
COMBINING SIMULATION AND MULTI-OBJECTIVE
OPTIMISATION FOR EQUIPMENT QUANTITY OPTIMISATION

IN CONTAINER TERMINALS

by

Zhougeng Lin

This thesis is submitted in partial fulfillment of the
requirements for the award of the degree of

Doctor of Philosophy

of

University of Portsmouth
Portsmouth, United Kingdom

January 2013

c© Copyright by Zhougeng Lin, 2013



ii 
 

Declaration 

Whilst registered as a candidate for the above degree, I have not been registered for 

any other research award. The results and conclusions embodied in this thesis are the 

work of the named candidate and have not been submitted for any other academic 

award. (44 words) 

  



iii 
 

Acknowledgements 

First of all, I would like to express my sincere gratitude to my first supervisor Dr 

Dylan Jones, second supervisor Dr Xiang Song and other members in the Logistics 

and Management Mathematics Group (LMMG) in the Department of Mathematics at 

the University of Portsmouth for their valuable guidance, insight and support 

throughout my Ph.D. period. Their teaching and supervision were vital to the 

progression of my research. 

Secondly, I would like to thank my thesis examination committee, Prof. Carlos 

Romero and Dr Graham Wall, for their constructive feedback. 

Thirdly, my sincere appreciation also goes to DP World Southampton for the meeting 

on 24
th

 February 2010 which provided detailed information of the Southampton 

Container Port. 

Fourthly, I would like to thank my family for their support and understanding. 

Last but not least, I would like to thank the people who have provided technical and 

practical support over the course of the project. 



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Background Information . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Major Container Ports in the World and Europe . . . . . . . . . 5

2.3 The Major Container Ports in United Kingdom . . . . . . . . . . . . 7

2.4 The Major Container Terminal Equipment . . . . . . . . . . . . . . . 8

2.5 Container ISO Standards . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Literature Review in Combination of Simulation and Multi-objective
Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Literature Review in Simulation . . . . . . . . . . . . . . . . . . . . . 13

3.4 Literature Review in Multi-objective Optimisation . . . . . . . . . . . 14
3.4.1 Quay Crane Optimisation . . . . . . . . . . . . . . . . . . . . 15
3.4.2 Yard Crane Optimisation . . . . . . . . . . . . . . . . . . . . . 17
3.4.3 Truck Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Literature Review in Genetic Algorithms . . . . . . . . . . . . . . . . 21

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 4 Combination Framework . . . . . . . . . . . . . . . . . . . 24

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



4.2 Combination Framework of Simulation and Multi-objective Optimisation 24

4.3 Combination Structures . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Pre-MOO Structure . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Integrated MOO Structure . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Post-MOO Structure . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 5 Combining Simulation and Multi-Objective Optimisation
by Post-MOO Structure for Container Terminal Truck
Quantity Optimisation . . . . . . . . . . . . . . . . . . . . 35

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.1 Post-MOO Structure . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Discrete-event Simulation . . . . . . . . . . . . . . . . . . . . 39
5.3.3 Formulation for Objectives . . . . . . . . . . . . . . . . . . . . 46
5.3.4 Multi-objective Optimisation . . . . . . . . . . . . . . . . . . 53

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.1 Simulation Parameters and Results . . . . . . . . . . . . . . . 54
5.4.2 Single Objective Formulation Parameters and Results . . . . . 57
5.4.3 Multi-objective Optimisation Results . . . . . . . . . . . . . . 61
5.4.4 Computational Considerations . . . . . . . . . . . . . . . . . . 64

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 6 Combining Simulation and Multi-Objective Optimisation
by Post-MOO Structure for Multiple Container Terminal
Equipment Optimisation . . . . . . . . . . . . . . . . . . . 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.1 Post-MOO Structure . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.2 Discrete-event Simulation . . . . . . . . . . . . . . . . . . . . 75
6.3.3 Formulation for Objectives . . . . . . . . . . . . . . . . . . . . 92
6.3.4 Multi-objective Optimisation . . . . . . . . . . . . . . . . . . 104
6.3.5 A Genetic Algorithm to Solve the Problem . . . . . . . . . . . 104

6.4 Parameters and Results . . . . . . . . . . . . . . . . . . . . . . . . . 105

v



6.4.1 Simulation Parameters and Results . . . . . . . . . . . . . . . 105
6.4.2 Single Objective Formulation Parameters and Results . . . . . 109
6.4.3 Genetic Algorithm Parameters . . . . . . . . . . . . . . . . . . 111
6.4.4 Multi-objective Optimisation Results . . . . . . . . . . . . . . 114
6.4.5 Computational Considerations . . . . . . . . . . . . . . . . . . 120

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Chapter 7 Combining Simulation and Multi-Objective Optimisation
by Integrated MOO Structure for Multiple Container
Terminal Equipment Optimisation . . . . . . . . . . . . . 123

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Integrated MOO Structure . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Parameters and Results . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3.1 The Initial Iteration for All Objectives . . . . . . . . . . . . . 125
7.3.2 The Near Optimal Solutions to the First Objective Function . 128
7.3.3 The Near Optimal Solutions to the Second Objective Function 141
7.3.4 The Near Optimal Solutions to the Third Objective Function 151
7.3.5 The Near Optimal Solutions to the Fourth Objective Function 157

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Chapter 8 Summary and Conclusions . . . . . . . . . . . . . . . . . . 163

Appendix A C# Codes for the Explicit Numeration for Truck Quan-
tity Optimisation . . . . . . . . . . . . . . . . . . . . . . . 167

Appendix B C# Codes for the Simulation for Truck Travelling Dis-
tance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Appendix C C# Codes for the Genetic Algorithm to Explore Pareto
Optimal Solutions in Post-MOO Structure . . . . . . . 198

Appendix D Data Details . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

vi



List of Tables

2.1 Top 10 Container Ports in the World . . . . . . . . . . . . . . . 7

2.2 Top 15 European Container Port in 2011 . . . . . . . . . . . . 7

2.3 ISO Container Standard Sizes . . . . . . . . . . . . . . . . . . . 10

5.1 The coefficients of equations . . . . . . . . . . . . . . . . . . . 44

5.2 Simulation Output Parameters . . . . . . . . . . . . . . . . . . 46

5.3 Stochastic Parameters for Simulation . . . . . . . . . . . . . . . 55

5.4 Non-Stochastic Parameters for Simulation . . . . . . . . . . . . 56

5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Fitting Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 Fitting Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Simulation Elements . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Time Distribution Definitions . . . . . . . . . . . . . . . . . . . 88

6.3 Simulation Output Parameters . . . . . . . . . . . . . . . . . . 89

6.4 Stochastic Parameters for Simulation . . . . . . . . . . . . . . . 106

6.5 Non-Stochastic Parameters for Simulation . . . . . . . . . . . . 107

6.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7 Values of ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8 Fitting Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.9 The Maximum and Minimum Values of Objective Functions . . 116

7.1 Initial Values for Decision Variables . . . . . . . . . . . . . . . 125

7.2 Simulation Results for the First Iteration for All Objective Func-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Values of ni for the First Iteration for All Objective Functions . 126

7.4 Fitting Coefficients for the First Iteration for All Objective Func-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vii



7.5 Best Predicted Values for the First Iteration for All Objective
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6 Simulation Results for the Second Iteration for the First and
Second Objective Functions . . . . . . . . . . . . . . . . . . . . 128

7.7 LqR(LyR) List for the Second Iteration for the First(Second) Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.8 Values of ni for the Second Iteration for the First and Second
Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . 129

7.9 Fitting Coefficients for the Second Iteration for the First and
Second Objective Functions . . . . . . . . . . . . . . . . . . . . 130

7.10 Best Predicted Values for the Second Iteration for the First and
Second Objective Functions . . . . . . . . . . . . . . . . . . . . 131

7.11 Simulation Results for the Third Iteration for the First and Sec-
ond Objective Functions . . . . . . . . . . . . . . . . . . . . . . 131

7.12 LqR(LyR) List for the Third Iteration for the First(Second) Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.13 Values of ni for the Third Iteration for the First and Second
Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . 132

7.14 Fitting Coefficients for the Third Iteration for the First and Sec-
ond Objective Functions . . . . . . . . . . . . . . . . . . . . . . 133

7.15 Best Predicted Values for the Third Iteration for the First and
Second Objective Functions . . . . . . . . . . . . . . . . . . . . 133

7.16 Simulation Results for the Fourth Iteration for the First and
Second Objective Functions . . . . . . . . . . . . . . . . . . . . 134

7.17 LqR(LyR) List for the Fourth Iteration for the First(Second) Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.18 Values of ni for the Fourth Iteration for the First and Second
Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . 135

7.19 Fitting Coefficients for the Fourth Iteration for the First and
Second Objective Functions . . . . . . . . . . . . . . . . . . . . 136

7.20 Best Predicted Values for the Fourth Iteration for the First Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.21 Simulation Results for the Fifth Iteration for the First Objective
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

viii



7.22 LqR List for the Fifth Iteration for the First Objective Function 137

7.23 Values of ni for the Fifth Iteration for the First Objective Function138

7.24 Fitting Coefficients for the Fifth Iteration for the First Objective
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.25 Best Predicted Values for the Fifth Iteration for the First Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.26 Simulation Results for the Sixth Iteration for the First Objective
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.27 LqR List for the Sixth Iteration for the First Objective Function 140

7.28 Values of ni for the Sixth Iteration for the First Objective Function141

7.29 Fitting Coefficients for the Sixth Iteration for the First Objective
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.30 Best Predicted Values for the Sixth Iteration for the First Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.31 Simulation Results for the Seventh Iteration for the First Objec-
tive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.32 LqR List for the Seventh Iteration for the First Objective Function143

7.33 Values of ni for the Seventh Iteration for the First Objective
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.34 Fitting Coefficients for the Seventh Iteration for the First Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.35 Best Predicted Values for the Seventh Iteration for the First
Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.36 Simulation Results for the Eighth Iteration for the First Objec-
tive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.37 LqR List for the Eighth Iteration for the First Objective Function 146

7.38 Best Predicted Values for the Fourth Iteration for the Second
Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.39 Simulation Results for the Fifth Iteration for the Second Objec-
tive Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.40 LyR List for the Fifth Iteration for the Second Objective Function148

ix



7.41 Values of ni for the Fifth Iteration for the Second Objective
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.42 Fitting Coefficients for the Fifth Iteration for the Second Objec-
tive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.43 Best Predicted Values for the Fifth Iteration for the Second Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.44 Simulation Results for the Sixth Iteration for the Second Objec-
tive Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.45 Simulation Results for the Second Iteration for the Third Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.46 Lp List for the Second Iteration for the Third Objective Function 152

7.47 Values of ni for the Second Iteration for the Third Objective
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.48 Fitting Coefficients for the Second Iteration for the Third Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.49 Best Predicted Values for the Second Iteration for the Third
Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.50 Simulation Results for the Third Iteration for the Third Objec-
tive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.51 Lp List for the Third Iteration for the Third Objective Function 154

7.52 Values of ni for the Third Iteration for the Third Objective Func-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.53 Fitting Coefficients for the Third Iteration for the Third Objec-
tive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.54 Best Predicted Values for the Third Iteration for the Third Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.55 Simulation Results for the Fourth Iteration for the Third Objec-
tive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.56 Simulation Results for the Second Iteration for the Fourth Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.57 Ld List for the Second Iteration for the Fourth Objective Function157

7.58 Values of ni for the Second Iteration for the Fourth Objective
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

x



7.59 Fitting Coefficients for the Second Iteration for the Fourth Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.60 Best Predicted Values for the Second Iteration for the Fourth
Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.61 Simulation Results for the Third Iteration for the Fourth Objec-
tive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.62 Ld List for the Third Iteration for the Fourth Objective Function 160

7.63 Values of ni for the Third Iteration for the Fourth Objective
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.64 Fitting Coefficients for the Third Iteration for the Fourth Ob-
jective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.65 Best Predicted Values for the Third Iteration for the Fourth
Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 162

D.1 Container Throughput of Southampton Container Terminal . . 235

D.2 Number of Quay Cranes in Southampton Container Terminal . 235

D.3 Number of Yard Cranes in Southampton Container Terminal . 235

xi



List of Figures

2.1 World Trade Value from 1960 to 2010 . . . . . . . . . . . . . . 6

2.2 United Kingdom Container Port Throughput in 2007 . . . . . 8

4.1 Combination Framework . . . . . . . . . . . . . . . . . . . . . 26

4.2 Pre-MOO Combination Structure . . . . . . . . . . . . . . . . 28

4.3 Simulation Leading Integrated Structure . . . . . . . . . . . . 28

4.4 MOO Leading Integrated Structure . . . . . . . . . . . . . . . 30

4.5 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Dynamic MOO Search . . . . . . . . . . . . . . . . . . . . . . 32

4.7 Post-MOO Combination Structure . . . . . . . . . . . . . . . 33

5.1 Terminal Layout . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Operational Flow Chart . . . . . . . . . . . . . . . . . . . . . 41

5.3 General simulation network . . . . . . . . . . . . . . . . . . . 45

5.4 Simulation Results for the First Objective Function . . . . . . 57

5.5 Simulation Results for the Second Objective Function . . . . . 58

5.6 Simulation Results for the Third Objective Function . . . . . 58

5.7 Simulation Results for the Fourth Objective Function . . . . . 59

5.8 Simulation Results for the Fifth Objective Function . . . . . . 59

5.9 Normalised Solutions Graph (Each colour of pentagon shows a
solution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.10 The Best Normalised Solutions to the First Objective Function 65

5.11 The Best Normalised Solutions to the Second and Third Ob-
jective Functions . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.12 The Best Normalised Solutions to the Fourth and Fifth Objec-
tive Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.13 The Most Balanced Solutions to Five Objectives . . . . . . . . 68

xii



5.14 Computational Times of Simulation Experiments . . . . . . . 69

6.1 General Simulation Network . . . . . . . . . . . . . . . . . . . 79

6.2 Sub-network 2 of Simulation . . . . . . . . . . . . . . . . . . . 80

6.3 Sub-network 1 of Sub-network 2 of Simulation . . . . . . . . . 81

6.4 Sub-network 2 of Sub-network 2 of Simulation . . . . . . . . . 81

6.5 Sub-network 3 of Simulation . . . . . . . . . . . . . . . . . . . 82

6.6 Sub-network 1 of Sub-network 3 of Simulation . . . . . . . . . 82

6.7 Sub-network 2 of Sub-network 3 of Simulation . . . . . . . . . 83

6.8 Sub-network 4 of Simulation . . . . . . . . . . . . . . . . . . . 83

6.9 Sub-network 1 of Sub-network 4 of Simulation . . . . . . . . . 84

6.10 Sub-network 2 of Sub-network 4 of Simulation . . . . . . . . . 84

6.11 Sub-network 5 of Simulation . . . . . . . . . . . . . . . . . . . 85

6.12 Sub-network 1 of Sub-network 5 of Simulation . . . . . . . . . 85

6.13 Sub-network 2 of Sub-network 5 of Simulation . . . . . . . . . 86

6.14 Sub-network 6 of Simulation . . . . . . . . . . . . . . . . . . . 86

6.15 Sub-network 1 of Sub-network 6 of Simulation . . . . . . . . . 87

6.16 Sub-network 2 of Sub-network 6 of Simulation . . . . . . . . . 87

6.17 Fitness Values for the Genetic Algorithm (Population:50, Gen-
erations:1000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.18 Fitness Values for the Genetic Algorithm (Population:100, Gen-
erations:1000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.19 Fitness Values for the Genetic Algorithm (Population:150, Gen-
erations:1000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.20 Fitness Values for the Genetic Algorithm (Population:200, Gen-
erations:1000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.21 Fitness Values for the Genetic Algorithm (Population:300, Gen-
erations:1000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.22 Fitness Values for the Genetic Algorithm (Crossover Rate: 0.5) 113

6.23 Fitness Values for the Genetic Algorithm (Crossover Rate: 0.6) 113

xiii



6.24 Fitness Values for the Genetic Algorithm (Crossover Rate: 0.7) 113

6.25 Fitness Values for the Genetic Algorithm (Crossover Rate: 0.8) 113

6.26 Fitness Values for the Genetic Algorithm (Crossover Rate: 0.9) 114

6.27 Fitness Values for the Genetic Algorithm (Mutation Rate: 0.005)114

6.28 Fitness Values for the Genetic Algorithm (Mutation Rate: 0.01) 114

6.29 Fitness Values for the Genetic Algorithm (Mutation Rate: 0.02) 115

6.30 Fitness Values for the Genetic Algorithm (Mutation Rate: 0.05) 115

6.31 Fitness Values for the Genetic Algorithm (Mutation Rate: 0.07) 115

6.32 Fitness Values for the Genetic Algorithm (Mutation Rate: 0.1) 115

6.33 Elite Normalised Solutions . . . . . . . . . . . . . . . . . . . . 117

6.34 The Best Solutions for the First Objective Function . . . . . . 117

6.35 The Best Solutions for the Second Objective Function . . . . . 118

6.36 The Best Solutions for the Third Objective Function . . . . . 118

6.37 The Best Solutions for the Fourth Objective Function . . . . . 119

6.38 The Most Balanced Solutions for All Objective Functions . . . 119

6.39 Computational Times of Simulation Experiments . . . . . . . 121

xiv



Abstract

This thesis proposes a combination framework to integrate simulation and multi-

objective optimisation (MOO) for container terminal equipment optimisation. It

addresses how the strengths of simulation and multi-objective optimisation can be

integrated to find high quality solutions for multiple objectives with low computation-

al cost. Three structures for the combination framework are proposed respectively:

pre-MOO structure, integrated MOO structure and post-MOO structure. The appli-

cations of the three structures under the combination framework for following three

problems are discussed in the thesis: internal truck quantity optimisation based on

post-MOO structure, multiple equipment quantity optimisation based on post-MOO

structure and multiple equipment quantity optimisation based on integrated MOO

structure.

The truck quantity optimisation problem in modern container terminals, which

aims to improve operational efficiency and reduce cost, is discussed in the thesis. This

is a multi-objective problem because multiple factors need to be considered in order to

guarantee owner’s service quality and profitability. A simulation model and a multi-

objective optimisation model are built under the combination framework. According

to the combination framework and structures proposed, the “Data Processing” is

defined as data fitting which generates a set of fitting coefficients and base functions.

Solutions provide a series of choices for container terminal operators.

As a further study based on the truck quantity optimisation problem, a multiple

equipment (including trucks) quantity optimisation problem is raised. The problem

is discussed and a series of optimisation models based on post-MOO structure for

multiple equipment deployment are built for the container terminal daily decision

making in the consideration of multiple variables and objectives. Simulation and

multi-objective optimisation are combined to build integrated optimisation models

under the combination framework. The problem is solved by a genetic algorithm.

Based on the multiple equipment quantity optimisation problem raised above, an-

other combination structure, namely MOO leading integrated structure, is employed

xv



to solve the same problem in order to find good enough solutions with less computa-

tional cost. The “Data Processing” in the combination framework is defined as data

fitting and the “Searching Techniques” is defined as dynamic MOO search. The data

fitting generates a set of fitting coefficients and base functions and the dynamic MOO

search is a technique to explore the next searching positions based on the Pareto so-

lutions. The results demonstrate that the integrated MOO structure finds better or

close to best solutions comparing to the post-MOO structure and the computational

cost is likely to be less.
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Chapter 1

Introduction

The integration of the global economy and development of transportation have placed

sea ports, which are playing an important role in the global economy, at the centre

of marine transportation networks and window of international trading. The market

requirement upon marine container transportation strongly relates to the global e-

conomy and trade. If the world economy (GDP) increases by 1%, the world marine

transportation volumes will correspondingly increase by 1.6%[85]. Despite more chal-

lenging economic circumstances in some regions, the investment in the container ter-

minal sector has been rising in recent years and container terminals are being opened

up in major trading countries over the world. The rise of merchandise trade volume in

recent decades leads to more cross-border interdependence in economies, merchandise

circulation, capital and applications in new technology. The fast globalisation of the

world’s economies in recent years is largely based on the rapid development of sci-

ence and technologies, has resulted from the environment in which market economic

system has been fast spreading throughout the world, and has developed on the basis

of increasing cross-border division of labour that has been penetrating down to the

level of production chains within enterprises of different countries [38].

However container terminals are facing challenges at the same time. Firstly, the

tendency of macro scale and professionalisation of container ships and federalisation

of shipping lines enhance the bargaining position of large lines in the market and,

as being clients of container terminals, raise terminal operational standards. Sec-

ondly, the continuously increasing number of container terminals also leads to fierce

local competition. Low cost and fast cargo circulation hence become determinants to

maintain core competitiveness. Thirdly, the appearance of new transportation modes,

such as seamless transportation, door to door transportation, product distribution,

etc., has centralised container operations to hub sea ports, which directly intensifies

the shortage of their equipment and land resources.

1
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Container transportation also benefitted from the economic growth. Over the past

decades, the size of container ships has continually increased, with many modern ships

carrying more than 10,000 TEU’s (Twenty-feet equivalent unit containers), which

means that large amounts of containers have to be loaded, unloaded and transhipped

in a short time span in container terminals. It seems that container ships are very

possible to get much bigger in the future. On the other hand, limited land and

equipment resources in container terminals have led to crowding of the yard which is

filled up with containers, trucks, and cranes. Bottlenecks in loading and discharging

operations in busy container terminals may occur at operations such as picking up

and grounding containers from and to the trucks, loading and unloading containers

between the berths and container ships, and the yard crane handling cargos at peak

hours. Acquisition of new devices may help but on the other hand will increase

the terminal budget. Even if the budget is adequate, the decision of the numbers of

different types of equipment to be purchased needs to be made by management teams.

The objectives that may be involved in their decision are to improve operational

efficiency and reduce congestion and cost.

Therefore, a problem of how to deploy mechanical equipment in container termi-

nals to achieve operational efficiency related objectives and terminal operational cost

related objectives is raised.

This thesis mainly addresses the problem above and proposes a framework to

combine simulation and multi-objective optimisation to solve the problem. The com-

bination framework proposed defines the elements involved and the process of data

streams amongst elements. Two methods are employed in the combination framework

(simulation and multi-objective optimisation) and the integration processes of the t-

wo methods and parameters are discussed respectively. Three combination structures

are therefore proposed for the combination framework to deal with different problems

according to the problem characters and features. The structures are pre-MOO, in-

tegrated MOO and post-MOO. The pre-MOO structure is suitable for the problems

which have a large number of available data and need to build complicated simula-

tion models. The structure normally provides good quality parameters for simulation

models from the multi-objective optimisation to reduce computational cost. The inte-

grated MOO structure is usually applied in the problems which have high requirement
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upon abilities of quick search. The post-MOO structure can be used for the multiple

objective problems which do not have a great number of available data. The integrat-

ed MOO and post-MOO structures are used to solve a truck quantity optimisation

problem and an equipment quantity optimisation problem in this thesis.

A truck quantity optimisation problem is raised in this thesis to assist container

terminal management teams to find the best number of internal truck in terminals.

The post-MOO structure is used to combine simulation and multi-objective opti-

misation to solve the problem. The conflicting objectives considered by container

terminal decision makers include efficiency requirements by clients, high utilisation

rate of trucks, avoidance of congestion in the yard, low fuel consumption goals and

low labour demand goals. Discrete-event simulation is employed and combined with

multi-objective optimisation to test a realistic set of scenarios for the model and

provide a good representation of the flow of goods through a container terminal in

the combination framework. Finally, solutions are discussed in the context of the

Southampton Container Terminal in United Kingdom.

As a further study based on truck quantity optimisation, multiple types of e-

quipment are taken into consideration in models. Because container terminals are

equipped by various types of mechanical devices, so it is more helpful to terminal op-

erators if the best combination of numbers of different types of equipment is provided

to support their daily decision making. Models are developed based on post-MOO

combination structure to find the best trade-off solutions to optimise each objective.

A discrete-event simulation model is proposed based on terminal daily operations in

order to present the general cargo flows in container terminals. Multi-objective opti-

misation is employed to solve multiple objectives involved in decision making and seek

for trade-off solutions. Four objectives related to operational efficiency and cost are

discussed respectively and the same number of objective functions are built. A genet-

ic algorithm is employed to solve the multi-objective model and the best combination

of numbers of different types of equipment can be obtained from solutions. Finally,

solutions are discussed in the context of the Southampton Container Terminal.

Based on the models for the multiple equipment quantity optimisation problem,

another combination structure, namely integrated MOO, is employed to solve the

problem which aims to get better solutions or shorten computational time comparing
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to the post-MOO structure.

This thesis is organised as follows. The general introduction to the problem and

main method is given out in chapter 1. Then the background information related to

container ISO standards, information of British, European and global major contain-

er ports are addressed in chapter 2. Chapter 3 gives a review of previous papers in

container terminal operations, simulation, multi-objective optimisation, data fitting,

genetic algorithms and the combination of simulation and multi-objective optimisa-

tion. A description of combination of simulation and multi-objective optimisation

is stated in chapter 4. Its applications on three container terminal equipment op-

timisation problems are modelled and optimised afterwards in chapters 5, 6 and 7.

Conclusions are given out in chapter 8. Finally, appendices give source codes of the

algorithms used in the thesis.



Chapter 2

Background Information

2.1 Introduction

This thesis proposes a simulation and multi-objective optimisation framework and the

combination framework is applied to solve equipment quantity optimisation problems

in container terminals. The background information about container industry is given

in this chapter for better understanding the modelling processes.

In general terms, container terminals can be described as open systems of material

flow with two external interfaces which are the quayside with loading and unloading

of ships, and the landside where containers are loaded and unloaded on/off trucks

and trains; containers are stored in blocks thus facilitating the decoupling of quayside

and landside operation [125]. A typical container terminal normally has berths, con-

tainer yard, gatehouses and the control centre. To be detailed, berths are the areas

to moor container ships in terminals. The container yard is an area to temporarily

store containers. Gatehouses are the terminal gates to load containers onto and (or)

discharge containers from external trucks. The control centre is responsible for ter-

minal operations and delivers instructions. In modern container terminals, computer

information systems are widely used to monitor and manage daily operations. The

terminal control system in this thesis denotes the computer information systems in

container terminals.

This chapter introduces the distribution of the major container ports in the world,

Europe and United Kingdom. The equipment in container terminals is also addressed,

followed by a section introducing ISO container standards.

2.2 The Major Container Ports in the World and Europe

There have been big changes in the world in international trading, economic glob-

alisation and technology development since the 1960’s. As the global economy has

5
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Figure 2.1: World Trade Value from 1960 to 2010 [133]

grown, the world merchandise trade volume has enjoyed swift growth in the past four

decades. As shown in figure (2.1), it has experienced two main increase stages: 1970-

2002 and 2002-2008. The value of exports was less than 1 trillion U.S. dollars in 1970

and upsurged to over 15 trillion U.S. dollars in 2008. The merchandise trade volume

also contributed to Gross Domestic Product (GDP) in the same period. The world

GDP has been rising in 1968-1974 and 1993-2008. The world manufacture centre has

transferred to Asian countries after the 1970’s because of competitive advantages in

cheap labour force and raw materials. It resulted in strong performance in exporta-

tion in the Far East. Table 2.1 demonstrates the top 10 container ports in the world

in 2010 sorted by container throughput. Asian container ports have taken 9 of 10

positions in above ranking, while, seeing from countries, China has 6 container ports

being the world’s top 10. The port of Rotterdam is the only one from Europe which

is the 10th. Table 2.2 shows more detailed data of European container ports. The

top 15 container ports in Europe are mainly from traditional industry and marine

transportation countries. As being the world’s top 10, Rotterdam is on the top in

Europe, followed by Hamburg and Antwerp from Germany and Belgium respectively.
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Table 2.1: Top 10 Container Ports in the World [114]
Rank Port Country 2010 (’000 TEUs)

1 Shanghai China 29069
2 Singapore Singapore 28431
3 Hong Kong China 23699
4 Shenzhen China 22510
5 Busan Korea 14194
6 Ningbo-Zhoushan China 13144
7 Guangzhou China 12550
8 Qingdao China 12012
9 Dubai United Arab Emirates 11600
10 Rotterdam Netherlands 11100

Above three container ports have more than 8 million TEU container volumes, while

Rotterdam has over 10 million. Seeing from the number of ports, Spain has three

container ports on the top 15, while Germany, Belgium, United Kingdom and Italy

have two.

Table 2.2: Top 15 European Container Port in 2011[105]
Rank Port Country 2011 (’000 TEUs)

1 Rotterdam Netherlands 11877
2 Hamburg Germany 9014
3 Antwerp Belgium 8664
4 Bremen Germany 5915
5 Valencia Spain 4327
6 Algeciras Spain 3603
7 Felixstowe United Kingdom 3265
8 Marsaxlokk Malta 2360
9 Gioia Tauro Italy 2338
10 Le Havre France 2215
11 Zeebrugge Belgium 2207
12 Barcelona Spain 2014
13 Genoa Italy 1847
14 Piraeus Greece 1680
15 Southampton United Kingdom 1639

2.3 The Major Container Ports in United Kingdom

There are five major container ports in United Kingdom: Felixstowe, Southampton,

Tilbury, Liverpool and Thamesport. As shown in figure (2.2), Felixstowe is the largest
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Figure 2.2: United Kingdom Container Port Throughput in 2007 [139]

container port in United Kingdom, while Southampton is the second largest. Seeing

from the graph, port of Felixstowe has a substantial lead in container throughput.

Port of Southampton has much more volume than the other three ports which are

quite close to each other.

2.4 The Major Container Terminal Equipment

Steenken et al. [125] present the types of container terminal equipment: the types of

cranes, horizontal transport means and assisting systems. The mechanical equipment

discussed in this thesis is quay crane, yard crane and truck.

Firstly, a quay crane is a dockside crane which operates alongside terminal berths

loading containers to and discharge containers from container ships. Due to the large

size of quay crane, it normally moves on pre-installed tracks or routes. Hence, quay

cranes operating for the same container ship are not able to bypass each other. The

productivity of quay cranes is usually an important index for shipping lines because

quay crane efficiency mainly determines the berthing time of container ships.

Secondly, a yard crane is a dedicated mechanical device to lift containers in the

container terminal yard. A large-scale yard may be divided into a number of large

areas called zones. In each zone, containers are stacked side by side and one on top of
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the other to form rectangular shaped heaps called blocks [147]. A typical block may

have 6 lanes of containers placed side by side, 5 containers in height for each lane and

usually more than 20 containers in length, depending on the geographical shape of

the storage yard [147]. The main tasks of yard cranes are to move containers amongst

container blocks in the terminal yard, quay crane buffer areas, and gatehouse buffer

areas. There are various types of yard cranes such as straddle carrier, sprinter, reach

stacker and empty container handler. Straddle carriers lift containers with spreaders

and are able to stack containers up to 4 to 6 high. One of the benefits of straddle car-

riers is that they can work in container blocks because of their structure and height.

Another benefit is the width of straddle carriers which stretches over several rows or

columns of containers to guarantee its flexibility. Sprinters have a similar structure

with straddle carriers except that sprinter is only of one container width. A reach

stacker is a vehicle to lift, carry and pile up containers in container blocks in various

rows and columns. Reach stackers have more flexibility in movement comparing to

straddle carriers and sprinters which only move in container blocks. Then, empty

container handlers are dedicated cranes to handle empty containers. In container ter-

minals, empty containers are usually stacked up higher than laden containers because

empty containers are lighter than laden containers in weight. Therefore, an empty

container handler is a mechanical device to lift less weight but has a longer arm to

pile up containers up to 8 high.

Thirdly, trucks are vehicles to transport containers. The trucks work in terminals

called internal trucks and those trucks carry containers from and (or) to terminals

are called external trucks. The deployment of internal trucks in container terminals

is discussed in this thesis.

2.5 Container ISO Standards

Since the appearance of container transportation, there have been various sizes of

containers. Many inconveniences are caused therefrom in transportation across dif-

ferent areas and between companies. For instance, container operation equipment

is unable to operate containers in different standards; difficulties in transportation;

compatibility problems in container storage. The International Organisation for S-

tandardisation have therefore passed a series of standards for container industry, such
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Table 2.3: ISO Container Standard Sizes
Size Length Width Height

Dimensions 6058mm 12192mm 13716mm 2438mm 2591mm 2896mm
(20’) (40’) (45’) (8’) (8’6”) (9’6”)

Minimum
Internal 5867mm 11998mm 13532mm 2330mm 2350mm 2655mm

Dimensions

as ISO 668, ISO 830, ISO 1496, ISO 2308 [25]. Container transportation therefore

has manifested its huge advantages in cross-ocean transportation and multi-modal

transportation. The standardised dimensions and internal dimensions of containers

according to ISO 668 are given in table 2.3 [45]. There might be other sizes of contain-

ers appear in container terminals but only 20, 40 and 45 inches standard containers

are under consideration in this thesis because the other sizes of container operations

have very little proportion of container throughput.

2.6 Summary

This chapter gives information in container transportation industry. Container car-

gos are mainly carried to hub container ports and distribute to other smaller ports.

The major ports in the world and Europe are very busy therefore they need to im-

prove their operations and management to keep pace with the growth of container

throughput. Having been experiencing decades’ development, container transporta-

tion industry nowadays is highly standardised in structures. The loading and unload-

ing equipment and transportation tools are also highly standardised. Therefore, the

problems of equipment optimisation in container terminals are raised in this back-

ground.



Chapter 3

Literature Review

3.1 Introduction

Container ports have attracted considerable academic attention in recent decades.

Murty et al. [102] give a very detailed introduction to container ports considering

multiple objectives which may be involved in decision making. Yard operations, the

work flows of outbound and inbound containers, quay crane and yard crane opera-

tions, key performance measures of a container terminal, the optimal deployment of

yard cranes, the optimal allocation of quay cranes are discussed in the paper.

Comprehensive literature reviews of container terminal operations are given by Vis

and de Koster[135], Steenken et al.[125], Maloni and Jackson[91], Vacca et al.[134]

and Stahlbock and Voβ[124]. Vis and de Koster[135] present an overview of the

processes of containers being transhipped within container terminals. Steenken et

al.[125] classify the main logistical processes and operations in container terminals

and present a survey of methodologies for container terminal optimisation. Maloni

and Jackson[91] review the existing container network capacity literature and discuss

the factors impacting the capacity of the container terminals. Vacca et al.[134] present

the trends in the literature of container terminal optimisation, which are specialisation

on a single problem, combination of problems and integration, and simulation and

queuing theory for complete terminals. Additionally, the ports of Antwerp in Belgium

and Gioia Tauro in Italy are studied as cases in their paper.

The sections below will discuss the literature review in following areas: simulation

for container terminal optimisation, the applications of multi-objective optimisation

in container terminals, data fitting, genetic algorithms, and the combination of sim-

ulation and multi-objective optimisation.

11
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3.2 Literature Review in Combination of Simulation and

Multi-objective Optimisation

This thesis employs a method of combining simulation and multi-objective optimi-

sation to solve the container terminal equipment optimisation problem. Willis and

Jones [138] propose a SimMOp framework, which is a simulation based technique to

reduce the simulation replications and guarantee the solution goodness, for multi-

objective simulation optimisation. It combines a search algorithm with an embedded

multi-objective optimisation technique, and database technologies to generate good

quality solutions. An inventory case study is given in the paper. Jones and Tamiz [60]

(pages 126-128) address three ways to combine goal programming and simulation.

There are some papers developing simulation optimisation to solve multi-objective

problems. Asteris et al.[5] propose a multi-objective discrete-event model constructed

within Micro Saint Sharp simulation package to examine the flow of UK-bound ship-

ping traffic through the Western continental seaboard system. Baesler and Sepulveda

[6] propose a simulation model for cancer treatment centre facility, which is created

and integrated to a multi-objective optimisation heuristic with the purpose of find-

ing the best combination of control variables that optimise the system performance.

Liu et al.[89] develop simulation models for an automated guided vehicle system in

container terminals and employ the method multi-attribute decision making(MADM)

to assess the performance of the terminals. Almeder et al. [1] present an approach

to combine simulation models and optimisation models to support the operational

decisions for supply chain networks. Lin and Kwok [88] apply multi-objective meta-

heuristics for vehicle routing problems on real and simulated data. Yalcinkaya and

Bayhan [140] give an example of optimisation of simulation parameters. They pro-

pose a model and solution approach based on discrete-event simulation and response

surface methodology to optimise the average passenger travel time for a metro line.

The main parameters for this model are rate of carriage fullness and headways with

outputs including average travel time. The Derringer-Suich multi-response optimisa-

tion procedure [31] is used to determine the rate of carriage fullness to minimise the

average travel time.

General simulation optimisation problems are also discussed by a number of paper-

s. Legato et al. [79] propose a simulation based optimisation framework for container
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loading and discharging operations in container terminals to find the optimal assign-

ment and optimal sequencing (schedule) of bays (jobs) processed by a fixed number

of available cranes (machines). In the combination framework, the QCSP (quay crane

scheduling problem) configuration is searched by a search process by simulated an-

nealing and the outcome of container loading/discharging plans are evaluated by an

evaluation process by simulation. Zeng and Yang [146] also present a framework of

simulation optimisation. A simulation optimisation model for scheduling loading op-

erations in container terminals is developed to find good container loading sequences

which are improved by a genetic algorithm through an evaluation process by simula-

tion model to evaluate objective function of a given scheduling scheme. Meanwhile, a

surrogate model based on an neural network is designed to predict the objective func-

tion and filter out potentially poor solutions, thus to decrease the times of running

the simulation model. The results show that the simulation optimisation method can

solve the scheduling problem of container terminals efficiently.

Some similar studies outside the field of container terminal management are given

as follows. Oddoye et al.[107] present a detailed simulation model for healthcare

planning in a medical assessment unit (MAU) of a general hospital to test different

scenarios to eliminate bottlenecks in order to achieve the optimal clinical workflow.

Their paper proposes a new model for healthcare planning in a medical assessment

unit and this method combines simulation and weighted goal programming (GP) for

efficient resource planning. Results from the simulation are input into a GP model

with different weights applied to positive deviations from five objectives based on

management preferences for trade-off analysis of the results. Results from different

experiments performed in GP are shown in their paper. Sensitivity analysis on weights

is conducted to analyse the effects of attaching different weights to the deviations.

3.3 Literature Review in Simulation

A number of papers address the discrete-event simulation method for container termi-

nal optimisation. Simulation in management decision making is defined as simply the

use of a computer model to ‘mimic’ the behaviour of a complicated system and there-

by gain insight into the performance of that system under a variety of circumstances

[131]. Jahangirian et al.[56] give a literature review in simulation in manufacturing
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and business from 1997 to 2006. Angeloudis and Bell [4] provide a review of container

terminal simulation models.

There are a number of papers which apply simulation in the container industry.

Yun and Choi [145], Henesey et al.[49], Liu et al.[89], Li et al.[80], Petering et al.

[110], Petering and Murty [111] give papers to this topic. Yun and Choi [145] propose

an objective oriented simulation model for container terminals by using computer

programming language SIMPLE++ and the model is tested by setting parameters and

inputting data from the real terminal of Pusan east in South Korea. Henesey et al.[49]

address a container terminal berth allocation problem and stacking policy. A method

of Multi Agent Based Simulation for a container terminal is proposed which aids in

the evaluation of operational policies for transhipment of containers. A multi-agent

based simulator called SimPort is developed to compare the results of two berthing

and stacking policies which are Berth Closest To the Stack (BCTS) policy and Overall

Time Shortening (OTS) policy respectively. Liu et al.[89] study the automated guided

vehicle system in container terminals and develop simulation models to demonstrate

the impact of different terminal yard layouts on the terminal performance. The

real operational data from the Port of Rotterdam in Netherlands is collected for the

simulation scenario parameters. The models are run by using different numbers of

vehicles and the results are compared based on different layouts and operations. Vis

et al.[136] develop an integer linear programming model to determine the minimum

number of vehicle requirements under time-window constraints. A simulation model

is built for a container terminal to study the performance of the analytical model and

validate the estimates of the vehicle fleet size by the analytical model. The analytical

model provides a good estimate of the number of vehicles required. The minimum

number of simulation replications is also discussed in their paper. Li et al.[80] build a

simulation model for a container terminal logistics system to validate the rationality

and creditability of the mathematical model proposed in their paper.

3.4 Literature Review in Multi-objective Optimisation

The applications of multi-objective optimisation to container terminal problems are

widely studied by researchers. Gass and Saaty [39] provide the first approach applica-

ble to multi-objective programming in 1955 [24]. Geoffrion and Dyer [40] propose an
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interactive mathematical programming approach to multi-criterion optimisation and

give an application to the operation problem of an academic department. Sawaragi

et al. [116] and Steuer [126] address the theories of multi-objective optimisation.

Miettinen [97] gives the theories and methods of nonlinear multi-objective optimisa-

tion. Multi-objective programming is a method to solve problems with more than

one objective which are conflicting. It is, therefore, applicable to decision making

in container terminals as the decisions in a modern container terminal are usually

made taking account of multiple objectives [24]. Vis and de Koster [135] address an

overview of the processes by which containers are transhipped within container ter-

minals and present the introduction of a multi-objective approach related to machine

scheduling problems. Marler and Arora [94] give a survey of continuous nonlinear

multi-objective optimisation for engineering. Their paper addresses the foundation

of fundamental concepts, methods that involve a priori articulation of preferences,

methods with a posteriori articulation of preferences, methods that require no artic-

ulation of preferences and genetic global algorithms. Ehrgott [33] gives theories of

multi-criteria optimisation. Mula et al.[100] give a review on mathematical program-

ming models for supply chain production and transport planning, and conclude the

papers using multi-objective programming for planning.

The papers related to multi-objective optimisation in truck optimisation, quay

crane optimisation and yard crane optimisation are given in the following sections.

3.4.1 Quay Crane Optimisation

Some papers address multiple objectives involved in quay crane optimisation. The

models given by Imai et al. [55] involve the considerations of two objectives. Their

paper addresses a simultaneous berth and quay crane allocation problem at a multi-

user container terminal. A model for berth and quay crane allocation is built based

on a model for berth allocation problem to minimise the total service time and the

constraints of the quay crane allocation. Detailed solution procedures are given for

the genetic algorithm-based heuristic, which iterates the procedure of determination

of berth scheduling and quay crane scheduling at the same time, to solve the problem.

Liang et al. [84] discuss the number of quay cranes employed in container terminals.

Their paper addresses the problem of determining the berthing position, duration of



16

berthing of a ship and the number of quay cranes assigned to each ship. A model

is built in order to minimise the sum of the handling time, waiting time and the

delay time for every ship. A hybrid approach which combines the genetic algorithm

with heuristic is proposed to dynamically search the near Pareto optimal solutions.

The near Pareto optimal solutions are the solutions close to the Pareto frontier and

have good approximation of the Pareto optima [54]. Computational experiments

show that the proposed approaches are applicable to solve this difficult but essential

terminal operation problem. Chang et al. [18] propose a multi-objective model which

aims to minimise the moves of quay cranes, the time delay of ship departures, and

the energy consumption during quay crane assignment. A rule-based joint berth

allocation and quay crane assignments model has been developed based on a rolling-

horizon approach. The results show that the ship departure times are earlier and the

number of quay cranes employed in container terminals is less.

The mixed integer programming is widely used to model the quay crane problems,

such as Lee et al. [75], Zhang and Kim [148] and Kim and Park [67]. Lee et al.

[75] propose models to integrate quay crane and yard truck scheduling for container

terminals and formulate the problem as a two-stage flexible flow shop with sequence

dependent setup time and block in a mixed integer programme. The objective is

to minimise the makespan of dispatching the containers allocated to quay cranes

subject to a series of constraints related to quay crane and yard crane operations.

The results show that the makespan of the proposed strategy that integrates quay

crane and yard truck scheduling into a whole can be reduced by a large percentage,

ranging from 23% to 115%, compared with the benchmark strategy. Kim and Park

[67] discusses a quay crane scheduling problem, a mixed-integer programming model

is given to find the best sequence to load and discharge cargos in order to minimise

the makespan of operations. A branch and bound method and a heuristic search

algorithm (greedy randomised adaptive search procedure (GRASP) [36]) are proposed

to find solutions. The results show that the final objective values derived by GRASP

did not exceed those derived by the branch and bound method by more than 10%.

But GRASP reduced the computational times to 3% on average when the number

of quay cranes and the number of tasks exceeded 3 and 20, respectively. Zhang

and Kim [148] address quay crane scheduling problems and propose a mixed integer
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programming model to minimise the number of operation cycles of a quay crane for

discharging and loading containers in a ship-bay (i.e. to reduce the number of dual

cycle operations). The problem is broken down into two main phases, i.e. intra-

stage optimisation (sequencing all stacks in one hatch), and inter-stage optimisation

(sequencing all hatches). A hybrid heuristic approach which combines an effective

gap-based local search technique with reformulated heuristic approaches is proposed

to find the solutions. Kim and Park [67] propose a mixed-integer programming model

for the quay crane scheduling problem subject to various constraints related to the

quay crane operations. A branch and bound (B & B) method is used to obtain the

optimal solutions. The greedy randomised adaptive search procedure (GRASP) is also

used to search the near Pareto solutions to reduce computational time. According to

the numerical experiment, objective values derived by GRASP did not exceed those

derived by the B & B method by more than 10% when the parameters of GRASP

have values within specified ranges. GRASP reduced the computational times to 3%

on average when the number of quay cranes and the number of tasks exceeded 3 and

20, respectively.

Heuristic methods are widely used to solve the quay crane scheduling problems.

Kaveshgar et al. [63], Yang and Wang [141], Bierwirth and Meisel [10], Le et al.

[72], Yang et al. [142], Jin and Li [59], Golias et al. [42] and Lee et al. [75] give

papers in applying heuristics, most of them use genetic algorithms, in quay crane

scheduling problems. Jin and Li [59] present a quay crane deployment problem in

container terminals that how to assign quay cranes to container ships and schedule the

quay cranes for the tasks of each container ship simultaneously. A non-linear model

is built to minimise the total turnaround time of all the container vessels subject to

constraints such as the non-crossing of quay cranes and the serving relation constraints

of pairs of tasks. A genetic algorithm is proposed to solve the problem. The results

for a single ship case are compared with literature and the results for multiple ships

are compared with the single ship case by implementing in simulation.

3.4.2 Yard Crane Optimisation

The optimisation for yard operations is widely discussed. Lee and Chao [78], Kim

and Bae [64], Bortfeldt and Forster [14], Exposito-Izquierdo et al. [35] and Hirashima
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[50] address how to improve the pre-marshalling operations in container terminals.

There are a certain portion of papers discussing yard crane scheduling problems,

building models to minimise operational time or cost and then solve the problems by

using heuristic methods due to the large size and complexity of the problems. The

papers are given by Li et al. [83], He et al. [48], Li et al. [82], Bish [11], He et al.

[47], Chang et al. [19], Huang et al. [53] and Javanshir and Ganji [58]. He et al. [48]

develop a dynamic scheduling model using objective programming for yard cranes

based on rolling-horizon approach. Two objectives are considered in their paper:

minimising the total delayed workload among all blocks at each planning horizon and

minimising the total times that yard cranes move from one to another block at each

planning horizon. A multi-objective function based on the two objectives is proposed

subject to a series of constraints. A hybrid algorithm employs heuristic rules and

a parallel genetic algorithm is proposed to solve the problem. The parameters for

the parallel genetic algorithm are selected by several groups of tests. The parameter

settings for this problem are shown as follows. The population and sub-population

size are set as 100 and 50, respectively. The crossover probability is set as 0.8. The

mutation probability is set as 0.05. The maximum elapsed generation is set as 40.

The percentage of replacement is set as 0.25. The migration frequency and number

are set as 3 and 5, respectively. Bish [11] discusses a multiple-crane-constrained

vehicle scheduling and location problem. A model to analyse the effectiveness of

vehicle pooling policies, which allow a set of vehicles to be shared between ships.

The problem is NP-hard therefore a simple heuristic called the the transshipment

problem based list scheduling heuristic is proposed. Li et al. [83] propose models for

yard crane scheduling to decide if container move m is assigned to the yard crane

c during time interval t. Heuristics and a rolling-horizon algorithm are employed to

solve the problem. The results from three algorithms DMIP1, DMIP2 and DMIP3

show that the model size is greatly reduced systematically and the solution time

is shorted from days to seconds. The algorithm yields higher solution quality in a

very short time compared to other heuristics used in the literature. Li et al. [82]

integrate a continuous time model with heuristics and rolling-horizon algorithm for

yard crane scheduling. The model requires far fewer integer variables than previous

work. The results show that it significantly improves the solution quality compared
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to the existing discrete time models and other heuristics found in the literature. The

model size is reduced significantly and the solution time is shorted from days to

seconds.

The mixed-integer programming is also used for yard crane scheduling problems.

Cao et al. [16] propose a mixed-integer programming model for yard crane scheduling

to minimise the makespan of loading all outbound containers in the planning horizon.

The problem is NP-hard so it is unlikely to be solved by exact solution algorithms.

Therefore, the general Benders’ cut-based (GBC-based) method and the combinato-

rial Benders’ cut-based (CBC-based) method are proposed to solve the problem. In

average, the computational time of CPLEX method is about 1.57 times longer than

the time required when the GBC-based method is used to solve the problem.

Kim and Kim [65] have a discussion about the optimal amount of storage space

and transfer cranes for import containers. The paper develops a model to minimise

the cost and optimise the amount of storage space and number of transfer cranes for

imported containers in the yard. The space cost, transfer crane cost and outside truck

cost are considered in the model. The results show that the optimal space amount

decreases as the space cost increases, but the optimal number of transfer cranes is

insensitive to the change of the space cost; both the optimal number of transfer cranes

and the optimal space amount increase as the cost of outside trucks increases.

3.4.3 Truck Optimisation

A literature review on multi-objective vehicle routing problems is given by Joze-

fowiez et al.[62]. Besides, Tan et al.[129] [128], Muller [101] and Lee et al.[76] ad-

dress their models minimising the number of vehicles. Tan et al.[129] study a truck-

trailer-separated situation in container terminals and depots, and use a hybrid multi-

objective evolutionary algorithm to solve truck and trailer vehicle routing problems.

20 and 40 TEU trailers, and, importation and exportation situations, are taken into

consideration respectively in modelling with consideration of time slots. The number

of trailers available for pick-up in a particular time slot is equal to the number of trail-

ers in the previous time slot, plus the trailers returned in the previous time slot and

minus those picked up in the previous time slot. The models determine the number

of trailer exchange points (TEPs) and minimise the total number of trailers at each
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TEP. Tan et al.[128] discuss a vehicle routing problem from a depot to geographically

dispersed customers with multiple objectives: minimum travel distance, driver remu-

neration, and number of vehicles, which subject to a number of constraints such as

time windows and vehicle capacity. The modelling of vehicle transportation cost and

vehicle driver remuneration is discussed in their paper. Muller [101] discusses a vehicle

routing problem with time windows to minimise the number of vehicles and travelling

distance. Solutions are obtained in two stages: firstly, Solomon’s route construction

heuristic I1 [119] is applied to obtain an initial (current) solution and then, route

improvement heuristics, Or-opt exchange and 2-opt procedure are repeatedly applied

to the first stage solutions to decrease the number of used vehicles and to obtain

savings in distance. Lee et al.[76] address job scheduling for truck optimisation in the

container terminal environment and present a multi-objective optimisation model to

minimise the number of trucks and cost of early arrivals or delays. A case study based

on a Chicago transportation carrier is given in their paper. Klundert and Otten [68]

discuss utilisation rate, which presents a model for increasing the utilisation of sched-

uled road transportation activities by accepting extra loads, and study a minimising

cost model. Reducing cost problems with multiple goals are discussed by Nishimura

et al.[104], Nunkaew and Phruksaphanrat [106], Tan et al.[129] and Tzur and Drezner

[132]. Nishimura et al.[104] address the yard trailer routing problem at a maritime

container terminal, develop a new routing scheme achieving container handling cost

savings and propose a more efficient trailer assignment method ’dynamic routing’. A

heuristic method is developed and a wide variety of computational experiments are

conducted to solve the problem. The results of the experiments demonstrate that

the dynamic routing reduces travel distance and generates substantial savings in the

trailer fleet size and overall cost by 15%. Nunkaew and Phruksaphanrat [106] propose

a multi-objective programming model to improve the quality of depot transportation

service. The multi-objective programme consists of two objectives: minimising the

total transportation cost and overall independence value between customers which

means the consideration of customer to customer relationship. The latter is quanti-

fied by the pairwise comparison matrix. Lexicographic goal programming is applied

to the models by setting the total transportation cost as the first goal and the over-

all independence value as the second goal. Tan et al.[129] address a multi-objective
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model, which aims to minimise cost and the number of trucks, to solve truck routing

problems in container terminals. Tzur and Drezner [132] present a vehicle routing

problem for distribution systems with consideration of travelling cost, waiting cost

and fixed cost associated with feasible weight and volume capacity utilisation of the

vehicles, minimising the number of trips and hence the travelling cost and the sum

of the reduction (in percentages) in the slack of all tasks. Lee et al.[74] propose a

novel approach to integrate the yard truck scheduling problems and storage allocation

problems into a whole. The model proposed minimises the weighted summation of

total travel time of yard trucks and total delay of loading and discharging requests. A

hybrid insertion algorithm is employed to explore the solutions. Li et al.[80] present

a model of the container terminal yard trailer dynamic dispatching problems. The

paper compares the similarities between a container terminal logistics system and a

computer system, and utilises the hybrid flow shop with blocking based on attributes

to build a model based on Harvard architecture and multi-agent. The results of three

dispatching policies, which are semaphore mechanism, genetic algorithms and static

scheduling respectively, are compared in their paper.

3.5 Literature Review in Genetic Algorithms

In multi-objective optimisation area, evolutionary algorithms are widely applied due

to the complexity and time consuming nature of finding Pareto optimal solutions for

multiple objectives. Deb [28] and Deb et al. [29] propose the non-dominated sorting

genetic algorithm-II (NSGA-II) for multi-objective optimisation. Deb [27] addresses

the classical methods and evolutionary algorithms for the multi-objective optimisa-

tion. Jones et al.[61] address a survey of multi-objective meta-heuristics papers in

the 1990’s. Coello [23] gives a review on evolutionary multi-objective optimisation.

Branke et al. [15] provide a guidance for evolutionary multi-objective optimisation.

As an algorithm of evolutionary algorithms, the genetic algorithm is a stochastic

search technique based on the mechanism of natural selection and natural genetics

[75]. Genetic algorithms are very popular for hard to solve problems because their

strengths in quick searches for the near Pareto optimal solutions and they are also

widely used in the area of container terminal optimisation. Whitley [137] gives a

tutorial for genetic algorithms. Konak et al. [69] give a tutorial for multi-objective
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optimisation using genetic algorithms. Tamaki et al. [127] present a review on multi-

objective optimisation by genetic algorithms. Fonseca and Fleming [37] also have

a discussion on genetic algorithms for multi-objective optimisation. Hartmann [46]

uses a genetic algorithm for an optimisation model for scheduling jobs at container

terminals.

Altiparmak et al. [2], Jaszkiewicz [57], Bazzazi et al. [9], Horn et al. [51], Min

et al.[98] and Li et al. [81] give papers for genetic algorithms for multi-objective

problems. Li et al. [81] present a falling tide algorithm which is applied under a

multi-objective optimisation framework. The major advantage of their approach lies

in its ease of implementation and its use of a small number of intuitive parameters

that are easy to understand by users. A nurse rostering experiment is implemented

by the algorithm. The results show that it achieves significantly better results for

11 out of 12 test instances with less computational time. Min et al.[98] demonstrate

that genetic algorithm’s flexible solution search process that can convert constrained

problems into unconstrained problems and then cross the feasibility boundary to find

near optimal or optimal solutions in an “intelligent” (probabilistic) manner rather

than relying on random enumerations or iterations. In particular, a genetic algorithm

is chosen over other meta-heuristics procedures such as tabu search due to its ability to

generate a collection of solutions rather than a single solution at each stage. Chung

et al. [22] addresses a mixed integer programming model for the train-sequencing

problem. A hybrid genetic algorithm is employed to solve the problem. A modified

elite group technique is used in the genetic algorithm, which means that the best two

chromosomes are preserved in the next generation without changes in its genes. Also,

a fixed number of chromosomes in each group are maintained in the next generation.

The rest of the population is created anew in the next generation by using random

one-point crossover and mutation operations. Additionally, a penalty function that

includes route-distance levelling and penalty terms is used as the fitness function.

Martin [95] presents a hybrid genetic algorithm/mathematical programming heuristic

for the n-job, m-machine flowshop problems with lot streaming. The problem is solved

by a genetic algorithm. In this paper, a set of candidate sequence vectors based on

the parameters of the problem are randomly generated. They are then evaluated by

solving the mixed-integer programming model. The best candidates are selected to
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form an initial population. The parameters for genetic algorithm are set as follows.

The initial number of candidates is 50. Population size is 20. Mating pool size is set

at 10. Mutation rate is 10%. Termination occurs after 100 generations.

3.6 Summary

There are a great number of papers discussing optimisation for container terminals.

Simulation and multi-objective optimisation are widely used in this area. Continuous

multi-objective optimisation is a potentially powerful tool to solve container terminal

optimisation problems. Additionally, the method of simulation is effective in mod-

elling the flow of real world entities. The combination of multi-objective optimisation

and simulation is therefore hypothesised to be an excellent and practical tool for

decision makers of container terminals. For the papers discussing multi-objective op-

timisation, reducing cost is normally one of objectives. Besides, genetic algorithm is

a popular heuristic method to solve multi-objective models. Furthermore, combin-

ing simulation and multi-objective optimisation to integrate the strengths of the two

methods for container terminal optimisation is a new area which is worth exploring.



Chapter 4

Combination Framework

4.1 Introduction

This chapter discusses the combination of simulation and multi-objective optimi-

sation under the background of container terminal optimisation. Firstly, a general

statement is given in section 4.2 which addresses the advantages and disadvantages of

simulation and multi-objective optimisation respectively, and then presents the ben-

efits and expected effect of combining the two methods are stated. Section 4.3 states

the ways to integrate simulation and multi-objective optimisation and proposes three

combination structures. The “Data Processing” and “Searching Techniques” are both

discussed. Additionally, The “Data Processing” and “Searching Techniques” are de-

fined for the MOO leading integrated structure and post-MOO structure because they

are employed to solve problems in chapters 5, 6 and 7.

4.2 Combination Framework of Simulation and Multi-objective

Optimisation

Simulation is the imitation of the operation of a real-world process or system over

time [7]. Simulation can virtually implement ideas or decisions instead of real actions

which may save money and verify the feasibility of decisions. Simulation is able to

test different sets of systematic parameters and provide decision makers with practical

feedback which allows them to determine the optimal modes to run terminals without

occurrence of any considerable cost. It is normally used in where common models are

not applicable because of systematic complexity and uncertainty. Simulation can well

describe dynamical systems and continuously respond to new events. Additionally,

simulation generates a great number of stochastic values and provides a mass of useful

data at a very detailed level. It can be set to repeatedly execute to a certain number of

iterations or at a certain level of detail. Therefore simulation might be computational

24
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time consuming if a large number of iterations are needed.

The process of optimising systematically and simultaneously a collection of ob-

jective functions is called multi-objective optimisation or vector optimisation[94]. In

other words, the multi-objective optimisation is the process to find the Pareto optimal

solutions to satisfy more than one objective subject to a series of constraints. Most

multi-objective optimisation algorithms are able to find the approximate Pareto op-

timal solutions mathematically. In the combination framework, a great deal of data

from simulation can be processed in order to set the parameters for multi-objective

optimisation. In order to guarantee the Pareto optimality of solutions, reduce overall

computational time and ensure realistic model of work flow under random conditions,

simulation and multi-objective optimisation is therefore combined in order to achieve

better performance.

Jones and Tamiz [60] address three ways to combine goal programming and sim-

ulation which are pre-goal programming, integrated goal programming and post-goal

programming. The combination of simulation and more general multi-objective op-

timisation may also have efficient performance due to the similarities between goal

programming and some other multi-objective optimisation techniques. Applying the

above combinations to multiple objective problems, then the combinations between

multi-objective optimisation and simulation could be concluded as pre-multi-objective

optimisation, integrated multi-objective optimisation and post-multi-objective opti-

misation. This chapter proposes a combination framework to integrate simulation

and multi-objective optimisation as shown in figure (4.1). Simulation and multi-

objective optimisation are two main methods used in the combination framework.

Normally, simulation needs parameters to start to simulate, while these parameters

can be set by a series of experimental data, historical data, optimised scenario data

etc. If models start from simulation, its parameters need to be collected, processed

and prepared from historical data and (or) experimental data and (or) other data

available. If multi-objective optimisation models have provided a large number of

data to be extracted parameters for simulation scenarios, simulation will obtain the

Pareto optimal parameters to run the models. On the other hand, if models begin

from multi-objective optimisation models, its parameters need to be set by historical

and (or) experimental data. Otherwise, simulation models need to provide data to be
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Figure 4.1: Combination Framework

processed to set parameters for multi-objective optimisation to find the Pareto opti-

mal solutions. As the centre box shown in figure (4.1), simulation and multi-objective

optimisation need communications (or called “data interchange”) between them to

continually adjust mutual optimisation processes. The data interchange requires a

series of data processing mechanism between them in different sequences. Therefore,

the data interchange is discussed in the following section.

4.3 Combination Structures

In this thesis, the equipment quantity optimisation for container terminals is studied

and both of simulation and multi-objective optimisation methods are used. There-

fore simulation and multi-objective optimisation models need to be developed under

container terminal background. The simulation results are for testing a realistic set

of scenarios for the models and providing a good representation of container terminal

operation processes. Multi-objective optimisation models also need to be built for

decision makers because of the multiple objectives which might be raised. Firstly, s-

ingle objective formulations are built on the basis of a series of data for each objective.

Then a multi-objective optimisation model is proposed subject to constraints based

on single objective formulations. Finally, solutions are solved by an exact or heuristic

method. The communication between the two methods could proceed in different
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ways and sequences. Moreover, the starting point of models could be simulation or

multi-objective optimisation. Therefore, three combination structures are proposed

in this section to represent different situations of optimisation:

• Pre-MOO: Multi-objective optimisation is used prior to simulation which aims

to obtain ideal parameters for simulation models.

• Integrated MOO: Multi-objective optimisation is embedded in the simulation or

the simulation is embedded in multi-objective optimisation in order to increase

the effectiveness and integration of the model(s) and reduce the running time.

• Post-MOO: Multi-objective optimisation is employed posterior to simulation for

the purpose of making proper scenario(s) for Multi-objective optimisation and

better meeting the requirements of the decision maker(s).

The tests and comparisons of results from different combination structures need

to be conducted to choose an appropriate one for problems. The three structures are

discussed in the following sections.

4.3.1 Pre-MOO Structure

Pre-MOO structure denotes that multi-objective optimisation is executed prior to

simulation in the combination framework to obtain good parameters for simulation.

It starts from multi-objective optimisation. The parameters for multi-objective op-

timisation are pre-set by collecting and processing historical and (or) the previous

experimental data. Then the solutions from multi-objective optimisation are pro-

cessed to determine the parameters for simulation. Simulation models run with the

optimised parameters to find the best modes to represent dynamic real world systems.

The details of “Processing” box in figure (4.1) for this structure are demonstrated

in figure (4.2). The data stream is delivered between “Simulation” and “MOO” boxes

for the communication between the two methods in the combination framework.

4.3.2 Integrated MOO Structure

Integrated MOO Structure denotes that simulation and multi-objective optimisation

are embedded in the combination framework to collaborate closely to increase the
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Figure 4.2: Pre-MOO Combination Structure

Figure 4.3: Simulation Leading Integrated Structure

effectiveness of the model and reduce the running time. According to the sequences

of data streams, there are two sub-structures for integrated MOO structure, namely

simulation leading integrated structure and MOO leading integrated structure.

Simulation Leading Integrated Structure

As shown in figure (4.3), the simulation leading integrated structure denotes that

simulation and multi-objective optimisation are embedded in the combination frame-

work and the starting point is multi-objective optimisation. According to figures

(4.1) and (4.3), the multi-objective optimisation output is delivered to simulation to

set simulation scenarios to search the Pareto optimal values of decision variables for

multi-objective optimisation, therefore, it is a simulation leading structure. The data

stream is generated from simulation to the “Data Processing”, and then delivered
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to multi-objective optimisation; and then from multi-objective optimisation to the

“Searching Techniques”, and then come to simulation. This is one iteration. The da-

ta stream will keep iterating until stopping criteria are met. The stopping conditions

are normally pre-set in terms of characters of problems and requirement upon decision

makers. For example, the searching loop stops when it could not search better values

for a pre-set number of iterations or it goes in an endless loop in local searches.

The details of “Processing” box in figure (4.1) are demonstrated in figure (4.4).

The starting point is the multi-objective optimisation in this structure. The initial

parameters for the multi-objective optimisation are required to start to run the com-

bination framework. After the first iteration, simulation parameters are set by the

Pareto optimal solutions from multi-objective optimisation and the parameters for

multi-objective optimisation are set by the processed data from simulation results

until the process stop when all stopping criteria are met.

MOO Leading Integrated Structure

As shown in figure (4.4), MOO leading integrated structure denotes that simulation

and multi-objective optimisation are embedded in the combination framework and

the starting point is the simulation models. According to figures (4.1) and (4.4),

simulation output is delivered to multi-objective optimisation to find the Pareto op-

timal solutions and the solutions are used to search the next decision variables for

simulation. Namely, multi-objective optimisation mainly determines the values of

the decision variables for the next iteration. Therefore, it is called MOO leading

integrated structure.

The data stream is generated from simulation, then delivered to the “Data Pro-

cessing”, and to multi-objective optimisation; and then from multi-objective optimi-

sation to the “Searching Techniques”, and to simulation. The data stream will keep

iterating until stopping conditions pre-set are met.

The details of “Processing” Box in figure (4.1) are demonstrated in figure (4.4).

The combination structure starts from simulation in the first iteration. The initial

parameters for simulation are required to start the models. After the first iteration,

simulation parameters are set by the Pareto optimal solutions from multi-objective

optimisation and the parameters for multi-objective optimisation are obtained from
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Figure 4.4: MOO Leading Integrated Structure

Figure 4.5: Data Processing

the processed data from simulation results.

MOO leading integrated structure is employed in chapter 7, therefore, the specific

definitions and methods for “Data Processing” and “Searching Techniques” on the

graph (4.4) need to be defined.

(1) “Data Processing”

The data processing is the process to convert the data stream of simulation output

on the graph (4.4) into data stream that can be accepted by multi-objective optimi-

sation. Figure (4.5) describes the internal structure of “Data Processing” for the

MOO leading integrated structure. Data stream is processed in “Data Processing”

box and converted from simulation outputs to multi-objective optimisation parame-

ters as shown in figure (4.4). In other words, the data stream of simulation output is

converted to acceptable data stream to multi-objective optimisation. Data fitting is
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employed to process the data stream. Data fitting is a method to find the mathemat-

ic function that have the shortest distance to original data point in geometric space.

Many models have been proposed and used for fitting and analysing dielectric-system

or conductive-system frequency response data [93]. As a main method to quantify

experimental data for single objective formulations in this thesis, data fitting is widely

applied in many areas. Yoshimoto et al. [143], Michalowicz and Vlaic [96], Smets et

al. [118] and Yoshimoto et al. [144]. The method of least squares is a method to find

the best fitted fitting coefficients for base functions to minimise the sum of squared

residuals, which is one of methods for data fitting and is mentioned in papers by Ma

and Kruth [92], Bode and Shannon [13], Hanbay et al. [44] and Baylar et al. [8].

In the graph (4.5), the models start from simulation which will generate large

amounts of data stream (simulation outputs) going through “Data Fitting” box and

then being converted to a series of fitting coefficients and base functions be the pa-

rameters for multi-objective optimisation models.

As the combination framework starts from simulation, the initial decision variables

need to be pre-set to run the simulation. For the problem to be solved in chapter 7,

decision variables are the numbers of quay cranes, yard cranes and internal trucks.

NInV al denotes the number of initial values. InV alQci, InV alY ci and InV alTri

denote the ith initial values of decision variables for the numbers of quay cranes, yard

cranes and internal trucks respectively, where i ∈ (0, NInV al]. InV alQci, InV alY ci

and InV alTri are positive integers. Their equations are given below.

InV alQci =
i · (maxNqc −minNqc)

NInV al + 1
+minNqc (4.1)

InV alY ci =
i · (maxNyc −minNyc)

NInV al + 1
+minNyc (4.2)

InV alTri =
i · (maxNtr −minNtr)

NInV al + 1
+minNtr (4.3)

Where maxNqc j denotes the upper bound of Nqc; minNqc j denotes the lower bound

of Nqc; maxNyc j denotes the upper bound of Nyc; minNyc j denotes the lower bound

of Nyc; maxNtr j denotes the upper bound of Ntr; minNtr j denotes the lower bound

of Ntr. InV alQci, InV alY ci and InV alTri are integers so they need to be rounded

to integers if they are decimals.

(2) “Searching Techniques”
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Figure 4.6: Dynamic MOO Search

As shown by figure (4.4), multi-objective optimisation runs when it accepts pa-

rameters from data streams from the simulation output. The output stream from

multi-objective optimisation goes into the “Searching Techniques” to detect the next

values of the decision variables. An algorithm of dynamic MOO search is employed

to search the best values for decision variables as shown in figure (4.6). Dynamic

MOO search denotes a dynamic search mechanism in the system utilising the output

data stream from multi-objective optimisation to dynamically search the near Pare-

to optimal solutions as seen from the graph (4.6). The multi-objective optimisation

functions for the search are dynamically updated by the data stream from the “Data

Processing” as new data is continuously added into the data stream. Dynamic MOO

search explores the near best values for decision variables for the simulation to start

the next iteration. It is expected that the values for decision variables obtained from

the dynamic MOO search are quickly close to good values as the search lead by the

predicted results from the dynamic MOO search.

(3) Iteration stopping criteria

As the “Data Processing” (defined as data fitting) and “Searching Techniques”

(defined as dynamic MOO search) iterate to detect the near best values for decision

variables, namely the numbers of terminal mechanic equipment, it is necessary to

set appropriate stopping criteria to terminate the loop. The stopping criteria for the

problem in chapter 7 are set as follows.

• Predicted values of decision variables obtained from the search already exist in
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Figure 4.7: Post-MOO Combination Structure

searching list.

• The search could not find better solutions in a certain number of consecutive

iterations comparing to the best existed value(s).

4.3.3 Post-MOO Structure

Post-MOO structure denotes that multi-objective optimisation is executed posterior

to simulation in the combination framework for the purpose of better presentation

of realistic system changes and making appropriate scenarios for multi-objective op-

timisation in this structure. The models start from simulation. The parameters for

simulation are pre-set by collecting historical and (or) the previous experimental da-

ta. The results from simulation models are provided for multi-objective optimisation

scenarios. Furthermore, the solutions to multi-objective optimisation models are then

solved by searching the Pareto frontier.

The details of “Processing” box in figure (4.1) for this structure are demonstrated

in figure (4.7). The data stream from simulation goes into the “Data Processing” box

in the middle and then goes to multi-objective optimisation.

Post-MOO structure is employed in chapters 5 and 6 to solve internal truck quan-

tity optimisation problem and multiple terminal equipment quantity optimisation

problem respectively. Additionally, the definition of “Data Processing” is given in

section 4.3.2 that data fitting is used to process data streams.
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4.4 Summary

Simulation is a potentially appropriate tool to model container terminals and provide

a great deal of data the next step optimisation. On the other hand, multiple objectives

are involved in daily management in container terminals such as cost related objectives

and productivity related objectives. Multi-objective optimisation is a powerful tool

to explore the Pareto optimal solutions for multiple objective problems which have

been proved in other areas. In this chapter, a combination framework is proposed

to integrate the strengths of the two methods and three combination structures are

also proposed for the two methods to work under the combination framework. As

MOO leading integrated structure and post-MOO structure are applied in the truck

quantity optimisation problem and multiple equipment quantity optimisation problem

in chapters 5, 6 and 7, the internal structure of MOO leading integrated structure

and post-MOO structure are defined respectively.



Chapter 5

Combining Simulation and Multi-Objective Optimisation by

Post-MOO Structure for Container Terminal Truck Quantity

Optimisation

5.1 Introduction

Marine transportation has been quickly developing and modernising over the past

decades. Larger scale operations, namely a large amount of containers have to be

loaded, unloaded and transhipped within a short time span in container terminals,

therefore present more requests for higher standards of operations. On the other hand,

the limitations of equipment resources and pressure of cost have been an increasingly

important problem for terminal operators. Comparing to the controllability of cost

and utilisation of land resource, terminal equipment scheduling is more controllable

for daily management. The mechanical equipment quantities in terminals are related

to the service productivity, equipment utilisation rate, acquisition cost, maintenance

cost and labour cost. A good combination of different equipment quantities in dai-

ly equipment scheduling avoids the bottle neck effect in multi-threaded operations

and, in the meantime, saves expense on equipment. Therefore, the mechanical e-

quipment optimisation is an important decision to be made, which aims to improve

terminal productivity and reduce congestion and cost. A container terminal usually

has both internal and external trucks and they assume different responsibilities of

transporting containers inside and outside the yard respectively. The internal trucks,

also called tractors, are a kind of specially designed and dedicated trucks for internal

transportation and pre-marshalling within terminals and mainly take on the most

of yard operations including pre-marshalling, loading, pre-loading, discharging and

pre-discharging[87]. Therefore, a container terminal usually needs a certain number

of internal trucks to maintain its internal operations. The quantity scheduling for

internal trucks is a daily decision that a terminal has to make. As one of the factors

35
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affecting the terminal productivity, cost and traffic, the number of internal trucks

assigned to operational tasks in a terminal may vary on operation volumes, traffic

situation, total truck quantity, etc.

This is a multi-objective problem and the relevant factors considered by decision

makers include terminal productivity and cost goals. To be detailed, there are five ob-

jectives discussed in this chapter and they are the operational efficiency requirements,

high utilisation rate of the trucks, avoidance of congestion in the yard, fuel consump-

tion goals and low labour demand goals. These objectives are likely to conflict as the

cost related goals clash with the productivity related goals.

The method used in this chapter is a combination of multi-objective optimisation

and simulation modelling. This chapter also employs discrete-event simulation for

container terminals to build a systematic model, covering the terminal gatehouse,

yard and berth, including the terminal mechanical equipment: internal truck, ex-

ternal truck, yard crane and quay crane, through the analysis of modern terminal

techniques of production processes, management and operations. In this chapter, a

post multi-objective optimisation combination framework is used to combine these

two methods in order to test a realistic set of scenarios for the model and provide a

good representation of the flow of goods through container terminals.

This chapter is organised as follows. First of all, the introduction, problem de-

scription and methodology are addressed in section 5.1. Section 5.2 introduces the

background and operations of modern container terminals. Section 5.3 gives a de-

scription of simulation models, multi-objective optimisation models and a framework

to combine both of them. Section 5.4 addresses the parameters and solutions to

simulation models, single objective models and multi-objective optimisation models,

based on the Southampton Container Terminal. Finally, the conclusions are given in

section 5.5.

5.2 Background Information

The geographical structure of a container terminal includes quayside (where berths

locate), yard(for container storage), gatehouse(the entrance for external trucks) and

depot(for container storage outside the yard). As discussed in section 2.4, the main
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terminal mechanical equipment includes quay cranes, yard cranes and trucks. Sub-

dividing yard cranes include straddle carriers, sprinters, reach stackers and empty

container handlers, while trucks include internal trucks and external trucks. The

operations in a container terminal can be grouped into three types of basic process-

es: loading operations, discharging operations and pre-marshalling operations. So a

typical operational flow of container terminals is described as follows:

• Loading operations: containers for exportation are carried into and stored in

the terminal yard from outside. When container ships come, these containers

are moved from the yard to the quayside and then loaded onto container ships.

• Discharging operations: the containers on container ships are discharged from

ships onto the container yard. For those non-transhipping containers, they

are then carried out of terminal to their owners or clients. For transhipping

containers, they are stored in the terminal yard and then loaded onto other

container ships for re-exportation.

• Pre-marshalling operations: an effective action to utilise the loading/unloading

operations and it sorts containers according to certain priorities in advance

so that the actual processing times of loading/unloading operations can be

decreased [52].

From a geographical point of view, the buffer areas for temporary container storage

are normally located in the intermediate zones between the terminal quayside and

yard, or between the gatehouse and yard. The external trucks carry containers from

outside terminals into the yard and vice versa. On the other hand, the internal

trucks carry containers within the yard, from container blocks to other container

blocks, from container blocks to the quayside buffer areas, from the gatehouse buffer

areas to container blocks, etc. Besides, for the internal trucks, the basic operational

processes include waiting for new tasks, driving to destinations, loading operations

and discharging operations. The operations of the internal trucks can be described

by the following sequence:

All the tasks are put into a task list. The internal trucks wait for a new task and

they are put into the task waiting queue. The terminal control system matches the

new tasks with the idle internal trucks in the waiting queue. If both the new task
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list and task waiting queue are not empty, they are matched by the control system.

Once matched, tasks are sent to trucks which are driven to the assigned positions

and enter a crane operation waiting queue. The terminal control system matches

the trucks in the queue with the available cranes. The yard crane operations are

loading containers onto the internal trucks and discharging them from trucks. Then

the loaded and/or discharged trucks are driven the next assigned locations and enter

another crane operation waiting queue. The system matches them again and the

trucks in queues wait for the next operations. When they finish their tasks, these

trucks go back to the task waiting queue and wait for a new task.

On one hand, from a cost control point of view, the truck quantity is supposed to

be kept at a minimum level to lessen the purchasing cost, equipment maintaining cost

and labour cost. However, on the other hand, from the point of view of productivity

improvement, the truck quantity is in proportion to the operational efficiency to a

certain extent, therefore, it is supposed to be maintained at a maximum level. Addi-

tionally, the truck quantity also affects the terminal traffic and equipment utilisation

rate. This chapter aims to seek a trade-off between these objectives.

5.3 Model Description

The major modelling processes in this section are: building a simulation model and

a multi-objective optimisation model, proposing a post multi-objective optimisation

framework for combination, and an exploration of the Pareto optimal solutions to the

model.

5.3.1 Post-MOO Structure

In consideration of the strengths and weaknesses of simulation and multi-objective

optimisation, the combination of both of them guarantees the Pareto optimality of

solutions, reduces overall computational time if they are combined efficiently and

ensures a realistic model of flow under random conditions.

In this chapter, the truck quantity optimisation for container terminals is based

on the post-MOO structure, namely the multi-objective optimisation is conducted

posterior to the terminal simulation, as given in section 4.3.3. The data fitting is

used to process the simulation output as shown in figure (4.7). The simulation results
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provide a good representation of the operations and are used to be processed for

the parameters for single objective models. The multi-objective optimisation model

proposed consists of a formulation for five objectives which are all non-linear. The

decision variables of the model have upper bounds and lower bounds. All of variables

in the model are non-negative. Finally, the Pareto optimal solutions are explored

through the multi-objective optimisation model.

5.3.2 Discrete-event Simulation

Discrete-event simulation concerns the modelling of a system as it evolves over time

by a representation in which the state variables change instantaneously at separate

points in the time [71]. A system is a collection of related elements and relationships

amongst these elements. The states of these elements in a system constitute the

states of a system. In a discrete-event system, system states are only changed when

new events occur, where the events are those behaviours changing systematic element

states, and therefore changing the system states, in other words, the system states are

not changed in the period between two contiguous events. And these events happen

at random and discrete time points, therefore the system step sizes are also random.

Discrete-event simulation is particularly apt to describe the inner working processes

of a terminal and it can be employed to calibrate a continuous black-box model for

the terminal [115]. A discrete-event simulation model for truck quantity optimisation

in container terminals is built in the simulation integration environment of the Micro

Saint Sharp simulation package [130]. Micro Saint Sharp is a general purpose tool that

can be used to provide solutions ranging from queuing problems involving hospital

waiting rooms to complex human decision processes involving future command and

control systems [12]. Micro Saint Sharp is a powerful simulation tool for the problems

to be solved in this thesis because:

• It provides a visual interface and multiple simulation modules for productive

model creation.

• It supports a variety of data types.

• It is fast and flexible with the support of C# coding.
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Figure 5.1: Terminal Layout [70]

• It has low requirements on system. A computer with a 90-Megahertz Intel

Pentium-class processor, a 64 MB RAM and 150 MB of free hard disk space is

able to run the package [112].

In the Micro Saint Sharp simulation package, the “Release Condition” is where

controls events to be processed. Conditions are pre-set in the “Release Condition”

and events are processed only when events meet the conditions.

The layout of a general container terminal is given in figure (5.1). Berths are the

places along the quays where vessels moor and cargos are loaded to and (or) dis-

charged from. Containers are discharged to the inland route transportation and (or)

loaded to the water route transportation through sea ports. Gatehouses, where con-

nect terminals to the hinterland, are the other side of sea ports comparing to berths.

Containers are unloaded from container ships and transported the inland transporta-

tion such as road and railway transportation at the gatehouses and then delivered to

customers or transported from the inland transportation and loaded onto container

ships. The container terminal yard is the buffer area between berths and gatehous-

es, and has facilities for temporary storage of containers. Yard operations include

discharging of containers from vessels, loading of containers onto vessels, shuffling
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Figure 5.2: Operational Flow Chart

of containers in container blocks, re-distribution of containers to other blocks (yard

shifting) for more efficient loading onto the next vessel and inter-terminal haulage

when containers need to be moved to other yards in another terminal [34].

A general operational flow chart is shown in figure 5.2. In a general container

terminal, the whole terminal operations can be classified to following three modules:

• Loading process module (LDM): loading containers from the yard onto container

ships as shown by the down arrows in figure 5.2;

• Unloading process module (ULDM): unloading containers from container ships

to the yard as shown by the up arrows in figure 5.2;

• Pre-marshalling process module (MSHM): moving containers from original po-

sitions to new positions in the yard as shown by the left and right arrows in

figure 5.2.

In the simulation model, the operations of internal trucks can be broken down

and summarised to following 8 basic operations:

• Assigning trucks (AT): matching the tasks from the task list with the trucks

from the free truck list;
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• Truck transportation (TT): empty trucks moving to the assigned destinations

for operations;

• Transporting laden containers (TL): trucks transporting laden containers;

• Transporting empty containers (TE): trucks transporting empty containers;

• Pickup laden containers (PL): Cranes picking up laden containers from the yard

or trucks;

• Pick up empty containers (PE): Cranes picking up empty containers from the

yard or truck;

• Grounding laden containers (GL): Cranes grounding laden containers onto the

yard or trucks;

• Grounding empty containers (GE): Cranes grounding empty containers onto

the yard or trucks.

As shown by equation (5.1), R is a set of 8 basic operations listed above. AT

and TT are indispensable for all operational modules, while the value of each pair of

PL||PE, TL||TE and GL||GE has to be either one of them.

R = [AT, TT, PL||PE, TL||TE,GL||GE] (5.1)

There are several lists in the simulation model to control the equipment allocation:

waiting task list, executed task list, free truck list, occupied truck list, free yard crane

list, occupied yard crane list, free quay crane list and occupied quay crane list.

At the beginning of the simulation, all equipment is in idle state, i.e., the task list

is empty. At the same time, all of the trucks, yard cranes and quay cranes are in the

free truck list, free yard crane list and free quay crane list respectively. When the

simulation begins, new operation tasks are given by the terminal control centre and

these tasks go into the waiting task list. Then, the terminal control centre assigns

trucks from the free truck list to the new tasks. If the free truck list is not empty, the

control system matches the free trucks with the new tasks, namely assigning available

trucks with new tasks. Otherwise, the new tasks enter the waiting task list and wait
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for free trucks. Once the free trucks are assigned to new tasks, they are transferred

from the free truck list into the occupied truck list, and in the meantime, these tasks

are transferred from the waiting task list to the executed task list. Then destination

positions are sent to truck drivers, where trucks load from or discharge to or move

to. Then the empty trucks without containers are driven to the appointed locations

and enter queues waiting for crane operations. If the free crane list is not empty, the

cranes from the list are assigned to the trucks and the tasks will be executed. Trucks

then carry containers to their next appointed destinations and enter queues waiting

for next crane operations. Finally, if the free crane list is not empty, containers

are picked up from trucks and grounded onto ships or the yard or external trucks.

Equation (5.1) is a general set that describes the above operational flow. In equation

(5.2), R′ is a set of 8 basic operation actions.

R′ = [AT, TT, PL, PE, TL, TE,GL,GE] (5.2)

U = [u1, u2, u3, u4, u5, u6, u7, u8] (5.3)

u1, u2, u3, u4, u5, u6, u7, u8 ∈ {0, 1}

u3 + u4 ≤ 1, u5 + u6 ≤ 1, u7 + u8 ≤ 1

In equation (5.3), U is a binary coefficient matrix, where the value 0 means the accord-

ing operation is not included in the according operational module. While the value 1

means the operation is applicable to the according operational module. In equation

(5.1), PL||PE, TL||TE and GL||GE are alternative operations, which means that

only one of two operations is executed.

LDM = ULDM = [U,U ]T [R′, R′] (5.4)

MSHM = UT R′ (5.5)

As shown by equation (5.4), both of the loading and unloading operations contain

two operation set R′. But there is only one R′ for the pre-marshalling operations

in equation (5.5). A simulation model is built in the Micro Saint Sharp simulation

package based on equations (5.4) and (5.5) and the modelling network is shown in

figure 5.3. The loading processes are picking up containers from the external trucks
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in the buffer areas (i.e. “Loading-pickup from truck(19)” in figure 5.3), ground-

ing them onto the yard (“Loading-ground onto yard(20)”), then picking up from the

yard (“Loading-pickup from the yard(9)”) and lifting onto container ships (“Loading-

ground onto the ship(11)”). The discharging processes indicate that picking up con-

tainers from container ships (“Discharging-pickup from the ship (12)”), grounding

them onto the yard (“Discharging-ground onto the yard(13)”), then picking up from

the yard (“Discharging-pickup from the yard(15)”) and grounding onto the buffer

areas (“Discharging-ground onto truck or train(17)”). The pre-marshalling processes

involve a basic operation of R′ which is picking up containers from their original loca-

tions in the yard (“Remarshaling-pickup from the yard (24)”) and then moving them

to other positions in the yard (“Remarshaling-ground onto yard(26)”). Therefore,

the non-zero operation elements in equations (5.4) and (5.5) are those corresponding

tasks in figure 5.3. To satisfy the constraints in equation (5.3), the coefficients of

equations (5.4) and (5.5) are shown in table 5.1.

Table 5.1: The coefficients of equations (5.4) and (5.5)
Operation Type u1 u2 u3 u4 u5 u6 u7 u8
Empty container 1 1 1 0 1 0 1 0

operations
Laden container 1 1 0 1 0 1 0 1

operations

The simulation parameters for this model include stochastic and non-stochastic

parameters.

A discrete-event simulation system reflects the interactions amongst a number

of stochastic factors and repetitively deals with randomness, such as the number of

events, the occurrence time, the number of entities generated, etc. These stochas-

tic variables have different probability distributions and provide parameters for the

system by random sampling, such as task interval time, crane operation time, truck

travelling time, etc. Tasks interval time is denoted by X1; truck assigning time is de-

noted by X2; truck travelling time is denoted by X3; the time of quay crane pick-up

operation from the yard is denoted by X4; the time of quay crane grounding operation

to the yard is denoted by X5; the time of yard crane pick-up operation from the yard

is denoted by X6; the time of yard crane grounding operation to the yard is denoted
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Figure 5.3: General simulation network

by X7. The probability distribution function for the ith stochastic variable is denot-

ed by Xi ∼ Fi(x). θi denotes a set of distribution parameters for the ith stochastic

variable. The input of parameters include the selection of probability distribution

function Fi(x) and estimation of function parameters θi. The values of stochastic

variables involved in this simulation modelling are generated by the different distri-

butions by the system, such as task interval time distribution, truck assigning time

distribution, truck travelling time distribution, quay crane pick-up operation time

distribution, quay crane grounding operation time distribution, yard crane pick-up

operation time distribution and yard crane grounding operation time distribution.

On the other hand, the non-stochastic parameters are those parameters related

to terminal layout, operation processes, equipment quantities and properties, load-

ing/discharging ratio, empty/laden container ratio, transhipment/all container ratio,

pre-marshalling probability, simulation duration and the number of simulation itera-

tions.

The output parameters of the simulation model are given out in table 5.2.
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Table 5.2: Simulation Output Parameters

Output Parameter Definition
Noptedcntr Number of containers operated by quay cranes
Tqc m i Operational time of mth container by ith quay crane

Tidleqc m i Idle or waiting time when mth container is operated
by ith quay crane

Ttsk i j Time of executing task by ith truck in jth shift
Two i j Time of waiting for tasks of ith truck in jth shift
Tcr i j k Operational time of kth crane handling jth container

when i trucks are employed in the terminal yard
Tladc i j k Operational time of kth laden container of jth task by ith truck
Tepyc i j k Operational time of kth empty container of jth task by ith truck
Tetr i j k Operational time of kth route of jth task for ith truck
Twkr i j k Working hours of kth worker on ith truck in jth shift

5.3.3 Formulation for Objectives

Container terminal operators, in order to provide first class and competitive service to

their clients and yield a highest possible profit for their companies, normally consider

two aspects of targets: maintaining lowest cost and pursuing highest productivi-

ty. The maintaining cost in daily operations includes fuel consumption and labour

cost. The operational efficiency might involve the equipment service rate for clients,

equipment utilisation rate and traffic situation. However, the cost objectives and

productivity objectives are conflicting to a certain extent. The increase of number of

trucks, on one hand enhances the service quality and equipment utilisation rate, on

the other hand aggravates cost burden and might cause traffic congestion problems in

the yard. Contrarily, the decrease of number of trucks has an opposite effect because

the efficiency and cost are interacted and restrained with each other. Given any level

of conflict among the objectives, which is a commonplace occurrence, not all of them

can be simultaneously optimised [32]. Therefore, the primary focus of this chapter

is to find trade-offs amongst these five objectives to satisfy both client requirements

and cost control. Five individual objective functions are discussed respectively in this

section and a multi-objective optimisation model is presented by the end. These five

objectives are:

1. Terminal quay crane efficiency
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2. Truck utilisation rate

3. Traffic congestion probability

4. Unit fuel consumption

5. Unit labour cost

First Objective Function: Terminal Quay Crane Efficiency

For the first objective, optimising the terminal operational efficiency is one of very

important goals for container terminals as the quality of client services is core compet-

itiveness in a highly competitive market. Regarded as an interface accept containers

from and transfer containers to container ships, the performance of quay cranes for

container ships is usually highlighted against other terminal operations and consid-

ered as a core competence because of the requirements upon loading and discharging

time due to the intensive voyages of container vessels. ’Moves per crane-hour’ is

a common productivity measure for container terminal quay cranes [73], therefore

in this chapter, the quay crane performance is quantified as a terminal operational

efficiency measure.

The quay crane operation rate is a dependent variable affected by various factors,

such as operational time, truck waiting time, equipment idle time. In this case, it is

less realistic to describe the relationships between these variables and the dependent

variables in a pure mathematical model because even the number of these factors is

not certain, while the combination of mathematical models and simulation models is

a more feasible method to model the terminal operational efficiency. The container

ship operation rate data Rqc are derived from table 5.2 output parameters, where Rqc

is the quay crane operation rate and it is expressed as:

Rqc =
Noptedcntr∑Nqc

i=1

∑Nopsi
m=1 (Tqc m i + Tidleqc m i)

(5.6)

Where Nqc is the number of quay cranes and Nopsi is the number of operation for

the ith quay crane. Noptedcntr, Tqc m i and Tidleqc m i have been declared in table 5.2.

Assume equation (5.7) is a data set which describes the relationships between Rqc

and Ntr(the number of internal trucks).

((Rqc1 , Ntr1), (Rqc2 , Ntr2), · · · , (Rqcm , Ntrm)) (5.7)
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Where m is the number of data elements in equation (5.7). Assume the fitting

function ϕ(x) = α1ϕ1(x) + α2ϕ2(x) + · · · + αnϕn(x) is an expression for variable

Ntr and dependent variable Rqc based on the data set (5.7). Where αj is a fitting

coefficient; ϕj(x) is a base function xn
′
; n denotes the number of equation terms;

n′ = 1, 2, 3, · · · , n. The base function set {ϕ1(x), ϕ2(x), · · · , ϕn(x)} is determined on

the basis of the distribution features of data (5.7). frqc(x) denote a function mapping

Ntrm to Rqcm in the data set (5.7). The residual values between ϕ(x) and frqc(x) are

denoted by 4xi which is described as an error function: ‖ 4xi ‖2 =
∑m

i=1[ϕ(xi) −
frqc(xi)]

2. Fitting functions are to find the best fit functions for experimental data,

i.e., a minimum distance to the original functions in the geometric space for residual

values. Therefore, the fitting coefficient set α = {α1, α2, · · · , αn} is determined by

the minimum value of ‖4xi ‖2, i.e. ∂
∂α
‖4xi ‖2 = 0, which is the least squares method

shown as follows.

The first objective function is denoted by equation (5.8) which is to be maximised:

feff (x) =
n∑
j=1

ϕj(x)αj (5.8)

Where feff denotes quay crane service rate; j denotes the jth term of the equation; n

is the number of terms of the equation, n ∈ N ; ϕj(x) denotes the jth base function.

The constraints for the first objective function are: Rqc > 0, Noptedcntr > 0, Nqc > 0,

Nopsi > 0, Tqc m i > 0, Tidleqc m i > 0.

(ϕk(xi), ϕj(xi)) is the inner product of ϕk(xi) and ϕj(xi), i.e. (ϕk(xi), ϕj(xi)) =∑m
i=1 ϕk(xi)ϕj(xi). Where k and j denotes the kth and jth term of the equation; m

is the number of data elements which equals to the number of equation terms. Then

the inner product of ϕk(xi) and frqc(xi) is denoted by (ϕk(xi), frqc(xi)). Equation

(5.9) can be deduced from the above formula:

n∑
i=1

(ϕk, ϕi)αi = (ϕk, frqc) (5.9)
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(ϕ1, ϕ1) (ϕ1, ϕ2) · · · (ϕ1, ϕn)

(ϕ2, ϕ1) (ϕ2, ϕ2) · · · (ϕ2, ϕn)
...

...
...

(ϕn, ϕ1) (ϕn, ϕ2) · · · (ϕn, ϕn)



×


α1

α2

...

αn

 =


(ϕ1, frqc)

(ϕ2, frqc)
...

(ϕn, frqc)

 (5.10)

Equation (5.10) is a matrix for the system of linear equations deduced from equation

(5.9). The best-fit fitting coefficient set α is then deduced from equation (5.10).

Second Objective Function: Truck Utilisation Rate

The acquisition cost normally is a large portion of the terminal budget, therefore

the improvement of truck utilisation rate and reduction of the purchased number of

trucks are goals for terminal operators. Trtr denotes the total running time of all

trucks.

Trtr =
Ntr∑
i=1

Nshf i∑
j=1

Ttsk i j (5.11)

Where Nshf i is the number of shifts for the ith truck during the simulation; Ttsk i j

and Two i j below are defined in table 5.2. Tttlrtr denotes a sum of truck running time

and waiting time, i.e. the total simulation time.

Tttlrtr =
Ntr∑
i=1

Nshf i∑
j=1

(Ttsk i j + Two i j) (5.12)

The average utilisation rate of internal trucks is quantified in equation (5.13), namely

the proportion total truck running time accounts for.

f ′utl =
Trtr
Tttlrtr i

· 100% (5.13)

The second objective function is denoted by equation (5.14), which is to be maximised

and fitted by the data set ((f ′utl1 , Ntr1), (f
′
utl2
, Ntr2), · · · , (f ′utln , Ntrn)).

futl(x) =
n∑
j=1

ϕj(x)αj (5.14)
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ϕj(x) is determined by simulation data and αj is fitted by equation (5.10). The

constraints for the second objective function are: Ntr > 0, Nshf i > 0, Ttsk i j > 0,

Two i j > 0.

Third Objective Function: Traffic Congestion Probability

For the third objective, traffic congestion is another factor considered by terminal

decision makers. In order to increase the land area for container storage in the yard,

terminals often reduce the other area of roads and unnecessary space between con-

tainer blocks, hence, traffic congestion may happen in a bounded space, especially in

peak hours. As the container terminal yard has a capacity to contain a certain num-

ber of internal trucks operating in the yard, if truck quantity exceeds this equilibrium

point, the traffic situation in the yard is likely to get heavy. Assume that every single

truck moves in the yard at the same and a uniform velocity, therefore the distances

between two trucks keep the same throughout until they stop for queuing up. If the

times that trucks need to spend on travelling these distances amongst trucks in the

yard are longer than crane operational times, queues do not exist in the system and

traffic is smooth. Conversely, if the times are shorter than crane operational times,

stopping and queuing up occur in the system, and then the former truck will affect

the latter, therefore congestion happens. Distances amongst internal trucks are quan-

tified by time. The arrival and departure times of each truck are recorded, and then

the time interval between any two trucks can be described as time distance between

them. Let the average operational time of cranes be the ideal value of time intervals

of internal trucks, then accordingly, if time intervals are less than this value, trucks

might need stopping and queuing up, namely the probability of waiting and queuing

will then increase. On the contrary, if the time intervals are greater than this value,

the probability of waiting and queuing will correspondingly decrease. X is the time

interval between a random truck and its following truck at the beginning of their

tasks and assume X is exponentially distributed, i.e. X ∼ E(λ), i.e. p(x) = λe−λx.

The mathematical expectation E(X) = 1
λ

is equal to the average value of operational

time per container, namely:

λ =
thrpt ·Rthrcntr ·Ntr j

Tthr
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Where thrpt is the throughput of the container terminal during a period Tthr; Rthrcntr

denotes the ratio of container number to container throughput; Ntr j denotes different

truck numbers in scenarios, where j denotes a positive integer from 1 to n. In equation

(5.15), T ′cr i denotes the total crane operational time when i trucks are employed.

Tcr i j k is defined in table 5.2.

T ′cr i =

Nqc+Nyc∑
j=1

Ncntr j∑
k=1

Tcr i j k (5.15)

Where Nqc is the number of quay cranes; Nyc is the number of the yard cranes; Ncntr j

denotes the container number operated by jth crane during simulation time. The

average value of T ′cr i is denoted by Tcr i, which is the average crane operational time

for a container, i.e.

Tcr i =
T ′cr i∑Nqc+Nyc

k=1 Ncntr j

(5.16)

fts(x) denotes the fitting function for Tcr i, namely

fts(x) =
n∑
j=1

ϕj(x)αj (5.17)

If the interarrival time between two consecutive trucks is longer than the crane op-

erational time of the former truck, then the former operation finishes before when

the latter truck arrives, namely the latter is operated once it arrives at the position

without waiting in a queue. Conversely, the latter stops and waits in a queue for

the next operation. In another word, if the crane operational time fts(Ntr j) is longer

than the truck departure time interval Xi, i.e. Xi < fts(Ntr j), then the ith truck

arrives at a crane when the previous truck is still in its operation. The ith truck then

needs to wait in a queue. And the latter trucks might also need to wait in queues

if their arrival times are before the operation finishing time of their former trucks.

The probability of Xi < fts(Ntr j) is denoted by P{Xi < fts(Ntr j)} which is also the

objective function for the third objective shown by equation (5.18) which is to be

minimised.

fcon(Ntr i) = P{Xi < fts(Ntr j)} =

∫ fts(Ntr j)

−∞
λe−λx dx (5.18)

The constraints for the third objective function are: thrpt > 0, Rthrcntr > 0, Ntr j > 0,

Tthr > 0, Nqc > 0, Nyc > 0, Ncntr j > 0, Tcr i j k > 0.
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Fourth Objective Function: Unit Fuel Consumption

For the fourth objective, fuel consumption of trucks varies with different truckloads

such as a truck carrying containers consumes more fuel than an empty truck and a

truck carrying a laden container costs more fuel than carrying an empty container.

b1, b2 and b3 are the fuel consumption coefficients for empty trucks, trucks carrying

empty containers and trucks carrying laden containers respectively. Therefore, the

truck moving time multiplying its fuel coefficient is equal to its fuel consumption

volume. Equation (5.19) is the function for truck fuel consumption cost.

f ′′fcost = b1

Ntr∑
i=1

Nord i∑
j=1

Nladops i j∑
k=1

Tladc i j k

+ b2

Ntr∑
i=1

Nord i∑
j=1

Neptops i j∑
k=1

Teptc i j k

+ b3

Ntr∑
i=1

Nord i∑
j=1

Netrops i j∑
k=1

Tetr i j k (5.19)

Where f ′′fcost denotes the weighted truck operational time; Tladc i j k, Teptc i j k and

Tetr i j k are defined in table 5.2; Nord i is the number of orders(tasks) of the ith truck;

Nladops i j is the number of operation times of laden containers of the jth order of the

ith truck; Neptops i j is the number of operation times of empty containers of the jth

order of the ith truck; Netrops i j is the number of operation times of empty trucks of

the jth order(task) of the ith truck. f ′fcost(x) is the average operational time for both

quay cranes and yard cranes defined by equation (5.20).

f ′fcost(x) =
f ′′fcost(x)

Ntr

(5.20)

The data set between average fuel consumption and truck numbers is denoted

by ((f ′fcost1 , Ntr1), (f
′
fcost2

, Ntr2), · · · , (f ′fcostn , Ntrn)). The fourth objective function,

which is to be minimised, is denoted by equation (5.21) and ϕj(x) is determined by

the data features and αj is fitted by equation (5.10).

ffcost(x) =
n∑
j=1

ϕj(x)αj (5.21)

The constraints for the fourth objective function are: b1 > 0, Ntr > 0, Nord i > 0,

Nladops i j > 0, Tladc i j k > 0, b2 > 0, Neptops i j > 0, Teptc i j k > 0, b3 > 0, Netrops i j > 0,

Tetr i j k > 0.
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Fifth Objective Function: Unit Labour Cost

For the fifth objective, labour cost for truck quantity optimisation involves wages paid

for terminal staff. The working time Twkr i j k (defined in table 5.2) multiplying the

unit wage is equal to the unit labour cost, which is shown in equation (5.22).

f ′′lab =
Ntr∑
i=1

Nshf i∑
j=1

Nwkr i j∑
k=1

W · Twkr i j k (5.22)

where f ′′lab denotes the total labour cost; W is the unit wage; Nwkr i j denotes the

number of workers on the ith truck in the jth shift. In a modern terminal, each truck

is normally provided at least two workers including a driver and a tally clerk, however,

in some cases this number could be one or more than two. f ′lab is the average labour

cost per container shown in the following equation.

f ′lab =
f ′′lab
Ntr

(5.23)

The fifth objective function, which is to be minimised, is denoted by equation

(5.24), which is fitted by the data set ((f ′lab1 , Ntr1), (f
′
lab2

, Ntr2), · · · , (f ′labn , Ntrn)).

ϕj(x) is determined by the data features and αj is fitted by equation (5.10).

flab(x) =
n∑
j=1

ϕj(x)αj (5.24)

The constraints for the fifth objective function are: Ntr > 0, Nshf i > 0, Nwkr i j > 0,

W > 0, Twkr i j k > 0.

5.3.4 Multi-objective Optimisation

Marler and Arora [94], Chanas and Kuchta [17], Chen and Lee [21], Goh et al.[41]

and Miettinen [97] present their multi-objective optimisation functions. The multi-

objective optimisation function is based on a classical multi-objective programming

formulation proposed by Miettinen [97] which is described as follows:

minimise {f1(x), f2(x), · · · , fk(x)} (5.25)

subject to x ∈ S

There are k(k ≥ 2) objective functions fi : Rn → R. The vector of objective functions

are denoted by f(x) = (f1(x), f2(x), · · · , fk(x))T . The decision vector is denoted by



54

x = (x1, x2, · · · , xn)T and x ∈ Rn, where Rn is the decision variable space. S is

a series of constraints. For this problem, the decision vector is x = (Ntr)
T and the

vector of objective functions is f(x) = (−feff (x),−futl(x), fcon(x), ffcost(x), flab(x))T .

minimise {−feff (x),−futl(x), fcon(x), ffcost(x), flab(x)} (5.26)

subject to x ∈ S

5.4 Results and Discussion

The above section discusses building truck quantity decision models for container

terminals and this section discusses the execution of proposed models based on the

Southampton Container Terminal.

5.4.1 Simulation Parameters and Results

Although the public data from the Southampton Container Terminal are collected,

processed and imported for the simulation model, some data is unavailable due to

commercial confidentiality reasons. Therefore, those unavailable data need to be

estimated to set the simulation scenarios. For the stochastic parameters, Demirci

[30], Parola and Sciomachen [109] and Shi et al. [117] have discussion on using

exponential distribution to describe the interarrival time in container terminals. Kim

and Kim [66] and Lee et al. [77] use the gamma distribution for crane operational

times in container terminals. The distribution functions and parameters of stochastic

variables are estimated and listed in table 5.3. Therefore, assume that X1 in table

5.3 follows an exponential distribution and X2, X3, X4, X5, X6 and X7 follow gamma

distributions. In table 5.3, θ1 is:

θ1 =
simulationtime

(percThrputToCntrNum · throughput/365)

Where simulationtime denotes the length of simulation duration in hour. percThrput

ToCntrNum denotes the ratio of container number to throughput volume. The de-

tailed operational data for X1, X2, X3, X4, X5, X6 and X7 from the British container

terminal is unavailable due to its confidentiality to the terminal as it is a business
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organisation. Therefore the simulation parameters θ2, θ3, θ4, θ5, θ6 and θ7 can not be

obtained from historical data. An appropriate estimation for the distribution param-

eters is therefore important to the model. Because of the unavailability of detailed

data from the Southampton Container Terminal, the values of the distribution param-

eters in this chapter are estimated by the knowledge of container terminal operations

and the parameter settings from the papers by Hadjiconstantinou and Ma [43], Yun

and Choi [145], Ambrosino and Tanfani [3], Shi et al. [117] Rizzoli et al. [115] and

Zhu [149]. The parameters can be re-set as long as the realistic data is available.

The distribution parameters are set as follows: θ2 = θ1, θ3 = 3.0 minutes, θ4 = 4.0

minutes, θ5 = 2.0 minutes, θ6 = 2.5 minutes, θ7 = 2.0 minutes.

Table 5.3: Stochastic Parameters for Simulation

Stochastic Parameters Fi(x) θi
New task interval time distribution X1 ∼ E(x) θ1
Truck assigning time distribution X2 ∼ Γ(x) (θ2, θ2/2)
Truck travelling time distribution X3 ∼ Γ(x) (θ3, θ3/2)

Time distribution of quay crane pick-up operation from the yard X4 ∼ Γ(x) (θ4, θ4/2)
Time distribution of quay crane grounding operation to the yard X5 ∼ Γ(x) (θ5, θ5/2)
Time distribution of yard crane pick-up operation from the yard X6 ∼ Γ(x) (θ6, θ6/2)
Time distribution of yard crane grounding operation to the yard X7 ∼ Γ(x) (θ7, θ7/2)

For the non-stochastic parameters, the values of parameters are given in table

5.4. The data of the container throughput of Southampton Container Terminal is

shown in table D.1 in Appendix D. The number of quay cranes is shown by table

D.2. The number of yard cranes is given by straddle carriers, sprinters, reach stackers

and empty container handlers in table D.3. The “Loading:discharging ratio” in the

table is an approximate figure obtained from a meeting with Southampton Container

Terminal. The data of “Empty containers:laden containers ratio”, “Transhipment

containers: all containers ratio” and “Pre-marshalling percentage” is unavailable at

the moment but needed to run the model. Therefore, the figures in the table are

estimated by personal knowledge and recognition of container terminals, which can

be changed according to real data.

The values of Ntr j are set as follows, where Ntr j is the value of Ntr for the jth

simulation iteration, j denotes the jth simulation iteration and NSimIte is the number
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of simulation iterations.

Ntr j = j ·(Upper bound of Ntr (5.27)

− Lower bound of Ntr)/NSimIte

+ Lower bound of Ntr

The simulation time in table 5.4 needs to be as short as possible to save computa-

Table 5.4: Non-Stochastic Parameters for Simulation [86] [120] [113] [122]
Parameter Value

Container throughput Data from 2000 to 2009
Quay crane quantity Data from 2000 to 2009
Yard crane quantity Data from 2000 to 2009

Loading:discharging ratio 6:4
Empty containers:laden containers ratio 3:7

Transhipment containers: all containers ratio 0.5:10
Pre-marshalling percentage 20%

Simulation time 10 hours
Upper bound of Ntr 400
Lower bound of Ntr 40

Value of NSimIte 19

tional time, but on the other hand, needs be sufficient in order to reach the expected

accuracy level. It is inevasible that simulation normally has noisy data especially at

the warm-up stage. The instability of stochastically variables might affect simulation

results. Therefore, in order to get rid of these noisy data, a sufficient simulation peri-

od is a must to guarantee the accuracy of results. However, from the point of view of

computational cost saving, it is better to shorten the simulation time. In this thesis,

simulation time and simulation period indicate the simulation time to be simulated

in the real world, while computational time indicates the time taken to implement

simulation models on computers. In order to shorten the simulation time to a min-

imum level to reduce the computational time but maintain the expected accuracy

level, experiments are implemented to test the value of simulation period. According

to equation (5.27) and table 5.4, 20 experiments are implemented to test the stability

of simulation results and variant parameters are obtained from equation (5.27). Sim-

ulation results are shown in figures (5.4), (5.5), (5.6), (5.7) and (5.8), while data 1 to

20 on the graphs are the results from simulation experiments 1 to 20 with different
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Figure 5.4: Simulation Results for the First Objective Function

variant values from equation (5.27). For the first objective, in figure (5.4), noisy data

is mainly in the beginning 5 hours and data become smoother afterwards. Instable

data in figure (5.5) are mainly in the first 4 hours for the second objective. Noisy

data in figures (5.6), (5.7) and (5.8) are generated in the first 2 hours. The results

from simulation need to be processed and noisy data need to be avoided. Therefore

simulation time is supposed to be at least 5 hours to get the stable data. So 10 hours

simulation time is set to run the simulation models as shown in table 5.4.

The output of the simulation is provided from the execution of simulation model

according to table 5.2 and equations (5.6), (5.15), (5.17), (5.20) and (5.23). The

results are given in table 5.5.

5.4.2 Single Objective Formulation Parameters and Results

For equation (5.8) in section 5.3.3, the type of base function set {ϕ1(x), ϕ2(x), · · · , ϕn(x)}
and the value of n are determined by the distribution features of simulation data from

table 5.2. Therefore, seeing from data graphs, assume (n− 1) powered functions are

good representations for the above simulation data for equations (5.8), (5.14), (5.17),
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Simulation Results for the Second Objective Function
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Figure 5.5: Simulation Results for the Second Objective Function

Simulation Results for the Third Objective Function
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Figure 5.6: Simulation Results for the Third Objective Function
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Figure 5.7: Simulation Results for the Fourth Objective Function

Figure 5.8: Simulation Results for the Fifth Objective Function
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Table 5.5: Simulation Results
Ntr Rqc (Container/ f ′utl T ′cr i(Hour) f ′fcost(£) f ′lab(£)

Crane/Hour)
40 12.54687315 0.971352718 0.182165646 8.543670125 9.167742329
60 18.89973767 0.965342043 0.171088875 7.972810574 8.564404568
80 22.39256737 0.865179222 0.16744958 7.82420116 8.416769596
100 22.80852256 0.701288155 0.166598276 7.815462336 8.380598942
120 23.21247009 0.598148787 0.16836295 7.900786105 8.479286146
140 22.71417376 0.505343752 0.169210962 7.906908401 8.494977912
160 23.75569816 0.459986691 0.168814357 7.853466927 8.431030495
180 23.48810793 0.404044256 0.168645483 7.844956697 8.431287438
199 22.89956687 0.352800526 0.16611649 7.786144273 8.358429853
220 23.30935551 0.326967563 0.167521601 7.899256638 8.461388431
240 22.84265168 0.292357668 0.16728612 7.854525918 8.435826386
260 23.05794219 0.275840336 0.168112575 7.902267322 8.484674645
280 23.57311275 0.258219027 0.167761641 7.836316177 8.430516841
300 23.09830098 0.238239918 0.166778844 7.831396589 8.427471439
320 23.57766614 0.230908068 0.169162248 7.892895166 8.509722167
340 23.78789388 0.217557498 0.165562909 7.852579818 8.468765462
360 23.60586872 0.203241221 0.16710013 7.847154312 8.434990724
380 23.97224522 0.196332251 0.166657212 7.943286678 8.537419232
400 23.28862359 0.183065927 0.16735693 7.941567596 8.577450368
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(5.21) and (5.24), which are shown by following equations respectively.

feff (x) =
n∑
j=1

N j−1
tr αj+10 (5.28)

futl(x) =
n∑
j=1

N j−1
tr αj+20 (5.29)

fts(x) =
n∑
j=1

N j−1
tr αj+30 (5.30)

ffcost(x) =
n∑
j=1

N j−1
tr αj+40 (5.31)

flab(x) =
n∑
j=1

N j−1
tr αj+50 (5.32)

Numerical experiments have been done to test values of R2 to find good fitting powers

for the functions. The values of n for each above equation are shown in table 5.6

respectively. Furthermore, the data obtained from simulation are input as parameters

Table 5.6: Fitting Powers
f(x) feff (x) futl(x) fts(x) ffcost(x) flab(x)
n 4 3 4 4 4

into the above equations (5.28), (5.29), (5.30), (5.31) and (5.32). The fitting coefficient

set α is deduced by equation (5.10) from simulation data. The value of α is computed

and exported to equations (5.28), (5.29), (5.30), (5.31) and (5.32). Similarly, the

fitting coefficients for the objective functions are given out in table 5.7.

In this container terminal, the number of drivers in a single truck is 2 and the

average unit labour cost is £64.5/person/day [90].

5.4.3 Multi-objective Optimisation Results

This is a multiple objective problem which has five objectives, two of which are to be

maximised while the other three to be minimised. The objective space is therefore

denoted as a five dimensional space O. The variant, namely the truck quantity,

is belonging to a decision space D, which in this problem is integer and bounded.

Therefore O is accordingly a bounded space because of the variant value range. So
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Table 5.7: Fitting Coefficients

αj Fitting Values R2 αj Fitting Values R2

Qc Rate Objective Function: Truck Utilisation Rate
feff (x) Objective Function:futl(x)

α11 −1.00608607389221× 10−8 α21 0
α12 1.00172577039788× 10−5 α22 −1.85164922615276× 10−8

α13 - 0.00350495307286781 0.9464 α23 2.11313871749685× 10−5 0.9892
α14 0.504609782642747 α24 -0.00836945848863550
α15 -1.62424413488179 α25 1.34277065923323

Average Crane Operational Unit Fuel Consumption
Time Function:fts(x) Objective Function:ffcost(x)

α31 1.43611966786207× 10−11 α41 7.34184693898015× 10−10

α32 −1.40544943061360× 10−8 α42 −7.06754055408318× 10−7

α33 4.80442768722124× 10−6 0.7824 α43 0.000239076661804849 0.7810
α34 - 0.000670752843376622 α44 -0.0330186354664595
α35 0.199458851793086 α45 9.38680082103357

Unit Labour Cost Objective
Function:flab(x)

α51 7.63548962659333× 10−10

α52 −7.37173666689088× 10−7

α53 0.000250874980866436 0.7872
α54 - 0.0348859425028811
α55 10.0628641598034
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the computational volume to explore all possible solutions in the space O is bounded

and acceptable. So, in order to obtain every possible solution, explicit enumeration is

employed to explore the solutions on the Pareto frontier. The source codes of explicit

enumeration are given in appendix A.

461 solutions are obtained from equation (5.25). The solutions are normalised on

axes into a range from 0 to 1, due to the values and value spans of solutions to each

objective function are different. Equation (5.33) is used to normalise the solutions,

where RSij denotes the jth normalised solution for the ith objective function; Sij is the

jth original solution for the ith objective function; Smini is the minimum solution for

the ith objective function; Smaxi denotes the maximum solution for the ith objective

function.

RSij =
Sij − Smini

Smaxi − Smini
(5.33)

The normalised solutions to equation (5.25) are shown in figure (5.9). Solution

information must be substantial enough to allow an informed decision to be made by

the decision maker but not so large as to overwhelm him/her with information [99].

Therefore some representative solutions are selected from figure (5.9) and given in

figures (5.10), (5.11), (5.12) and (5.13) for decision supporting. Figure (5.10) shows

6 best solutions to the first objective function, i.e. the terminal quay crane efficiency

function. Solutions 1, 2, 3, 4, 5 and 6 in figure (5.10) have the best values for the

first objective, very good values for the third objective and also good values for the

fourth and fifth objectives, but the values for the second objectives are almost the

worst. On figure (5.11), the solutions on the graph are the best for the second and

third objective functions, namely the truck utilisation rate and congestion probability.

However, the solutions have very poor values for the other three objectives. Solutions

on figure (5.12) have the lowest values for the fourth and fifth objectives which are to

be minimised. The values for the quay crane performance are very close to 1, while the

values on the second and third axis are close to 0.5, i.e. the average value. The above

three figures show good solutions to each single objective function, but they do not

necessarily provide a balance between all five objectives. This might not be the best

option in some circumstances to achieve the best values for one or some objectives at

the cost of sacrificing others. On the other hand, if decision makers prefer balanced

solutions to each objective, the solutions from figure (5.13) are a choice. Solutions
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Figure 5.9: Normalised Solutions Graph (Each colour of pentagon shows a solution)

19, 20, 21, 22, 23 and 24 in figure (5.13) have values close to the average value, i.e.

0.5, for the first, fourth and fifth objective functions, with very good values for the

second objectives (close to 0.9) and good values for the third objective function (close

to 0.2).

On the basis of these solutions, decision makers have some good solutions to choose

rather than too much information. They choose appropriate solutions to different

situations based on multiple references and at the end the truck quantities can be

derived from the selected solutions.

5.4.4 Computational Considerations

The computational time of the optimisation consists of the first stage i.e. simulation

computational time and the second stage i.e. multi-objective optimisation compu-

tational time. The information of computer hardware to run the models is given

as follows: processor: Intel i3 M350 at 2.27 GHz; memory: 3.00GB. Software envi-

ronment is 64-bit Microsoft Windows 7. The simulation model is run in the Micro
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Figure 5.10: The Best Normalised Solutions to the First Objective Function
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Figure 5.11: The Best Normalised Solutions to the Second and Third Objective Func-
tions
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Figure 5.12: The Best Normalised Solutions to the Fourth and Fifth Objective Func-
tions
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Figure 5.13: The Most Balanced Solutions to Five Objectives
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Figure 5.14: Computational Times of Simulation Experiments

Saint Sharp 3.0 Windows version. Explicit enumeration is implemented in C # cod-

ed in Microsoft Visual Studio 2010 Express [26]. 19 simulation iterations are run

synchronously on one computer to reduce the total time cost. The computational

times for each experiment are shown in the graph (5.14). The total computational

time for simulation is the experiment using the longest time which is 0.95 hours.

Besides, the running time of multi-objective optimisation is 0.03 seconds because the

computational volume is very small. Therefore the total time taken is 0.95 hours.

5.5 Summary

This chapter addresses the truck quantity optimisation problem in a container ter-

minal background, proposes a model for the truck quantity decision making for con-

tainer terminal operators and discusses solutions. In this chapter, simulation and

multi-objective optimisation are combined based on a simulation model for container
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terminal truck operations and a multi-objective optimisation modelling with five con-

flicting objectives to support terminal daily decision making. Simulation has strengths

in its ability to effectively implement complex stochastic processes of container ter-

minals and provide real time data, on the other hand, multi-objective optimisation

has better performance in computational time and the Pareto guaranteed solutions.

Therefore, a combination is proposed to integrate the strengths of two methods in

order to provide optimised truck quantities for daily decision making in a container

terminal in effective and efficient ways. The model is applied based on the data from

the Southampton Container Terminal and the solutions show that the model offers

various and effective solutions to container terminal operators. The computational

time is around an hour which is acceptable in the context of the application.



Chapter 6

Combining Simulation and Multi-Objective Optimisation by

Post-MOO Structure for Multiple Container Terminal

Equipment Optimisation

6.1 Introduction

The terminal operational efficiency denotes the how fast cargos move in and out of

terminals. For specific terminal equipment, it means an index to measure the number

of containers handled in a unit of time or the time taken to handle a certain number

of containers. The equipment productivity is normally measured by a series of indices

in term of the needs and requirements from clients. Two types of efficiency objectives

are considered in this chapter and they are quay crane operational efficiency and yard

crane operational efficiency. Smooth traffic is also considered as one of the efficiency

goals as it influences container circulation time in the yard. On the other hand, cost

related objectives in terminal daily expenses considered are fuel consumption and

unit labour cost.

A combination of simulation and multi-objective optimisation is employed to in-

tegrate the strengths of simulation and multi-objective optimisation to deal with

dynamic systems and explore the near Pareto optimal solutions to multiple objec-

tive problems. On the other hand, the computational cost of direct simulation-based

optimisation method is normally very high [108] for some applications because of

the number of additional simulation replications [20]. The combination with multi-

objective optimisation may reduce the computational cost of simulation without ef-

fects on representation of dynamic terminal operations.

In this chapter, a simulation model is developed involving multiple types of termi-

nal equipment in section 6.3.2. A detailed level of output data is able to be obtained

from the model for further analysis and use. A multi-objective optimisation is also

71
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built for the four main objectives considered in this chapter on the basis of the combi-

nation of the two methods. Objective functions are addressed in section 6.3.3, while

a general multi-objective optimisation function is stated in section 6.3.4.

Four objectives and three decision variables are considered in the models, there-

fore the solutions are to be found in a four dimensional objective space and a three

dimensional decision space. The genetic algorithm is employed to explore the near

Pareto optimal solutions for the multi-objective optimisation model because the prob-

lem is non-linear and the computational time of solving the problem by an explicit

enumeration algorithm is more than 24 hours.

The main structure of this chapter is described below. Firstly, the introduction

to the processes of this chapter is given in section 6.1. Background statement, con-

tainer terminal operations with multiple equipment and the problem description are

addressed in section 6.2. A model for container equipment quantity optimisation is

described in section 6.3. Parameters and results are discussed in section 6.4. Finally,

conclusions are given in section 6.5.

6.2 Background Information

Being connection points between maritime transportation and inland transportation,

container terminals are buffer and storage areas for containers transferred from water

route to land route transportation or contrarily from land route to water route trans-

portation. Containers usually have short stays in terminals for the next operations.

The velocity of cargo circulation through container terminals is supposed to adapt to

the velocity of cargo circulation in the whole supply chain to avoid bottlenecks effects.

Otherwise, if cargos are delayed in container terminals, the bottleneck happening in

terminals may influence the whole supply chain efficiency.

According to the layout of a container terminal shown in figure (5.1), in order

to guarantee smooth and efficient operations, a container terminal normally contains

flowing main facilities and mechanical equipment:

• Terminal areas: berth, container yard, gatehouse, buffer area, administration

and control centre;

• Mechanical equipment: quay crane, yard crane, internal truck;
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On the other hand, as discussed in section 2.4, the main mechanical equipment in

container terminals are:

• Equipment alongside the berths: quay crane;

• Equipment in the yard: straddle carrier, sprinter, reach stacker and empty

container handler;

• Equipment in the yard gatehouses and berths: Internal truck.

For terminal equipment, quay cranes are the tools to move containers between

the water side and land side at berths. Yard cranes are those cranes picking up and

grounding containers in the terminal yard, which mainly have to four types of cranes:

straddle carrier, sprinter, reach stacker and empty container handler. Internal trucks

are the container carriers within terminals.

Container terminal operations normally consists of a series of loading, discharging,

location shifts and pre-marshalling movements of containers to achieve the goals of

inter-modal transportation under a whole supply chain. General container terminal

operations can be broken down to three sub-modules which are:

• Importation operations (Discharging operations)

• Exportation operations (Loading operations)

• Pre-marshalling operations

Categorised by different types of equipment, the operations of container terminals

can be categorised to:

• Quay crane operations

• Yard crane operations

• Internal truck operations

Importation and exportation operations include quay crane, yard crane and internal

truck operations, while pre-marshalling operations involve the above operations other

than quay crane operations.

The objectives to be optimised in this chapter are efficiency related and cost

related objectives as listed below:
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• Efficiency related objectives

High quay crane productivity

High yard crane productivity

Low terminal yard congestion probability

• Cost related objective

Short truck travelling distance in the yard (related to fuel consumption and

emissions)

6.3 Model Description

This section addresses the processes of developing equipment quantity optimisation

models for container terminals under modern management. Terminal operations are

analysed, categorised, summarised and then integrated into the modelling. A simula-

tion model is built to present terminal work flows and a multi-objective optimisation

model is also proposed for decision makers in the post-MOO structure under the

combination framework. A genetic algorithm is developed to explore the near Pareto

optimal solutions. Parameter settings and results are also discussed.

In this section, simulation modelling details are addressed in section 6.3.2 and

the formulations of objectives are presented in section 6.3.3. The multi-objective

optimisation function is given in section 6.3.4. The genetic algorithm is employed to

solve the function in section 6.3.5.

6.3.1 Post-MOO Structure

In this chapter, the post-MOO structure is employed to integrate simulation and

multi-objective optimisation under the combination framework. The definitions of

post-MOO are given section 4.3.3. The data fitting is used to process the simulation

output as shown in figure (4.7). The processed data is sent out as the parameters for

multi-objective optimisation.
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6.3.2 Discrete-event Simulation

This section proposes simulation models for container terminal general operations

for equipment quantity optimisation. Two simulation models are developed in this

section: a simulation model of general container terminal operations for equipment

quantity optimisation and a simulation model for internal truck travelling distance

optimisation. The simulation model for general terminal operations is built in the

Micro Saint Sharp simulation package and the model for truck travelling distance is

developed in C#.

The simulation model of internal truck travelling distance needs a large number

of iterations to achieve a high level of accuracy because the model generates a great

deal of stochastic numbers. In order to increase the stability of simulation results,

a certain number of iterations are necessary to reduce the effect of uncertainty of

stochastic numbers and noisy data. However, on the other hand, a large number of

iterations are computational time consuming. Therefore, in order to run the model

for enough iterations and meanwhile reduce the time taken for the model, the sim-

ulation model for internal truck travelling distance optimisation is built separately

in C# in Microsoft Visual Studio 2010 Express because a number of applications of

visual interfaces in the Micro Saint Sharp package increases the computational time

especially in the case of that a large number of iterations are required. In order to

reduce the time taken by visual interfaces, the model for truck travelling distance is

coded in a pure console mode in C# to avoid the repetitive computation for visual

interfaces in each iteration.

The source codes for the model of truck travelling distance are given in appendix

B, while the model for general container terminal operations built in the Micro Saint

Sharp is discussed as follows.

Simulation of Container Terminal Operations

The elements involved in the simulation model include event, entity, equipment re-

source, list, variable, parameter, process (“tasks” in the model) as shown in table 6.1.

The boxes appearing in the simulation network in figure(6.1) are the tasks represent-

ing basic container terminal operations which may be triggered by the occurrence

of new event. Containers are the entities as a flow goes through simulation tasks in
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the model. The flow triggers the executions of different tasks or, in other words, the

tasks are driven by these events. The occurrence of events is controlled by execu-

tion conditions (“Release Conditions” in the Micro Saint Sharp simulation package)

which are like switches to trigger tasks when container flows go through them. Before

containers enter tasks, judgements need to be made: only those containers satisfying

the release conditions are allowed to enter the tasks and processed by the simulation

package.

Another element is equipment resource, namely, the decision variables to be de-

cided in this model. Therefore the values of the decision variables, i.e. equipment

numbers, need to be set in simulation scenarios. The equipment considered is quay

cranes, yard cranes and internal trucks.

Furthermore, lists in the model are another element of simulation. Lists are a tool

to control the numbers of terminal devices to imitate terminal operations in reality.

For instance, containers wait in queues if the available terminal devices are zero. The

length of queues and average waiting in queues can be observed and recorded by the

package. Additionally, in order to implement real systems on computers, variables

are needed to control the numbers of equipment and set the parameters of their

operational time distributions. These parameters need to be set in “Scenarios” in

the Micro Saint Sharp and their values can be tested by realistic data from container

terminals.

Table 6.1: Simulation Elements
Entity container

Equipment resource quay crane, yard crane
and truck

List waiting task list
executed task list

free yard crane list
occupied yard crane list

waiting lists for each yard crane
free quay crane list

occupied quay crane list
waiting lists for each quay crane

free truck list
occupied truck list
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Assume all of terminal equipment is in idle status at the initial state of simulation,

namely all of free lists are full while all of executed lists are empty. Terminal internal

trucks and yard cranes stop at the truck operation buffer areas in figure (5.1). Quay

cranes are at stand-by positions on their tracks. The waiting task and executed task

lists are empty. All of yard cranes, quay cranes and trucks are waiting for tasks,

namely, they are in the free yard crane list, and free quay crane list and free truck

list respectively. When the simulation starts to run, new operation tasks are given

by the terminal control system and these tasks enter the waiting task list.

When new tasks are generated, the container terminal control centre allocates idle

trucks to new tasks from the free truck list. If the free truck list is not empty, the

control system matches the free trucks with new tasks, namely assigning available

trucks with new tasks. Otherwise, the new tasks enter the waiting task list and wait

for the next available truck. Once free trucks are assigned to new tasks, they are

transferred from the free truck list to the occupied truck list, and meanwhile, these

tasks are transferred from the waiting task list to the executed task list. Then truck

drivers are noticed with the positions to picked up from and the destinations to send

to. The trucks are then driven to their destinations and wait for crane operations. If

the free crane list is not empty, namely at least one crane is available, the first truck

on the list will be operated. Otherwise they will be in the waiting lists. Trucks then

carry containers to their next appointed destinations and enter queues waiting for

next crane operations. If the free crane list is not empty, containers are picked up

from trucks and grounded onto ships or the yard or external trucks.

When trucks are waiting for yard crane operations, the container terminal control

centre allocates idle yard cranes to the trucks from the free yard crane list. If it is

not empty, the control system matches the free yard cranes with the trucks from the

waiting lists. If the free yard crane list is empty, the trucks will be still staying in the

waiting list and wait for the next available yard crane. Once available yard cranes

are assigned to the trucks, they will be transferred from the free yard crane list to

the occupied yard crane list, and the trucks are taken out from the waiting lists for

yard cranes.

If trucks are waiting for quay crane operations, the container terminal control

centre allocates idle quay cranes to the trucks from the free quay crane list. As long



78

as the free quay crane list has one or more than one quay crane(s) available, the

control system matches it(them) with the trucks from the waiting lists. Otherwise,

the trucks need to wait for the next available quay crane. Once available quay cranes

are assigned to the trucks, they will be transferred from the free quay crane list to

the occupied quay crane list, and the trucks are taken out from the waiting list.

The simulation model for general operations is built in the Micro Saint Sharp

simulation environment. The simulation model consists of several sub-networks and

sub-sub-networks as each sub-network or sub-sub-network describes a basic terminal

operation. A general simulation network is given in figure (6.1). The model consists of

five modules: two modules belong to importation, two modules belong to exportation

and one module represents pre-marshalling operations. Two importation modules are

the sub-networks “(2)” and “(3)” in the green boxes in figure (6.1). The sub-network

“(2)” represents the operations of containers moving from outside into the terminal

yard, while the sub-network “(3)” represents the operations of containers moving from

the yard onto container ships. Two exportation modules are the sub-networks “(4)”

and “(5)”. The sub-network “(4)” represents the operations of containers moving

from container ships into the terminal yard, while the sub-network “(5)” represents

the operations of containers moving from the yard to outside. Above five modules

consists of three basic operational processes, namely quay crane operation process,

yard crane operation process and internal truck operation process, while the internal

truck process has two sub-modules which are importation truck operation process

and exportation truck operation process.

New operation tasks are generated by the terminal control system (i.e. “Oper-

ation Orders (1)” in figure (6.1)) and the tasks are sent to be made judgements in

“Im/ExPort(10)” that they are either importation tasks or exportation tasks. Im-

portation containers are sent to the sub-network “(2)” and exportation containers are

sent to “DirectExp (11)”. The processes are discussed separately by importation and

exportation below.

The importation process includes the sub-networks “(2)”, “(6)” and “(3)”. If

containers are direct imported, namely cargo owners need to pick up their cargos

without any stop in terminals when the containers are discharged from container ships,

the sub-networks “(2)” transfers containers from container ships to external trucks
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Figure 6.1: General Simulation Network

waiting in the truck operation buffer areas in figure (5.1). Otherwise, if containers

are not direct imported, the sub-networks “(2)” transfers containers from container

ships to the terminal yard for temporarily storage. Pre-marshalling operations may

happen during this period as shown in the sub-network “(6)”. When cargo owners

arrange external trucks to pick up their cargos, containers are moved from terminals

to the truck operation buffer areas as shown in the sub-network “(3)”. The external

trucks will pick up the containers from the truck operation buffer areas.

The exportation process includes the sub-networks “(4)”, “(6)” and “(5)”. If

containers are direct exported, namely containers are delivered onto ships without

storage in terminals from outside, the sub-network “(4)” transfers containers from

external trucks from the truck operation buffer areas onto container ships. Otherwise,

containers are delivered into terminals for temporarily storage as shown in the sub-

network “(4)”. Pre-marshalling operations may be needed during this period as shown

in the sub-network “(6)”. When container ships come to load the containers, the

containers are transported to the quay crane operation buffer areas to be loaded onto

ships according to the sub-network “(6)”.

The details of the sub-network “(2)” is shown in figure (6.2). It contains a truck

operation, a quay crane operation and a yard crane operation. The sub-sub-network

“2 16” is a quay crane operation process and sub-sub-network “2 17” is a yard crane
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Figure 6.2: Sub-network 2 of Simulation

operation. The sub-sub-network “2 16” is shown in figure (6.3). It describes a quay

crane operation process. The sub-sub-network “2 17” is demonstrated in figure (6.4).

It shows a yard crane operation process.

The details of the sub-network “(3)” is shown in figure (6.5). The sub-sub-

networks “3 11” and “3 12” represent yard crane operations. The sub-sub-networks

“3 11” and “3 12” are shown in figures (6.6) and (6.7) respectively.

The details of the sub-network “(4)” is shown in figure (6.8). The sub-sub-

networks “4 15” and “4 16” represent yard crane operations. The sub-sub-networks

“4 15” and “4 16” are shown in figures (6.9) and (6.10).

The details of the sub-network “(5)” is shown in figure (6.11). The sub-sub-

network “5 15” is a quay crane operation process and sub-sub-network “5 14” is a

yard crane operation. The sub-sub-network “5 14” is shown in figure (6.12). It

describes a yard crane operation process. The sub-sub-network “5 15” is shown in

figure (6.13). It describes a quay crane operation process.

The details of the sub-network “(6)” is shown in figure (6.14). The sub-sub-

networks “6 15” and “6 16” represent yard operations. The sub-sub-networks “6 15”

and “6 16” are shown in figures (6.15) and (6.16) respectively.

There are two types of parameters in the simulation model: stochastic parameters

and non-stochastic parameters.
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Figure 6.3: Sub-network 1 of Sub-network 2 of Simulation

Figure 6.4: Sub-network 2 of Sub-network 2 of Simulation
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Figure 6.5: Sub-network 3 of Simulation

Figure 6.6: Sub-network 1 of Sub-network 3 of Simulation
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Figure 6.7: Sub-network 2 of Sub-network 3 of Simulation

Figure 6.8: Sub-network 4 of Simulation
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Figure 6.9: Sub-network 1 of Sub-network 4 of Simulation

Figure 6.10: Sub-network 2 of Sub-network 4 of Simulation
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Figure 6.11: Sub-network 5 of Simulation

Figure 6.12: Sub-network 1 of Sub-network 5 of Simulation
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Figure 6.13: Sub-network 2 of Sub-network 5 of Simulation

Figure 6.14: Sub-network 6 of Simulation
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Figure 6.15: Sub-network 1 of Sub-network 6 of Simulation

Figure 6.16: Sub-network 2 of Sub-network 6 of Simulation
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The operational times of every operation are generated by stochastic variables

based on time distribution functions. The definitions of these stochastic variables

are declared in table 6.2. The probability distribution function for the ith stochastic

variable is denoted byXi ∼ Fi(x), where θi denotes a set of distribution parameters for

Fi(x). The setting of parameters for time distributions for terminal devices determines

Table 6.2: Time Distribution Definitions

Time Distributions Definitions
X1 Tasks interval time distribution
X2 Truck assigning time distribution
X3 Truck travelling time distribution
X4 Time distribution of yard crane operations from yard to trucks
X5 Time distribution of yard crane operations

from trucks to yard or trucks
X6 Time distribution of quay crane operations from ships to trucks
X7 Time distribution of quay crane operations from trucks to ships
X8 Quay crane assigning time distribution
X9 Yard crane assigning time distribution
X10 Quay crane travelling time distribution
X11 Yard crane travelling time distribution

the values of stochastic variables, namely the operational time of equipment. So

parameters need to be assigned with appropriate values to reflect realistic systems.

The input of parameters include the selection of probability distribution functions

Fi(x) and estimation of function parameter sets θi. The values of stochastic variables

involved are then generated by computers on the basis of their distribution functions

and parameters.

On the other hand, the non-stochastic parameters are those parameters related

to terminal layout, operation processes, equipment quantities and properties, load-

ing/discharging ratio, empty/laden container ratio, transhipment/all container ratio,

pre-marshalling probability, simulation duration and the number of simulation itera-

tions.

The results of simulation are processed for the scenarios for multi-objective opti-

misation. The output of the simulation model is given out in table 6.3.
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Table 6.3: Simulation Output Parameters

Output Parameter Definition
cntrT imQCijk The loading and(or) unloading operational time of the

ith lift by jth quay crane for kth ship
cntrT idleQCijk The idle or waiting time of the ith lift

by jth quay crane for kth ship
NcnQCLftijk The number of containers lifted in the ith lift by

jth quay crane for kth ship
TiY cInTrijk The loading and(or) unloading operational time of the ith lift

operation of jth yard crane for kth internal truck
TiY cExTrijk The loading and(or) unloading operational time of the ith lift

operation of jth yard crane for kth external truck
TiY cCYi The loading and(or) unloading operational time of the

ith lifting operation for the containers in the terminal yard
NcnY cInTrijk The number of containers lifted in the ith lift of jth yard

crane for kth internal truck
NcnY cExTrijk The number of containers lifted in the ith lift of jth yard

crane for kth external truck
NcnY CLftij The number of containers lifted in the ith lift by jth yard

crane for pre-marshalling operations in the yard
tQqcijk The waiting time of the ith container to be lifted by

jth quay crane for kth ship
QY cInTrijk The waiting time of the ith container operated by jth yard

crane for kth internal truck
QY cExTrijk The waiting time of the ith container operated by jth yard

crane for kth external truck
QY cCYij The waiting time of the ith container operated by jth yard

crane for pre-marshalling operations
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Simulation of Internal Truck Travelling Distance

When a new task is generated, the terminal control system locates the position of

loading and discharging, and then, seeks for the closest truck to assume the task.

The position of the truck is its previous discharging position. There are three major

positions to determine the truck travelling distance for every task: the position to

discharge the previous container(s), the position to load the current container(s)

according to the task and the position to discharge the current container(s). When

a container moved from one container block to another, the previous discharging

position, current loading position and current discharging position might be all in

the same crane operation area, or two of them are from the same crane operation

area but the other one is from a different area, or three of them are all from different

crane operation areas. Travelling in the same crane operation areas normally avoids

the extra travelling distances. Extra travelling distance means the distance caused

by that trucks need to detour round container blocks to go to destinations.

When new tasks are sent to internal truck drivers, the information normally con-

tains loading and discharging positions. (xldi, yldi) denotes the position where the ith

task loads container(s) from. (xdischi, ydischi) is the position where the ith task dis-

charge(s) the container(s) to. The travelling distance of the ith task includes: firstly,

the travelling distance from the positions of trucks, i.e. the previous container dis-

charging positions, to the current loading positions; secondly, the travelling distance

from the container loading positions to the container discharging positions; thirdly,

the extra travelling distance. The travelling distance of loading operation of the ith

task is denoted by Dldi which is given out in equation (6.1). It equal to the distance

difference on x and y axes.

Dldi =
√

(xldi − xdischi−1)2 +
√

(yldi − ydischi−1)2 (6.1)

The travelling distance of discharging operation of the ith task is denoted by Ddischi,

which is equal to the distance difference on x and y axes.

Ddischi =
√

(xldi − xdischi+1)2 +
√

(yldi − ydischi+1)2 (6.2)

In container terminals, travelling routes are unlikely to be point-to-point straight lines

because trucks run on roads rather than cross container blocks directly. Therefore
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extra travelling distance is normally inevitable. Suppose the positions of container

blocks are described by a four dimensional coordinate, i.e. (xCnStkUpj, xCnStkDnj,

yCnStkupj, yCnStkDnj) which denotes the coordinates of the jth container block in

the yard. Therefore the lower left corner of the jth container block is (xCnStkDnj,

yCnStkDnj). The lower right corner of the jth container block is (xCnStkUpj, yCnStkDnj).

Similarly, the up left and up right corners of the container block are located at

(xCnStkDnj, yCnStkUpj) and (xCnStkUpj, yCnStkUpj) respectively. DExi de-

notes the extra distance between (xldi−1, yldi−1) and (xldi, yldi). If the straight lines

x1 = xldi−1 and x2 = xldi both cross the container block area (xCnStkUpj, xCnStkDnj,

yCnStkupj, yCnStkDnj), then the container i needs to travel an extra distance to

detour round container blocks. In this case, trucks have to choose the shortest route

to detour container blocks.

DExmin is defined as the minimum distance to detour the container block j and

DExmax be the maximum distance.

DExmin = min(xCnStkupj, xCnStkDnj) (6.3)

DExmax = max(xCnStkupj, xCnStkDnj) (6.4)

DExi = 2 ·min (
√

(DExmin − xldi−1)2,
√

(DExmax − xldi−1)2, (6.5)√
(DExmin − xldi)2,

√
(DExmax − xldi)2, )

On the other hand, if the straight lines y1 = yldi−1 and y2 = yldi both cross the

container block area (xCnStkUpj, xCnStkDnj, yCnStkupj, yCnStkDnj), then the

container i needs to travel an extra distance to detour round road-blocks. In this

case, trucks have to choose the shortest route to detour container blocks.

DExmin = min(yCnStkupj, yCnStkDnj) (6.6)

DExmax = max(yCnStkupj, yCnStkDnj) (6.7)

DExi = 2 ·min (
√

(DExmin − yldi−1)2,
√

(DExmax − yldi−1)2, (6.8)√
(DExmin − yldi)2,

√
(DExmax − yldi)2, )

The total travelling distance for the ith container is denoted by DTri when k internal

trucks are employed in the terminal yard.

DTrik = (Dldi +Ddischi +DExi) (6.9)
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DTrk is defined as the total truck travelling distance during simulation period when

k internal trucks are employed in the terminal yard.

DTrk =
Ncntr∑
i=1

DTrik (6.10)

In this simulation model, the positions of container blocks (xCnStkUpj, xCnStkDnj,

yCnStkupj, yCnStkDnj) are a parameter need to be given according to the termi-

nal layout. The loading and discharging positions on tasks, i.e. (xldi, yldi) and

(xdischi, ydischi) are generated from the model by generating a great deal of random

numbers in the container block areas. The random numbers are generated on the

basis of millisecond of current time to avoid the same random numbers. Additionally,

a certain number of iterations to run the model is necessary in order to reduce the

random errors caused by random numbers. Therefore the parameters involved in this

simulation model include the terminal yard coordinates and the number of simulation

iterations. Simulation output is the truck travelling distance, i.e. DTrk.

6.3.3 Formulation for Objectives

Both of efficiency related objectives and cost related objectives are considered in this

chapter, where efficiency related goals include high quay crane productivity, high yard

crane productivity and low terminal yard congestion probability, and the cost related

goal is to find the shortest internal truck travelling distance in the yard (related to

the fuel consumption and emissions).

Viewing a container terminal as a whole, berths and gatehouses are like two in-

terfaces to accept and hand over containers from and to terminal clients. Firstly,

the ability of cargos to go through container terminals influences the quick change

of transportation modes in intermodal transportation across continents and oceans.

The loading and discharging rates at the berths normally determine the berthing

time of container vessels in terminals and container handling time which might affect

the voyage schedules of terminal shipping clients. Secondly, for the terminal gate-

houses, cargo handling rates are a determinant to the cargo circulation speed in the

yard. If there is a bottleneck at the gatehouse, cargos are unable to evacuate shortly

from terminals and be carried into the yard before vessel arrivals. Thirdly, reducing

the number of queues will improve the traffic ability in the yard. The road areas
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are limited in terminals because the main area of the yard is for container storage.

Therefore the berth productivity, gatehouse productivity and truck waiting proba-

bility are considered as efficiency objectives in this chapter. Other than efficiency

related objectives, cost related objectives also need to be taken into consideration in

this model, such as minimise travelling distance to reduce fuel cost and equipment

emissions. Single objective functions for each management objective are given re-

spectively as follows and then a multi-objective function will be given. By the end of

this section, a genetic algorithm to explore the near Pareto optimal solutions to the

model will be addressed.

First Objective Function: Quay Crane Service Rate

The first objective is to maximise the berth operational efficiency which reflects how

fast terminals transfer containers between terminals and vessels. Petering and Murty

[111] state that the average number of lifts achieved at a terminal per QC (quay crane)

working hour is known as the GCR (gross crane rate, QC rate); GCR is perhaps the

most important performance measure of a terminal. Li et al. [83] address that

GCR measures the average rate at which the QCs (quay cranes) transfer containers

between vessels and shores and is the most significant performance measure of a CT

(container terminal) operation. Le-Griffin and Melissa [73] give a set of common

productivity indices for container terminals to measure the equipment, berth, yard,

gate and gang efficiency, such as crane productivity is measured by ’moves per crane-

hour’. Therefore the index of quay crane productivity is one of important objectives

which needs to be considered in this model. It is the number of lifts per quay crane in

an unit of time. It equals to the number of lifts over the number of quay cranes and

then over the time taken. Equation (6.11) below is the total quay crane operational

time.

vTQCw =

Nvsl w∑
k=1

Nqc k∑
j=1

Nqclft j k∑
i=1

(cntrT imQCijk + cntrT idleQCijk) (6.11)

Where vTQCw is the total loading and(or) unloading time of all containers handled

by quay cranes from and(or) onto container vessels during the time window w; Nvsl w

is the number of container vessels loading and(or) unloading on the terminal berths

in the time window w; Nqc k is the number of quay cranes loading and(or) discharging
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cargos onto and(or) from the kth container vessel; Nqclft j k means the jth quay crane

has Nlft j k lifts for the kth vessel; cntrT imQCijk and cntrT idleQCijk are declared in

table 6.3.

Due to the quick development of technology, modern quay cranes are usually able

to lift two containers in the same time in a single lift to improve the single machine

efficiency. However, most terminals usually also have single-lift quay cranes purchased

before other than dual-lift quay cranes. Even for the dual-lift quay cranes, it does

not mean every lift is a dual lift in the consideration of the physical locations of

containers. For instance, if the containers on the same task are distant to each other,

quay cranes could not grab two containers at the same time with a longer distance

than the width of crane spreaders. Thus only adjacent containers can be lifted by

dual-lifts. NcnQCLftijk (defined in table 6.3) is the number of containers in a quay

crane lift. Equation (6.12) shows the number of containers operated by quay cranes

during the time window w:

NcnQCw =

Nvsl w∑
k=1

Nqc k∑
j=1

Nqclft j k∑
i=1

NcnQCLftijk (6.12)

Where NcnQCw denotes the number of containers loaded and(or) discharged onto

and(or) from container vessels in the time window w.

qR denotes how fast quay cranes handling containers, namely the number of con-

tainers handled per quay crane per hour, which equals to quay crane operation time

over operated container number.

qR =
NcnQCw
vTQCw

(6.13)

Suppose equation (6.14) below is a data set which describes the relationships between

qR and (Ntr, Nyc ,Nqc).

((qR1, (Ntr1 , Nyc1 , Nqc1)), (qR2, (Ntr2 , Nyc2 , Nqc2)),

· · · , (qRm, (Ntrm , Nycm , Nqcm))) (6.14)

Where Nqc Nyc Ntr are the numbers of quay cranes, yard cranes and internal trucks

respectively. m is the number of the data elements in (6.14). Assume the fitting

function f(x) = α1ϕ1(x1)+α2ϕ2(x1)+α3ϕ3(x1)+· · ·+αnϕn(x1)+β1χ1(x2)+β2χ2(x2)+
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β3χ3(x2) + · · · + βnχn(x2) + γ1ψ1(x3) + γ2ψ2(x3) + γ3ψ3(x3) + · · · + γnψn(x3) is a

mathematical expression for variables x1 (i.e. Nqc), x2 (i.e. Nyc) and x3 (i.e. Ntr),

and dependent variable qR based on the data set (6.14). Where ϕi(x1) is a base

functions, i.e. ϕi(x1) = xi1; i = 1, 2, 3, · · · , n; n denotes the number of equation

terms; αi is a fitting coefficient. χi(x2) is a base functions, i.e. χi(x2) = xi2; βi is a

fitting coefficient. ψi(x3) is a base functions, i.e. ψi(x3) = xi3; γi is a fitting coefficient.

The base function set fb(x) = {ϕ(x), χ(x), ψ(x)} is determined on the basis of the

distribution features of data (6.14), where ϕ(x) = {ϕ1(x), ϕ2(x), · · · , ϕn(x)}; χ(x) =

{χ1(x), χ2(x), · · · , χn(x)}; ψ(x) = {ψ1(x), ψ2(x), · · · , ψn(x)}. fqR(x) is a function

mapping (Nqc, Nyc, Ntr) to qR in the data set (6.14). The residual value between f(xi)

and fqR(xi) is denoted by 4xi which is described as an error function: ‖ 4xi ‖2 =∑m
i=1[ϕ(xi) − fqR(xi)]

2. Fitting functions are used to find the best fit functions for

the experimental data, in another word, the closest functions to the original functions

in geometric space. Therefore, the fitting coefficient set b = {α, β, γ} is determined

by the minimum value of ‖ 4xi ‖2, i.e. ∂
∂α∂β∂γ

‖ 4xi ‖2 = 0, which is the least

squares method shown as follows, where α = {α1, α2, · · · , αn}; β = {β1, β2, · · · , βn};
γ = {γ1, γ2, · · · , γn}.

Equation (6.15) defines the first objective function which is to be maximised:

fqR(x) =

n11∑
i=1

ϕi(x1)αi +

n12∑
j=1

χj(x2)βj +

n13∑
k=1

ψk(x3)γk (6.15)

Where fqR(x) denotes quay crane service rate function, namely quay crane operational

efficiency; i, j and k denote the ith, jth and kth terms of the base functions ϕi(x), χj(x)

and ψk(x) respectively. n1 denotes the number of terms of equation of α1ϕ1(x1) +

α2ϕ2(x1) +α3ϕ3(x1) + · · ·+αnϕn(x1), n2 denotes the number of terms of equation of

β1χ1(x2) + β2χ2(x2) + β3χ3(x2) + · · ·+ βnχn(x2) and n3 denotes the number of terms

of equation of γ1ψ1(x3) + γ2ψ2(x3) + γ3ψ3(x3) + · · ·+ γnψn(x3).

The constraints for the first objective function are: Nvsl w > 0, Nqc k > 0,

Nqclft j k > 0, cntrT imQCijk > 0, cntrT idleQCijk > 0, NcnQCLftijk > 0.

(ϕk(xi), ϕj(xi)) is the inner product of ϕk(xi) and ϕj(xi), i.e. (ϕk(xi), ϕj(xi)) =∑m
i=1 ϕk(xi)ϕj(xi). Where k and j are the kth and jth term of their respective e-

quations; m denotes the number of data elements, namely the number of equation

terms. (ϕk(xi), frqc(xi)) denotes the inner product of ϕk(xi) and frqc(xi). C denotes
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a matrix of inner products on the basis of experimental data. Λ is a matrix of fitting

coefficients. R is a matrix of base functions and experimental data.

C =



(ϕ1, ϕ1) (ϕ1, ϕ2) · · · (ϕ1, ϕn)

(ϕ2, ϕ1) (ϕ2, ϕ2) · · · (ϕ2, ϕn)
...

...
...

(ϕn, ϕ1) (ϕn, ϕ2) · · · (ϕn, ϕn)

(χ1, χ1) (χ1, χ2) · · · (χ1, χn)

(χ2, χ1) (χ2, χ2) · · · (χ2, χn)
...

...
...

(χn, ϕ1) (χn, χ2) · · · (χn, ϕn)

(ψ1, ψ1) (ψ1, ψ2) · · · (ψ1, ψn)

(ψ2, ψ1) (ψ2, ψ2) · · · (ψ2, ψn)
...

...
...

(ψn, ψ1) (ψn, ψ2) · · · (ψn, ψn)



Λ =


α1 α2 . . . αn

β1 β2 . . . βn

γ1 γ2 . . . γn



R =


(ϕ1, fqR) (ϕ2, fqR) . . . (ϕn, fqR)

(χ1, fqR) (χ2, fqR) . . . (χn, fqR)

(ψ1, fqR) (ψ2, fqR) . . . (ψn, fqR)


ΛTC = RT (6.16)

Equation (6.16) is a matrix for a system of linear equations. The best-fit fitting

coefficient set b is deduced from it.

Second Objective Function: Yard Crane Service Rate

The container terminal yard is normally a keep-out area to external trucks, because

of customs supervision and terminal safety reasons. Therefore, employing internal

trucks to assume internal container operations is a must. Containers transferred at
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the gatehouses between internal and external trucks are carried out by yard cranes.

Additionally, yard cranes also execute the tasks transferring containers from contain-

er blocks to container blocks and internal trucks within the container yard. The

performance of yard cranes highly affects the container movements inside terminals

as well as the cargo circulation between terminals and outside. Container terminal

operations are often bottlenecked by slow yard crane movements [83]. Ng and Mak

[103] state that yard cranes very often generate bottlenecks in the container flow in

a terminal because of their slow operations. As one of objectives considered in this

model, it aims to deploy terminal resources to increase yard crane operational effi-

ciency. Yard cranes are mainly to take responsibility of the pre-marshalling operation

and container movements from the gatehouses onto internal trucks. The container

movements at the gatehouses denote the container movements from external trucks

to internal trucks and, in reverse, from internal trucks to external trucks. Esmer

[34] presents that equipment productivity is the number of container moves made per

working hour, either for an individual machine or for a particular type of machines

and the number of moves can be deduced from data collected. The time of yard

crane operations for internal trucks, external trucks and pre-marshalling operations

are obtained from the output data in table 6.3.

tInTrY Cw denote the loading and(or) unloading time of containers handled by

yard cranes for internal trucks in the time window w.

tInTrY Cw =

NInTrY c w∑
k=1

Nyc k∑
j=1

NY cLftTr j k∑
i=1

TiY cInTrijk (6.17)

Where NInTrY c w is the number of internal trucks loaded and(or) unloaded by yard

cranes in the time window w; Nyc k is the number of yard cranes loading and(or)

discharging cargos to and(or) from the kth truck; NY cLftTr j k is the number of lifts of

the jth yard crane for the kth truck; TiY cInTrijk is defined in table 6.3.

tExTrY Cw denote the loading and (or) unloading time of containers handled by

yard cranes for external trucks in the time window w.

tExTrY Cw =

NExTrY c w∑
k=1

Nyc k∑
j=1

NY cLftTr j k∑
i=1

TiY cExTrijk (6.18)

Where NExTrY c w is the number of External trucks loaded and(or) unloaded by yard

cranes in the time window w; TiY cExTrijk is declared in table 6.3.
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tCY Y Cw is defined as the loading and(or) unloading time of containers handled

by yard cranes in the terminal yard in the time window w.

tCY Y Cw =

NY dLft∑
i=1

TiY cCYi (6.19)

Where NY dLft is the number of lifting operations of yard cranes to containers in

the terminal yard in the time window w (for pre-marshalling operations transferring

containers from container blocks to other blocks in the terminal yard); TiY cCYi is

given in table 6.3.

The total operational time of yard cranes for internal trucks, external trucks and

the containers in the terminal yard is denoted by tY cw which is given in equation

(6.20) below.

tY cw = tInTrY Cw + tExTrY Cw + tCY Y Cw (6.20)

Twin-lift hoist technology is widely applied not only in quay cranes but also in

yard cranes as it doubles the number of containers lifted. New twin-lift yard cranes,

which means a single crane spreader handles two containers in the same time, are

also purchased and employed in some terminals to work with single-lift cranes and

achieve good crane productivity and shorter lifting cycle.

NcnY cInTrw =

NInTrY c w∑
k=1

Nyc k∑
j=1

NY cLftTr j k∑
i=1

NcnY cInTrijk (6.21)

NcnY cInTrw is the number of containers loaded and(or) discharged by yard cranes

for internal trucks in the time window w. The definition of NcnY cInTrijk is given

in table 6.3.

NcnY cExTrw =

NExTrY c w∑
k=1

Nyc k∑
j=1

NY cLftTr j k∑
i=1

NcnY cExTrijk (6.22)

NcnY cExTrw is the number of containers loaded and(or) discharged by yard cranes

for external trucks in the time window w. NcnY cExTrijk is declared in table 6.3.

NcnY cY dw =

NycY d∑
j=1

NY dLft∑
i=1

NcnY CLftij (6.23)

NcnY cY dw is the number of containers loaded and (or) discharged in pre-marshalling

operations in the yard by yard cranes in the time window w. NycY d is the number
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of yard cranes operate for pre-marshalling operations in the yard. NcnY CLftij is

defined in table 6.3.

NcnY Cw = NcnY cInTrw +NcnY cExTrw +NcnY cY dw (6.24)

Where NcnY Cw is the total number of containers operated by yard cranes for internal

trucks, external trucks and pre-marshalling. yR denotes the productivity of yard

cranes which is the number of containers handled per yard crane per hour, which is

equal to yard crane operation time over operated container number.

yR =
NcnY Cw
tY cw

(6.25)

The following equation is defined as the second objective function (6.26) which is to

be maximised.

fyR(x) =

n21∑
i=1

ϕi(x1)αi +

n22∑
j=1

χj(x2)βj +

n23∑
k=1

ψk(x3)γk (6.26)

which is fitted by the data set

((yR1, (Ntr1 , Nyc1 , Nqc1)), ((yR2, (Ntr2 , Nyc2 , Nqc2)), · · · , ((yRm, (Ntrm , Nycm , Nqcm))

(6.27)

Base functions ϕi(x), χj(x) and ψk(x) are determined by the data from table 6.3 and

αi, βj and γk are fitted by equation (6.16).

The constraints for the second objective function are: NInTrY c w > 0, Nyc k > 0,

NY cLftTr j k > 0, TiY cInTrijk > 0, NExTrY c w > 0, TiY cExTrijk > 0, NY dLft > 0,

TiY cCYi > 0, NInTrY c w > 0, NcnY cInTrijk > 0, NExTrY c w > 0, NcnY cExTrijk >

0, NycY d > 0, NY dLft > 0, NcnY CLftij > 0.

Third Objective Function: Terminal Yard Congestion Probability

The increase and decrease of equipment quantities might also affect the traffic sit-

uation in the yard. An insufficient amount of equipment might cause long waiting

times while excess equipment in the yard might increase the traffic burden due to the

limited terminal capacity. This tension becomes more apparent in peak hours and

the balance is easily damaged.

From a viewpoint of container terminal general layout, land space between con-

tainer blocks are reserved for traffic use and the gaps amongst container blocks are
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for yard cranes to lift containers. On the quay side, quay crane displacement only

occurs in horizonal direction by moving on its tracks or dedicated roads alongside

the berths. Straddle carriers and sprinters, as two types of yard cranes, are able to

straddle container blocks and move in block gaps. While another two types of yard

cranes, namely reach stackers and empty container handlers, are regularly working in

some buffer areas in the yard, they sometimes, but not frequently, share the roads in

the yard with internal trucks. If taking the internal trucks into main consideration for

waiting time and traffic burden, the length of queues and waiting times are related

to the number of internal trucks.

Assume that all internal trucks move in the yard at the same and in an uniform

velocity, therefore the distance between internal truck i and its following truck i+ 1,

denoted by Dtri,i+1, keeps the same throughout, until they stop for queuing up.

tDtri,i+1 denotes the times for the trucks i + 1 to spend on travelling a distance

Dtri,i+1. If the crane operational time of the truck i is shorter than Dtri,i+1, the

truck i + 1 arrives when the truck i finishes its crane operation. Therefore queues

do not exist in the system. Conversely, if the crane operational time is longer than

Dtri,i+1, stopping and queuing up occur in the system, and then stopped truck will

affect its following trucks, congestion therefore happens.

The arrival and departure times of each truck are recorded, and then the time

interval between any two trucks can be described as time distances between them.

Let the average operational time of cranes be the ideal value for tDtri,i+1, then ac-

cordingly, if tDtri,i+1 is less than this value, trucks might need to stop and queue up

in front of cranes, namely the probability of waiting and queuing will then increase.

On the contrary, if tDtri,i+1 is greater than this value, the probability of waiting

and queuing will correspondingly decrease. X denotes the time interval between a

random truck and its following truck at the beginning of each task and assume X

is exponentially distributed, i.e. X ∼ E(λ), i.e. p(x) = λe−λx. Its mathematical

expectation is expressed as E(X) = 1
λ
. Let the average value of crane operational

time per container be the mathematical expectation, namely the average unit quay

crane and yard crane operation time.

λ =
thrpt ·Rthrcntr ·Ntr

Tthr
(6.28)

Where thrpt is the throughput of container terminal during the period Tthr; Rthrcntr
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denotes the ratio of container number to container throughput.

The average time of a container waiting in queues for quay crane operations is

denoted by tQqc, which is:

tQqc =

∑Nvsl w

k=1

∑Nqc k

j=1

∑Nqclft j k

i=1 tQqcijk

NcnQCw
(6.29)

Where tQqcijk is defined in table 6.3.

tQInTrY Cw is defined as the time of containers waiting for yard cranes for internal

trucks in the time window w. The total waiting time of internal trucks is given in the

following equation.

tQInTrY Cw =

NInTrY c w∑
k=1

Nyc k∑
j=1

NY cLftTr j k∑
i=1

QY cInTrijk (6.30)

Where QY cInTrijk is defined in table 6.3.

tQExTrY Cw denotes the time of containers waiting for yard cranes for external

trucks in the time window w. The total waiting time of external trucks is:

tQExTrY Cw =

NExTrY c w∑
k=1

Nyc k∑
j=1

NY cLftTr j k∑
i=1

QY cExTrijk (6.31)

Where QY cExTrijk is defined in table 6.3.

The total container waiting time for pre-marshalling operations in the yard is

denoted by tQCY Y Cw which is equal to the equation below.

tQCY Y Cw =

NycY d w∑
j=1

NY dLft j∑
i=1

QY cCYij (6.32)

WhereNycY d w is the number of yard cranes employed to terminal yard pre-marshalling

operations in the time window w. NY dLft j denotes the number of containers lifted

by the jth yard crane. QY cCYij is given out in table 6.3.

The total time of a container waiting in queues for yard crane operations in the

time window w is denoted by tQY cw, which equals to summation of waiting times of

internal trucks, external trucks and pre-marshalling containers.

tQY cw = tQInTrY Cw + tQExTrY Cw + tQCY Y Cw (6.33)
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The average time of a container waiting in queues for quay crane operations is denoted

by tQyc, namely total waiting time over the number of containers.

tQyc =
tQY cw
NcnY Cw

(6.34)

uTQc is defined as the unit quay crane operational time per container.

uTQc =
1

qR
(6.35)

Similarly, uTY c is defined as the unit yard crane operational time per container.

uTY c =
1

yR
(6.36)

The average time that a container spend on quay crane operations, waiting for quay

cranes, yard crane operations and waiting for yard cranes is denoted by tOpsPerCn.

The value of tOpsPerCn is given out in equation (6.37).

tOpsPerCn = uTQc+ uTY c+ tQqc+ tQyc (6.37)

fts(x) is defined as the fitting function for the data set below:

((tOpsPerCn1, (Ntr1 , Nyc1 , Nqc1)), ((tOpsPerCn2, (Ntr2 , Nyc2 , Nqc2)),

· · · , ((tOpsPerCnm, (Ntrm , Nycm , Nqcm)) (6.38)

Namely, fts(x) is:

fts(x) =

n31∑
i=1

ϕi(x1)αi +

n32∑
j=1

χj(x2)βj +

n33∑
k=1

ψk(x3)γk (6.39)

If the crane operational time fts(Ntri , Nycj , Nqck) is longer than the truck departure

time interval Xi, i.e. Xi < fts(Ntri , Nycj , Nqck), then the probability of the ith truck

arriving at a quay crane or yard crane when the previous truck is still in its oper-

ation is high. The ith truck then very possibly needs to wait in a queue. And the

latter trucks might also need to wait in queues if their arrival times are before the

operation finishing time of the trucks in front of them. The cumulative probability

of Xi < fts(Ntri , Nycj , Nqck) is denoted by P{Xi < fts(Ntri , Nycj , Nqck)} which is also

the objective function for the third objective shown by equation (6.40) which is to be

minimised.

P{Xi < fts(Ntri , Nycj , Nqck)} =

∫ fts(Ntri ,Nycj ,Nqck
)

−∞
λe−λx dx (6.40)
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The constraints for the third objective function are: thrpt > 0, Rthrcntr > 0, Ntr j > 0,

Tthr > 0, Nvsl w > 0, Nqc k > 0, Nqclft j k > 0, tQqcijk > 0, NcnQCw > 0, NInTrY c w >

0, Nyc k > 0, NY cLftTr j k > 0, QY cInTrijk > 0, NExTrY c w > 0, QY cExTrijk > 0,

NycY d w > 0, NY dLft j > 0, QY cCYij > 0.

Fourth Objective Function: Internal Truck Travelling Distance

Terminal quay cranes work alongside container vessels on the berths, while some

types of yard cranes such as straddle carriers work in the container blocks as they

move over the top of container blocks and others use roads in the yard. The terminal

control centre normally gives instructions to each quay crane and yard crane to stay

in certain areas in the yard to avoid making frequent crane movements. Quay cranes

are fixed alongside the berths on tracks or dedicated roads, while some of yard cranes

are dedicated to the gatehouses to serve the external trucks. Even for the rest of yard

cranes in the yard, they usually work in certain areas and then move to another when

their work is finished. A lot of movements have been made by internal trucks because

container positions are normally very scattered in the yard. Cranes are only in charge

of operations in their areas and it is not their responsibilities when containers move

out of their areas. But internal trucks are another case. When a truck loads and

carries a container, it must takes the container to appointed position to discharge,

and then it is free to load the next container. Therefore, the travelling routes of

trucks are more scattered than quay cranes and yard cranes.

The purpose of this objective function is to simulate the operations of internal

trucks and find out the travelling distances which are to be minimised. Reducing

truck travelling distances also satisfies truck fuel consumption and emission targets.

The fourth objective function is defined by equation (6.42), which is to be min-

imised and fitted by the data set following.

((DTrk1 , Ntr1), (DTrk2 , Ntr2), · · · , (DTrkn , Ntrn)) (6.41)

Base functions ϕi(x), χj(x) and ψk(x) are determined by above data set and αi, βj

and γk are fitted by equation (6.16).

fd(x) =

n41∑
i=1

ϕi(x1)αi (6.42)
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The constraints for the fourth objective function are: DTrki¿0, Ntri > 0, where

i = 1, 2, 3, ..., n.

6.3.4 Multi-objective Optimisation

As discussed in section 5.3.4, the multi-objective optimisation model for this chapter

is based on equation (5.25):

minimise {−fqR(x),−fyR(x), fcon(x), fd(x)} (6.43)

subject to x ∈ S

Where fqR(x) and fyR(x) are to be maximised, and fcon(x) and fd(x) are to be

minimised. The decision vector is x = (Nqc, Nyc, Ntr)
T .

6.3.5 A Genetic Algorithm to Solve the Problem

Exact algorithms cannot solve larger scale problem in acceptable duration [75]. The

explicit enumeration algorithm proposed in section 5.4.3 is not suitable for this prob-

lem because its complexity and it is computational time consuming as it needs a large

number of traversals to find all possible solutions. An experiment using an explicit

enumeration algorithm for this problem is implemented and the time taken is more

than 24 hours. Genetic algorithms are well suited to solve multi-objective optimisa-

tion problems and have been the most popular heuristic approach to multi-objective

design and optimisation problems [69]. Jones et al. [61] state that 70% of the multi-

objective meta-heuristic articles between 1991 and 1998 utilise genetic algorithms as

the primary meta-heuristic.

Zitzler and Thiele [150] propose a fitness function using a Pareto ranking approach.

In this chapter, a Pareto ranking method to set fitness function is employed which is

the number of solutions dominate in the elements in population over the population

size. ffitness(i, p, t) is the fitness function, where i denotes one of chromosomes from

the population p at the tth generation.

ffitness(i, p, t) =
dp(i, p, t)

Np

(6.44)

Where dp(i, p, t) is the number of solutions could not dominate the ith solution in

the population p at the tth generation. In other words, the ith solution could not be

dominated by dp(i, p, t) solutions in the population p at the tth generation.
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Roulette wheel selection is used to choose chromosomes to evolve in this chapter.

The probability to be selected is:

Pchromoi =
ffitness(i, p, t)∑Np

i=1 ffitness(i, p, t)
(6.45)

Where Pchromoi is the probability of the ith chromosome to be selected to evolve.

Pchromoi >= 0,
∑Np

i=1 Pchromoi = 1.

The parameters crossover rate, mutation rate, population size and number of

generations need to be determined based on a series of tests. The output of the

algorithm is a set of solutions to the model.

6.4 Parameters and Results

In this section, the parameters and results for the models proposed are discussed

based on the Southampton Container Terminal. The parameters for simulation mod-

el, single objective optimisation functions, the multi-objective optimisation model

and the genetic algorithm are analysed and addressed as follows. The results for

simulation model are processed for multi-objective optimisation parameters. Finally

the solutions to the multi-objective model are explored by a genetic algorithm and

the elite solutions to the models are categorised and discussed.

6.4.1 Simulation Parameters and Results

The historical data from the terminal are collected and processed for the scenar-

ios for the simulation models. The parameters for simulation include stochastic and

non-stochastic parameters as described in section 6.3.2. The parameters for the simu-

lation model of container terminal operations and simulation model for internal truck

travelling distance are discussed respectively.

For the simulation model of container terminal operations, there are a series of

parameters to be set. For the stochastic parameters, as discussed in section 5.4.1,

suppose X1 is exponential distributed with a parameter θ1. Other distributions follow

the gamma distribution with parameters (θi, θi+1). The distribution functions and

parameters of stochastic variables are estimated and listed in table 6.4. In table 6.4,
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θ1 is expressed as:

θ1 =
simulationtime

(percThrputToCntrNum · throughput/365)
(6.46)

Where simulationtime denotes the length of simulation duration in hour. percThrput

ToCntrNum denotes the ratio of container number to throughput volume. As the

discussion on the settings of distribution parameters in section 5.4.1, an appropriate

estimation of distribution parameters is important to the model. Assume that θ2 = θ1,

θ3 = 3.0 minutes, θ4 = 4.0 minutes, θ5 = 2.0 minutes, θ6 = 2.5 minutes, θ7 = 2.0

minutes, θ8 = θ1, θ9 = θ1, θ10 = 1.5 minutes, θ11 = 3 minutes. For the non-stochastic

Table 6.4: Stochastic Parameters for Simulation
Stochastic Parameters Fi(x) θi

New task interval time distribution X1 ∼ E(x) θ1
Truck assigning time distribution X2 ∼ Γ(x) (θ2, θ2/2)
Truck travelling time distribution X3 ∼ Γ(x) (θ3, θ3/2)

Time distribution of yard crane operations X4 ∼ Γ(x) (θ4, θ4/2)
from yard to trucks

Time distribution of yard crane operations X5 ∼ Γ(x) (θ5, θ5/2)
from trucks to yard or trucks

Time distribution of quay crane operations X6 ∼ Γ(x) (θ6, θ6/2)
from ships to trucks

Time distribution of quay crane operations X7 ∼ Γ(x) (θ7, θ7/2)
from trucks to ships

Quay crane assigning time distribution X8 ∼ Γ(x) (θ8, θ8/2)
Yard crane assigning time distribution X9 ∼ Γ(x) (θ9, θ9/2)
Quay crane travelling time distribution X10 ∼ Γ(x) (θ10, θ10/2)
Yard crane travelling time distribution X11 ∼ Γ(x) (θ11, θ11/2)

parameters, they are given in table 6.5. Some of data in table 6.5 is the same as table

5.4. The number of internal trucks in Southampton Container Terminal is 100 in

2009 [123]. In table 6.5, the “Direct Importation container percentage” and “Direct

Exportation container percentage” are unavailable at the moment but they are needed

to increase the reliability of models. Therefore, the values for them in table 6.5 are

estimated by personal knowledge and recognition of container terminals, which can be

changed according to real situations. The “Imported containers:Exported containers

ratio” is the same as the “Empty containers:laden containers ratio” in table 5.4. The

“Simulation Time” is also set as the same value as table 5.4.
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The values of numbers of equipment resources Nqc j, Nyc j and Ntr j are set as

follows, where Nqc j, Nyc j and Ntr j are the values of Nqc, Nyc and Ntr for the jth

simulation iteration respectively, where j denotes the jth simulation iteration, j =

0, 1, 2, · · · , Nsim, and Nsim is the number of simulation experiments.

Nqc j =
j · (maxNqc −minNqc)

Nsim

+minNqc (6.47)

Nyc j =
j · (maxNyc −minNyc)

Nsim

+minNyc (6.48)

Ntr j =
j · (maxNtr −minNtr)

Nsim

+minNtr (6.49)

Table 6.5: Non-Stochastic Parameters for Simulation [86] [120] [113] [122]
Parameter Value

Container throughput Data from 2000 to 2009
Quay crane quantity Data from 2000 to 2009
Yard crane quantity Data from 2000 to 2009

Internal truck quantity Data from 2009
Direct Importation container 35 %

percentage
Direct Exportation container 20 %

percentage
Empty containers:laden 3:7

containers ratio
Imported containers:Exported 7:3

containers ratio
Transhipment containers: 0.5:10

all containers ratio
Pre-marshalling percentage 20%

maxNqc 50
minNqc 1
maxNyc 500
minNyc 20
maxNtr 500
minNtr 20

Value of Nvalues 5
Simulation time 10 hours

The output variables are given in table 6.3 and the results are obtained from

the execution of simulation model. The size of simulation results are too large to

be shown, so in order to reduce the data size, the simulation results are processed to
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show objective function values for each iteration according to equations (6.15), (6.26),

(6.39) and (6.42). The results are given in table 6.6.

For the simulation model for internal truck travelling distance, the accurate po-

sitions of container blocks in the Southampton Container Terminal have not been

obtained. Therefore a set of simple position data is used to run the model and

they can be replaced by realistic data as long as the realistic data is available. As-

sume the distance unit is metre and the coordinate of the container terminal yard is

(0,1800, 0,1800). Assume that there are nine container blocks in this container termi-

nal: (300,500,300,500), (800,1000,300,500), (1300,1500,300,500), (300,500,800,1000),

(800,1000,800,1000), (1300,1500,800,1000), (300,500,1300,1500), (800,1000,1300,1500),

(1300,1500,1300,1500).

In order to avoid noisy data and reduce the instability of stochastic variables,

100,000 iterations are run to find out the internal truck travelling distance when a

certain number of internal trucks are employed in the yard.

The simulation results of internal truck travelling distance are given out in table

6.6.

Table 6.6: Simulation Results
Nqc Nyc Ntr fqR(x) fyR(x) fts(x) (Hour) DTrk (Metre)

(Container/ (Container/)
Crane/Hour) Crane/Hour)

1 20 20 27.28415591 3.250211316 0.383213308 225722.8831
10 116 116 19.35329776 4.126791575 0.36575516 219335.0686
10 500 116 21.25520572 1.015512384 0.352777665 219335.0686
20 116 20 2.139956685 0.824189473 0.411071814 225722.8831
20 212 212 10.42679301 2.52812848 0.34151678 210888.4621
20 212 308 10.62033723 2.600016112 0.349717374 206700.7097
20 404 212 13.68067875 1.809823919 0.358383725 210888.4621
30 212 116 6.408772594 2.282611217 0.352654364 219335.0686
30 308 308 8.811010035 2.07112758 0.348130246 206700.7097
30 308 404 8.319870111 2.028887167 0.346287645 207997.9636
40 116 404 6.065873182 4.714437551 0.343042864 207997.9636
40 308 212 6.626657054 2.155288507 0.363165667 210888.4621
40 404 404 7.212672493 1.66876446 0.336093756 207997.9636
40 404 500 7.589034613 1.830526738 0.35620818 208142.0858
50 20 500 1.448064966 9.74370683 0.408366748 208142.0858
50 500 500 7.024786228 1.912204551 0.34979966 208142.0858
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6.4.2 Single Objective Formulation Parameters and Results

In equations (6.15), (6.26), (6.39) and (6.42) in section 6.3.3, the distribution fea-

tures of simulation data from table 6.3 determine the type of base function set

fb(x) = {ϕ(x), χ(x), ψ(x)}, values of fitting coefficient set b = {α, β, γ} and value

of n. According to the features of plane graph of simulation output, suppose ni pow-

ered functions are good mathematical representations for equations (6.15), (6.26),

(6.39) and (6.42), which are shown in following respectively.

fqR(x) =

n11∑
i=1

N i−1
qc αi+10 +

n12∑
j=1

N j−1
yc βj+10 +

n13∑
k=1

Nk−1
tr γk+10 (6.50)

fyR(x) =

n21∑
i=1

N i−1
qc αi+20 +

n22∑
j=1

N j−1
yc βj+20 +

n23∑
k=1

Nk−1
tr γk+20 (6.51)

fts(x) =

n31∑
i=1

N i−1
qc αi+30 +

n32∑
j=1

N j−1
yc βj+30 +

n33∑
k=1

Nk−1
tr γk30 (6.52)

fd(x) =

n41∑
i=1

N i−1
qc αi+40 (6.53)

The values of n11, n12, n13, n21, n22, n23, n31, n32, n33 and n41 for each above equation

are shown in table 6.7 respectively. Numerical experiments have been done to test

values of R2 to find good fitting powers for the functions. Furthermore, the results

Table 6.7: Values of ni
i ni+1 ni+2 ni+3

10 3 3 4
20 3 4 4
30 4 4 5
40 3 Nil Nil

obtained from the simulation model are used to fit the coefficient set b = {α, β, γ}
through the above equations (6.50), (6.51), (6.52) and (6.53). The fitting coefficient

set b is computed by equation (6.16) from simulation data. The fitting solutions are

then exported to equations (6.50), (6.51), (6.52) and (6.53). The fitting coefficients

for the objective functions are given out in table 6.8.

In this container terminal, the number of drivers in a single truck and yard crane

are 2, while in a quay crane is 1.
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Table 6.8: Fitting Coefficients

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function: Objective Function:

fqR(x) fyR(x)
α11 1× 10−9 α21 0.00138
α12 −5× 10−7 α22 -0.06177
α13 1.05× 10−5 α23 1.19754
β11 0.076705 β21 −5× 10−8

β12 5× 10−7 β22 5× 10−5

β13 -0.0002765 0.79 β23 -0.0236 0.97
γ11 0.07537 β24 3.6338
γ12 0.01287 γ21 2× 10−8

γ13 -1.077417 γ22 −1.2× 10−5

γ24 28.06 γ23 0.00194
γ24 0.37966

Average Crane Truck Travelling
Operational Time Distance Function:

Function:fts(x) fd(x)
α31 1× 10−7 α41 0.1388
α32 −4.5× 10−6 α42 - 109.71 0.98
α33 1.5× 10−5 α43 228541
α34 0.018755
β31 −1.35× 10−10

β32 1.5× 10−7

β33 −6× 10−5 0.76
β34 0.060885
γ31 1.6× 10−11

γ32 −1.6× 10−8

γ33 5.6× 10−6

γ34 -0.00088
γ35 0.33336
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6.4.3 Genetic Algorithm Parameters

The genetic algorithm is employed to search the near Pareto optimal solutions to the

models. The source codes of the genetic algorithm are given in appendix C. There are

four major parameters to be set for the genetic algorithm: population size, number

of generations, crossover rate and mutation rate. A few of experiments have been

conducted to determined appropriate parameters for the algorithm. The general idea

is to change one or two of the four parameters and observe the change of results.

Then change another parameter and observe the changes.

According to previous researches, crossover rate is usually set between 0.5 and 0.9,

while mutation rate is usually around 0.01. Taking the median of common values of

crossover rate, 0.7 is set as an initial parameter to the genetic algorithm to explore

the near Pareto optimal solutions. And mutation rate is taken 0.01 as an initial value.

The first group of tests use different values for population size to run the algorithm

and observe the fitness values from 1 to 1000 generations. There are five graphs below

showing fitness values with population sizes from 50 to 300 and generation(s) from 1

to 1000. Figures (6.17), (6.18), (6.19), (6.20) and (6.21) record the fitness values for

every generation with using different values of population size.

As shown in graphs, the data in graph (6.17) are scattered throughout and most

of fitness values are below 0.85. Figure (6.18) shows a steadily rising trend with

the increase of number of generations. The fitness values mainly distribute between

0.75 and 0.9 at the generation around 800. Figure (6.19) has an increasing trend

as well. The peak values are around the 800th generation and at that point, the

data is more focused than figure (6.18). The average fitness value of figure (6.20) is

lower than graphs (6.18) and (6.19). In figure (6.21), the trend is rising from 1 to

approximately 380 generations, but descending from 380 to roughly 700 generations,

and then increasing again. The peak values of fitness are around 380 generations but

they are lower than figure (6.19). Seen from the peak values in figure (6.19), the

combination of 150 populations and 800 generations seems to be a potentially good

choice viewing from the experiments.

The second group of data sets are observed to test different values of crossover

rates. Crossover rates are set as 0.5, 0.6, 0.7, 0.8 and 0.9 and the results are shown

below. The other parameters are set as: population size is 150; maximum generation
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Figure 6.17: Fitness Values for the Ge-
netic Algorithm (Population:50, Genera-
tions:1000)

Figure 6.18: Fitness Values for the Ge-
netic Algorithm (Population:100, Genera-
tions:1000)

Figure 6.19: Fitness Values for the Ge-
netic Algorithm (Population:150, Genera-
tions:1000)

Figure 6.20: Fitness Values for the Ge-
netic Algorithm (Population:200, Genera-
tions:1000)

Figure 6.21: Fitness Values for the Ge-
netic Algorithm (Population:300, Genera-
tions:1000)
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Figure 6.22: Fitness Values for the Genetic
Algorithm (Crossover Rate: 0.5)

Figure 6.23: Fitness Values for the Genetic
Algorithm (Crossover Rate: 0.6)

Figure 6.24: Fitness Values for the Genetic
Algorithm (Crossover Rate: 0.7)

Figure 6.25: Fitness Values for the Genetic
Algorithm (Crossover Rate: 0.8)

is 800; mutation rate is 0.01. The results are shown in graphs (6.22), (6.23), (6.24),

(6.25), (6.26) respectively. Viewing from the graphs, figures (6.23) and (6.24) show

less scattered than the other three at the generation around 800. Furthermore, fig-

ure (6.23) seems to have the highest average value at the points close to the 800th

generation than other figures.

The third group of data sets is to select an appropriate value for mutation rate.

Setting the other three parameters as: population size 150; maximum generation 800

and crossover rate 0.6. The mutation values are tested by using values 0.005, 0.01,

0.02, 0.05, 0.07 and 0.1. The fitness values obtained from the algorithm by using

above settings are given out in figures (6.27), (6.28), (6.29), (6.30), (6.31), (6.32)

respectively. Figure (6.30) shows better and more focused fitness values than the

other five figures at generations close to 800.

Therefore the parameters for genetic algorithm are set as population size 150,
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Figure 6.26: Fitness Values for the Genetic
Algorithm (Crossover Rate: 0.9)

Figure 6.27: Fitness Values for the Genetic
Algorithm (Mutation Rate: 0.005)

Figure 6.28: Fitness Values for the Genetic
Algorithm (Mutation Rate: 0.01)

maximum generation 800, crossover rate 0.6 and mutation rate 0.05.

6.4.4 Multi-objective Optimisation Results

The near Pareto solutions to this four objective problem are explored in the objective

space and decision space. O denotes the objective space which is a four dimensional

space. Two of four dimensions are to be maximised and the other two are to be

minimised. D denotes the decision space which is an integral and three dimensional

space.

150 (equals to the population size) solutions are obtained from the genetic algo-

rithm. In order to reduce the number of solutions for decision makers and retain

the goodness of solutions, the solutions which have less fitness values than 95% are

deleted. Finally, 98 elite solutions are provided to decision makers.
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Figure 6.29: Fitness Values for the Genetic
Algorithm (Mutation Rate: 0.02)

Figure 6.30: Fitness Values for the Genetic
Algorithm (Mutation Rate: 0.05)

Figure 6.31: Fitness Values for the Genetic
Algorithm (Mutation Rate: 0.07)

Figure 6.32: Fitness Values for the Genetic
Algorithm (Mutation Rate: 0.1)
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The solutions are normalised on axes into a range from 0 to 1, to solve the prob-

lem of difference in value spans and units of solutions to each objective function. The

solutions are normalised by equation (6.54), where RSij denotes the jth normalised

solution for the ith objective function; Sij is the jth original solution for the ith objec-

tive function; Smini is the minimum solution for the ith objective function; Smaxi

denotes the maximum solution for the ith objective function. Table 6.9 gives the

maximum and minimum values for each function for equation (6.54).

RSij =
Sij − Smini

Smaxi − Smini
(6.54)

The normalised solutions to equation (6.43) are shown in figure (6.33). Solution

Table 6.9: The Maximum and Minimum Values of Objective Functions
Smax1 26.84
Smin1 5.35
Smax2 4.07
Smin2 0.09
Smax3 0.6328
Smin3 0.6324
Smax4 226178.21
Smin5 210778.36

information must be substantial enough to allow an informed decision to be made

by the decision maker but not so large as to overwhelm him/her with information

[99]. Therefore 10 elite and representative solutions for each objective function are

selected from figure (6.33) and given in figures (6.34), (6.35), (6.36) and (6.37) for

decision supporting. Figure (6.34) gives 10 best solutions to the first objective

function (terminal quay crane efficiency function). They are between 0.85 and 1 to

the first objective function. Solutions 3, 8 and 9 also have good values for the second

objective function, while solutions 2, 6 and 7 are close to 0.4, but solutions 1, 4, 5

and 10 are close to 0.1. These solutions are quite bad for the third objective function.

Solutions 1 and 8 have values around 0.75 for the fourth objective function, solution

6 and 10 around 0.4, and others are between 0.1 and 0.3.

The best values for the second objective function are shown in figure (6.35). They

all have values greater than 0.8 for the second objective function. For the first objec-

tive function, solutions 14, 16 and 18 are between 0.85 and 0.95, solutions 13 and 11

are around 0.7 and 0.55 respectively, and other five solutions are less 0.2.
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The best values for the third objective function are shown in figure (6.36). All

of them are close to the minimum value. Solution 28 has good values for the second

and third objective functions. Solutions 24 has good values for the first and third

objective functions as well as adequate values for the other two objective functions.

Solutions 25 and 27 show balance in all goals as well.

The fifth graph (6.37) shows the shortest internal truck travelling distance. They

have poor values for the other three goals except for solutions 32, 33, 35 and 38.

Solutions 32 and 35 have better than average values on the second dimension other

than the first dimension. Solution 38 shows an around 0.5 value for the first goal.

Solution 33 is much better except for its third dimension.

If decision maker prefer more balance amongst all objectives rather than focusing

on one or two of them, figure (6.38) is a better choice. The 10 solutions in the graph

have more emphasis on trade-off decisions between terminal productivity and cost.

No one of them has the best values for single objective functions but there are still

some of them having good values for a single objective and values roughly between 0.3

and 0.7 for other three goals. Solution 43 has 0.73 for the first dimension, 0.36, 0.55

and 0.44 for the other three. Solution 46 has good value for average truck travelling

distance (0.25), 0.53 and 0.48 for quay cran and yard crane productivity. Solution 44

has 0.62 for yard crane operational efficiency, 0.37 and 0.44 for quay crane rate and

average truck travelling distance per container.

Solutions are simplified and categorised for difference preferences. Appropriate

volume rather than overwhelming information is given to decision makers for refer-

ence. Different combinations of equipment quantities can be derived from the elite

solutions if any of them is chosen by container terminal operators.

6.4.5 Computational Considerations

Computational time consists of three parts: the simulation of general terminal op-

erations built in the Micro Saint Sharp simulation package, the simulation for truck

travelling distance and the genetic algorithm to explore the near Pareto solutions.

The computer to run the models is given as follows: processor: Intel i3 M350 at 2.27

GHz; memory: 3.00GB. Software environment is 64-bit Microsoft Windows 7. Sim-

ulation model is run in the Micro Saint Sharp 3.0 Windows version. Simulation for
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Figure 6.39: Computational Times of Simulation Experiments

truck travelling distance is implemented in C # coded in Microsoft Visual Studio 2010

Express. 16 simulation iterations on the Micro Saint Sharp are run synchronously

on one computer. The computational times for each experiment are shown in the

graph (6.39). The total computational time for simulation is the experiment using

the longest time which is 1.55 hours. For the simulation for internal truck travelling

distance, 16 simulation experiments are also run by using the same parameters. Each

iteration runs 100000 times to guarantee the accuracy level. Therefore the simulation

for truck travelling distance takes 4 minutes and 12.49 seconds. Finally, the genetic

algorithm takes 1 minute and 1.93 seconds. In total, the computational time is 1.64

hours.
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6.5 Summary

This chapter addresses the equipment optimisation problem in modern container ter-

minals, proposes a model for the equipment quantity decision making for container

terminal operators and discusses solutions. In this chapter, simulation and multi-

objective optimisation are combined based on simulation models for container ter-

minal operations and a multi-objective optimisation model with four objectives to

support terminal daily decision. Simulation has strengths in its ability of effectively

implementing complex stochastic processes of container terminals and providing real

time data, on the other hand, multi-objective optimisation has better performance

in computational time and the exploration of the near Pareto solutions by genetic

algorithms. Therefore, a combination is proposed to integrate the strengths of two

methods in order to provide optimised equipment quantities for daily decision making

in a container terminal in effective and efficient ways. The genetic algorithm used

to find the solutions to the models is potentially feasible to solve larger problems in

short time. The model is applied based on the data from the Southampton Container

Terminal and the solutions show that the model offers various and effective solutions

for container terminal operators.



Chapter 7

Combining Simulation and Multi-Objective Optimisation by

Integrated MOO Structure for Multiple Container Terminal

Equipment Optimisation

7.1 Introduction

Chapter 6 presents a series of methods to solve the multiple mechanical equipment

optimisation problem in container terminals by using the post-MOO structure. There

are two factors which are very important to the quality of solutions when using post-

MOO structure. Firstly, the parameter settings for initial values of independent

variables. The initial values of independent variables are set by equations (6.47),

(6.48) and (6.49) in chapter 6. However, in the case that decisions are made without

knowledge of the solutions because the solutions are what is to be provided to decision

makers, the quality of initial values can not be guaranteed to reflect the features of

all solutions because of lack of knowledge of the solutions. Secondly, control the

value of R2 of data fitting. As R2 is used to measure the errors of fitting functions,

fitting functions are regarded as valid representation of experimental data only when

fitting functions are at a high level of accuracy, i.e. the values of R2 are close to 1.

In order to reduce the influence of initial values and errors of data fitting, another

combination structure, namely MOO leading integrated structure, is proposed to

solve the problem. The structure decreases the number of initial values to reduce

the possible errors caused by initial values and increases the reliability of fitting

functions because simulation only runs with optimised parameters which are searched

by dynamic MOO search.

This chapter is organised as follows. The integrated MOO structure is addressed

in section 7.2. Parameter settings and results are given in section 7.3. A summary is

given in section 7.4.

123
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7.2 Integrated MOO Structure

This chapter solves the problem by MOO leading integrated MOO structure in the

combination framework shown in figure 4.1. The processes of MOO leading Integrated

structure for the multiple equipment optimisation problem and the definitions of the

“Data Processing” and “Searching Techniques” shown in figure 4.4 are defined in

section 4.3.2. As a further study of the problem raised in chapter 6, this chapter is

based on the models proposed in section 6.3. To be detailed, the simulation model is

given in section 6.3.2. Formulation for objectives are developed in equations (6.15),

(6.26), (6.40) and (6.42). The multi-objective model is given in equation (6.43).

Chapter 6 solves the problem by using post-MOO structure, while this chapter aims

to solve the same problem by another structure, namely MOO leading integrated

structure, to improve the goodness of results and efficiency of computation.

Furthermore, as defined in section 4.3.2, data fitting is employed to find fitting

coefficients and based functions from data streams. Additionally, dynamic MOO

search is also defined to guide the search for appropriate parameters for the next

iteration. The quality of results and computational cost are compared between the

two structures at the end of the process. The stopping conditions are defined in section

4.3.2 to control the number of iterations. The number of consecutive iterations that

the search could not find better solutions than the current best value(s) is set as three,

namely, if the search could not find better solutions than the current best in three

consecutive iterations, then the process will stop.

7.3 Parameters and Results

Initial parameters need to be set in advance to run models. The initial parameters

are set with the same values for the four objectives if preferences of decision makers

are not taken into consideration. Hence, the process of the initial iteration is the

same for the four objectives which is given in section 7.3.1. The explorations of the

near Pareto optimal solutions for each objective are discussed in sections 7.3.2, 7.3.3,

7.3.4 and 7.3.5 respectively.
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7.3.1 The Initial Iteration for All Objectives

As models given out in section 6.3, in order to solve the problem, initial values of

decision variables are required to be set at the beginning. The number and values of

the initial values of decision variables need to be determined. In order to reduce the

influence of initial values on the combination framework performance, the minimum

number of initial values of the decision variables needs to be set. The initial values

are deduced from equations (4.1), (4.2) and (4.3). Let the number of initial values,

i.e. NInV al, equal three. The number of initial values has been reduced to 3 from

16 comparing to the post-MOO structure. Therefore the initial values are shown in

table 7.1. Then the combination framework starts from the initial values to search

Table 7.1: Initial Values for Decision Variables
Initial Values Nqc Nyc Ntr
Initial Value 1 13 140 140
Initial Value 2 25 260 260
Initial Value 3 38 380 380

for the near Pareto optimal solutions.

The initial values of the decision variables are input into simulation as parameters

as shown in figure (4.1). The simulation model starts with the three groups of initial

values. The simulation results are input into the multi-objective optimisation model.

The results for the four objectives are shown in table 7.2.

Table 7.2: Simulation Results for the First Iteration for All Objective Functions
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380

The simulation times for the three iterations in table 7.2 are 0.190, 0.214 and

0.247 hours respectively, while the total simulation time for truck travelling distance
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optimisation for the three experiments is 0.188 hours. Therefore the total simulation

time for the first iteration is 0.839 hours.

Then the data stream of simulation output goes into “Data Processing” as demon-

strated in figure (4.4). The data fitting is used to fit the data stream as shown in

figure (4.5). The values for ni, as defined in equations (6.50), (6.51), (6.52) and (6.53),

are set as shown in table 7.3. A few of experiments have been implemented to test

the values of R2 to find good values for ni. The fitting coefficients are given in table

Table 7.3: Values of ni for the First Iteration for All Objective Functions
i ni+1 ni+2 ni+3

10 3 3 3
20 3 3 3
30 3 3 3
40 3 Nil Nil

7.4.

As fitting coefficients and ni have been given, near Pareto optimal solutions to

the fitting functions are found by the genetic algorithm. The best values of decision

variables for the next iteration can be found from the Pareto solutions. The genetic

algorithm based on sections 6.3.5 is employed to search for the near Pareto optimal

solutions to the multi-objective optimisation model. The C# source codes for the ge-

netic algorithm for dynamic MOO search in this chapter are very similar to appendix

C. The parameter settings for the genetic algorithm are addressed in section 6.4.3.

The results of the genetic algorithm are shown in table 7.5. The first row in the table

is the best predicted solution for the first objective which has the same best value as

the second objective. The best predicted values for the third and fourth objectives

are given in the third and fourth rows respectively.

The time taken for the search is 1 minutes and 2 seconds. Therefore the total

time of the first iteration including simulation and search is 0.856 hours.

The processes for further explorations of the near Pareto optimal solutions for

each objective are presented in following sections.
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Table 7.4: Fitting Coefficients for the First Iteration for All Objective Functions

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function: Objective Function:

fqR(x) fyR(x)
α11 0.0051207235 α21 0.000977871
α12 −0.3599956362 α22 −0.07367058
α13 8.7515951463 α23 1.992917592
β11 0.0000520426 β21 9.76723× 10−6

β12 −0.0373578559 0.99 β22 −0.007558045 0.99
β13 9.1471189320 β23 2.067148623
γ11 0.0000520426 γ21 9.76723× 10−6

γ12 −0.0373578559 γ22 −0.007558045
γ13 9.1471189320 γ23 2.067148623

Traffic Congestion Truck Travelling
Probability Function: Distance Function:

P{Xi < fts} fd(x)
α31 0.0000007861 α41 −0.049159302
α32 −0.0000400894 α42 63.0208441 0.99
α33 0.2113231676 α43 201811.44
β31 0.0000000085
β32 −0.0000044282 0.99
β33 0.2113878865
γ31 0.0000000085
γ32 −0.0000044282
γ33 0.2113878865

Table 7.5: Best Predicted Values for the First Iteration for All Objective Functions
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

24.34 5.58 0.6328
24.34 5.58 0.6328
8.32 1.92 0.6324
20.60 4.80 0.6324

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

203597.70 2 27 29
203597.70 2 27 29
220621.94 43 377 473
203416.75 12 56 26
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7.3.2 The Near Optimal Solutions to the First Objective Function

The data processing and dynamic MOO search have been discussed in section 4.3.2.

This section addresses the processes of further searches for the solutions to each

objective.

Second Iteration for the First Objective Function

The predicted values in table 7.5 are set as simulation parameters, which are input

into “Data Processing” (namely data fitting as defined) as shown in figure (4.4). Then

two simulation models are executed with the predicted parameters. The simulation

results are input into the multi-objective optimisation model as parameters. The

simulation results for the four objectives are shown in table 7.6.

Table 7.6: Simulation Results for the Second Iteration for the First and Second
Objective Functions

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

24.54 4.68 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207374.80 2 27 29

The time taken for the simulation model to run in the Micro Saint Sharp package

is 0.164 hours and the running time for the truck travelling distance simulation is 29

seconds. The total time for simulation is 0.172 hours.

LqR denotes a data list represents equation (7.1) for the first objective function.

((qR1, yR1, P1, DTrk1 , Ntr1 , Nyc1 , Nqc1), (qR2, yR2, P2, DTrk2 , Ntr2 , Nyc2 , Nqc2),

· · · , (qRm, yRm, Pm, DTrkm , Ntrm , Nycm , Nqcm)) (7.1)

Where qRi denotes the quay crane productivity of the ith experiment, yRi denotes

the yard crane productivity of the ith experiment, Pi denotes the traffic congestion

probability in the yard of the ith experiment and DTrki denotes the internal truck

travelling distance of the ith experiment. i = 1, 2, 3, · · · ,m. m is the number of

experiments.
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The data in table 7.2 is added to LqR. In the second iteration, the new simulation

data from table 7.6 is then added into LqR. The updated LqR list is shown in table 7.7.

LqR now has four groups of values of the decision variables and objective functions.

Table 7.7: LqR(LyR) List for the Second Iteration for the First(Second) Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
24.54 4.68 0.6324

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207374.80 2 27 29

Then the data is fitted by equation (6.16).

Seeing from the features of simulation output, suppose ni powered functions shown

in equations (6.50), (6.51), (6.52) and (6.53) are good mathematical representations

for equations (6.15), (6.26), (6.40) and (6.42) respectively for the data list LqR. A few

of experiments have been implemented to test values of R2 to find good values for ni

and the results are shown in table 7.8. Moreover, the coefficient set b = {α, β, γ} is

Table 7.8: Values of ni for the Second Iteration for the First and Second Objective
Functions

i ni+1 ni+2 ni+3

10 3 3 3
20 3 3 3
30 4 4 4
40 3 Nil Nil

fitted by the data via equation (6.16). The fitting coefficients for the first objective

function are shown in table 7.9.

As fitting coefficients and ni have been given, near Pareto optimal solutions to

the fitting functions are found by the genetic algorithm. The output from the multi-

objective optimisation model are input into the “Searching Techniques” (defined as
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Table 7.9: Fitting Coefficients for the Second Iteration for the First and Second
Objective Functions

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function: Objective Function:

fqR(x) fyR(x)
α11 0.0053508587 α21 0.000464379
α12 −0.3723870925 α22 −0.046022028
α13 8.8965838759 α23 1.669410148
β11 0.0000521355 β21 4.10513× 10−6

β12 −0.0374084785 0.99 β22 −0.004472042 0.99
β13 9.1532061685 β23 1.696064984
γ11 0.0000534167 γ21 4.2795× 10−6

γ12 −0.0381072057 γ22 −0.004565381
γ13 9.2373160906 γ23 1.706929995

Traffic Congestion Truck Travelling
Probability Function: Distance Function:

P{Xi < fts} fd(x)
α31 0.000000047633333 α41 0.021013177
α32 −0.000002834600000 α42 24.75315068 0.99
α33 0.000044186500000 α43 206, 417.62
α34 0.210734808233333
β31 0.000000000033333
β32 −0.000000030266667
β33 0.000004943233333 0.99
β34 0.210699853833333
γ31 0.000000000066667
γ32 −0.000000030866667
γ33 0.000005084100000
γ34 0.210689512300000
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dynamic MOO search for this problem) as shown in figure (4.4). The best values of

decision variables are then selected from the Pareto solutions for the next iteration.

The results shown in table 7.10 are the best predicted values from the Pareto solutions

to the multi-objective optimisation model.

Table 7.10: Best Predicted Values for the Second Iteration for the First and Second
Objective Functions

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

24.74 4.76 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207101.27 2 23 27

The best predicted values of the decision variables, from which it is possible to

obtain the near Pareto optimal solutions, are 2 quay cranes, 23 yard cranes and 27

trucks in the decision space. The best predicted simulation value for the first objective

is 24.74. The time taken for the search is 1 minute and 2 seconds.

Third Iteration for the First Objective Function

The processes of following iterations are similar to the second iteration for the first

objective function, therefore description in following iterations will be shortened due

to their similarities.

The predicted values in table 7.10 are set as simulation parameters, which are

input into the “Data Processing”. Then simulation models run with the parameters

and the results are shown in table 7.11. The time taken for the simulation model to

Table 7.11: Simulation Results for the Third Iteration for the First and Second Ob-
jective Functions

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

23.16 5.24 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207460.33 2 23 27

run in the Micro Saint Sharp package is 0.168 hours and the running time for the
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truck travelling distance simulation is 26 seconds.

The updated LqR list is shown in table 7.12. The values of ni are shown in table

Table 7.12: LqR(LyR) List for the Third Iteration for the First(Second) Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
24.54 4.68 0.6324
23.16 5.24 0.6324

Truck Travelling Nqc Nyc Ntr
Distance (Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207374.80 2 27 29
207460.33 2 23 27

7.13. Moreover, the fitting coefficients are shown in table 7.14. The near Pareto

Table 7.13: Values of ni for the Third Iteration for the First and Second Objective
Functions

i ni+1 ni+2 ni+3

10 3 3 3
20 3 4 2
30 4 4 4
40 3 Nil Nil

optimal values found by dynamic MOO search are shown in table 7.15. The best

predicted values of the decision variables are 1 quay crane, 20 yard cranes and 20

trucks and the best predicted simulation value for the first objective is 24.63. The

time taken for the search is 1 minute and 2 seconds.

Fourth Iteration for the First Objective Function

The predicted values in table 7.15 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.16. The time taken for the simulation model to run
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Table 7.14: Fitting Coefficients for the Third Iteration for the First and Second
Objective Functions

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function: Objective Function:

fqR(x) fyR(x)
α11 0.0049391687 α21 0.000617705
α12 −0.3502199620 α22 −0.054277721
α13 8.6372129030 α23 1.766007546
β11 0.0000461830 β21 5.6124× 10−6

β12 −0.0342236292 0.99 β22 −0.0052785 0.98
β13 8.7826740224 β23 1.789890012
γ11 0.0000482594 β24 5.8529× 10−6

γ12 −0.0353213088 γ21 −0.005415301
γ13 8.9075615588 γ22 1.807531327

Traffic Congestion Truck Travelling
Probability Function: Distance Function:

P{Xi < fts} fd(x)
α31 0.000000047633333 α41 0.024558722
α32 −0.000002834600000 α42 22.83789781 0.99
α33 0.000044186500000 α43 206644.32
α34 0.210734808233333
β31 0.000000000033333
β32 −0.000000029500000
β33 0.000004770400000 0.86
β34 0.210710958466667
γ31 0.000000000066667
γ32 −0.000000030500000
γ33 0.000005003433333
γ34 0.210695034933333

Table 7.15: Best Predicted Values for the Third Iteration for the First and Second
Objective Functions

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

24.63 5.10 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207110.90 1 20 20
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Table 7.16: Simulation Results for the Fourth Iteration for the First and Second
Objective Functions

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

27.28 3.25 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207218.14 1 20 20

in the Micro Saint Sharp package is 0.151 hours and the running time for the truck

travelling distance simulation is 23 seconds.

The updated LqR list is shown in table 7.17. The values of ni are shown in table

Table 7.17: LqR(LyR) List for the Fourth Iteration for the First(Second) Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
24.54 4.68 0.6324
23.16 5.24 0.6324
27.28 3.25 0.6324

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207374.80 2 27 29
207460.33 2 23 27
207218.14 1 20 20

7.18. Moreover, the fitting coefficients are shown in table 7.19.

The near Pareto optimal values found by dynamic MOO search are shown in table

7.20. The best predicted values of the decision variables are 2 quay cranes, 24 yard

cranes and 36 trucks and the best predicted simulation value for the first objective is

24.50. The time taken for the search is 1 minute and 2 seconds.
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Table 7.18: Values of ni for the Fourth Iteration for the First and Second Objective
Functions

i ni+1 ni+2 ni+3

10 3 3 3
20 5 5 5
30 4 4 4
40 3 Nil Nil

Fifth Iteration for the First Objective Function

The predicted values in table 7.20 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.21. The time taken for the simulation model to run

in the Micro Saint Sharp package is 0.169 hours and the running time for the truck

travelling distance simulation is 34 seconds.

The updated LqR list is shown in table 7.22. The values of ni are shown in table

7.23. Moreover, the fitting coefficients are shown in table 7.24.

The near Pareto optimal values found by dynamic MOO search are shown in table

7.25. The best predicted values of the decision variables are 1 quay crane, 24 yard

cranes and 25 trucks and the best predicted simulation value for the first objective is

26.10. The time taken for the search is 1 minute and 2 seconds.

Sixth Iteration for the First Objective Function

The predicted values in table 7.25 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.26. The time taken for the simulation model to run

in the Micro Saint Sharp package is 0.182 hours and the running time for the truck

travelling distance simulation is 26 seconds.

The updated LqR list is shown in table 7.27. The values of ni are shown in table

7.28. Moreover, the fitting coefficients are shown in table 7.29.

The near Pareto optimal values found by dynamic MOO search are shown in table

7.30. The best predicted values of the decision variables are 3 quay cranes, 33 yard

cranes and 85 trucks and the best predicted simulation value for the first objective is

22.91. The time taken for the search is 1 minute and 2 seconds.
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Table 7.19: Fitting Coefficients for the Fourth Iteration for the First and Second
Objective Functions

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function Objective Function

fqR(x) fyR(x)
α11 0.0055880061 α21 −0.0000570080000
α12 −0.3827559728 α22 0.0044681456667
α13 8.9672572075 α23 −0.1101701878333

α24 0.8701456903667
α25 0.3190171317667

β11 0.0000532807 β21 −0.0000000066333
β12 −0.0379317016 0.98 β22 0.0000053640333 0.90
β13 9.1950608579 β23 −0.0013921444333

β24 0.1212647864667
β25 −0.6655818771333

γ11 0.0000553010 γ21 −0.0000000066000
γ12 −0.0389323403 γ22 0.0000053664667
γ13 9.2943299356 γ23 −0.0013992994667

γ24 0.1233844211667
γ25 −0.8333558039000

Traffic Congestion Truck Travelling
Probability Function Distance Function

P{Xi < fts} fd(x)
α31 0.0000000439333 α41 0.025422534
α32 −0.0000025889000 α42 22.39492425 0.99
α33 0.0000396608000 α43 206, 691.76
α34 0.2107547913667
β31 0.0000000000474
β32 −0.0000000286399
β33 0.0000045951618 0.67
β34 0.2107206268494
γ31 0.0000000000473
γ32 −0.0000000286375
γ33 0.0000046360410
γ34 0.2107135534186
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Table 7.20: Best Predicted Values for the Fourth Iteration for the First Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

24.50 5.20 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207530.93 2 24 36

Table 7.21: Simulation Results for the Fifth Iteration for the First Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

27.96 5.40 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207411.73 2 24 36

Table 7.22: LqR List for the Fifth Iteration for the First Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
24.54 4.68 0.6324
23.16 5.24 0.6324
27.28 3.25 0.6324
27.96 5.40 0.6324

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207374.80 2 27 29
207460.33 2 23 27
207218.14 1 20 20
207411.73 2 24 36
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Table 7.23: Values of ni for the Fifth Iteration for the First Objective Function
i ni+1 ni+2 ni+3

10 3 3 3
20 5 5 5
30 4 4 4
40 3 Nil Nil

Seventh Iteration for the First Objective Function

The predicted values in table 7.30 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.31. The time taken for the simulation model to run

in the Micro Saint Sharp package is 0.179 hours and the running time for the truck

travelling distance simulation is 1 minute and 6 seconds.

The updated LqR list is shown in table 7.32. The values of ni are shown in table

7.33. Moreover, the fitting coefficients are shown in table 7.34.

The near Pareto optimal values found by dynamic MOO search are shown in table

7.35. The best predicted values of the decision variables are 4 quay cranes, 46 yard

cranes and 53 trucks and the best predicted simulation value for the first objective is

23.56. The time taken for the search is 1 minute and 2 seconds.

Eighth Iteration for the First Objective Function

The predicted values in table 7.35 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.36. The time taken for the simulation model to run

in the Micro Saint Sharp package is 0.186 hours and the running time for the truck

travelling distance simulation is 41 seconds.

The updated LqR list is shown in table 7.37. In table 7.37, the fifth iteration

obtains the best value for the first objective which is 27.96. The sixth, seventh and

eighth iterations obtain worse values than this. The search process stops according

to the stopping criteria in section 4.3.2.

The best value for the first objective function searched by the genetic algorithm

in the post-MOO structure is 26.84 moves/quay crane/hour, while the best value

obtained from the MOO leading integrated structure is higher (27.96 moves/quay
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Table 7.24: Fitting Coefficients for the Fifth Iteration for the First Objective Function

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function Objective Function

fqR(x) fyR(x)
α11 0.0059991849 α21 −0.0000623179000
α12 −0.4062255054 α22 0.0048770083667
α13 9.2699324489 α23 −0.1199669625667

α24 0.9451162392000
α25 0.2534398049333

β11 0.0000577562 β21 −0.0000000074333
β12 −0.0403971509 0.97 β22 0.0000059984000 0.97
β13 9.4969592419 β23 −0.0015514921667

β24 0.1344600521333
β25 −0.8239311124667

γ11 0.0000581028 γ21 −0.0000000050333
γ12 −0.0410038594 γ22 0.0000040996333
γ13 9.6580078106 γ23 −0.0010731408667

γ24 0.0945544138333
γ25 −0.3209182352000

Traffic Congestion Truck Travelling
Probability Function Distance Function

P{Xi < fts} fd(x)
α31 0.0000000439000 α41 0.025176244
α32 −0.0000025905667 α42 22.57702484 0.99
α33 0.0000398754667 α43 206659.79
α34 0.2107515776667
β31 0.0000000000475
β32 −0.0000000286832
β33 0.0000046066979 0.62
β34 0.2107196744973
γ31 0.0000000000452
γ32 −0.0000000274658
γ33 0.0000044989030
γ34 0.2107091673425
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Table 7.25: Best Predicted Values for the Fifth Iteration for the First Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

26.10 4.11 0.6324
Truck Travelling Nqc Nyc Ntr
Distance (Metre)

207239.95 1 24 25

Table 7.26: Simulation Results for the Sixth Iteration for the First Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

26.03 2.89 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207122.86 1 24 25

Table 7.27: LqR List for the Sixth Iteration for the First Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
24.54 4.68 0.6324
23.16 5.24 0.6324
27.28 3.25 0.6324
27.96 5.40 0.6324
26.03 2.89 0.6324

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207374.80 2 27 29
207460.33 2 23 27
207218.14 1 20 20
207411.73 2 24 36
207122.86 1 24 25
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Table 7.28: Values of ni for the Sixth Iteration for the First Objective Function
i ni+1 ni+2 ni+3

10 3 3 3
20 5 5 5
30 4 4 4
40 3 Nil Nil

crane/hour). Seeing from the computational volume, it takes 16 simulation iterations

and 1 genetic algorithm search in post-MOO structure, while the integrated MOO

structure takes 10 simulation iterations and 7 genetic algorithm searches. To com-

pare computational time, the computational time for simulation in the post-MOO

structure is: the simulation in Micro Saint Sharp takes 1.55 hours and the simulation

of truck travelling distance takes 4 minutes and 12.49 seconds. The genetic algorithm

takes 1 minute and 1.93 seconds. Therefore it is 1.64 hours in total for the post-MOO

structure. On the other hand, the computational time for the MOO leading integrat-

ed structure is: the simulation in Micro Saint Sharp takes 1.85 hours and simulation

for travelling distance takes 15 minutes and 21 seconds. The dynamic MOO search

takes 7 minutes and 14 seconds. Totally, the second structure takes 2.23 hours which

is 35.76% more than the first structure but the second structure gets a better solution.

7.3.3 The Near Optimal Solutions to the Second Objective Function

Second Iteration for the Second Objective Function

The predicted values in table 7.5 are set as simulation parameters. The predicted

values between first and second objectives are the same in table 7.5, therefore the

simulation results by using the same predicted parameters are also the same, which

are shown in table 7.6, and the computational is also the same, which is 0.164 hours

for the simulation model run in the Micro Saint Sharp and 29 seconds for the model

of truck travelling distance.

LyR denotes a data list represents equation (7.1) for the second objective function.

Add the data in table 7.2 to LyR. New simulation data from table 7.6 is then added

into LyR. The updated LyR list is the same as LqR in table 7.7. Then the data is

fitted by equation (6.16).

Seeing from the features of simulation output, suppose ni powered functions shown
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Table 7.29: Fitting Coefficients for the Sixth Iteration for the First Objective Function

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function Objective Function

fqR(x) fyR(x)
α11 0.0058958092 α21 −0.0001018484500
α12 −0.4011728633 α22 0.0079684963000
α13 9.2216501953 α23 −0.1960322617000

α24 1.5506821266500
α25 0.1733815184000

β11 0.0000577562 β21 −0.0000000018100
β12 −0.0403971509 0.97 β22 0.0000014677300 0.92
β13 9.4969592419 β23 −0.0003821057800

β24 0.0334366422300
β25 −0.1643596899900

γ11 0.0000581656 γ21 −0.0000000068000
γ12 −0.0406226753 γ22 0.0000055352800
γ13 9.5245750797 γ23 −0.0014542991600

γ24 0.1299923902800
γ25 −0.8350841096000

Traffic Congestion Truck Travelling
Probability Function Distance Function

P{Xi < fts} fd(x)
α31 0.0000000421000 α41 0.024647287
α32 −0.0000024737333 α42 22.85352286 0.99
α33 0.0000378119667 α43 206629.03
α34 0.2107596043667
β31 0.0000000000475
β32 −0.0000000287094 0.70
β33 0.0000046136812
β34 0.2107190980027
γ31 0.0000000000449
γ32 −0.0000000272623
γ33 0.0000044563852
γ34 0.2107116271617
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Table 7.30: Best Predicted Values for the Sixth Iteration for the First Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

22.91 6.59 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

208749.66 3 33 85

Table 7.31: Simulation Results for the Seventh Iteration for the First Objective Func-
tion

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

25.83 5.74 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

208684.33 3 33 85

Table 7.32: LqR List for the Seventh Iteration for the First Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
24.54 4.68 0.6324
23.16 5.24 0.6324
27.28 3.25 0.6324
27.96 5.40 0.6324
26.03 2.89 0.6324
25.83 5.74 0.6328

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207374.80 2 27 29
207460.33 2 23 27
207218.14 1 20 20
207411.73 2 24 36
207122.86 1 24 25
208684.33 3 33 85



144

Table 7.33: Values of ni for the Seventh Iteration for the First Objective Function
i ni+1 ni+2 ni+3

10 3 3 3
20 5 5 5
30 4 4 4
40 3 Nil Nil

in equations (6.50), (6.51), (6.52) and (6.53) are good mathematical representations

for equations (6.15), (6.26), (6.40) and (6.42) respectively for the data list LyR. A

few of experiments have been implemented to test values of R2 to find good values

for ni and the results are shown in table 7.8.

Moreover, the coefficient set b = {α, β, γ} is fitted by the data via equation (6.16).

The fitting coefficients for the second objective function are shown in table 7.9.

The near Pareto optimal values found by dynamic MOO search are shown in table

7.10. The best predicted values of the decision variables are 2 quay cranes, 23 yard

cranes and 27 trucks in the decision space, which gets the maximum value 4.76. The

time taken for the search is 1 minute and 2 seconds.

Third Iteration for the Second Objective Function

The predicted values in table 7.10 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.11. The time taken for the simulation model to run

in the Micro Saint Sharp package is 0.168 hours and the running time for the truck

travelling distance simulation is 26 seconds.

The updated LyR list is shown in table 7.12. The values of ni are shown in table

7.13. Moreover, the fitting coefficients are shown in table 7.14.

The near Pareto optimal values found by dynamic MOO search are shown in table

7.15. The best predicted values of the decision variables are 2 quay cranes, 20 yard

cranes and 20 trucks and the best predicted simulation value for the second objective

is 5.10. The time taken for the search is 1 minute and 2 seconds.
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Table 7.34: Fitting Coefficients for the Seventh Iteration for the First Objective
Function

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function Objective Function

fqR(x) fyR(x)
α11 0.0058800634 α21 −0.0000848887000
α12 −0.4031316478 α22 0.0066541862500
α13 9.3042539533 α23 −0.1641354814500

α24 1.2983097827500
α25 0.4598541148500

β11 0.0000584166 β21 −0.0000000018200
β12 −0.0408973429 0.94 β22 0.0000014727200 0.86
β13 9.5865584807 β23 −0.0003833886700

β24 0.0335495738000
β25 −0.1663319891300

γ11 0.0000396974 γ21 −0.0000000051200
γ12 −0.0345507283 γ22 0.0000041748000
γ13 9.6605887925 γ23 −0.0010942161200

γ24 0.0966436409200
γ25 −0.1861490463600

Traffic Congestion Truck Travelling
Probability Function Distance Function

P{Xi < fts} fd(x)
α31 0.0000000147900 α41 0.025244655
α32 −0.0000008684400 α42 22.64393211 0.99
α33 0.0000130125800 α43 206629.00
α34 0.0632287784200
β31 0.0000000000161
β32 −0.0000000096955
β33 0.0000015271890 0.86
β34 0.0632169163231
γ31 0.0000000001137
γ32 −0.0000000691324
γ33 0.0000112946503
γ34 0.5056954987565
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Table 7.35: Best Predicted Values for the Seventh Iteration for the First Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

23.56 6.58 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207900.04 4 46 53

Table 7.36: Simulation Results for the Eighth Iteration for the First Objective Func-
tion

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

22.30 5.32 0.6324
Truck Travelling Nqc Nyc Ntr
Distance (Metre)

207652.61 4 46 53

Table 7.37: LqR List for the Eighth Iteration for the First Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
24.54 4.68 0.6324
23.16 5.24 0.6324
27.28 3.25 0.6324
27.96 5.40 0.6324
26.03 2.89 0.6324
25.83 5.74 0.6328
22.30 5.32 0.6324

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207374.80 2 27 29
207460.33 2 23 27
207218.14 1 20 20
207411.73 2 24 36
207122.86 1 24 25
208684.33 3 33 85
207652.61 4 46 53



147

Fourth Iteration for the Second Objective Function

The predicted values in table 7.15 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.16. The time taken for the simulation model to run

in the Micro Saint Sharp package is 0.151 hours and the running time for the truck

travelling distance simulation is 23 seconds.

The updated LyR list is shown in table 7.17. The values of ni are shown in table

7.18. Moreover, the fitting coefficients are shown in table 7.19.

The near Pareto optimal values found by dynamic MOO search are shown in table

7.38. The best predicted values of the decision variables are 2 quay cranes, 74 yard

Table 7.38: Best Predicted Values for the Fourth Iteration for the Second Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

22.29 6.84 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207950.10 2 74 53

cranes and 53 trucks and the best predicted simulation value for the second objective

is 6.84. The time taken for the search is 1 minute and 2 seconds.

Fifth Iteration for the Second Objective Function

The predicted values in table 7.38 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.39. The time taken for the simulation model to run

Table 7.39: Simulation Results for the Fifth Iteration for the Second Objective Func-
tions

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

27.85 1.85 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207868.99 2 74 53
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in the Micro Saint Sharp package is 0.186 hours and the running time for the truck

travelling distance simulation is 45 seconds.

The updated LyR list is shown in table 7.40. The values of ni are shown in table

Table 7.40: LyR List for the Fifth Iteration for the Second Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
24.54 4.68 0.6324
23.16 5.24 0.6324
27.28 3.25 0.6324
27.85 1.85 0.6328

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207374.80 2 27 29
207460.33 2 23 27
207218.14 1 20 20
207868.99 2 74 53

7.41. Moreover, the fitting coefficients are shown in table 7.42.

Table 7.41: Values of ni for the Fifth Iteration for the Second Objective Function
i ni+1 ni+2 ni+3

10 3 3 3
20 5 5 5
30 4 4 4
40 3 Nil Nil

The near Pareto optimal values found by dynamic MOO search are shown in table

7.43. The best predicted values of the decision variables are 8 quay cranes, 399 yard

cranes and 498 trucks and the best predicted simulation value for the second objective

is 8.03. The time taken for the search is 1 minute and 2 seconds.
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Table 7.42: Fitting Coefficients for the Fifth Iteration for the Second Objective Func-
tion

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function Objective Function

fqR(x) fyR(x)
α11 0.0059858989 α21 −0.0000005725870
α12 −0.4054671576 α22 0.0000464451180
α13 9.2601524036 α23 −0.0012061365430

α24 0.0100418533080
α25 0.0236205238640

β11 0.0000361453 β21 0.0000000085500
β12 −0.0327504965 0.92 β22 −0.0000067933800 0.72
β13 9.4677006598 β23 0.0017237602800

β24 −0.1570920409800
β25 6.6770517440700

γ11 0.0000514432 γ21 0.0000000008190
γ12 −0.0387083831 γ22 −0.0000006460830
γ13 9.6667675692 γ23 0.0001636588440

γ24 −0.0149323203180
γ25 0.6566584728240

Traffic Congestion Truck Travelling
Probability Function Distance Function

P{Xi < fts} fd(x)
α31 0.0000000266200 α41 0.025587339
α32 −0.0000015441200 α42 22.38535684 0.99
α33 0.0000225964000 α43 206675.85
α34 0.1264708417200
β31 0.0000000000594
β32 −0.0000000359259 0.99
β33 0.0000057564473
β34 0.2528609123885
γ31 0.0000000000653
γ32 −0.0000000395736
γ33 0.0000063389853
γ34 0.2528480724527
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Table 7.43: Best Predicted Values for the Fifth Iteration for the Second Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

11.70 8.03 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

224169.52 8 399 498

Sixth Iteration for the Second Objective Function

The predicted values in table 7.43 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.44. The time taken for the simulation model to run

Table 7.44: Simulation Results for the Sixth Iteration for the Second Objective Func-
tions

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

25.51 1.25 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

211260.11 2 74 53

in the Micro Saint Sharp package is 0.182 hours and the running time for the truck

travelling distance simulation is 5minutes and 22 seconds.

In table 7.40, the third iteration obtains the best value for the second objective

which is 5.24. The fourth, fifth and sixth iterations obtain worse objective values

from simulation results comparing to the third iteration. Therefore the search stops

according to the stopping criteria in section 4.3.2.

The best value for the second objective function searched by the genetic algorith-

m in the Post-MOO structure is 4.07 moves/yard crane/hour, while the best value

obtained from the MOO leading integrated structure is better (5.24). Seeing from

the computational volume, it takes 16 simulation iterations and 1 genetic algorithm

search in Post-MOO structure, while the integrated MOO structure takes 8 simula-

tion iterations and 5 dynamic MOO searches. On the other hand, the computational

time by using the MOO leading integrated structure is: the simulation in Micro Saint
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Sharp takes 1.43 hours and simulation for travelling distance takes 18 minutes and 40

seconds. The dynamic MOO search takes 5 minutes and 9 seconds. Therefore the sec-

ond structure totally takes 1.827 hours which is 11.40% longer than using post-MOO

structure.

7.3.4 The Near Optimal Solutions to the Third Objective Function

Second Iteration for the Third Objective Function

The predicted values in table 7.5 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and the

results are shown in table 7.45. The time taken for the simulation model to run in the

Table 7.45: Simulation Results for the Second Iteration for the Third Objective Func-
tion

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

6.29 1.88 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207720.79 43 377 473

Micro Saint Sharp package is 0.23 hours and the running time for the truck travelling

distance simulation is 5 minutes and 48 seconds. The total time for simulation is

0.327 hours.

Lp denotes a data list represents equation (7.1) for the third objective function.

Add the data in table 7.2 to Lp. In the second iteration, new simulation data from

table 7.45 is then added into Lp. The updated Lp list is shown in table 7.46. Then

the data is fitted by equation (6.16).

Seeing from the features of simulation output, suppose ni powered functions shown

in equations (6.50), (6.51), (6.52) and (6.53) are good mathematical representations

for equations (6.15), (6.26), (6.40) and (6.42) respectively for the data list Lp. A few

of experiments have been implemented to test values of R2 to find good values for ni

and the results are shown in table 7.47. Moreover, the coefficient set b = {α, β, γ} is

fitted by the data via equation (6.16). The fitting coefficients for the third objective

function are shown in table 7.48.
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Table 7.46: Lp List for the Second Iteration for the Third Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
6.29 1.88 0.6324

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207720.79 43 377 473

Table 7.47: Values of ni for the Second Iteration for the Third Objective Function
i ni+1 ni+2 ni+3

10 3 3 3
20 3 3 3
30 4 4 4
40 3 Nil Nil

The near Pareto optimal values found by dynamic MOO search are shown in table

7.49. The best predicted values of the decision variables are 27 quay cranes, 128 yard

cranes and 183 trucks in the decision space, which gets the best value 0.6324. The

time taken for the search is 1 minute and 2 seconds.

Third Iteration for the Third Objective Function

The predicted values in table 7.49 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.50. The time taken for the simulation model to run

in the Micro Saint Sharp package is 0.192 hours and the running time for the truck

travelling distance simulation is 2 minutes and 1 seconds.

The updated Lp list is shown in table 7.51. The values of ni are shown in table

7.52. Moreover, the fitting coefficients are shown in table 7.53.

The near Pareto optimal values found by dynamic MOO search are shown in table

7.54. The best predicted values of the decision variables are 31 quay cranes, 121 yard

cranes and 129 trucks in the decision space, which gets the maximum value 0.6324.
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Table 7.48: Fitting Coefficients for the Second Iteration for the Third Objective
Function

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function Objective Function

fqR(x) fyR(x)
α11 0.0034673828 α21 0.0009580929000
α12 −0.2830101046 α22 −0.0727496460667
α13 7.9897940223 α23 1.9838046029000
β11 0.0000464766 β21 0.0000100661333
β12 −0.0352279951 0.98 β22 −0.0076724201000 0.99
β13 8.9603252943 β23 2.0771795681333
γ11 0.0000302725 γ21 0.0000086624667
γ12 −0.0266596471 γ22 −0.0070151402333
γ13 8.0181938485 γ23 2.0098587571333

Traffic Congestion Truck Travelling
Probability Function Distance Function

P{Xi < fts} fd(x)
α31 −0.0000000891000 α41 −0.323591427
α32 0.0000075567333 α42 197.8813427 0.82
α33 0.0001976854000 α43 187580.33
α34 0.2124233996333
β31 0.0000000014000
β32 −0.0000010845000 0.99
β33 0.0002595808000
β34 0.1920048078000
γ31 −0.0000000000667
γ32 0.0000000542000
γ33 0.0000154627333
γ34 0.2121980240000

Table 7.49: Best Predicted Values for the Second Iteration for the Third Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

12.24 2.99 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

212955.86 27 128 183
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Table 7.50: Simulation Results for the Third Iteration for the Third Objective Func-
tion

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

7.16 3.67 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

205449.77 27 128 183

Table 7.51: Lp List for the Third Iteration for the Third Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
6.29 1.88 0.6324
7.16 3.67 0.6328

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207720.79 43 377 473
205449.77 27 128 183

Table 7.52: Values of ni for the Third Iteration for the Third Objective Function
i ni+1 ni+2 ni+3

10 3 4 5
20 5 3 3
30 5 5 5
40 4 Nil Nil
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Table 7.53: Fitting Coefficients for the Third Iteration for the Third Objective Func-
tion

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function Objective Function

fqR(x) fyR(x)
α11 0.0045799776 α21 0.000102553
α12 −0.3439655328 α22 −0.012206661
α13 8.5998603478 α23 0.517754095

α24 −9.146143436
α25 56.48890036

β11 0.0000069646 β21 9.1911× 10−6

β12 −0.0053783680 0.88 β22 −0.007145048 0.95
β13 1.2743025290 β23 2.002499291
β14 −87.1886581917
γ11 0.0000000083 γ21 8.48213× 10−6

γ12 −0.0000105348 γ22 −0.007186762
γ13 0.0047899717 γ23 2.118129978
γ14 −0.9193690053
γ15 −0.9193690053

Traffic Congestion Truck Travelling
Probability Function Distance Function

P{Xi < fts} fd(x)
α31 0.0000000190000 α41 −0.002860588
α32 −0.0000023497000 α42 2.312374413 0.89
α33 0.0001032426333 α43 −535.15
α34 −0.0018773085333 α44 245, 972.65
α35 0.2225115484333
β31 0.0000000000054
β32 −0.0000000048103
β33 0.0000015056722 0.99
β34 −0.0001960013849
β35 0.2200008198302
γ31 −0.0000000000006
γ32 0.0000000006723
γ33 −0.0000002709088
γ34 0.0000445875317
γ35 0.2083816152915
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Table 7.54: Best Predicted Values for the Third Iteration for the Third Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

9.22 4.19 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209277.78 31 121 129

The time taken for the search is 1 minute and 2 seconds.

Fourth Iteration for the Third Objective Function

The predicted values in table 7.54 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.55. The time taken for the simulation model to run

Table 7.55: Simulation Results for the Fourth Iteration for the Third Objective Func-
tion

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

6.08 3.73 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209608.29 31 121 129

in the Micro Saint Sharp package is 0.189 hours and the running time for the truck

travelling distance simulation is 1 minute and 29 seconds.

The best value in Lp list is 0.6324 which is found in the first iteration for the third

objective. The second, third and fourth iterations get objective values equal to or

worse than the existed best value. Therefore the iteration is stopped.

The best value for the third objective function searched by the Post-MOO struc-

ture is 0.6324, and the best value obtained from the MOO leading integrated structure

is also 0.6324. Seeing from the computational volume, the integrated MOO structure

takes 6 simulation iterations and 3 genetic algorithm searches. The computational

time is: the simulation takes 1.26 hours and the dynamic MOO search takes 3 min-

utes and 6 seconds. Totally, it takes 1.34 hours which is 18.29% less than post-MOO

structure.
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7.3.5 The Near Optimal Solutions to the Fourth Objective Function

Second Iteration for the Fourth Objective Function

The predicted values in table 7.5 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.56. The time taken for the simulation model to run

Table 7.56: Simulation Results for the Second Iteration for the Fourth Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

4.44 2.27 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207374.80 12 56 26

in the Micro Saint Sharp package is 0.156 hours and the running time for the truck

travelling distance simulation is 26 seconds.

Ld denotes a data list represents equation (7.1) for the fourth objective function.

Add the data in table 7.2 to Ld. In the second iteration, the new simulation data

from table 7.56 is then added into Ld. The updated Ld list is shown in table 7.57.

Then the data is fitted by equation (6.16).

Table 7.57: Ld List for the Second Iteration for the Fourth Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
4.44 2.27 0.6328

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207374.80 12 56 26

Seeing from the features of simulation output, suppose ni powered functions shown

in equations (6.50), (6.51), (6.52) and (6.53) are good mathematical representations
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for equations (6.15), (6.26), (6.40) and (6.42) respectively for the data list Ld. A few

of experiments have been implemented to test values of R2 to find good values for ni

and the results are shown in table 7.58. Moreover, the coefficient set b = {α, β, γ} is

Table 7.58: Values of ni for the Second Iteration for the Fourth Objective Function
i ni+1 ni+2 ni+3

10 4 4 4
20 4 4 4
30 4 4 4
40 3 Nil Nil

fitted by the data via equation (6.16). The fitting coefficients for the fourth objective

function are shown in table 7.59.

The near Pareto optimal values found by dynamic MOO search are shown in table

7.60. The best predicted values of the decision variables are 23 quay cranes, 28 yard

cranes and 22 trucks in the decision space, which gets the maximum value 206975.97.

The time taken for the search is 1 minute and 2 seconds.

Third Iteration for the Fourth Objective Function

The predicted values in table 7.60 are set as simulation parameters, which are input

into the “Data Processing”. Then simulation models run with the parameters and

the results are shown in table 7.61. The time taken for the simulation model to run

in the Micro Saint Sharp package is 0.157 hours and the running time for the truck

travelling distance simulation is 26 seconds.

The updated Ld list is shown in table 7.62. The values of ni are shown in table

7.63. Moreover, the fitting coefficients are shown in table 7.64.

The near Pareto optimal values found by dynamic MOO search are shown in table

7.65. The best predicted values of the decision variables are 23 quay cranes, 22 yard

cranes and 22 trucks in the decision space, which gets the maximum value 207287.20.

The time taken for the search is 1 minute and 2 seconds.

The iterations are stopped because the searching value is 22 (trucks) which is

the same as second iteration. The fourth objective function only has one decision

variable, therefore iteration stops due to the predicted value of the decision variable

exists in the Lp list.
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Table 7.59: Fitting Coefficients for the Second Iteration for the Fourth Objective
Function

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function Objective Function

fqR(x) fyR(x)
α11 0.0109183839 α21 0.0014561901000
α12 −0.8246764495 α22 −0.1096925779000
α13 18.9546254039 α23 2.5023297342000
α14 −126.0904454670 α24 −15.9910303319333
β11 0.0000010338 β21 0.0000001651667
β12 −0.0007543134 0.99 β22 −0.0001190656333 0.99
β13 0.1574081265 β23 0.0235600498667
β14 −5.1522604100 β24 −0.2174877359667
γ11 0.0000007129 γ21 0.0000001185667
γ12 −0.0005040397 γ22 −0.0000827221333
γ13 0.0969574142 γ23 0.0147816954333
γ13 −0.7140743576 γ24 0.4270037637000

Traffic Congestion Truck Travelling
Probability Function Distance Function

P{Xi < fts} fd(x)
α31 0.0000000604667 α41 0.021265935
α32 −0.0000038094000 α42 24.64797932 0.99
α33 0.0000668761667 α43 206423.42
α34 0.2105764037667
β31 0.0000000000333
β32 −0.0000000240333 0.63
β33 0.0000034363333
β34 0.2108104876333
γ31 0.0000000000333
γ32 −0.0000000198667
γ33 0.0000024280667
γ34 0.2108845131000

Table 7.60: Best Predicted Values for the Second Iteration for the Fourth Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

6.33 2.32 0.6324
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

206975.97 23 28 22
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Table 7.61: Simulation Results for the Third Iteration for the Fourth Objective Func-
tion

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

1.77 3.80 0.6328
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207592.48 23 28 22

Table 7.62: Ld List for the Third Iteration for the Fourth Objective Function
Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

14.81 3.60 0.6328
8.86 2.27 0.6324
7.40 1.82 0.6328
4.44 2.27 0.6328
1.77 3.80 0.6328

Truck Travelling Nqc Nyc Ntr
Distance(Metre)

209670.84 13 140 140
214873.69 25 260 260
218660.76 38 380 380
207374.80 12 56 26
207592.48 23 28 22

Table 7.63: Values of ni for the Third Iteration for the Fourth Objective Function
i ni+1 ni+2 ni+3

10 5 4 4
20 4 5 5
30 5 4 5
40 3 Nil Nil
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Table 7.64: Fitting Coefficients for the Third Iteration for the Fourth Objective
Function

Coeffi- Fitting Values R2 Coeffi- Fitting Values R2

cients cients

Qc Efficiency Yc Efficiency
Objective Function Objective Function

fqR(x) fyR(x)
α11 −0.0017775645 α21 0.0014802019667
α12 0.1673440564 α22 −0.1115241214000
α13 −5.5903267686 α23 2.5449617971333
α14 78.6416848651 α24 −16.2839847119333
α15 −389.5254985437 β21 0.0000000035667
β11 0.0000007040 β22 −0.0000028220667
β12 −0.0005217479 0.95 β23 0.0007102109333 0.76
β13 0.1095516396 β24 −0.0635640152667
β14 −2.4841220402 β25 2.5503121474333
γ11 0.0000007572 γ21 0.0000000137667
γ12 −0.0005364904 γ22 −0.0000109874000
γ13 0.1041147844 γ23 0.0027927069333
γ14 −1.1728361123 γ24 −0.2433069418667

γ25 5.3824202421667
Traffic Congestion Truck Travelling

Probability Function Distance Function
P{Xi < fts} fd(x)

α31 0.0000000302333 α41 0.027380187
α32 −0.0000026000667 α42 21.37779006 0.99
α33 0.0000772462333 α43 206803.64
α34 −0.0009482993667
α35 0.2150569867000
β31 0.0000000000333
β32 −0.0000000184000
β33 0.0000022779000 0.70
β34 0.2108750731333
γ31 0.0000000000002
γ32 −0.0000000000869
γ33 0.0000000120387
γ34 −0.0000004359443
γ35 0.2109395034177
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Table 7.65: Best Predicted Values for the Third Iteration for the Fourth Objective
Function

Quay Crane Productivity Yard Crane Productivity Traffic Congestion
(Move/quay crane/hour) (Move/quay crane/hour) Probability

1.14 4.00 0.632436671784682
Truck Travelling Nqc Nyc Ntr
Distance(Metre)

207287.20 23 22 22

The best value for the fourth objective function searched by the post-MOO struc-

ture is 210778.36 metres, while the best value obtained from the MOO leading in-

tegrated structure is better (207294.24). Seeing from the computational volume,

the integrated MOO structure takes 5 simulation iterations and 3 genetic algorithm

searches. The computational time is: the simulation takes 0.96 hours and the dy-

namic MOO search takes 0.22 hours. Hence, it takes 1.18 hours by using integrated

MOO structure which is 28.05% less than using post-MOO structure.

7.4 Summary

This chapter mainly addresses the processes to use the MOO leading integrated struc-

ture to solve multiple equipment quantity optimisation problem raised and modelled

in chapter 6. It aims to traverse good quality values of the decision variables to

find good quality solutions with low computational cost. The results from the MOO

leading integrated structure are better than post-MOO structure in the first, second,

and fourth objective function, while the best results of the third objective are the

same. The solutions to the first, second and fourth objectives obtained by the MOO

leading integrated structure have 4.17%, 28.75% and 1.65% improvement comparing

to the post-MOO structure. The computational volume by using the MOO leading

integrated structure of is less than post-MOO structure for all objectives. Further-

more, the computational time of the first and second objectives by the MOO leading

integrated structure are 35.76% and 11.40% longer than post-MOO structure. But for

the third and fourth objectives, using the MOO leading integrated structure reduces

computational time by 18.29% and 28.05% respectively comparing to the post-MOO

structure.



Chapter 8

Summary and Conclusions

This thesis addresses a new way to solve the problem of mechanical equipment quanti-

ty optimisation for container terminals. Background information about the container

industry is discussed and operational flows of container terminals are analysed. Sim-

ulation is able to well describe dynamic systems such as container terminal systems

and provide a great deal of detailed data. However simulation for large systems

needs a lot of computational volume and may be time consuming. Another method

employed, multi-objective optimisation, solves the problems with multiple objectives

and provides near Pareto optimal solutions. In order to integrate the strengths of the

two methods, a combination framework to integrate simulation and multi-objective

optimisation is therefore proposed to solve the problem. The combination framework

to solve a container terminal optimisation problem with a series of management ob-

jectives is potentially powerful and time saving. Three combination structures are

presented under the combination framework for different types of problems.

The applications of the three combination structures on three problems are dis-

cussed in this thesis: the internal truck quantity optimisation problem by using post-

MOO structure is discussed in chapter 5; the multiple equipment quantity optimisa-

tion problem in container terminals by using post-MOO structure is given in chapter

6; the multiple equipment quantity optimisation problem in container terminals by

using MOO leading integrated structure is given in chapter 7.

Chapters 5 discusses a single variable problem, namely the internal truck quantity

optimisation problem in container terminals, under the combination framework. Five

objectives related to cost and operational efficiency are taken into consideration.

Simulation and multi-objective optimisation models are developed under the post-

MOO combination structure. Explicit enumeration is employed to produce the Pareto

optimal solutions.
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Chapters 6 further studies a multiple variable problem, namely the multiple equip-

ment quantity optimisation problem, under the post-MOO structure. Two simulation

models are built to represent container terminal operations. One of them is developed

in the Micro Saint simulation package for general container terminal operations and

another is coded separately in C# for internal truck travelling distance to reduce

computational time. Multi-objective optimisation models are proposed for four ob-

jectives related to terminal productivity and cost. The genetic algorithm is employed

to explore the near Pareto optimal solutions due to the complexity of the problem.

As a further study based on the multiple equipment quantity optimisation problem

raised, chapter 7 solves the problem by the MOO leading integrated structure in

order to get good solutions with low computational cost. The “Data Processing”

and “Searching Techniques” in the combination structure are defined as the data

fitting and dynamic MOO search respectively to process and deliver the data streams

between simulation and multi-objective optimisation in the framework. Solutions are

explored until stopping conditions are met.

The results show that post-MOO and MOO leading integrated structures are

suitable to solve dynamic problems with multiple objectives like container terminal

optimisation problems. Post-MOO is efficient when the computational time of simu-

lation is low because a number of simulation iterations are needed to generate a great

number of data to increase the accuracy level of models. On the other hand, if the

simulation models are time consuming, MOO leading integrated structure is more

effective in exploring good solutions and reducing computational time. Furthermore,

MOO leading integrated structure only searches the best solutions for each objective

however the post-MOO structure provides much more data for further analysis.

There are two important points to the two combination structures used in this

thesis. First of all, as the data fitting is defined as a method for “Data Processing”

in the three combination structures in this thesis, the accuracy level achieved by

the data fitting determines the searching efficiency of “Searching Techniques” in the

integrated MOO structure and the quality of solutions obtained from the post-MOO

structure. In the MOO leading integrated structure, the data fitting and dynamic

MOO search explore the potential optimal decision values to find the near Pareto

optimal solutions. The dynamic MOO search is based on the parameters from the
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data fitting, therefore, the quality of solutions found by the dynamic MOO search

relies on the accuracy level of parameters delivered from the data fitting. Data fitting

results with poor R2 values do not provide good decision values, which may result

in poor performance of the framework and poor quality of solutions obtained from

the combination. For the post-MOO structure, problems are directly solved based on

the fitting functions. Poor quality of fitting functions may lead to great deviations.

Secondly, in the MOO leading integrated structure, the dynamic MOO search needs

to consider the situations where the search can not escape from a local optimum. In

order to reduce the number of initial values of decision variables, the process starts

with a minimum number of initial values which are set evenly on the decision axes.

The fitting functions may not be a good representation for all solutions, therefore, it

is possible that the dynamic MOO search could not predict better decision values to

escape from a local optimum.

The models proposed in this thesis need to be improved. Firstly, the range of

the congestion probability objective function built in section 6.3.3 is very narrow,

therefore the model could be improved to get a wider range of values which is closer

to reality. Secondly, the simulation models built in the Micro Saint Sharp package

are computational time consuming. The time taken in running simulation models

is possible to be shorted if the models are implemented in C#. Thirdly, param-

eter settings and estimation. The setting of parameters can be improved if more

data is obtained. Fourthly, feedback from the Southampton Container Terminal on

the objectives, modelling, parameter settings and solutions is valuable for further

improvement.

My research interests in the future are still in this area. Firstly, the MOO leading

integrated structure and post-MOO structure are employed to solve the problem-

s in this thesis, however, the pre-MOO structure and simulation leading integrated

structure have not been defined and applied in this thesis. Therefore, the explo-

ration of applications for the two combination structures may be a new research area.

Secondly, techniques for the “Data Processing” and “Searching Techniques” in the

combination framework could be substituted by other methods if they are proved

to have better performance for the problems. The combination framework is only a

framework and its internal structures and methods need to be defined. Therefore,
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more efficient and effective methods for the “Data Processing” and “Searching Tech-

niques” may be found in the future research. Finally, as discussed in this thesis, the

combination framework is able to solve container terminal optimisation problems, its

applicability to other problems is still unknown. More research is needed to work out

the performance of the framework in other areas.



Appendix A

C# Codes for the Explicit Numeration for Truck Quantity

Optimisation

The programme is implemented by “Windows Forms Application” in Visual C# 2010

Express. There are three source code documents: Tr Program.cs, Tr Form1.Designer.cs

and Tr Form1.cs. The source codes of “Tr Program.cs” are shown as follows:

using System ;

using System . C o l l e c t i o n s . Generic ;

using System . Linq ;

using System . Windows . Forms ;

namespace WindowsFormsApplication1

{
stat ic class Program

{
/// <summary>

/// The main entry po in t f o r the a p p l i c a t i o n .

/// </summary>

[ STAThread ]

stat ic void Main ( )

{
Appl i cat ion . Enab l eVi sua lSty l e s ( ) ;

App l i ca t ion . SetCompatibleTextRenderingDefault (

fa l se ) ;

App l i ca t ion . Run(new Form1 ( ) ) ;

}
}
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}

The source codes of “Tr Program.cs” are shown as follows:

namespace WindowsFormsApplication1

{
p a r t i a l class Form1

{
/// <summary>

/// Required de s i gne r v a r i a b l e .

/// </summary>

private System . ComponentModel . IConta iner components =

null ;

/// <summary>

/// Clean up any resource s be ing used .

/// </summary>

/// <param name=”d i s po s i n g”> t rue i f managed re source s

shou ld be d i sposed ; o therwise , f a l s e .</param>

protected override void Dispose ( bool d i spo s i ng )

{
i f ( d i spo s i ng && ( components != null ) )

{
components . Dispose ( ) ;

}
base . Dispose ( d i spo s i ng ) ;

}

#reg ion Windows Form Designer generated code

/// <summary>

/// Required method f o r Designer suppor t − do not

modify
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/// the con ten t s o f t h i s method wi th the code e d i t o r .

/// </summary>

private void In i t i a l i z eComponent ( )

{
this . b tnSo lu t i ons = new System . Windows . Forms .

Button ( ) ;

this . SuspendLayout ( ) ;

// b tnSo l u t i on s

this . b tnSo lu t i ons . Locat ion = new System . Drawing .

Point (214 , 98) ;

this . b tnSo lu t i ons .Name = ” btnSo lu t i ons ” ;

this . b tnSo lu t i ons . S i z e = new System . Drawing . S i z e

(139 , 31) ;

this . b tnSo lu t i ons . TabIndex = 0 ;

this . b tnSo lu t i ons . Text = ”Get So l u t i o n s ” ;

this . b tnSo lu t i ons . UseVisualStyleBackColor = true ;

this . b tnSo lu t i ons . C l i ck += new System .

EventHandler ( this . but ton1 Cl i ck ) ;

// Form1

this . AutoScaleDimensions = new System . Drawing .

SizeF (6F, 13F) ;

this . AutoScaleMode = System . Windows . Forms .

AutoScaleMode . Font ;

this . C l i e n t S i z e = new System . Drawing . S i z e (571 ,

262) ;

this . Contro l s . Add( this . b tnSo lu t i ons ) ;

this .Name = ”Form1” ;

this . Text = ” Mult ip l e Equipment Quant i t i e s

Optimisat ion ” ;
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this . Load += new System . EventHandler ( this .

Form1 Load ) ;

this . ResumeLayout ( fa l se ) ;

}
#endreg ion

private System . Windows . Forms . Button btnSo lu t i ons ;

}
}

The source codes of “Tr Form1.cs” are shown as follows:

using System ;

using System . C o l l e c t i o n s . Generic ;

using System . ComponentModel ;

using System . Data ;

using System . Drawing ;

using System . Linq ;

using System . Text ;

using System . Windows . Forms ;

using System . C o l l e c t i o n s ; //For ArrayLis t ( )

using System . IO ; //Create t x t f i l e s

using System . Diagnos t i c s ; //Stopwatch to record programme

running time

namespace WindowsFormsApplication1

{
public struct s t ruc tPare to

{
public int Ntr ;

public double [ ] s o lu t i onVa lue ;



171

}

public p a r t i a l class Form1 : Form

{
public Form1 ( )

{
In i t i a l i z eComponent ( ) ;

}

private void Form1 Load ( object sender , EventArgs e )

{
}

private void button1 Cl i ck ( object sender , EventArgs e

)

{
//Record the programme running time

Stopwatch programRunningTime = new Stopwatch ( ) ;

programRunningTime . Sta r t ( ) ;

int obFunNum = 5 ; //Number o f o b j e c t i v e f unc t i on s

ArrayList a r r L i A l l S o l u t i o n s = new ArrayList ( ) ; //

A l i s t o f s o l u t i o n s and Ntr .

// I n i t i a l i s a t i o n

int upBoundTr = 500 ;

int lowBoundTr = 20 ;

string path = Environment . GetFolderPath (

Environment . Spec i a lFo lde r . DesktopDirectory ) +

”\\MOO Solution Tr . txt ” ;
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StreamWriter txt ;

txt = F i l e . CreateText ( path ) ;

txt . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−Al l Pos ib l e

Values−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

//Find a l l s o l u t i o n s

for ( int int Temp i = lowBoundTr ; int Temp i <

upBoundTr ; int Temp i++)

// Ca l cu l a t e a l l s o l u t i o n s

{
s t ruc tPare to stru Temp = new s t ruc tPare to ( ) ;

stru Temp . so lu t i onVa lue = new double [ obFunNum

] ;

// comparison temperary va l u e s { fun1 , fun2 , fun3 ,

fun4}
stru Temp . Ntr = int Temp i ;

stru Temp . so lu t i onVa lue [ 0 ] = obj Fun1 (

int Temp i ) ;

stru Temp . so lu t i onVa lue [ 1 ] = obj Fun2 (

int Temp i ) ;

stru Temp . so lu t i onVa lue [ 2 ] = obj Fun3 (

int Temp i ) ;

stru Temp . so lu t i onVa lue [ 3 ] = obj Fun4 (

int Temp i ) ;

stru Temp . so lu t i onVa lue [ 4 ] = obj Fun5 (

int Temp i ) ;

a r r L i A l l S o l u t i o n s . Add( stru Temp ) ; // Important
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stru Temp = ( s t ruc tPare to ) a r r L i A l l S o l u t i o n s [

a r r L i A l l S o l u t i o n s . Count − 1 ] ;

txt . WriteLine ( Convert . ToString (

a r r L i A l l S o l u t i o n s . Count ) ) ;

writeTxt ( txt , stru Temp ) ;

}//Finding a l l s o l u t i o n s ends

//Explore pare to f r o n t i e r

for ( int int Temp i = 0 ; int Temp i <

a r r L i A l l S o l u t i o n s . Count ; int Temp i++)

//Current Fun Value

{
s t ruc tPare to stru Temp1 = new s t ruc tPare to ( ) ;

stru Temp1 = ( s t ruc tPare to ) a r r L i A l l S o l u t i o n s

[ int Temp i ] ; //Current Fun Value

for ( int int Temp j = 0 ; int Temp j <

a r r L i A l l S o l u t i o n s . Count ; int Temp j++)

//Compare wi th a l l Values

{
s t ruc tPare to stru Temp2 = new

s t ruc tPare to ( ) ;

stru Temp2 = ( s t ruc tPare to )

a r r L i A l l S o l u t i o n s [ int Temp j ] ; //Other

va l u e s

i f ( paretoComparation ( stru Temp1 ,

stru Temp2 ) ) // i f stru Temp1 i s worse

than stru Temp2 , then d e l e t e

stru Temp1
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{ }//not worse or comparing to the same

va l u e s

else //worse

{
a r r L i A l l S o l u t i o n s . RemoveAt(

int Temp i ) ; //remove stru Temp1

int Temp i = int Temp i − 1 ; // i f the

f i r s t e lement 0 , int Temp i=−1,
int Temp i++, int Temp i=0

break ;

}
}

}
// Exp lor ign Pareto Front i e r ends

for ( int int Temp i = 0 ; int Temp i < 20 ;

int Temp i++)

{ txt . WriteLine ( ”\n” ) ; } // re turn

txt . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−So lut ions

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

foreach ( s t ruc tPare to str Temp in

a r r L i A l l S o l u t i o n s )

{
writeTxt ( txt , str Temp ) ;

}
txt . WriteLine ( Convert . ToString ( a r r L i A l l S o l u t i o n s

. Count ) ) ;

programRunningTime . Stop ( ) ;
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txt . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−Programme

Running Time−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

txt . WriteLine ( ” Total Running Time” +

programRunningTime . Elapsed ) ;

txt . Close ( ) ;

MessageBox . Show( ” S o l u t i o n s have been exported to

” + path

+ ”\nProgramme Running Time” +

programRunningTime . Elapsed ) ;

}
//End o f f unc t i on Main

private stat ic void PrintValues ( ArrayList

a l l S o l u t i o n s )

{
throw new NotImplementedException ( ) ;

}

stat ic double obj Fun1 ( int Ntr )

// o b j e c t i v e func t i on1 : maximise QC Operation Rate

//Unit : moves per hour

{
double fx , b0 , b1 , b2 , b3 , b4 ;

b0 = −1.00608607389221 ∗ Math .Pow(10 , −8) ;

b1 = 1.00172577039788 ∗ Math .Pow(10 , −5) ;

b2 = −0.00350495307286781;

b3 = 0.504609782642747 ;

b4 = −1.62424413488179;
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fx = dataFitt ingFun ( b0 , b1 , b2 , b3 , b4 , Ntr ) ;

return fx ;

}

stat ic double obj Fun2 ( int Ntr )

// o b j e c t i v e func t i on2 : maximise Truck U t i l i s a t i o n

Rate

{
double fx , b0 , b1 , b2 , b3 , b4 ;

b0 = 0 ;

b1 = −1.85164922615276 ∗ Math .Pow(10 , −8) ;

b2 = 2.11313871749685 ∗ Math .Pow(10 , −5) ;

b3 = −0.00836945848863550;

b4 = 1.34277065923323 ;

fx = dataFitt ingFun ( b0 , b1 , b2 , b3 , b4 , Ntr ) ;

return fx ;

}

stat ic double obj Fun3 ( int Ntr )

// o b j e c t i v e func t i on3 : mnimise Congest ion P r o b a b i l i t y

{
double fx , b0 , b1 , b2 , b3 , b4 ;

b0 = 1.43611966786207 ∗ Math .Pow(10 , −11) ;

b1 = −1.40544943061360 ∗ Math .Pow(10 , −8) ;

b2 = 4.80442768722124 ∗ Math .Pow(10 , −6) ;

b3 = −0.000670752843376622;

b4 = 0.199458851793086 ;

fx = dataFitt ingFun ( b0 , b1 , b2 , b3 , b4 , Ntr ) ;

return fx ;
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}

stat ic double obj Fun4 ( int Ntr )

// o b j e c t i v e func t i on4 : minimise Fuel Consumption

{
double fx , b0 , b1 , b2 , b3 , b4 ;

b0 = 7.34184693898015 ∗ Math .Pow(10 , −10) ;

b1 = −7.06754055408318 ∗ Math .Pow(10 , −7) ;

b2 = 0.000239076661804849;

b3 = −0.0330186354664595;

b4 = 9.38680082103357 ;

fx = dataFitt ingFun ( b0 , b1 , b2 , b3 , b4 , Ntr ) ;

return fx ;

}

stat ic double obj Fun5 ( int Ntr )

// o b j e c t i v e func t i on5 : minimise Labour Consumption

{
double fx , b0 , b1 , b2 , b3 , b4 ;

b0 = 7.63548962659333 ∗ Math .Pow(10 , −10) ;

b1 = −7.37173666689088 ∗ Math .Pow(10 , −7) ;

b2 = 0.000250874980866436;

b3 = −0.0348859425028811;

b4 = 10.0628641598034 ;

fx = dataFitt ingFun ( b0 , b1 , b2 , b3 , b4 , Ntr ) ;

return fx ;

}
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stat ic double dataFitt ingFun (double b0 , double b1 ,

double b2 , double b3 ,

double b4 , int x )

{
double y ;

y = b0 ∗ Math .Pow(x , 4) + b1 ∗ Math .Pow(x , 3) +

b2 ∗ Math .Pow(x , 2) + b3 ∗ x + b4 ;

return y ;

}

stat ic void writeTxt ( StreamWriter f t x t , s t ruc tPare to

f stru Temp )

{
f t x t . WriteLine ( ”Ntr : ” + f stru Temp . Ntr + ” . Fun1

, Fun2 , Fun3 , Fun4 , Fun5 : ”

+ f stru Temp . so lu t i onVa lue [ 0 ] + ” ” +

f stru Temp . so lu t i onVa lue [ 1 ] + ” ” +

f stru Temp . so lu t i onVa lue [ 2 ] + ” ” +

f stru Temp . so lu t i onVa lue [ 3 ] + ” ” +

f stru Temp . so lu t i onVa lue [ 4 ] ) ;

}

stat ic bool paretoComparation ( s t ruc tPare to

f stru Temp1 , s t ruc tPare to f stru Temp2 )

{
bool f t a g = true ;

i f ( f stru Temp1 . so lu t i onVa lue [ 0 ] != f stru Temp2

. so lu t i onVa lue [ 0 ] | | //Max 1 s t Obj QC
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f stru Temp1 . so lu t i onVa lue [ 1 ] != f stru Temp2

. so lu t i onVa lue [ 1 ] | | //Max 2nd Obj

U t i l i s a t i o n

f stru Temp1 . so lu t i onVa lue [ 2 ] != f stru Temp2

. so lu t i onVa lue [ 2 ] | | //Min 3rd Obj

Congest ion

f stru Temp1 . so lu t i onVa lue [ 3 ] != f stru Temp2

. so lu t i onVa lue [ 3 ] | | //Min 4 th Obj Fuel

co s t

f stru Temp1 . so lu t i onVa lue [ 4 ] != f stru Temp2

. so lu t i onVa lue [ 4 ] )

//This i s not i t s e l f .

{
i f ( f stru Temp1 . so lu t i onVa lue [ 0 ] >

f stru Temp2 . so lu t i onVa lue [ 0 ] | | //Max 1 s t

Obj QC

f stru Temp1 . so lu t i onVa lue [ 1 ] >

f stru Temp2 . so lu t i onVa lue [ 1 ] | | //Max

2nd Obj U t i l i s a t i o n

f stru Temp1 . so lu t i onVa lue [ 2 ] <

f stru Temp2 . so lu t i onVa lue [ 2 ] | | //Min

3rd Obj Congest ion

f stru Temp1 . so lu t i onVa lue [ 3 ] <

f stru Temp2 . so lu t i onVa lue [ 3 ] | | //Min

4 th Obj Fuel co s t

f stru Temp1 . so lu t i onVa lue [ 4 ] <

f stru Temp2 . so lu t i onVa lue [ 4 ] ) //Min

5 th Obj Labour co s t

{ }// f s tru Temp1 i s not worse than

f stru Temp2 ;

else
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{
f t a g = fa l se ; // f s tru Temp1 i s worse

than f stru Temp2 ; d e l e t e .

}
}
else { } // f s tru Temp1 = f stru Temp2 ;

return f t a g ;

}
}

}



Appendix B

C# Codes for the Simulation for Truck Travelling Distance

This programme is a “Windows Forms Application”, which includes three source code

documents: SimTrTravelling Program.cs, SimTrTravelling Form1.Designer.cs and SimTr-

Travelling Form1.cs. The source codes of “SimTrTravelling Program.cs” are shown

as follows:

using System ;

using System . C o l l e c t i o n s . Generic ;

using System . Linq ;

using System . Windows . Forms ;

namespace WindowsFormsApplication1

{
stat ic class Program

{
/// <summary>

/// The main entry po in t f o r the a p p l i c a t i o n .

/// </summary>

[ STAThread ]

stat ic void Main ( )

{
Appl i cat ion . Enab l eVi sua lSty l e s ( ) ;

App l i ca t ion . SetCompatibleTextRenderingDefault (

fa l se ) ;

App l i ca t ion . Run(new Form1 ( ) ) ;

}
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}
}

The source codes of “SimTrTravelling Program.cs” are shown as follows:

namespace WindowsFormsApplication1

{
p a r t i a l class Form1

{
/// <summary>

/// Required de s i gne r v a r i a b l e .

/// </summary>

private System . ComponentModel . IConta iner components =

null ;

/// <summary>

/// Clean up any resource s be ing used .

/// </summary>

/// <param name=”d i s po s i n g”> t rue i f managed re source s

shou ld be d i sposed ; o therwise , f a l s e .</param>

protected override void Dispose ( bool d i spo s i ng )

{
i f ( d i spo s i ng && ( components != null ) )

{
components . Dispose ( ) ;

}
base . Dispose ( d i spo s i ng ) ;

}

#reg ion Windows Form Designer generated code

/// <summary>
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/// Required method f o r Designer suppor t − do not

modify

/// the con ten t s o f t h i s method wi th the code e d i t o r .

/// </summary>

private void In i t i a l i z eComponent ( )

{
this . b tnSo lu t i ons = new System . Windows . Forms .

Button ( ) ;

this . labTr Txt = new System . Windows . Forms . Label ( )

;

this . labTr Value = new System . Windows . Forms . Label

( ) ;

this . labFun4 Value = new System . Windows . Forms .

Label ( ) ;

this . labFun4 Txt = new System . Windows . Forms . Label

( ) ;

this . SuspendLayout ( ) ;

// b tnSo l u t i on s

this . b tnSo lu t i ons . Locat ion = new System . Drawing .

Point (420 , 219) ;

this . b tnSo lu t i ons .Name = ” btnSo lu t i ons ” ;

this . b tnSo lu t i ons . S i z e = new System . Drawing . S i z e

(139 , 31) ;

this . b tnSo lu t i ons . TabIndex = 0 ;

this . b tnSo lu t i ons . Text = ”Get So l u t i o n s ” ;

this . b tnSo lu t i ons . UseVisualStyleBackColor = true ;

this . b tnSo lu t i ons . C l i ck += new System .

EventHandler ( this . but ton1 Cl i ck ) ;
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// labTr Txt

this . labTr Txt . AutoSize = true ;

this . labTr Txt . Locat ion = new System . Drawing .

Point (33 , 43) ;

this . labTr Txt .Name = ” labTr Txt ” ;

this . labTr Txt . S i z e = new System . Drawing . S i z e (92 ,

13) ;

this . labTr Txt . TabIndex = 1 ;

this . labTr Txt . Text = ”Number fo Trucks” ;

// labTr Value

this . labTr Value . AutoSize = true ;

this . labTr Value . Locat ion = new System . Drawing .

Point (170 , 43) ;

this . labTr Value .Name = ” labTr Value ” ;

this . labTr Value . S i z e = new System . Drawing . S i z e

(39 , 13) ;

this . labTr Value . TabIndex = 3 ;

this . labTr Value . Text = ” Values ” ;

// labFun4 Value

this . labFun4 Value . AutoSize = true ;

this . labFun4 Value . Locat ion = new System . Drawing .

Point (170 , 89) ;

this . labFun4 Value .Name = ” labFun4 Value ” ;

this . labFun4 Value . S i z e = new System . Drawing . S i z e

(39 , 13) ;

this . labFun4 Value . TabIndex = 15 ;
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this . labFun4 Value . Text = ” Values ” ;

// labFun4 Txt

this . labFun4 Txt . AutoSize = true ;

this . labFun4 Txt . Locat ion = new System . Drawing .

Point (33 , 89) ;

this . labFun4 Txt .Name = ” labFun4 Txt” ;

this . labFun4 Txt . S i z e = new System . Drawing . S i z e

(114 , 13) ;

this . labFun4 Txt . TabIndex = 14 ;

this . labFun4 Txt . Text = ”4th Object ive Function ” ;

// Form1

this . AutoScaleDimensions = new System . Drawing .

SizeF (6F, 13F) ;

this . AutoScaleMode = System . Windows . Forms .

AutoScaleMode . Font ;

this . C l i e n t S i z e = new System . Drawing . S i z e (571 ,

262) ;

this . Contro l s . Add( this . labFun4 Value ) ;

this . Contro l s . Add( this . labFun4 Txt ) ;

this . Contro l s . Add( this . labTr Value ) ;

this . Contro l s . Add( this . labTr Txt ) ;

this . Contro l s . Add( this . b tnSo lu t i ons ) ;

this .Name = ”Form1” ;

this . Text = ” Mult ip l e Equipment Quant i t i e s

Optimisat ion ” ;

this . Load += new System . EventHandler ( this .

Form1 Load ) ;
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this . ResumeLayout ( fa l se ) ;

this . PerformLayout ( ) ;

}
#endreg ion

private System . Windows . Forms . Button btnSo lu t i ons ;

private System . Windows . Forms . Label labTr Txt ;

private System . Windows . Forms . Label labTr Value ;

private System . Windows . Forms . Label labFun4 Value ;

private System . Windows . Forms . Label labFun4 Txt ;

}
}

The source codes of “SimTrTravelling Form1.cs” are shown as follows:

using System ;

using System . C o l l e c t i o n s . Generic ;

using System . ComponentModel ;

using System . Data ;

using System . Drawing ;

using System . Linq ;

using System . Text ;

using System . Windows . Forms ;

using System . IO ; //Create t x t f i l e s

using System . Diagnos t i c s ; //Stopwatch to record programme

running time

namespace WindowsFormsApplication1

{
public struct s t ruc tPare to
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{
public int Ntr , Nyc , Nqc ;

public double [ ] s o lu t i onVa lue ;

}

public p a r t i a l class Form1 : Form

{
public Form1 ( )

{
In i t i a l i z eComponent ( ) ;

}

private void Form1 Load ( object sender , EventArgs e )

{
}

private void button1 Cl i ck ( object sender , EventArgs e

)

{
//Record the programme running time

Stopwatch programRunningTime = new Stopwatch ( ) ;

programRunningTime . Sta r t ( ) ;

//Yard Range {x1 , x2 , y1 , y2 } :{0 ,1800 ,0 ,1800}
double [ , ] cntrBlckCor = new double [ , ] //

Coordinates o f con ta iner b l o c k s {x1 , x2 , y1 , y2}
{

{300 ,500 ,300 ,500} , {800 ,1000 ,300 ,500} ,

{1300 ,1500 ,300 ,500} ,
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{300 ,500 ,800 ,1000} , {800 ,1000 ,800 ,1000} ,

{1300 ,1500 ,800 ,1000} ,

{300 ,500 ,1300 ,1500} ,{800 ,1000 ,1300 ,1500} ,{1300 ,1500 ,1300 ,1500} ,

} ;

string path = Environment . GetFolderPath (

Environment . Spec i a lFo lde r . DesktopDirectory )

+ ”\\ Simulat ion Fourth Object ive Function . txt

” ;

StreamWriter txt ;

txt = F i l e . CreateText ( path ) ;

txt . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−Values f o r

the Fourth Object ive Function

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

int [ ] Ntr = new int [ 9 ] { 20 , 116 , 212 , 308 , 404 ,

500 , 800 , 1000 , 1200 } ;

int numTrvDisIterat ions = 100000;

txt . WriteLine ( ”Number o f I t e r a t i o n s :{0} ” ,

numTrvDisIterat ions ) ;

foreach ( int int Temp in Ntr )

{
double dou Temp = obj Fun4 ( int Temp ,

numTrvDisIterat ions ) ;

txt . WriteLine ( ”Number o f Trucks : {0} ; Value

o f the Fourth Object ive Function : {1} . ” ,

int Temp , dou Temp) ;
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labTr Value . Text = Convert . ToString ( int Temp )

;

labFun4 Value . Text = Convert . ToString (

dou Temp) ;

Refresh ( ) ;

}

programRunningTime . Stop ( ) ;

txt . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−Programme

Running Time−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

txt . WriteLine ( ” Total Running Time : ” +

programRunningTime . Elapsed ) ;

txt . Close ( ) ;

MessageBox . Show( ”Programme Ends . ” ) ;

}
//main func t i on ends

stat ic double obj Fun4 ( int f Ntr , int

numTrvDisIterat ions )

// o b j e c t i v e func t i on4 : minimise t r a v e l l i n g d i s t ance .

//Unit : metre

{
double [ ] [ ] t r P o s i t i o n s = new double [ f Nt r ] [ ] ;

for ( int int Temp i = 0 ; int Temp i < t r P o s i t i o n s

. Length ; int Temp i++)

{
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t r P o s i t i o n s [ int Temp i ] = new double [ 2 ] ;

t r P o s i t i o n s [ int Temp i ] = ranCoordinates (

fa l se ) ; // t rPo s i t i o n s [ int Temp i ] [ 2 ]

}

double avgTrvDis = 0 ;

for ( int int Temp i = 0 ; int Temp i <

numTrvDisIterat ions ; int Temp i++)

{
//Generate new order p o s i t i o n ( Loading

con ta iner s )

double [ ] xyOrd Load = new double [ 2 ] ; //

cntrBlckCor [3]={ xc , yc , blockNumber}
xyOrd Load = ranCoordinates ( true ) ; //2

dimensiona l array , p o s i t i o n o f an order

//Search the c l o s e s t t ruck

int t rDis Index = 0 ;

double disOut = seek ingShor te s tTr ( xyOrd Load ,

t r P o s i t i o n s , ref t rDis Index ) ; // Sho r t e s t

t ruck

t r P o s i t i o n s [ t rDis Index ] = xyOrd Load ; //The

t ruck [ t rDi s Index ] goes to xyOrd ;

//Generate the next order p o s i t i o n (

Discharg ing con ta ine r s )

double [ ] xyOrd Disch = new double [ 2 ] ; //

cntrBlckCor [3]={ xc , yc , blockNumber}
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xyOrd Disch = ranCoordinates ( true ) ;

double disBack = seek ingShor te s tTr (

xyOrd Disch , t r P o s i t i o n s , ref t rDis Index ) ;

// Sho r t e s t t ruck

t r P o s i t i o n s [ t rDis Index ] = xyOrd Disch ; //The

t ruck [ t rDi s Index ] goes to xycd ;

avgTrvDis = disOut + disBack + avgTrvDis ;

}
return avgTrvDis / numTrvDisIterat ions ;

}
// Ob j e c t i v e f unc t i on s end

stat ic double [ ] ranCoordinates ( bool

I sCoord inateInCntrBlocks )

// IsCoordinateInCntrBlocks : Orders or t ruck p o s i t i o n s

{
double [ ] xyc = new double [ 2 ] ;

Random ran = new Random( ) ;

int xCntrBlockLowerBound , xCntrBlockUpperBound ,

xCntrBlockDisInterva l ,

yCntrBlockLowerBound , yCntrBlockUpperBound ,

yCntrBlockDis Interva l ;

xCntrBlockDis Interva l = 500 ; // In t e rna l i s the

same

yCntrBlockDis Interva l = 500 ; // In t e rna l i s the

same
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//Generate an order coord ina te in conta iner

b l o c k s

i f ( I sCoord inateInCntrBlocks )

{
xCntrBlockLowerBound = 300 ; //According to

cntrBlckCor

xCntrBlockUpperBound = 500 ; //According to

cntrBlckCor

yCntrBlockLowerBound = 300 ; //According to

cntrBlckCor

yCntrBlockUpperBound = 500 ; //According to

cntrBlckCor

}
else //Generate an t ruck p o s i t i o n ou t s i d e

conta iner b l o c k s

{
xCntrBlockLowerBound = 0 ; //According to

cntrBlckCor

xCntrBlockUpperBound = 300 ; //According to

cntrBlckCor

yCntrBlockLowerBound = 0 ; //According to

cntrBlckCor

yCntrBlockUpperBound = 300 ; //According to

cntrBlckCor

}
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int int Temp x = ran . Next (0 , 3) ; //0−3,Max va lue

e x c l u s i v e

xyc [ 0 ] = ran . Next ( xCntrBlockLowerBound +

xCntrBlockDis Interva l ∗ int Temp x ,

xCntrBlockUpperBound +

xCntrBlockDis Interva l ∗ int Temp x ) ;

int int Temp y = ran . Next (0 , 3) ; //0−3,Max va lue

e x c l u s i v e

xyc [ 1 ] = ran . Next ( yCntrBlockLowerBound +

yCntrBlockDis Interva l ∗ int Temp y ,

yCntrBlockUpperBound +

yCntrBlockDis Interva l ∗ int Temp y ) ;

return xyc ;

}

stat ic double s eek ingShor te s tTr

(double [ ] xyOrd , double [ ] [ ] t r P o s i t i o n s , ref int

t rDis Index )

{
//Search the c l o s e s t t ruck

List<double> ar r l i s t Temp1 = new List<double>() ;

L i s t<double> ar r l i s t Temp2 = new List<double>() ;

for ( int int Temp Tr = 0 ; int Temp Tr <

t r P o s i t i o n s . Length ; int Temp Tr++)

{
//Normal d i s t ance

double t rD i s = Math . Abs ( xyOrd [ 0 ] −
t r P o s i t i o n s [ int Temp Tr ] [ 0 ] )
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+ Math . Abs ( xyOrd [ 1 ] − t r P o s i t i o n s [

int Temp Tr ] [ 1 ] ) ;

//Extra d i s t ance across conta iner b l o c k s#

double ext rDi s = 0 ;

//x=xyOrd [ 0 ] and x= t rPo s i t i o n s [ ] [ 0 ] both

c ros s con ta iner b l o c k s

i f (

(300 < xyOrd [ 0 ] ) && ( xyOrd [ 0 ] < 500) &&

(300 < t r P o s i t i o n s [ int Temp Tr ] [ 0 ] ) && (

t r P o s i t i o n s [ int Temp Tr ] [ 0 ] < 500)

)

{
ext rDi s = 2 ∗ Math . Min(

Math . Min(Math . Abs ( xyOrd [ 0 ] − 300) ,

Math . Abs ( xyOrd [ 0 ] − 500) ) ,

Math . Min(Math . Abs ( t r P o s i t i o n s [

int Temp Tr ] [ 0 ] − 300) , Math . Abs (

t r P o s i t i o n s [ int Temp Tr ] [ 0 ] − 500) )

) ;

}

i f (

(800 < xyOrd [ 0 ] ) && ( xyOrd [ 0 ] < 1000) &&

(800 < t r P o s i t i o n s [ int Temp Tr ] [ 0 ] ) && (

t r P o s i t i o n s [ int Temp Tr ] [ 0 ] < 1000)

)

{
ext rDi s = 2 ∗ Math . Min(
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Math . Min(Math . Abs ( xyOrd [ 0 ] − 800) ,

Math . Abs ( xyOrd [ 0 ] − 1000) ) ,

Math . Min(Math . Abs ( t r P o s i t i o n s [

int Temp Tr ] [ 0 ] − 800) , Math . Abs (

t r P o s i t i o n s [ int Temp Tr ] [ 0 ] − 1000)

)

) ;

}

i f (

(1300 < xyOrd [ 0 ] ) && ( xyOrd [ 0 ] < 1500) &&

(1300 < t r P o s i t i o n s [ int Temp Tr ] [ 0 ] ) && (

t r P o s i t i o n s [ int Temp Tr ] [ 0 ] < 1500)

)

{
ext rDi s = 2 ∗ Math . Min(

Math . Min(Math . Abs ( xyOrd [ 0 ] − 1300) ,

Math . Abs ( xyOrd [ 0 ] − 1500) ) ,

Math . Min(Math . Abs ( t r P o s i t i o n s [

int Temp Tr ] [ 0 ] − 1300) , Math . Abs (

t r P o s i t i o n s [ int Temp Tr ] [ 0 ] − 1500)

)

) ;

}
//y

i f (

(300 < xyOrd [ 1 ] ) && ( xyOrd [ 1 ] < 500) &&

(300 < t r P o s i t i o n s [ int Temp Tr ] [ 1 ] ) && (

t r P o s i t i o n s [ int Temp Tr ] [ 1 ] < 500)
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)

{
ext rDi s = 2 ∗ Math . Min(

Math . Min(Math . Abs ( xyOrd [ 1 ] − 300) ,

Math . Abs ( xyOrd [ 1 ] − 500) ) ,

Math . Min(Math . Abs ( t r P o s i t i o n s [

int Temp Tr ] [ 1 ] − 300) , Math . Abs (

t r P o s i t i o n s [ int Temp Tr ] [ 1 ] − 500) )

) ;

}

i f (

(800 < xyOrd [ 1 ] ) && ( xyOrd [ 1 ] < 1000) &&

(800 < t r P o s i t i o n s [ int Temp Tr ] [ 1 ] ) && (

t r P o s i t i o n s [ int Temp Tr ] [ 1 ] < 1000)

)

{
ext rDi s = 2 ∗ Math . Min(

Math . Min(Math . Abs ( xyOrd [ 1 ] − 800) ,

Math . Abs ( xyOrd [ 1 ] − 1000) ) ,

Math . Min(Math . Abs ( t r P o s i t i o n s [

int Temp Tr ] [ 1 ] − 800) , Math . Abs (

t r P o s i t i o n s [ int Temp Tr ] [ 1 ] − 1000)

)

) ;

}

i f (

(1300 < xyOrd [ 1 ] ) && ( xyOrd [ 1 ] < 1500) &&
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(1300 < t r P o s i t i o n s [ int Temp Tr ] [ 1 ] ) && (

t r P o s i t i o n s [ int Temp Tr ] [ 1 ] < 1500)

)

{
ext rDi s = 2 ∗ Math . Min(

Math . Min(Math . Abs ( xyOrd [ 1 ] − 1300) ,

Math . Abs ( xyOrd [ 1 ] − 1500) ) ,

Math . Min(Math . Abs ( t r P o s i t i o n s [

int Temp Tr ] [ 1 ] − 1300) , Math . Abs (

t r P o s i t i o n s [ int Temp Tr ] [ 1 ] − 1500)

)

) ;

}

t rD i s = trDi s + extrDi s ;

a r r l i s t Temp1 . Add( t rD i s ) ;

a r r l i s t Temp2 . Add( t rD i s ) ;

}

ar r l i s t Temp1 . Sort ( ) ; // from min to max

double minDis = arr l i s t Temp1 [ 0 ] ; // ge t min

t rDis Index = arr l i s t Temp2 . IndexOf ( minDis ) ;

return ( minDis ) ;

}
}

}



Appendix C

C# Codes for the Genetic Algorithm to Explore Pareto

Optimal Solutions in Post-MOO Structure

This programme is a “Console Application”, which includes one source code document

shown as follows:

using System ;

using System . C o l l e c t i o n s . Generic ;

using System . Linq ;

using System . Text ;

using System . IO ; //Create t x t f i l e s

using System . Diagnos t i c s ; //Stopwatch to record programme

running time

namespace Fr SearchBestFunValue

{
public struct structChromosome

{
public int Nqc , Nyc , Ntr ;

public double valueFun1 , valueFun2 , valueFun3 ,

valueFun4 ;

public double f i t n e s s ;

}
class Program

{

198
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stat ic void Main( string [ ] a rgs )

{
//Record the programme running time

Stopwatch programRunningTime = new Stopwatch ( ) ;

programRunningTime . Sta r t ( ) ;

double cros soverRate = 0 . 6 ; //Crossover ra t e

double mutationRate = 0 . 0 5 ; //Mutation ra t e

int xLength = 3 ; //Length o f chromosomes

int popu la t i onS i z e = 150 ; //Populat ion s i z e

int maxNumberOfGenerations = 800 ; //Number o f

i t e r a t i o n s

int qcLowerBound = 1 ;

int qcUpperBound = 50 ;

int ycLowerBound = 20 ;

int ycUpperBound = 500 ;

int trLowerBound = 20 ;

int trUpperBound = 200 ;

string txtF i l ePath = Environment . GetFolderPath (

Environment . Spec i a lFo lde r . DesktopDirectory )

+ ”\\MOO Solutions ME . txt ” ;

StreamWriter t x t F i l e ;

t x t F i l e = F i l e . CreateText ( txtF i l ePath ) ;

t x t F i l e . WriteLine ( ” Populat ion S i z e : { 0 } ; Number o f

Generat ions : { 1 } ; Crossover Rate : { 2 } ; Mutation

Rate :{3} ” ,
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popu lat ionS ize , maxNumberOfGenerations ,

crossoverRate , mutationRate ) ;

//Genetic Algorithm

int currentNumOfGenerations = 0 ;

Lis t<structChromosome> s o lu t i onPopu la t i on = new

List<structChromosome>() ;

L i s t<double> d o uL i s t F i tn e s s = new List<double>()

;

Random randomSeed = new Random( DateTime .Now.

M i l l i s e c o n d ) ;

// F i r s t s t ep : Generate i n i t i a l popu la t i on

t x t F i l e . WriteLine ( ” Current number o f Generat ions :

{0}” ,

Convert . ToString (

currentNumOfGenerations ) ) ;

for ( int i = 0 ; i < popu la t i onS i z e ; i++)

{
bool tag = fa l se ;

structChromosome newChromosome = new

structChromosome ( ) ;

do

{
newChromosome . Nqc = randomSeed . Next (

qcLowerBound , qcUpperBound ) ;

newChromosome . Nyc = randomSeed . Next (

ycLowerBound , ycUpperBound ) ;
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newChromosome . Ntr = randomSeed . Next (

trLowerBound , trUpperBound ) ;

foreach ( structChromosome strChrom Temp

in s o lu t i onPopu la t i on )

{
tag = threeSameVariants ( strChrom Temp

, newChromosome) ;

}
}
while ( tag ) ;

newChromosome . valueFun1 = obj Fun1

(newChromosome . Nqc , newChromosome . Nyc ,

newChromosome . Ntr ) ;

newChromosome . valueFun2 = obj Fun2

(newChromosome . Nqc , newChromosome . Nyc ,

newChromosome . Ntr ) ;

newChromosome . valueFun3 = obj Fun3

(newChromosome . Nqc , newChromosome . Nyc ,

newChromosome . Ntr ) ;

newChromosome . valueFun4 = obj Fun4 (

newChromosome . Ntr ) ;

s o lu t i onPopu la t i on . Add(newChromosome) ;

}

//Second s t ep : Evolve ”maxNumberOfGenerations”

genera t i ons
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for ( ; currentNumOfGenerations <

maxNumberOfGenerations ;

currentNumOfGenerations++)

{
i f ( currentNumOfGenerations % 100 == 0)

{
Console . WriteLine ( ” Current gene ra t i on : ” +

currentNumOfGenerations ) ;

}
// Resu l t s d i s p l a y

int numFitnessGreaterThan90 = 0 ;

double t o t a l F i t n e s s = 0 ;

// Ca l cu l a t e f i t n e s s va l u e s

for ( int int Temp i = 0 ; int Temp i <

s o lu t i onPopu la t i on . Count ; int Temp i++)

{
//Get f i t n e s s va lue

s o lu t i onPopu la t i on [ int Temp i ] =

copyChromosome ( so lu t i onPopu la t i on [

int Temp i ] , s o lu t i onPopu la t i on ) ;

t o t a l F i t n e s s = t o t a l F i t n e s s +

so lu t i onPopu la t i on [ int Temp i ] . f i t n e s s

;

i f ( s o lu t i onPopu la t i on [ int Temp i ] .

f i t n e s s > ( 0 . 9 ∗ popu la t i onS i z e ) )

{ numFitnessGreaterThan90++; }
t x t F i l e . WriteLine (
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”Nqc : {0} ; Nyc : {1} ; Ntr : {2} ; F i tne s s

va lue : { 3 } ; Fun1 : { 4 } ; Fun2 : { 5 } ; Fun3

: { 6 } ; Fun4 : { 7 } ; ” ,

s o lu t i onPopu la t i on [ int Temp i ] . Nqc ,

s o lu t i onPopu la t i on [ int Temp i ] . Nyc

,

s o lu t i onPopu la t i on [ int Temp i ] . Ntr ,

s o lu t i onPopu la t i on [ int Temp i ] .

f i t n e s s ,

s o lu t i onPopu la t i on [ int Temp i ] .

valueFun1 , s o lu t i onPopu la t i on [

int Temp i ] . valueFun2 ,

s o lu t i onPopu la t i on [ int Temp i ] .

valueFun3 , s o lu t i onPopu la t i on [

int Temp i ] . valueFun4

) ;

}

t x t F i l e . WriteLine ( ” Percentage o f e lements (

F i tne s s va lue s > 90%) :{0} ” ,

numFitnessGreaterThan90 ) ;

double dou Temp = numFitnessGreaterThan90 ∗
0 .1 ∗ 10 / so lu t i onPopu la t i on . Count ;

d o uL i s t F i tn e s s . Add(dou Temp) ;

// Evo lu t ion
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t x t F i l e . WriteLine ( ” Current number o f

Generat ions :{0} ” , currentNumOfGenerations )

;

// newso lu t ionPopu la t ion . Clear ( ) ;//Remove a l l

e lements

for ( int i = 0 ; i < popu la t i onS i z e ; i = i +

2)

{
// Rou l e t t e wheel s e l e c t i o n

int index1 = rou l e t t eWhee lS e l e c t i on (

t o t a l F i t n e s s , s o lu t i onPopu la t i on ) ;

int index2 ;

do

{
index2 = rou l e t t eWhee lS e l e c t i on (

t o t a l F i t n e s s , s o lu t i onPopu la t i on ) ;

}
while ( index1 == index2 ) ;

structChromosome chromo1 =

so lu t i onPopu la t i on [ index1 ] ;

structChromosome chromo2 =

so lu t i onPopu la t i on [ index2 ] ;

i f ( randomSeed . NextDouble ( ) <

cros soverRate )

{
crossoverFun (
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ref chromo1 , ref chromo2 ,

so lu t i onPopu la t i on , xLength ,

qcLowerBound , qcUpperBound ,

ycLowerBound , ycUpperBound ,

trLowerBound , trUpperBound

) ;

chromo1 = copyChromosome ( chromo1 ,

so lu t i onPopu la t i on ) ;

chromo2 = copyChromosome ( chromo2 ,

so lu t i onPopu la t i on ) ;

s o lu t i onPopu la t i on [ index1 ] = chromo1 ;

so lu t i onPopu la t i on [ index2 ] = chromo2 ;

}

i f ( randomSeed . NextDouble ( ) <

mutationRate )

{
chromo1 = mutationFun (

chromo1 , so lu t ionPopu la t i on ,

xLength ,

qcLowerBound , qcUpperBound ,

ycLowerBound , ycUpperBound ,

trLowerBound , trUpperBound

) ;

chromo1 = copyChromosome ( chromo1 ,

so lu t i onPopu la t i on ) ;

chromo2 = mutationFun (
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chromo2 , so lu t ionPopu la t i on ,

xLength ,

qcLowerBound , qcUpperBound ,

ycLowerBound , ycUpperBound ,

trLowerBound , trUpperBound

) ;

chromo2 = copyChromosome ( chromo2 ,

so lu t i onPopu la t i on ) ;

s o lu t i onPopu la t i on [ index1 ] = chromo1 ;

so lu t i onPopu la t i on [ index2 ] = chromo2 ;

}
}

}
for ( int int Temp i = 0 ; int Temp i <

s o lu t i onPopu la t i on . Count ; int Temp i++)

{
i f (

( s o lu t i onPopu la t i on [ int Temp i ] . f i t n e s s <

0 .95 ∗ popu la t i onS i z e ) | |
( s o lu t i onPopu la t i on [ int Temp i ] . valueFun1

<= 0) | |
( s o lu t i onPopu la t i on [ int Temp i ] . valueFun2

<= 0) | |
( s o lu t i onPopu la t i on [ int Temp i ] . valueFun3

<= 0) | |
( s o lu t i onPopu la t i on [ int Temp i ] . valueFun4

<= 0)

)
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{
s o lu t i onPopu la t i on . RemoveAt( int Temp i ) ;

int Temp i−−;//Move a s t ep backwards

because the number o f e lements

decrease s one .

}
}
List<double> douList BestObj1 = new List<double

>() ;

L i s t<double> douList BestObj2 = new List<double

>() ;

L i s t<double> douList BestObj3 = new List<double

>() ;

L i s t<double> douList BestObj4 = new List<double

>() ;

L i s t<double> douList Balanced = new List<double

>() ;

L i s t<double> douList BestObj1 Ind = new List<

double>() ;

L i s t<double> douList BestObj2 Ind = new List<

double>() ;

L i s t<double> douList BestObj3 Ind = new List<

double>() ;

L i s t<double> douList BestObj4 Ind = new List<

double>() ;

L i s t<double> douList Balanced Ind = new List<

double>() ;
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foreach ( structChromosome strChrom Temp in

s o lu t i onPopu la t i on )

{
douList BestObj1 . Add( strChrom Temp . valueFun1 )

;

douList BestObj2 . Add( strChrom Temp . valueFun2 )

;

douList BestObj3 . Add( strChrom Temp . valueFun3 )

;

douList BestObj4 . Add( strChrom Temp . valueFun4 )

;

}

douList BestObj1 Ind . AddRange( douList BestObj1 ) ;

douList BestObj2 Ind . AddRange( douList BestObj2 ) ;

douList BestObj3 Ind . AddRange( douList BestObj3 ) ;

douList BestObj4 Ind . AddRange( douList BestObj4 ) ;

douList BestObj1 . Sort ( ) ; // from min to max

douList BestObj2 . Sort ( ) ;

douList BestObj3 . Sort ( ) ;

douList BestObj4 . Sort ( ) ;

//Fun1

t x t F i l e . WriteLine ( ”The Max Value f o r Object ive

Function 1 :{0} ; ” ,
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douList BestObj1 [ douList BestObj1 . Count − 1 ] )

;

t x t F i l e . WriteLine ( ”The Min Value f o r Object ive

Function 1 :{0} ; ” , douList BestObj1 [ 0 ] ) ;

//Fin2

t x t F i l e . WriteLine ( ”The Max Value f o r Object ive

Function 2 :{0} ; ” ,

douList BestObj2 [ douList BestObj2 . Count − 1 ] )

;

t x t F i l e . WriteLine ( ”The Min Value f o r Object ive

Function 2 :{0} ; ” , douList BestObj2 [ 0 ] ) ;

//Fun3

t x t F i l e . WriteLine ( ”The Max Value f o r Object ive

Function 3 :{0} ; ” ,

douList BestObj3 [ douList BestObj3 . Count − 1 ] )

;

t x t F i l e . WriteLine ( ”The Min Value f o r Object ive

Function 3 :{0} ; ” , douList BestObj3 [ 0 ] ) ;

//Fun4

t x t F i l e . WriteLine ( ”The Max Value f o r Object ive

Function 4 :{0} ; ” ,

douList BestObj4 [ douList BestObj4 . Count − 1 ] )

;

t x t F i l e . WriteLine ( ”The Min Value f o r Object ive

Function 4 :{0} ; ” , douList BestObj4 [ 0 ] ) ;

//
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t x t F i l e . WriteLine ( ”−−−−−−−−Delete negat ive

s o l u t i o n s and s o l u t i o n s which ’ s f i t n e s s <

95%−−−−−−−−” ) ;

t x t F i l e . WriteLine ( ”−−−−−−−Number o f Good

Normalised So l u t i o n s : ” +

so lu t i onPopu la t i on . Count + ”−−−−−−−−−−−−” ) ;

foreach ( structChromosome struChro Temp in

s o lu t i onPopu la t i on )

{
t x t F i l e . WriteLine (

”Nqc : { 0 } ; Nyc : { 1 } ; Ntr : { 2 } ; Fun1 : { 3 } ; Fun2

: { 4 } ; Fun3 : { 5 } ; Fun4 : { 6 } ; F i tne s s :{7} ” ,

struChro Temp . Nqc , struChro Temp . Nyc ,

struChro Temp . Ntr ,

struChro Temp . valueFun1 , struChro Temp .

valueFun2 ,

struChro Temp . valueFun3 , struChro Temp .

valueFun4 ,

struChro Temp . f i t n e s s

) ;

}

//Normal isat ion and s o r t i n g

List<structChromosome> l i s t N o r m a l i s e d S o l u t i o n s =

new List<structChromosome>() ;

foreach ( structChromosome strChro Temp in

s o lu t i onPopu la t i on )

{
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structChromosome newChromosome = new

structChromosome ( ) ;

newChromosome . Nqc = strChro Temp . Nqc ;

newChromosome . Nyc = strChro Temp . Nyc ;

newChromosome . Ntr = strChro Temp . Ntr ;

newChromosome . valueFun1 =

( strChro Temp . valueFun1 −
douList BestObj1 [ 0 ] ) /

( douList BestObj1 [ douList BestObj1 . Count

− 1 ] − douList BestObj1 [ 0 ] ) ;

// ( va lue − min) / (max − min) ;

newChromosome . valueFun2 =

( strChro Temp . valueFun2 −
douList BestObj2 [ 0 ] ) /

( douList BestObj2 [ douList BestObj2 . Count

− 1 ] − douList BestObj2 [ 0 ] ) ;

newChromosome . valueFun3 =

( strChro Temp . valueFun3 −
douList BestObj3 [ 0 ] ) /

( douList BestObj3 [ douList BestObj3 . Count

− 1 ] − douList BestObj3 [ 0 ] ) ;

newChromosome . valueFun4 =

( strChro Temp . valueFun4 −
douList BestObj4 [ 0 ] ) /
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( douList BestObj4 [ douList BestObj4 . Count

− 1 ] − douList BestObj4 [ 0 ] ) ;

l i s t N o r m a l i s e d S o l u t i o n s . Add(newChromosome) ;

}

t x t F i l e . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−
Normalised So lut ions

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

t x t F i l e . WriteLine ( ”−−−−−−−Number o f Good

Normalised So l u t i o n s : ” +

l i s t N o r m a l i s e d S o l u t i o n s . Count + ”

−−−−−−−−−−−−” ) ;

foreach ( structChromosome struChro Temp in

l i s t N o r m a l i s e d S o l u t i o n s )

{
t x t F i l e . WriteLine (

”Nqc : { 0 } ; Nyc : { 1 } ; Ntr : { 2 } ; Fun1 : { 3 } ; Fun2

: { 4 } ; Fun3 : { 5 } ; Fun4 : { 6 } ; F i tne s s :{7} ” ,

struChro Temp . Nqc , struChro Temp . Nyc ,

struChro Temp . Ntr ,

struChro Temp . valueFun1 , struChro Temp .

valueFun2 ,

struChro Temp . valueFun3 , struChro Temp .

valueFun4 ,

struChro Temp . f i t n e s s

) ;

}
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douList BestObj1 . Reverse ( ) ; // from max to min

douList BestObj2 . Reverse ( ) ; // from max to min

t x t F i l e . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−Best

Normalised So l u t i o n s f o r the F i r s t Object ive

Function−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

for ( int int Temp i = 0 ; int Temp i < 10 ;

int Temp i++)

{
int index Temp = douList BestObj1 Ind . IndexOf

( douList BestObj1 [ 0 ] ) ;

//Avoidance o f r e p e t i t i v e s o l u t i o n s

douList BestObj1 . RemoveAt (0 ) ;

douList BestObj1 Ind [ index Temp ] =

douList BestObj1 [ douList BestObj1 . Count −
1 ] ;

t x t F i l e . WriteLine (

”Nqc : { 0 } ; Nyc : { 1 } ; Ntr : { 2 } ; Fun1 : { 3 } ; Fun2

: { 4 } ; Fun3 : { 5 } ; Fun4 :{6} ” ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Nqc ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Nyc ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Ntr ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun1 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun2 ,



214

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun3 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun4

) ;

}

t x t F i l e . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−Best

Normalised So l u t i o n s f o r the Second Object ive

Function−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

for ( int int Temp i = 0 ; int Temp i < 10 ;

int Temp i++)

{
int index Temp = douList BestObj2 Ind . IndexOf

( douList BestObj2 [ 0 ] ) ;

//Avoidance o f r e p e t i t i v e s o l u t i o n s

douList BestObj2 . RemoveAt (0 ) ;

douList BestObj2 Ind [ index Temp ] =

douList BestObj2 [ douList BestObj2 . Count −
1 ] ;

t x t F i l e . WriteLine (

”Nqc : { 0 } ; Nyc : { 1 } ; Ntr : { 2 } ; Fun1 : { 3 } ; Fun2

: { 4 } ; Fun3 : { 5 } ; Fun4 :{6} ” ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Nqc ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Nyc ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Ntr ,



215

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun1 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun2 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun3 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun4

) ;

}

t x t F i l e . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−Best

Normalised So l u t i o n s f o r the Third Object ive

Function−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

for ( int int Temp i = 0 ; int Temp i < 10 ;

int Temp i++)

{
int index Temp = douList BestObj3 Ind . IndexOf

( douList BestObj3 [ 0 ] ) ;

//Avoidance o f r e p e t i t i v e s o l u t i o n s

douList BestObj3 . RemoveAt (0 ) ;

douList BestObj3 Ind [ index Temp ] =

douList BestObj3 [ douList BestObj3 . Count −
1 ] ;

t x t F i l e . WriteLine (

”Nqc : { 0 } ; Nyc : { 1 } ; Ntr : { 2 } ; Fun1 : { 3 } ; Fun2

: { 4 } ; Fun3 : { 5 } ; Fun4 :{6} ” ,
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l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Nqc ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Nyc ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Ntr ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun1 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun2 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun3 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun4

) ;

}

t x t F i l e . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−Best

Normalised So l u t i o n s f o r the Fourth Object ive

Function−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

for ( int int Temp i = 0 ; int Temp i < 10 ;

int Temp i++)

{
int index Temp = douList BestObj4 Ind . IndexOf

( douList BestObj4 [ 0 ] ) ;

//Avoidance o f r e p e t i t i v e s o l u t i o n s

douList BestObj4 . RemoveAt (0 ) ;

douList BestObj4 Ind [ index Temp ] =

douList BestObj4 [ douList BestObj4 . Count −
1 ] ;
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t x t F i l e . WriteLine (

”Nqc : { 0 } ; Nyc : { 1 } ; Ntr : { 2 } ; Fun1 : { 3 } ; Fun2

: { 4 } ; Fun3 : { 5 } ; Fun4 :{6} ” ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Nqc ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Nyc ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Ntr ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun1 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun2 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun3 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun4

) ;

}

foreach ( structChromosome strChrom Temp in

l i s t N o r m a l i s e d S o l u t i o n s )

{
douList Balanced . Add(

Math . Abs ( strChrom Temp . valueFun1 − 0 . 5 ) +

Math . Abs ( strChrom Temp . valueFun2 − 0 . 5 ) +

Math . Abs ( strChrom Temp . valueFun3 − 0 . 5 ) +

Math . Abs ( strChrom Temp . valueFun4 − 0 . 5 )

) ;

}
douList Balanced Ind . AddRange( douList Balanced ) ;
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douList Balanced . Sort ( ) ;

t x t F i l e . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−Most

Balanced Normalised So lut ions

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

for ( int int Temp i = 0 ; int Temp i < 10 ;

int Temp i++)

{
int index Temp = douList Balanced Ind . IndexOf

( douList Balanced [ 0 ] ) ;

//Avoidance o f r e p e t i t i v e s o l u t i o n s

douList Balanced . RemoveAt (0 ) ;

douList Balanced Ind [ index Temp ] =

douList Balanced [ douList Balanced . Count −
1 ] ;

t x t F i l e . WriteLine (

”Nqc : { 0 } ; Nyc : { 1 } ; Ntr : { 2 } ; Fun1 : { 3 } ; Fun2

: { 4 } ; Fun3 : { 5 } ; Fun4 :{6} ” ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Nqc ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Nyc ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] . Ntr ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun1 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun2 ,

l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun3 ,
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l i s t N o r m a l i s e d S o l u t i o n s [ index Temp ] .

valueFun4

) ;

}

// F i tne s s Values

t x t F i l e . WriteLine ( ”−−−−−−−−−−−−Fi tne s s Values f o r

Each Generation−−−−−−−−−−” ) ;

foreach (double dou Temp in d ou L i s t F i tn e s s )

{
t x t F i l e . WriteLine (dou Temp) ;

}

programRunningTime . Stop ( ) ;

t x t F i l e . WriteLine ( ”−−−−−−−−−−−−−−−−−−−−−−
Programme Running Time

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

t x t F i l e . WriteLine ( ” Total Running Time” +

programRunningTime . Elapsed ) ;

t x t F i l e . Close ( ) ;

Console . WriteLine ( ” S o l u t i o n s have been exported

to ” + txtF i l ePath

+ ”\nProgramme Running Time” +

programRunningTime . Elapsed ) ;

Console . WriteLine ( ”Job done ! ” ) ;

Console . ReadKey ( ) ;
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}

//main func t i on ends

private stat ic bool threeSameVariants

( structChromosome f Chromo1 , structChromosome

f Chromo2 )

{
return (

( f Chromo1 . Nqc == f Chromo2 . Nqc) &&

( f Chromo1 . Nyc == f Chromo2 . Nyc) &&

( f Chromo1 . Ntr == f Chromo2 . Ntr )

) ;

}
private stat ic structChromosome copyChromosome

( structChromosome Origin , L i s t<structChromosome>

f s o l u t i o n P o p u l a t i o n )

{
structChromosome newChromosome = new

structChromosome ( ) ;

newChromosome . Nqc = Orig in . Nqc ;

newChromosome . Nyc = Orig in . Nyc ;

newChromosome . Ntr = Orig in . Ntr ;

newChromosome . valueFun1 = Orig in . valueFun1 ;

newChromosome . valueFun2 = Orig in . valueFun2 ;

newChromosome . valueFun3 = Orig in . valueFun3 ;

newChromosome . valueFun4 = Orig in . valueFun4 ;
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newChromosome . f i t n e s s = f i t n e s s V a l u e ( Origin ,

f s o l u t i o n P o p u l a t i o n ) ;

return newChromosome ;

}

private stat ic int r ou l e t t eWhee lS e l e c t i on

(double t o t a l F i t n e s s , L i s t<structChromosome>

f s o l u t i o n P o p u l a t i o n )

{
Random randomSeed = new Random( DateTime .Now.

M i l l i s e c o n d ) ;

double s l i c e = randomSeed . NextDouble ( ) ∗
t o t a l F i t n e s s ;

double f i t n e s s S o F a r = 0 ;

for ( int int Temp i = 0 ; int Temp i <

f s o l u t i o n P o p u l a t i o n . Count ; int Temp i++)

{
f i t n e s s S o F a r = f i t n e s s S o F a r +

f s o l u t i o n P o p u l a t i o n [ int Temp i ] . f i t n e s s ;

i f ( f i t n e s s S o F a r >= s l i c e )

{
return int Temp i ;

}
}
return randomSeed . Next (0 , f s o l u t i o n P o p u l a t i o n .

Count ) ;

}
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public stat ic void crossoverFun

( ref structChromosome f chromo1 , ref

structChromosome f chromo2 ,

L is t<structChromosome> f s o l u t i o n P o p u l a t i o n , int

f xLength ,

int f qcLowerBound , int f qcUpperBound , int

f ycLowerBound ,

int f ycUpperBound , int f trLowerBound , int

f trUpperBound )

{
List<double> l istDouArr Temp Ntr = new List<

double>() ;

L i s t<double> l istDouArr Temp Nyc = new List<

double>() ;

L i s t<double> l istDouArr Temp Nqc = new List<

double>() ;

foreach ( structChromosome strChromo Temp in

f s o l u t i o n P o p u l a t i o n )

{
l istDouArr Temp Nqc . Add( strChromo Temp . Nqc) ;

listDouArr Temp Nyc . Add( strChromo Temp . Nyc) ;

l istDouArr Temp Ntr . Add( strChromo Temp . Ntr ) ;

}

// structChromosome f chromo Temp = new

structChromosome () ;

int f chromo1 Nqc = f chromo1 . Nqc ;
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int f chromo2 Nqc = f chromo2 . Nqc ;

int f chromo1 Nyc = f chromo1 . Nyc ;

int f chromo2 Nyc = f chromo2 . Nyc ;

int f chromo1 Ntr = f chromo1 . Ntr ;

int f chromo2 Ntr = f chromo2 . Ntr ;

sub crossoverFun (

ref f chromo1 Nqc , ref f chromo2 Nqc ,

f xLength ,

f qcLowerBound , f qcUpperBound

) ;

sub crossoverFun (

ref f chromo1 Nyc , ref f chromo2 Nyc ,

f xLength ,

f ycLowerBound , f ycUpperBound

) ;

sub crossoverFun (

ref f chromo1 Ntr , ref f chromo2 Ntr ,

f xLength ,

f trLowerBound , f trUpperBound

) ;

f chromo1 . Nqc = f chromo1 Nqc ;

f chromo1 . Nyc = f chromo1 Nyc ;

f chromo1 . Ntr = f chromo1 Ntr ;

f chromo1 . valueFun1 = obj Fun1 ( f chromo1 . Nqc ,

f chromo1 . Nyc , f chromo1 . Ntr ) ;
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f chromo1 . valueFun2 = obj Fun2 ( f chromo1 . Nqc ,

f chromo1 . Nyc , f chromo1 . Ntr ) ;

f chromo1 . valueFun3 = obj Fun3 ( f chromo1 . Nqc ,

f chromo1 . Nyc , f chromo1 . Ntr ) ;

f chromo1 . valueFun4 = obj Fun4 ( f chromo1 . Ntr ) ;

f chromo2 . Nqc = f chromo2 Nqc ;

f chromo2 . Nyc = f chromo2 Nyc ;

f chromo2 . Ntr = f chromo2 Ntr ;

f chromo2 . valueFun1 = obj Fun1 ( f chromo2 . Nqc ,

f chromo2 . Nyc , f chromo2 . Ntr ) ;

f chromo2 . valueFun2 = obj Fun2 ( f chromo2 . Nqc ,

f chromo2 . Nyc , f chromo2 . Ntr ) ;

f chromo2 . valueFun3 = obj Fun3 ( f chromo2 . Nqc ,

f chromo2 . Nyc , f chromo2 . Ntr ) ;

f chromo2 . valueFun4 = obj Fun4 ( f chromo2 . Ntr ) ;

}

public stat ic void sub crossoverFun

( ref int int Chrom 1 , ref int int Chrom 2 , int

f xLength ,

int lowerBound , int upperBound )

{
int x1 = int Chrom 1 ;

int x2 = int Chrom 2 ;

//MessageBox . Show( str Chrom 1+”;”+ str Chrom 2 ) ;
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Random randomSeed = new Random( DateTime .Now.

M i l l i s e c o n d ) ;

int cu tPos i t i on = randomSeed . Next ( f xLength ) ;

switch ( cu tPos i t i on )

{
case 0 :

int int Temp i = ( x1 / 100) ∗ 100 + ( x2 %

100) ;

x2 = ( x2 / 100) ∗ 100 + ( x1 % 100) ;

x1 = int Temp i ;

break ;

case 1 :

int int Temp j 1 = x1 / 100 ;

int int Temp j 2 = ( x1 % 100) / 10 ;

int int Temp j 3 = x1 % 10 ;

int int Temp k 1 = x2 / 100 ;

int int Temp k 2 = ( x2 % 100) / 10 ;

int int Temp k 3 = x2 % 10 ;

x1 = int Temp k 1 ∗ 100 + int Temp j 2 ∗
10 + int Temp k 3 ;

x2 = int Temp j 1 ∗ 100 + int Temp k 2 ∗
10 + int Temp j 3 ;

break ;

case 2 :

int int Temp m = ( x1 / 10) ∗ 10 + ( x2 %

10) ;

x2 = ( x2 / 10) ∗ 10 + ( x1 % 10) ;
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x1 = int Temp m ;

break ;

default :

break ;

}
i f ( ( x1 < lowerBound ) | | ( x1 > upperBound ) )

{ x1 = randomSeed . Next ( lowerBound , upperBound ) ; }

i f ( ( x2 < lowerBound ) | | ( x2 > upperBound ) )

{ x2 = randomSeed . Next ( lowerBound , upperBound ) ; }

int Chrom 1 = x1 ;

int Chrom 2 = x2 ;

}

public stat ic structChromosome mutationFun

( structChromosome f chromo , Li s t<structChromosome

> f s o l u t i o n P o p u l a t i o n ,

int f xLength , int f qcLowerBound , int

f qcUpperBound , int f ycLowerBound ,

int f ycUpperBound , int f trLowerBound , int

f trUpperBound )

{
structChromosome chromo Temp = new

structChromosome ( ) ; //

chromo Temp . Nqc = sub MutationFun

( f chromo . Nqc , f xLength , f qcLowerBound ,

f qcUpperBound ) ;
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chromo Temp . Nyc = sub MutationFun

( f chromo . Nyc , f xLength , f ycLowerBound ,

f ycUpperBound ) ;

chromo Temp . Ntr = sub MutationFun

( f chromo . Ntr , f xLength , f trLowerBound ,

f trUpperBound ) ;

chromo Temp . valueFun1 = obj Fun1 ( chromo Temp . Nqc ,

chromo Temp . Nyc , chromo Temp . Ntr ) ;

chromo Temp . valueFun2 = obj Fun2 ( chromo Temp . Nqc ,

chromo Temp . Nyc , chromo Temp . Ntr ) ;

chromo Temp . valueFun3 = obj Fun3 ( chromo Temp . Nqc ,

chromo Temp . Nyc , chromo Temp . Ntr ) ;

chromo Temp . valueFun4 = obj Fun4 ( chromo Temp . Ntr )

;

return chromo Temp ;

}

public stat ic int sub MutationFun ( int int Chrom , int

f xLength ,

int lowerBound , int upperBound )

{
string str Chrom = Convert . ToString ( int Chrom ) ;

i f ( str Chrom . Length < f xLength )

{
str Chrom = str Chrom . PadLeft ( f xLength , ’ 0 ’ )

;
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}

Random randomSeed = new Random( DateTime .Now.

M i l l i s e c o n d ) ;

string strChange = Convert . ToString ( randomSeed .

Next (0 , 10) ) ;

int cu tPos i t i on = randomSeed . Next (0 , str Chrom .

Length ) ;

i f ( cu tPos i t i on == 0)

{
str Chrom = strChange + str Chrom ;

str Chrom = str Chrom . Substr ing (0 , f xLength )

;

}
else

{
string str Chrom 1 Head = str Chrom . Substr ing

(0 , cu tPos i t i on − 1) ;

string s t r Chrom 1 Tai l = str Chrom . Substr ing

( cu tPos i t i on ) ;

str Chrom = str Chrom 1 Head + strChange +

str Chrom 1 Tai l ;

}

int x = int . Parse ( str Chrom ) ;

i f ( ( x < lowerBound ) | | ( x > upperBound ) )

{ x = randomSeed . Next ( lowerBound , upperBound ) ; }



229

return x ;

}

public stat ic double f i t n e s s V a l u e

( structChromosome chromosome , Lis t<

structChromosome> f s o l u t i o n P o p u l a t i o n )

{
int paretoDominantNum = 0 ;

// F i tne s s va lue i s the number o f chromosomes i t

dominates .

foreach ( structChromosome

chromosomeFromPopulation in

f s o l u t i o n P o p u l a t i o n )

//Compare wi th a l l Values

{
i f ( paretoComparation ( chromosome ,

chromosomeFromPopulation ) )

// i f stru Temp1 i s worse than stru Temp2 ,

re turn f a l s e

{
paretoDominantNum++;//not worse or

comparing to the same va l u e s

}
}
return paretoDominantNum ;

}
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stat ic bool paretoComparation

( structChromosome f strChromosome ,

structChromosome chromosomeFromPopulation )

{
bool f t a g ;

i f ( //not d e l e t e i t s e l f

( f strChromosome . valueFun1 !=

chromosomeFromPopulation . valueFun1 ) | | //
Max 1 s t Obj Qc Rate

( f strChromosome . valueFun2 !=

chromosomeFromPopulation . valueFun2 ) | | //
Max 2nd Obj Yc Rate

( f strChromosome . valueFun3 !=

chromosomeFromPopulation . valueFun3 ) | | //
Min 3rd Obj Congest ion

( f strChromosome . valueFun4 !=

chromosomeFromPopulation . valueFun4 ) //

Min 4 th Obj Tra v e l l i n g Distance

)

//This i s not i t s e l f .Any o f e lements i s not equa l

to .

{
i f (

( f strChromosome . valueFun1 >

chromosomeFromPopulation . valueFun1 ) | |
//Max 1 s t Obj Qc Rate
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( f strChromosome . valueFun2 >

chromosomeFromPopulation . valueFun2 ) | |
//Max 2nd Obj Yc Rate

( f strChromosome . valueFun3 <

chromosomeFromPopulation . valueFun3 ) | |
//Min 3rd Obj Congest ion

( f strChromosome . valueFun4 <

chromosomeFromPopulation . valueFun4 )

//Min 4 th Obj Tra v e l l i n g Distance

)

{
f t a g = true ; // f s tru Temp1 i s not worse

than f stru Temp2 ;

}
else

{
f t a g = fa l se ; // f s tru Temp1 i s worse

than f stru Temp2 ; d e l e t e .

}
}
else { f t a g = true ; } // f s tru Temp1 =

f stru Temp2 ; keep i t

return f t a g ;

}

stat ic double obj Fun1 ( int Nqc , int Nyc , int Ntr )

// o b j e c t i v e func t i on1 : maximise QC Operation Rate

//Unit : moves per hour
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{
double fx = 0.005 ∗ (2E−07 ∗ Ntr ∗ Ntr ∗ Ntr −

0 .0001 ∗ Ntr ∗ Ntr + 0.0021 ∗ Ntr + 15 .341)

+ 0.005 ∗ (0 .0001 ∗ Nyc ∗ Nyc − 0 .0553 ∗ Nyc +

15 .074)

+ 0.99 ∗ ( 0 . 013 ∗ Nqc ∗ Nqc − 1 .0883 ∗ Nqc +

28 .06 ) ;

return fx ;

}
//

stat ic double obj Fun2 ( int Nqc , int Nyc , int Ntr )

// o b j e c t i v e func t i on1 : maximise YC Operation Rate

//Unit : moves per hour

{
double fx = 0 .3 ∗ (0 .0046 ∗ Nqc ∗ Nqc − 0 .2059 ∗

Nqc + 3 .9918) +

0 .5 ∗ (−1E−07 ∗ Nyc ∗ Nyc ∗ Nyc + 0.0001 ∗
Nyc ∗ Nyc − 0 .0472 ∗ Nyc + 7 .2676) +

0 .2 ∗ (1E−07 ∗ Ntr ∗ Ntr ∗ Ntr − 6E−05 ∗ Ntr

∗ Ntr + 0.0097 ∗ Ntr + 1 .8983) ;

return fx ;

}
//

stat ic double obj Fun3 ( int Nqc , int Nyc , int Ntr )

// o b j e c t i v e func t i on3 : mnimise Congest ion P r o b a b i l i t y

{
double fTg = 0.05 ∗ (2E−06 ∗ Nqc ∗ Nqc ∗ Nqc − 9E

−05 ∗ Nqc ∗ Nqc + 0.0003 ∗ Nqc + 0 .3751) +
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0 .15 ∗ (−9E−10 ∗ Nyc ∗ Nyc ∗ Nyc + 1E−06 ∗
Nyc ∗ Nyc − 0 .0004 ∗ Nyc + 0 .4059) +

0 .8 ∗ (2E−11 ∗ Ntr ∗ Ntr ∗ Ntr ∗ Ntr − 2E−08

∗ Ntr ∗ Ntr ∗ Ntr + 7E−06 ∗ Ntr ∗ Ntr −
0 .0011 ∗ Ntr + 0 .4167) ;

double lamda ; //The minimum time gap amongst

t r u c k s ( orders )

lamda = 1 / fTg ;

double LowerLimit = 0 ;

double UpperLimit = fTg ;

double fx ;

fx = Integ ra lFunct i on ( LowerLimit , UpperLimit ,

lamda , fTg ) ;

return fx ;

}

stat ic double obj Fun4 ( int Ntr )

// o b j e c t i v e func t i on1 : maximise YC Operation Rate

//Unit : moves per hour

{
double fx = 0.0001 ∗ Math .Pow( Ntr , 2) − 0 .1069 ∗

Ntr + 2 2 2 . 7 5 ;

return fx ;

}
// Ob j e c t i v e f unc t i on s end
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public stat ic double In t eg ra lFunct i on (double

LowerLimit , double UpperLimit , double lamda ,

double Tg)

{
double r e s u l t = 0 ;

double dx = ( UpperLimit − LowerLimit ) / 1000 ;

for (double x = LowerLimit ; x <= UpperLimit ; x =

x + dx )

{
double fx = lamda ∗ Math . Exp(−lamda ∗ x ) ;

r e s u l t = r e s u l t + fx ∗ dx ;

}
return r e s u l t ;

}
}

}



Appendix D

Data Details

The data of the container throughput of Southampton Container Terminal is shown

in table D.1.

Table D.1: Container Throughput of Southampton Container Terminal [122] [113]
[86]

Year 2000 2005 2006 2007 2008
Throughput (TEU) 1,000,000 1,382,000 1,500,000 1,900,000 1,500,000

The numbers of quay cranes in Southampton Container Terminal between 2000

and 2009 are given in table D.2.

Table D.2: Number of Quay Cranes in Southampton Container Terminal [120]
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Quay Crane 4 6 6 6 6 6 7 7 9 11

The numbers of yard cranes from 2000 to 2009 are given in table D.3.

Table D.3: Number of Yard Cranes in Southampton Container Terminal [121]

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Straddle Carrier 35 49 58 67 78 89 94 109 109 124

Sprinter 5 5 5 5 6 6 6
Empty Container 2 4 6 6 7 7 15

Handler
Reach Stacker 4 4 4 4 4 4
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