-standardized fitness (i.e., individual

fitness divided by mean fitness) on ƙmate, with fitness measured

as LRS and LAFf to each of the four specified generational time-

points. Although our primary aim was not to re-estimate inbreed-

ing depression in fitness in the study population (see Keller 1998;

Keller et al. 2008; Reid et al. 2011b, 2014), we also regressed

w-standardized fitness on individual f, thereby simultaneously es-

timating “selection on being inbred” (e.g., inbreeding depression,

Fig. 1B) as well as “selection on inbreeding” (e.g., Fig. 1D) within

a multiple regression.

We primarily present SD standardized selection gradients on

ƙmate and f, calculated by regressing w-standardized fitness on

(ƙmate – μk)/σk and (f – μf)/σf, respectively, where μk, μf, σk,

and σf are the means and SDs of ƙmate and f, respectively. How-

ever, because there may be no single best means of standardizing

β that facilitates all comparative purposes, we also calculated
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mean-standardized selection gradients by regressing w-

standardized fitness on (ƙmate – μk)/μk and (f – μf)/μf (Appendix

S4, Lande and Arnold 1983; Hereford et al. 2004; Matsumura

et al. 2012). Fitness, ƙmate and f were standardized within sexes,

and within cohorts to account for among-cohort variation (Smith

et al. 2006; Reid et al. 2014; Appendix S5). Bootstrap confidence

intervals were computed by resampling residuals 10,000 times.

Separate analyses were run for females and males to en-

sure independence of observations. Analyses were restricted to

individuals hatched on Mandarte during 1993–2001 that survived

to adulthood (i.e., age one year). All these individuals had ge-

netically verified parents (and typically more distant relatives),

ensuring accurate proximate pedigree. All their offspring had died

by 2012, meaning that LRS and LAFf to adult grand-offspring

were completely measured by 2013 with no censoring. LRS and

LAFf measured to banded offspring cannot contain any error

due to offspring emigration. Furthermore, because emigration is

thought to be infrequent, any error or bias in LRS and LAFf

measured to subsequent generational timepoints is likely to be

small (see Reid et al. 2005). All adult females formed social pair-

ings, meaning that ƙmate was observable. By contrast, ƙmate was

unobservable and undefined for adult males that never socially

paired (due to the male-biased adult sex ratio). Selection on phe-

notypic ƙmate therefore cannot be directly estimated across all

adult males, potentially biasing any subsequent evolutionary in-

ference (e.g., Hadfield 2008; Mojica and Kelly 2010). However,

to evaluate selection on pairing versus failing to pair, the LRS

and LAFf of permanently unpaired males (which might exceed

zero if they sired extra-pair offspring) were compared to those of

males that socially paired for at least one breeding attempt. Male

fitness was w-standardized by calculating mean fitness across

all males from each cohort that formed at least one social pair-

ing, but conclusions remained similar when mean fitness was

calculated across all males from each cohort that survived to

adulthood.

Four immigrant females and one immigrant male were ex-

cluded from analyses as focal individuals because they were de-

fined as unrelated to all existing population members at arrival

and hence had no immediate opportunity to inbreed, and because f

is undefined for immigrants relative to the pedigree baseline (Reid

et al. 2006). However, immigrants were (implicitly) included as

socially paired mates of focal opposite-sex natives. Further mod-

els suggested that quadratic (nonlinear) selection gradients on

ƙmate and f were small and did not differ significantly from zero.

However, these gradients were estimated with substantial uncer-

tainty, and are not reported. Analyses were run in R version 3.0.1

(R Core Team 2013). Raw means are presented as ±1 SD, and

IQR is the interquartile range. Data are available from the Dryad

Digital Repository: doi:10.5061/dryad.0015b.

Results
FEMALE KINSHIP, INBREEDING, AND FITNESS

In total, 99 female song sparrows that hatched on Mandarte dur-

ing 1993–2001 survived to adulthood (i.e., age one year). These

females made a mean of 5.2 ± 4.0 breeding attempts during their

lifetimes (median 4, IQR 2–7, range 1–22), and socially paired

with a mean of 1.9 ± 1.1 different males (median 2, IQR 1–2,

range 1–5). Mean ƙmate was 0.073 ± 0.029 (median 0.074, IQR

0.054-0.086, range 0.000–0.169, Appendix S1). Distributions of

female LRS and LAFf measured as banded and adult offspring

and grand-offspring are summarized in Table 1 and depicted in

Appendix S6.

The estimated phenotypic selection gradients of relative fe-

male fitness on ƙmate were all positive (Table 1, Fig. 2), where

positive gradients indicate that females that socially paired with

more closely related males across their lifetimes had higher fit-

ness. Bootstrapped 95% CIs estimated across banded offspring

did not overlap zero, but 95% CIs estimated across adult offspring

and banded and adult grand-offspring were wide and overlapped

zero (Table 1). Selection gradients estimated for LAFf were more

positive than those estimated for LRS at analogous generational

timepoints (Table 1). However, the differences were small, espe-

cially relative to the 95% CIs (Table 1, Fig. 2). SD-standardized

ƙmate explained <5% of phenotypic variation in relative LRS and

LAFf. Additional analyses showed that the positive relationships

between female LRS and LAFf measured as banded offspring

and ƙmate arose because females with higher ƙmate tended to have

longer breeding life spans, and tended to produce more banded

offspring per year (Appendix S3).

Across the 99 females, mean f was 0.064 ± 0.039 (median

0.066, IQR 0.035–0.084, range 0.000–0.211). SD-standardized

ƙmate and f were weakly positively correlated across these females

(r97 = 0.15). The estimated phenotypic selection gradients of rel-

ative female fitness on f were all negative, showing that more

inbred females had lower fitness (i.e., inbreeding depression,

Table 1, Fig. 3). The 95% CIs did not overlap zero,

and estimates became increasingly negative across successive

generational timepoints (Table 1, Fig. 3). SD-standardized f ex-

plained 4 – 8% of variation in relative LRS and LAFf. Estimated

phenotypic “selection on inbreeding” was therefore opposite in

direction to the estimated “selection on being inbred” in females

(Figs. 2 and 3).

MALE KINSHIP, INBREEDING, AND FITNESS

A total of 101 male song sparrows that hatched on Mandarte

during 1993–2001 survived to adulthood and made at least one

breeding attempt with a socially paired female (meaning that ƙmate

was observable). A further 56 males that hatched during 1993–

2001 survived to adulthood but never socially paired, meaning
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Table 1. Descriptive statistics for female LRS and LAFf measured across (A) banded offspring, (B) adult offspring, (C) banded grand-

offspring, and (D) adult grand-offspring across 99 adult female song sparrows, and the SD-standardized selection gradients (β, with 95%

bootstrapped confidence intervals, 95% CI) of w-standardized LRS and LAFf on the mean coefficient of kinship with the socially paired

males with which each female made its breeding attempts (ƙmate) and on the female’s own coefficient of inbreeding (f).

ƙmate f
Mean ± SD Median, IQR, range β (95% CI) β (95% CI)

(A) Banded offspring LRS 10.2 ± 8.3 7, 4–16, 0–50 0.19 (0.04 to 0.34) −0.15 (−0.29 to −0.01)
LAFf 5.8 ± 4.8 3.8, 2.3-9.1, 0–29.2 0.21 (0.07 to 0.35) −0.15 (−0.29 to −0.01)

(B) Adult offspring LRS 2.0 ± 2.6 1, 0–3, 0–18 0.16 (−0.05 to 0.38) −0.24 (−0.45 to −0.02)
LAFf 1.1 ± 1.4 0.6, 0.0–1.7, 0–10.1 0.18 (−0.03 to 0.39) −0.24 (−0.45 to −0.02)

(C) Banded grand-offspring LRS 16.2 ± 29.0 6, 0–19.5, 0–232 0.19 (−0.06 to 0.45) −0.26 (−0.52 to −0.01)
LAFf 5.8 ± 11.3 2.2, 0–7.4, 0–96.3 0.20 (−0.06 to 0.46) −0.27 (−0.53 to −0.01)

(D) Adult grand-offspring LRS 2.8 ± 5.0 1, 0–4, 0–33 0.15 (−0.15 to 0.45) −0.34 (−0.64 to −0.03)
LAFf 1.0 ± 1.7 0.3, 0–1.2, 0–12.2 0.17 (−0.13 to 0.47) −0.34 (−0.64 to −0.04)

IQR = Interquartile range is the interquartile rang. Bold signifies selection gradients whose 95% CIs did not overlap zero.
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Figure 2. Relationships between w-standardized female LRS (filled symbols) and LAFf (open symbols) measured across (A) banded

offspring, (B) adult offspring, (C) banded grand-offspring, and (D) adult grand-offspring and SD-standardized mean coefficient of kinship

with the socially paired males with which each female made its breeding attempts (ƙmate) across 99 female song sparrows. Slopes

of regression lines equal SD-standardized selection gradients for LRS (solid lines) and LAFf (dashed lines), representing “selection on

inbreeding.” Points for LAFf are offset for presentation.

that ƙmate was unobservable and undefined. The 101 males that

paired made a mean of 4.3 ± 3.4 breeding attempts during their

lifetimes (median 3, IQR 2–6, range 1–14) and socially paired

with a mean of 1.7 ± 1.0 different females (median 1, IQR

1–2, range 1–5). Mean ƙmate was 0.075 ± 0.043 (median 0.072,

IQR 0.052–0.088, range 0.000–0.310, Appendix S1).

Distributions of LRS and LAFf measured as banded and

adult offspring and grand-offspring for the 101 males that socially

paired are summarized in Table 2 and depicted in Appendix S6.

Across the 56 adult males that never socially paired, and hence

for whom any direct reproductive success came solely through

extra-pair paternity, mean LRS and LAFf were, respectively,

0.2 ± 0.7 (range 0–3) and 0.1 ± 0.4 (range 0–1.7) across banded

offspring, 0.02 ± 0.1 (range 0–1) and 0.01 ± 0.1 (range 0–0.5)

across adult offspring, and uniformly zero across banded and

adult grand-offspring. Males that did not socially pair therefore

had zero grand-offspring, and hence had zero direct fitness mea-

sured across two generations.
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Figure 3. Relationships between w-standardized female LRS measured across (A) banded offspring, (B) adult offspring, (C) banded

grand-offspring, and (D) adult grand-offspring and SD-standardized coefficient of inbreeding (f) across 99 female song sparrows. Slopes

of regression lines equal SD-standardized selection gradients for LRS, representing “selection on being inbred.” Selection gradients for

LAFf were virtually identical (Table 1).

Table 2. Descriptive statistics for male LRS and LAFf measured across (A) banded offspring, (B) adult offspring, (C) banded grand-

offspring, and (D) adult grand-offspring across 101 adult male song sparrows that formed at least one social pairing, and the SD-

standardized selection gradients (β, with 95% bootstrapped confidence intervals, 95% CI) of w-standardized LRS and LAFf on the mean

coefficient of kinship with the socially paired females with which each male made its breeding attempts (ƙmate) and on the male’s own

coefficient of inbreeding (f).

ƙmate f
Mean ± SD Median, IQR, range β (95% CI) β (95% CI)

(A) Banded offspring LRS 8.9 ± 8.3 6, 3–14, 0–37 0.02 (−0.16 to 0.20) −0.27 (−0.46 to −0.09)
LAFf 5.1 ± 4.7 3.5, 1.7–7.9, 0–20.5 0.06 (−0.12 to 0.24) −0.27 (−0.45 to −0.09)

(B) Adult offspring LRS 1.7 ± 2.4 1, 0–2, 0–15 −0.11 (−0.36 to 0.15) −0.37 (−0.63 to −0.12)
LAFf 1.0 ± 1.3 0.6, 0–1.2, 0–8.3 −0.08 (−0.33 to 0.17) −0.37 (−0.63 to −0.12)

(C) Banded grand-offspring LRS 16.3 ± 28.3 3, 0–20, 0–147 −0.22 (−0.52 to 0.08) −0.27 (−0.57 to 0.03)
LAFf 5.6 ± 9.5 1.2, 0–7.5, 0–52.3 −0.19 (−0.50 to 0.12) −0.26 (−0.57 to 0.04)

(D) Adult grand-offspring LRS 3.1 ± 5.3 1, 0–4, 0–25 −0.32 (−0.63 to −0.01) −0.35 (−0.66 to −0.03)
LAFf 1.0 ± 1.7 0, 0–1.3, 0–8.0 −0.30 (−0.61 to −0.001) −0.33 (−0.64 to −0.02)

IQR = interquartile range. Bold signifies selection gradients whose 95% CIs did not overlap zero.

The estimated phenotypic selection gradients of relative

male fitness on ƙmate were very weakly positive across banded

offspring, but increasingly negative across adult offspring and

banded and adult grand-offspring (Table 2, Fig. 4), where negative

gradients indicate that males that socially paired with more closely

related females had lower fitness than males that socially paired

with less closely related females. The 95% CIs for the selection

gradients estimated across adult grand-offspring did not over-

lap zero, but the other 95% CIs were wide and overlapped zero

(Table 2). Selection gradients estimated for LAFf were slightly

less negative than those estimated for LRS at analogous gener-

ational timepoints, but these differences were again small, espe-

cially relative to the 95% CIs (Table 2, Fig. 4). SD-standardized

ƙmate explained <5% of variation in relative LRS and LAFf.
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Figure 4. Relationships between w-standardized male LRS (filled symbols) and LAFf (open symbols) measured across (A) banded

offspring, (B) adult offspring, (C) banded grand-offspring, and (D) adult grand-offspring and SD-standardized mean coefficient of kinship

with the socially paired females with which each male made its breeding attempts (ƙmate) across 101 male song sparrows that formed at

least one social pairing. Slopes of regression lines equal SD-standardized selection gradients for LRS (solid lines) and LAFf (dashed lines),

representing “selection on inbreeding.” Points for LAFf are offset for presentation.

Additional analyses showed that males with higher ƙmate tended

to sire more banded offspring per year, but tended to have slightly

shorter breeding life spans (Appendix S3).

Across the 101 males, mean f was 0.061 ± 0.037 (median

0.060, IQR 0.042–0.077, range 0.000–0.257). SD-standardized

ƙmate and f were moderately positively correlated across these

males (r99 = 0.27). The estimated phenotypic selection gradients

of relative male fitness on f were consistently negative showing

that, across males that formed at least one social pairing, more

inbred males had lower fitness (i.e., inbreeding depression,

Table 2, Fig. 5). The 95% CIs slightly overlapped zero when

LRS and LAFf were measured across banded grand-offspring,

but not otherwise (Table 2). SD-standardized f explained 5–10%

of variation in relative LRS and LAFf. Selection gradients on f

were similar when calculated across all 157 adult males, including

those that never socially paired (Appendix S4). Estimated phe-

notypic “selection on inbreeding” therefore primarily operated in

the same direction as the estimated “selection on being inbred”

across males that formed at least one socially persistent breeding

pair during their lifetimes (Figs. 4 and 5).

Discussion
Inbreeding depression in the fitness of offspring produced by

matings between relatives is widely postulated to cause se-

lection against biparental inbreeding, thereby driving evolution

of inbreeding avoidance through pre-copulatory and/or post-

copulatory processes (Pusey and Wolf 1996; Tregenza and Wedell

2000; Jennions et al. 2004; Hansson et al. 2007; Jamieson et al.

2009; Ala-Honkola et al. 2011). However, such inbreeding avoid-

ance is not always observed, even when diverse relatives and

non-relatives are available as potential mates and inbreeding de-

pression is severe (e.g., Keller and Arcese 1998; Hansson et al.

2007; Jamieson et al. 2009; Rioux-Paquette et al. 2010; Billing

et al. 2012; Olson et al. 2012; Reid et al. 2015b).

There are multiple possible explanations for this appar-

ent “inbreeding paradox.” Inbreeding avoidance might not have

evolved in species with historically large panmictic populations

and correspondingly low probabilities of biparental inbreeding,

even if severe inbreeding depression is expressed during ex-

perimental inbreeding or contemporary population bottlenecks

(Jennions et al. 2004; Jamieson et al. 2009; Rioux-Paquette et al.

2010; Ala-Honkola et al. 2011). However, even when inbreeding

regularly occurs, selection against inbreeding could be weakened

or reversed by ecological or genetic benefits of mating with rel-

atives, or by costs of inbreeding avoidance such as immediate or

lifelong failure to find alternative mates (Keller and Arcese 1998;

Lehmann and Perrin 2003; Kokko and Ots 2006; Jamieson et al.

2009; Olson et al. 2012). Comprehensive models predicting the
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Figure 5. Relationships between w-standardized male LRS measured across (A) banded offspring, (B) adult offspring, (C) banded grand-

offspring, and (D) adult grand-offspring and SD-standardized coefficient of inbreeding (f) across 101 male song sparrows that formed at

least one social pairing. Slopes of regression lines equal SD-standardized selection gradients for LRS, representing “selection on being

inbred.” Selection gradients for LAFf were virtually identical (Table 2).

net fitness consequence of inbreeding have been extensively ana-

lyzed and parameterized in the context of self-fertilization versus

outcrossing, incorporating effects of fertility assurance, reduced

outcrossing (e.g., pollen discounting), and the intrinsic transmis-

sion advantage of alleles promoting selfing, as well as inbreeding

depression in offspring fitness (e.g., Lande and Schemske 1985;

Jarne and Charlesworth 1993; Willis 1993; Goodwillie et al. 2005;

Porcher and Lande 2005; Charlesworth 2006; Busch and Delph

2012; Stone et al. 2014). However, empirical studies aiming to

understand the evolution of biparental inbreeding have rarely con-

sidered similarly multifaceted components of selection (Kokko

and Ots 2006; Jamieson et al. 2009; Szulkin et al. 2013). Selec-

tion on biparental inbreeding cannot necessarily be inferred from

existing models or estimates of selection on selfing because these

reproductive systems exhibit very different distributions of relat-

edness and opportunities for mating failure and sexual antagonism

(Parker 2006; Szulkin et al. 2013).

Numerous studies have quantified inbreeding depression in

wild populations where biparental inbreeding occurs by regress-

ing some measure of an individual’s fitness on its own coefficient

of inbreeding (f) or multilocus heterozygosity, thereby implicitly

measuring “selection on being inbred” (Keller and Waller 2002;

Szulkin et al. 2007; Chapman et al. 2009; Jamieson et al. 2009;

Billing et al. 2012; Reid et al. 2014). In contrast, no studies have

quantified total sex-specific selection on the degree to which an

individual inbreeds through any form of mating (thereby mea-

suring “selection on inbreeding”) by regressing an individual’s

fitness on its coefficient of k with its mates. Furthermore, no stud-

ies have accounted for the intrinsic transmission advantage of

an allele that increases biparental inbreeding. Consequently, no

studies have explicitly considered whether evolution of mecha-

nisms that reduce biparental inbreeding should be expected. We

used comprehensive pedigree data from free-living song sparrows

to simultaneously estimate selection on the degree to which fe-

males and males formed socially persistent breeding pairs with

relatives, and selection on the degree to which females and males

were themselves inbred, in relation to relative LRS and LAFf

measured over up to two complete generations of descendants.

ESTIMATED “SELECTION ON INBREEDING”

Perhaps unexpectedly, estimated phenotypic selection gradients

on the degree to which female song sparrows paired with related

males were positive across all four generational timepoints con-

sidered; females that paired with closer relatives tended to have

higher fitness and contribute more descendants to the study pop-

ulation. However, ƙmate explained a small proportion of variation

in female fitness, and confidence intervals around selection gra-

dients estimated across adult offspring, and across banded and
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adult grand-offspring, were wide and overlapped zero. Selection

gradients for LAFf were slightly more positive than those esti-

mated for LRS to the same generational timepoints. This is ex-

pected because parents are more closely related to inbred offspring

(and resulting grand-offspring) than to outbred offspring (Lynch

and Walsh 1998; Appendix S2), creating the potential transmis-

sion advantage of any allele that increases the degree of inbreeding

(e.g., Waser et al. 1986; Parker 2006). However, these increments

were small, reflecting the moderate degree of inbreeding occur-

ring in song sparrows.

In contrast, estimated phenotypic selection gradients on the

degree to which male song sparrows paired with related fe-

males became increasingly negative as LRS was measured across

consecutive generational timepoints, and were strongly negative

across adult grand-offspring. Males that paired with closer rela-

tives therefore contributed fewer descendants to the study pop-

ulation than males that paired with more distant relatives. The

negative selection gradients were slightly ameliorated, but far

from eliminated, by the transmission advantage of an allele that

increases inbreeding as measured by LAFf relative to LRS. Con-

sequently, across males that formed at least one pairing and hence

for whom ƙmate was observable, males that paired with more

closely related females made smaller relative allelic contributions

through adult grand-offspring.

The increasingly negative selection gradients estimated

across the four generational timepoints for males might be ex-

pected because the successive timepoints increasingly capture the

low survival and reproductive success of inbred offspring (i.e.,

inbreeding depression, Keller 1998; Keller et al. 2008; Reid et al.

2014). Males that paired with more closely related females would

therefore leave fewer grand-offspring per within-pair offspring

sired than males that paired with more distantly related females.

However, the estimated selection gradients for females did not

decrease substantially across the four generational timepoints.

This may be because extra-pair reproduction means that inbreed-

ing depression in a female’s offspring is partly decoupled from

her k with her socially paired mate (although 72% of females’

offspring were sired by socially paired males on average, Sardell

et al. 2010). To understand the demographic mechanisms underly-

ing the apparent sex-specific selection on pairing among relatives,

future analyses should partition sex-specific variation in LRS and

LAFf in relation to ƙmate into components stemming from female

and male within-pair and extra-pair reproduction. Although nu-

merous studies have examined the degree to which females avoid

inbreeding through extra-pair reproduction (Reid et al. 2015a),

the degree to which males alter offspring f through extra-pair

reproduction has not yet been examined.

The estimated sex-specific selection gradients on the degree

of inbreeding expressed through social pairing differed from each

other to the degree that the 95% CIs for females mostly did not

overlap the estimates for males measured to equivalent gener-

ational timepoints, and vice versa. Proximately, these patterns

arose because females that paired with closer relatives tended to

survive for more breeding years and hatched more offspring per

year than females that paired with more distant relatives, but these

relationships were less evident for males (Appendix S3). This ap-

parent evidence that selection against pairing with a closer relative

might be stronger in males than females contradicts the prevailing

expectation that selection against inbreeding will be stronger in fe-

males (e.g., Pizzari et al. 2004; Parker 2006). However, estimates

of overall selection on any trait, and consequent evolutionary pre-

dictions, can be biased by “invisible fractions” of individuals that

do not express the focal phenotype and are consequently excluded

from phenotypic selection analyses (e.g., Hadfield 2008; Mojica

and Kelly 2010). Due to the study population’s male-biased adult

sex ratio, 36% of adult male song sparrows never formed a so-

cially persistent breeding pair and consequently did not express

any degree of inbreeding through such pairing. These males can-

not contribute to estimates of phenotypic selection because ƙmate is

unobservable and undefined. Such socially unpaired males could

potentially accrue some reproductive success by siring extra-pair

offspring of females that socially paired with other males. How-

ever in practice their success in siring banded offspring was low

(see also Sardell et al. 2010; Lebigre et al. 2012) and their longer-

term fitness was zero; males that never socially paired contributed

zero grand-offspring to the study population. The most important

component of male reproductive strategy in influencing fitness

might therefore simply be to form a social pair irrespective of

female relatedness rather than necessarily to choose among dif-

ferently related females, especially if choice were to increase the

probability of remaining unpaired.

ESTIMATED “SELECTION ON BEING INBRED”

Inbreeding depression in the fitness of offspring produced through

biparental inbreeding is commonly measured as the slope of a

regression of log-fitness on f (thereby measuring “lethal equiv-

alents,” assuming multiplicative effects of recessive alleles ex-

pressed across loci, Morton et al. 1956), and/or as the slope of

a regression of raw fitness on f estimated within a statistically

appropriate linear model (e.g., Keller 1998; Kruuk et al. 2002;

Szulkin et al. 2007; Grueber et al. 2010; Reid et al. 2014). In

contrast, inbreeding depression is not generally measured as the

slope of a (multiple) regression of w-standardized fitness on SD-

or mean-standardized f, thereby explicitly estimating phenotypic

“selection on being inbred” on scales that facilitate quantitative

comparison with other selection gradients, and allowing simul-

taneous estimation of selection on potentially correlated traits

such as k (e.g., Lande and Arnold 1983; Hereford et al. 2004;

Matsumura et al. 2012). Current analyses demonstrated strong

selection against being inbred in female and male song sparrows,
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concurring with previous estimates of inbreeding depression in

terms of lethal equivalents and other statistically appropriate re-

gression slopes (Keller 1998; Keller et al. 2008; Reid et al. 2011b,

2014). Furthermore, in females, the magnitude of selection against

being inbred estimated across adult grand-offspring was twice that

estimated across banded offspring, demonstrating that estimates

of total inbreeding depression can increase substantially with the

number of life-history stages included in the measure of fitness

(e.g., Szulkin et al. 2007; Grueber et al. 2010).

INTERPRETATION AND IMPLICATIONS

Our analyses imply that, despite strong inbreeding depression

in fitness and consequent “selection against being inbred,” there

might not be strong “selection against inbreeding” by female

song sparrows in terms of forming socially persistent breeding

pairs with relatives. Net selection against pairing with relatives

might also be weak in males despite the negative selection gradi-

ents estimated across individuals that formed at least one social

pairing, because individuals that never socially paired had zero

direct long-term fitness. Sexual conflict over pairing with relatives

might therefore be weaker than initially indicated by the conflict-

ing sex-specific phenotypic selection gradients, and weaker than

is commonly postulated (e.g., Pizzari et al. 2004; Parker 2006).

If similar patterns have persisted over evolutionary time, they

might explain why song sparrows do not avoid pairing with rel-

atives (i.e., avoid inbreeding through one primary expression of

pre-copulatory mate choice, Keller and Arcese 1998; Reid et al.

2006, 2015b), thereby resolving the apparent “inbreeding para-

dox.” Indeed, even when inbreeding depression is strong, f typ-

ically explains little variance in fitness (Keller and Waller 2002;

Kruuk et al. 2002). Consequently, there might commonly be sub-

stantial scope for variation in the magnitude and direction of net

selection on the degree to which individuals pair with relatives,

especially if females could also adjust offspring f and males could

gain or lose fitness through extra-pair reproduction. Social pairing

between relatives also means that males are still somewhat related

to extra-pair offspring that they rear (i.e., extra-pair offspring of

their related socially paired female), potentially facilitating evo-

lution of social traits such as parental care. Therefore, contrary to

widely held expectations, an observation of strong inbreeding de-

pression should not be assumed to imply that there will necessarily

be selection against the formation of socially persistent breeding

pairings among relatives, or consequent evolution of biparental

inbreeding avoidance through pre-copulatory mate choice.

However, any evolutionary inferences based on estimated

phenotypic selection gradients are subject to multiple provisos.

Primarily, they assume that focal phenotypic trait(s) directly and

solely cause correlated variation in fitness (Rausher 1992; Kruuk

et al. 2008; Morrissey et al. 2010). This might not be valid for the

degree of inbreeding (or any other trait) when selection gradients

are estimated from natural variation in inbreeding and fitness.

Most obviously, variation in offspring f resulting from extra-pair

reproduction could also contribute to variation in individual fit-

ness in reproductive systems characterized primarily by socially

persistent breeding pairs. There is little evidence that female song

sparrows actively or substantially alter offspring f through extra-

pair reproduction (Reid et al. 2015a,b). Future studies, on diverse

systems, could usefully attempt to estimate selection on inbreed-

ing expressed through extra-pair mating or reproduction. Further-

more, the degree to which individuals inbreed is correlated with

various traits and ecological circumstances in song sparrows and

other species (Kruuk et al. 2002; Reid et al. 2008; Szulkin and

Sheldon 2008; Herfindal et al. 2014). Phenotypic correlations

between inbreeding and fitness might therefore arise indirectly

rather than causally, due to correlated effects of other factors on

both pairing and fitness. However, because song sparrows rarely

paired with their own descendants, high individual fitness did

not systematically cause high ƙmate (i.e., reversing the assumed

direction of causality, Appendix S1).

Further major challenges in measuring selection on inbreed-

ing, and predicting any evolutionary response, arise because the

concept of “individual fitness” becomes complicated when mat-

ing decisions that affect inbreeding are made among numerous

interacting relatives. The total fitness consequences of an individ-

ual’s decision to pair with a relative (or not) cannot necessarily be

quantified by summing an individual’s direct reproductive suc-

cess achieved with relatives and non-relatives. This is because

such summations do not incorporate inclusive fitness accrued

through relatives with which a focal individual decides not to

pair, but whose reproductive success might be influenced by that

decision. For example, a focal individual’s decision not to pair

with a relative affects who that relative pairs with, and hence

affects the fitness of the focal individual, and their rejected rela-

tive, and potentially of other relatives that the rejected individual

subsequently pairs with (Duthie and Reid 2015). Comprehensive

estimation of selection on inbreeding might therefore require si-

multaneous measurement of the fitness consequences of inbreed-

ing that did not happen as well as inbreeding that did happen,

which is not straightforward.

One useful future approach might be to directly estimate any

evolutionary response to selection on inbreeding by estimating

sex-specific additive genetic covariances between the degree of

inbreeding that individuals express and fitness. Given appropri-

ate data and models, this explicit quantitative genetic approach

could exclude environmental covariances, incorporate the fitness

of individuals for whom phenotypic inbreeding cannot be ob-

served (e.g., individuals that die before adulthood or never pair)

and incorporate the relative fitness and degree of inbreeding ex-

pressed across numerous interacting relatives (e.g., Rausher 1992;

Hadfield 2008; Morrissey et al. 2010; Reid 2012). Such analyses
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will require remaining conceptual and practical hurdles of ap-

propriately measuring relatedness and fitness among numerous

interacting relatives to be overcome.
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