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Abstract

A vehicle active suspension system, in comparison with its counter-

parts, plays a crucial role in adequately guarantee the stability of the

vehicle and improve the suspension performances. With a full under-

standing of the state of the art in vehicle control systems, this the-

sis identifies key issues in robust control design for active suspension

systems with uncertainty, contributes to enhance the suspension per-

formances via handling tradeoffs between ride comfort, road holding

and suspension deflection. Priority of this thesis is to emphasize the

contributions in handing actuator-related challenges and suspension

model parameter uncertainty.

The challenges in suspension actuators are identified as time-varying

actuator delay and actuator faults. Time-varying delay and its effects

in suspension actuators are targeted and analyzed. By removing the

assumptions from the state of the art methods, state-feedback and

output-feedback controller design methods are proposed to design less

conservative state-feedback and output-feedback controller existence

conditions. It overcomes the challenges brought by generalized time-

varying actuator delay. On the other hand, a novel fault-tolerant

controller design algorithm is developed for active suspension systems

with uncertainty of actuator faults. A continuous-time homogeneous

Markov process is presented for modeling the actuator failure process.

The fault-tolerant H∞ controller is designed to guarantee asymptotic

the stability, H∞ performance, and the constrained performance with

existing possible actuator failures.

It is evident that vehicle model parameter uncertainty is a vital fac-

tor affecting the performances of suspension control system. Con-



sequently, this thesis presents two robust control solutions to over-

come suspension control challenges with nonlinear constraints. A

novel fuzzy control design algorithm is presented for active suspension

systems with uncertainty. By using the sector nonlinearity method,

Takagi-Sugeno (T-S) fuzzy systems are used to model the system.

Based on Lyapunov stability theory, a new reliable fuzzy controller

is designed to improve suspension performances. A novel adaptive

sliding mode controller design approach is also developed for nonlin-

ear uncertain vehicle active suspension systems. An adaptive sliding

mode controller is designed to guarantee the stability and improve the

suspension performances.

In conclusion, novel control design algorithms are proposed for ac-

tive suspension systems with uncertainty in order to guarantee and

improve the suspension performance. Simulation results and com-

parison with the state of the art methods are provided to evaluate

the effectiveness of the research contributions. The thesis shows in-

sights into practical solutions to vehicle active suspension systems,

it is expected that these algorithms will have significant potential in

industrial applications and electric vehicles industry.
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Chapter 1

Introduction

It is evident that there is a constantly growing interest in providing acceptable

system performances of vehicle suspension systems, especially in the past two

decades (Hać, 1992; Karnopp, 1983; Yamashita et al., 1990; Zhu & Knospe, 2010)

as vehicle suspension systems have many vital functions: for instance, to support

the vehicle weight, to provide effective isolation of the chassis from road exci-

tations, to keep tyre contact with the ground, and to maintain the wheels in

appropriate position on the road surface. Vehicle suspension systems play an im-

portant role in guaranteeing the stability and improving suspension performances

of vehicles. It is worth noting that the problem of control design for active sus-

pension systems should be paid considerable attention. In addition, the vehicle

suspension systems can provide as much comfort as possible for the passengers

and ensure the other suspension performance by serving the basic function of

isolating passengers from road-induced vibration and shocks (Montazeri-Gh &

Soleymani, 2010; Rajamani & Hedrick, 1995). Hence, the control design problem

of proper active suspension systems is always an important research topic for

achieving the desired vehicle suspension performances.

1.1 A Brief Background

Several performance characteristics should be considered (Alleyne & Hedrick,

1995) and need to be optimized for designing a good performance suspension

system. It is widely accepted that three main suspension performances should

1



1.1 A Brief Background

be taken into account when designing a suspension controller, namely, ride com-

fort (i.e., directly related to acceleration sensed by passengers), road handling

(i.e., associated with the contact forces of tyres and road surface), and suspen-

sion deflection (i.e., referred to the displacement between the sprung mass and

unsprung mass) (Hrovat, 1997). However, it is difficult to minimize all three

parameters simultaneously as these performances are often conflicting with each

other (Chalasani, 1986). For example, the minimization of suspension travel can-

not be accomplished simultaneously with the maximization of the ride comfort.

In other words, enhancing ride comfort performance results in larger suspension

stroke and smaller damping in the wheel-hop mode. Hence, how to derive an ap-

propriate trade-off between these performances is the main task for successfully

designing a vehicle suspension control system.

Recently, many researchers have paid considerable attention to develop dif-

ferent suspension systems to improve the suspension performance. Generally

speaking, suspension systems can be categorized into the following several types:

passive (Naudé & Snyman, 2003a,b), semi-active (Choi et al., 2001; Poussot-

Vassal et al., 2008, 2010; Yao et al., 2002), and active suspension systems (Cao

et al., 2008b; Ting et al., 1995). The passive suspension system is a conventional

system that contains non-controlled spring or damper devices being assumed to

have almost linear characteristics, and its performance depends on the values of

certain vehicle parameters (Naudé & Snyman, 2003a,b). The passive suspension

system can not offer the control force and its performance is always limited. The

improvement of ride comfort, road holding and suspension travel are effective only

in a certain frequency range due to the intrinsic limitation of passive suspension

system. However, the automobile industry adopts the device as it can offer high

reliability without consuming energy.

The semi-active suspension system can supply controlled real-time dissipation

of energy (Williams, 1994), which is implemented through a mechanical device

called an active damper. In the semi-active suspension system, the active damper

is used in parallel to a conventional spring. The disadvantage of the damper is

that it is difficult to find proper device to generate a high force at low velocities

and a low force at high velocities, and be able to move rapidly between the two.

2



1.2 Problems and Challenges

The active suspension system is different from the conventional passive sus-

pension system and the semi-active suspension system since it has the capability

to provide energy to the system, as well as store and dissipate it by employing

pneumatic or hydraulic actuators to create the desired force (Crolla & Abdel,

1991; Hać, 1992; Hrovat, 1997) . The actuator in the active suspension is placed

in parallel with the damper and the spring. Due to the fact the actuator con-

nects the unsprung mass to the body, it can control both the wheel hop motion,

suspension travel and the body motion. Therefore, the active suspension now

can improve suspension performances such as ride comfort, ride handling and

suspension reflection simultaneously.

It is well known that an active suspension system is the effective way to im-

prove suspension performance and has been intensively investigated (Alleyne &

Hedrick, 1995; Cao et al., 2010; Du et al., 2005; Gao et al., 2006; Ma & Chen, 2011;

Yamashita et al., 1994). In order to manage the trade-off between the conflicting

performance, some active control approaches are presented based on various con-

trol techniques such as fuzzy logic and neural network control (Cao et al., 2008a;

Cherry & Jones, 1995), gain scheduling control (Sivrioglu & Cansever, 2009), lin-

ear optimal control (ElMadany & Abduljabbar, 1999), adaptive control (Fialho &

Balas, 2002) and H∞ control (Chen & Guo, 2005; Du & Zhang, 2007; Gao et al.,

2010a). It has been confirmed that H∞ control method for active suspension sys-

tems is applicable to manage the trade-off and obtain a compromise performance

in the references (Chen & Guo, 2005; Du & Zhang, 2007). Therefore, the H∞

control design problems of active suspensions systems have been paid consider-

able attention and many results have been reported in the literature (Chen &

Guo, 2005; Chen et al., 2005; Du & Zhang, 2007; Du et al., 2003). For instance,

the Lyapunov-Krasovkii functional method (Chen, 2007; Goldhirsch et al., 1987)

and linear matrix inequality (LMI) approach (Boyd et al., 1994; Gahinet et al.,

2002; Scherer et al., 1997) have been employed to develop the H∞ control results.

1.2 Problems and Challenges

In control design process of vehicle active suspension systems, the time delay

of the system is an important problem needing careful treatment to avoid poor
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performance or even possible instability of the closed-loop system. Time delay

or transportation lag is a characteristic that commonly encounters in various en-

gineering systems, such as pneumatic and hydraulic systems, chemical processes,

long transmission lines, for instance. The systems using the electrohydraulic ac-

tuators to track the desired forces may be inevitably confronted with actuator

delay. The presence of actuator delay, if not taken into account in the controller

design process, may degrade the control performances and even cause instability

in the resulting control systems. In view of this, more recently, many stability

analysis and controller design schemes have been presented for linear systems

with state delay or actuator delay (Han, 2005; He et al., 2004; Li et al., 2008;

Mou et al., 2008; Shi et al., 2002; Wang et al., 2010; Wu et al., 2009, 2010; Zhang

et al., 2007). More recently, the problems of stability analysis and controller

synthesis for quarter-vehicle, half-vehicle and seat active suspension suspension

systems with actuator delay have been investigated in (Du & Zhang, 2007, 2008;

Gao et al., 2010b) respectively, among which there exist two main approaches

dealing with the actuator delay problems. One is to design a controller using the

integrated system model where the actuator dynamics are included (Thompson

& Davis, 2001). The other is to design a controller by considering the actuator

delay in the controller design process (Du & Zhang, 2007). However, it should be

pointed out that the actuator delay in the existing vehicle suspension is constant

delay. In practice, the more general time-varying delay should be considered in

the control design for vehicle active suspension systems.

An active suspension system has the ability to enhance vehicle dynamics by

relaxing external impact such as road surface on vehicle travel comfort. In terms

of its control design, uncertainty of vehicle sprung and unsprung masses such

as its loading conditions must be taken into account to meet vehicle travel per-

formance criteria. For instance, the polytopic parameter uncertainties were em-

ployed to model the varying vehicle sprung or unsprung masses (Du et al., 2008;

Gao et al., 2006, 2010a). The parameter-dependent controllers were proposed

for the quarter-car suspension systems with sprung mass variation (Du et al.,

2008; Gao et al., 2006). The parameter-independent sampled-data H∞ controller

design strategy was presented to handle both sprung and unsprung mass varia-

tions in a case study of a quarter-car suspension system (Gao et al., 2010a). The

4



1.2 Problems and Challenges

state of the art in suspension control design in these scenarios, however, could

not provide feasible performance for half-vehicle active suspension systems with

parameter uncertainties.

It should be pointed out however, that the aforementioned suspension control

results are under a full reliability assumption that all control components of the

systems are in ideal working conditions. Due to the growing complexity of au-

tomated control systems, various faults are likely to be encountered, especially

faults from actuators and sensors Shi et al. (2003); Wang et al. (1999); Yang et al.

(2002). During the past few decades, many researches have attempted to resolve

the reliable and fault tolerant control problems for dynamic systems with uncer-

tainty such as actuator and sensor faults, and a great number of theoretic results

have also been presented (Mao et al., 2010; Wang et al., 2009b). For instance, the

reliable H∞ controller design problem was investigated at a context of linear sys-

tems (Yang et al., 2001a), and a controller was designed to ensure the reliability

of the control system, i.e., guaranteed asymptotic stability and H∞ performance,

under the assumption that all control components of sensors and actuators are

operational. As a matter of fact, an active suspension system is different from

its counterpart of a passive suspension system in that its actuator has the capa-

bility of adjusting the force to meet the criteria of the vehicle dynamics, such as

guaranteeing the stability of the vehicle, securing passenger comfort and satis-

fying the suspension performance. However, when either the actuator or sensor

faults occur in an active suspension system, the conventional controllers could

not achieve better performance in comparison with the reliable and fault-tolerant

controllers as discussed in (Zhao et al., 2010c), where the considered actuator

fault was described as a static behavior. It is practically reasonable to assume

that the actuator fault should be regarded as the dynamic behavior in stochastic

distributions (Dong et al., 2010; Wang et al., 2009b).

As mentioned in this section, we know that the effects of uncertainties in the

active suspension control systems should be considered. The main uncertainties

are derived from parameter uncertainties, actuator uncertainties, actuator faults

and actuator nonlinear dynamics. For the existing active suspension control sys-

tems and control design methods, there still exist the following several challenges:
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1. It is challenging to choose the proper active suspension systems, present

the uncertainty from these kind systems and the controllers, and build the

active suspension control systems including the suspension performances.

2. It is difficult to develop new stability analysis and controller synthesis ap-

proaches for the built control systems to improve the suspension perfor-

mances.

3. It is challenging to propose simply, efficient and less conservative suspension

performances analysis methods in the control design process.

4. It is difficult to develop a estimate platform for the control design results of

the the vehicle active suspension systems which take into account the effect

of parameter uncertainty.

1.3 Overview of Approaches and Contributions

To consider the proposed problems in section 1.2, the thesis makes four contri-

butions to investigate these problems. The main contributions of this thesis can

be summarized below:

1. To begin with, this thesis takes into account the more general actuator

time-varying delay for vehicle active suspension systems and builds the

corresponding vehicle active suspension dynamical models. By developing

the advanced methods, the state-feedback and output-feedback controllers

are designed to guarantee the stability and improve the suspension perfor-

mances.

2. Secondly, this thesis models the actuator fault in a dynamic behavior, which

is different from the existing static behavior. We establish vehicle active

suspension control systems with actuator faults, which can be modeled by

a continuous-time Markov process. Based on this model, a novel fault-

tolerant H∞ controller is designed such that the resulting control system is

tolerant in that it guarantees asymptotic stability andH∞ performance, and
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simultaneously satisfies the constrained performances with existing possible

actuator failures.

3. Thirdly, this thesis proposes a novel fuzzy control method for vehicle active

suspension systems with uncertainty. The sector nonlinearity method is ex-

ploited to represent the uncertain systems for the control design objective.

Linear matrix inequality (LMI)-based fuzzy H∞ controller existence condi-

tions are derived to guarantee the stability as well as improve the suspension

performances.

4. Finally, this thesis investigates the problem of adaptive sliding mode control

design for vehicle active suspension systems with uncertainty and nonlinear

actuator dynamic. After considering the model uncertainty and the actu-

ator nonlinearity, the nonlinear systems can be built with the constrained

suspension performances. The adaptive sliding mode controller is designed

to improve the suspension performances and guarantee the suspension con-

straints.

1.4 Outline of Thesis

To fulfil the proposed approaches, the thesis is organized as follows.

Chapter 2 presents an overview of H∞ control method for vehicle active

suspension control systems in response with the problems raised in practical im-

plementations by actuator delay, actuator fault, actuator nonlinear and system

uncertain. First, we briefly introduce quarter-, half- and full-vehicle active sus-

pension models and build the state-space form system including the output per-

formances (ride comfort) and the constrained performance (road holding and

suspension reflection). Two types of uncertain models in the vehicle active sus-

pension systems are constructed. This chapter reviews state-feedback control,

output-feedback control, fault-tolerant control, fuzzy control and adaptive slid-

ing mode control approaches for vehicle active suspension systems.

Chapter 3 is aimed at proposing state-feedback and output-feedback H∞

controllers for the active suspension systems with actuator time-varying delay.
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By constructing novel Lyapunov functional, some delay-dependent H∞ perfor-

mance analysis and controller design conditions are derived in the forms of LMIs

based on new less conservative delay-dependent techniques. These presented con-

trollers can guarantee the closed-loop systems stability and simultaneously satisfy

the requested performance. Simulation results are provided to illustrate the ef-

fectiveness of the proposed method and point out that the control delay should

be taken into account for the suspension systems when carrying out the active

control problems.

Chapter 4 focuses on developing fault-tolerant H∞ control strategy for ve-

hicle active suspension systems with actuator faults. By modeling the actuator

failure process as stochastic behavior via a continuous-time homogeneous Markov

process, a novel fault-tolerant H∞ controller is designed such that the resulting

control system is tolerant in that it guarantees asymptotic stability and H∞ per-

formance, and simultaneously satisfies the constrained performance with existing

possible actuator failures. A quarter-vehicle active suspension system is exploited

to demonstrate the effectiveness of this control design method.

Chapter 5 is concerned with fuzzy control for vehicle active suspension sys-

tems with uncertainty. We first build the T-S fuzzy model to represent the

uncertain active suspension systems with sprung and unsprung mass variations,

actuator delay and actuator fault. Based on the T-S fuzzy model, we obtain

LMI-based reliable fuzzy H∞ controller existence conditions. Simulation results

validate the effectiveness of the proposed approaches.

Chapter 6 investigates the problem of adaptive sliding mode control for

nonlinear uncertain active suspension systems. The suspension performances are

considered in the controller design process and the T-S fuzzy model approach

is utilized to represent the nonlinear uncertain suspension system by T-S fuzzy

system. The sliding mode controller is designed to ensure that the T-S fuzzy

system is stable and improve the suspension performance. A half-vehicle model

is employed to demonstrate the effectiveness of the presented method.

Chapter 7 presents some concluding remarks and future plans.
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Chapter 2

Literature Review

2.1 Vehicle Suspension Modelling

As is well known, a suspension system is one of the crucial parts of a vehicle

and plays an important role in modern vehicles for handling vehicle suspension

performances, such as improving ride comfort of the vehicle. The major task of

suspension system is twofold: one is to isolate the car body with its passenger

from external disturbance inputs which mainly come from road irregularities, to

improve riding quality, and the other one is to maintain a firm contact between

the road and the tyres to provide guidance along the track, namely handling

performances. A conventional suspension system consists of passive components,

so the task of providing both ride comfort and good handling can lead to conflict

these requirements. On one hand, a stiff suspension is necessary to support

the weight and to follow the track. On the other hand, a soft suspension is

required to isolate the disturbance from the road, which means that the ride

comfort performance and the other suspension performances such as handling

performance and suspension travel constraints are conflicted. Thus, many kinds

of vehicle suspensions systems have been developed to improve both ride quality

and handling performance.

An active suspension system can employ some pneumatic, magneto-rheological

or hydraulic actuators to generate the force to control this suspension system.

With the development of microprocessors and electronics, many researchers (Es-

mailzadeh & Bateni, 1992; Hrovat, 1987) have done some work on practical ap-
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2.1 Vehicle Suspension Modelling

plications of active suspension systems since the middle of 1980s. In addition,

related surveys on theories and applications of active suspension control systems

have been presented by (Hrovat, 1997; Nagai, 1993; Sharp & Crolla, 1987). It

should be noticed that ride comfort, road handling and suspension deflection are

mainly used to evaluate the suspension performances. Generally speaking, ride

comfort of the passengers is related to vehicle acceleration sensed, road handling

is associated with the contact forces of tyres and road surface, and suspension

deflection is referred to the displacement between the sprung mass and unsprung

mass (Lai & Liao, 2002; Yamashita et al., 1990). In the past two decades, a great

number of research projects have been carried out, targeting the challenge of how

to improve the vehicle suspension systems performances (Hrovat, 1997). Due to

the inherent conflicting nature of the systems performance criteria, for instance,

enhancing ride comfort needs larger suspension stroke and smaller damping of

wheel-hop mode, and this results in a degradation in ride safety (Chen & Guo,

2005). The problem, hence, is still open for a better solution to be excavated.

It is evident that considerable attention has been drawn to the problem of solv-

ing trade-off among the conflicting objectives (Gordon et al., 1991). Three main

types of suspension systems, namely, passive (Tamboli & Joshi, 1999), semi-active

(Hrovat et al., 1988; Shen et al., 2006) and active suspension systems (Cao et al.,

2008b; Ting et al., 1995) have been investigated to achieve the vehicle requirement

performance and avoid the trade-off. For the proposed suspension system, it is

widely accepted that active suspensions is the effective way to improve suspension

performances due to its flexibility in dealing with the conflicting parameters. Fur-

ther interested researchers have been reported to address the active suspension

systems design problems (Alleyne & Hedrick, 1995; Gao et al., 2006; Yamashita

et al., 1994). In this thesis, the quarter, half and full-vehicle active suspension

systems are presented and reviewed in the following subsections.

2.1.1 A Quarter-vehicle Suspension Model

The generalized quarter-car suspension model is shown in Fig. 2.1, where zs and

zu stand for the displacements of the sprung and unsprung masses respectively;

zr denotes the road displacement input; u is the active input of the suspension
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Figure 2.1: A quarter-car model

system; ms is the sprung mass, which represents the car chassis; mu is the un-

sprung mass, which represents mass of the wheel assembly; cs and ks are damping

and stiffness of the suspension system, respectively; kt and ct stand for compress-

ibility and damping of the pneumatic tyre, respectively. Then, we can obtain the

equations of the motion as (Du et al., 2008):

msz̈s(t) = cs[żu(t)− żs(t)] + ks[zu(t)− zs(t)] + u(t),

muz̈u(t) = cs[żs(t)− żu(t)] + ks[zs(t)− zu(t)]

+kt[zr(t)− zu(t)] + ct[żr(t)− żu(t)]− u(t). (2.1)

Let us define the following state variables: x1(t) = zs(t) − zu(t) denotes the

suspension deflection, x2(t) = zu(t)−zr(t) denotes the tire deflection, x3(t) = żs(t)

denotes the sprung mass speed, x4(t) = żu(t) denotes the unsprung mass speed.

Then, we define the disturbance input w(t) = żr(t) and the state vector as

x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
,

the dynamic equations in (2.1) can be expressed as the following state-space form:

ẋ(t) = Ax(t) +B1w(t) +Bu(t), (2.2)
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where

A =


0 0 1 −1
0 0 0 1

− ks
ms

0 − cs
ms

cs
ms

ks
mu

− kt
mu

cs
mu

− cs+ct
mu

 , B =


0
0
1
ms

− 1
mu

 , B1 =


0
−1
0
ct
mu

 .

The key suspension performances such as ride comfort, suspension deflection,

and road holding are considered as the control design objectives for the vehicle

active suspension system in this study. As in references (Du et al., 2008; Gao

et al., 2010a), we regard that the seat suspension system is simplified and included

in the quarter-car suspension systems. The sprung mass ms consists of the mass

of seat cushion. Due to the fact that ride comfort can be generally quantified by

the body acceleration in the vertical direction, it is reasonable to choose body

acceleration as the first control output, that is, z̈s(t).

When we design the controller for suspension systems, one of our main ob-

jectives is to minimize the vertical acceleration z̈s(t). Thus, we can apply the

H∞ norm to measure the performance, whose value actually generates an upper

bound of the root mean square gain. Hence, our main goal is to minimize the

H∞ norm of the transfer function from the disturbance w(t) to the control output

z1(t) = z̈s(t) in order to improve the vehicle ride comfort.

In addition, due to the mechanical structure, the suspension stroke should not

exceed the allowable maximum, that is,

|zs(t)− zu(t)| ≤ zmax, (2.3)

where zmax is the maximum suspension deflection.

Moreover, in order to ensure a firm uninterrupted contact of the wheels with

the road, the dynamic tyre load should not exceed the static tyre load:

kt (zu(t)− zr(t)) < (ms +mu) g. (2.4)

Based on the above conditions, therefore, we choose the body acceleration z̈s(t)

as performance control output, and the suspension stroke zs(t) − zu(t), relative

dynamic tire load kt (zu(t)− zr(t)) / (ms +mu) g as constrained control output
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z2(t), where y(t) denotes the measured output vector. Then, the vehicle active

suspension system can be described by the following state-space equations:

ẋ(t) = Ax(t) +B1w(t) +Bu (t) ,

z1(t) = C1x(t) +D1u (t) ,

z2(t) = C2x(t), (2.5)

where the matrices A, B1 and B are defined in (2.2), and

C1 =
[
− ks

ms
0 − cs

ms

cs
ms

]
,

D1 =
1

ms

, C2 =

[
1 0 0 0
0 kt

(ms+mu)g
0 0

]
.

The quarter-vehicle model parameters are listed in Table 2.1 (Du et al., 2008)

for the following controller design.

Table 2.1: Systems parameter values for the quarter-vehicle suspension model

ms mu ks kt cs ct

973kg 114kg 42720N/m 101115N/m 1095Ns/m 14.6Ns/m

2.1.2 A Half-vehicle Suspension Model

The addressed problem is formulated in terms of a half-vehicle model as shown

in Fig. 2.2, in which zsf (t) is used to denote the front body displacement; zsr(t)

stands for the rear body displacement; l1 is the distance between the front axle

and the centre of mass; l2 is the distance between the rear axle and the centre of

mass; φ (t) is the pitch angle, and zc(t) is the displacement of the centre of mass;

The mass of the car body is denoted by ms, the unsprung masses on the front and

rear wheels are denoted by muf and mur, the pitch moment of inertia about the

center of mass is denoted by Iφ, the front and rear unsprung mass displacements

are denoted by zuf (t) and zur (t) respectively; zrf (t) and zrr (t) stand for the

front and rear terrain height displacements, while csf and csr are the stiffness of

the passive elements of the front and rear wheels respectively. ksf and ksr are the
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Figure 2.2: A half-vehicle model

front and rear tyre stiffness; uf (t) and ur(t) are the front and rear actuator force

inputs respectively. With the assumption of a small pitch angle φ (t) in (Du &

Zhang, 2008), one can obtain:

zsf (t) = zc (t)− l1φ (t) , (2.6)

zsr (t) = zc (t) + l2φ (t) . (2.7)

By using Newton’s second law and the static equilibrium position as the origin for

both the displacement of the mass center and the angular displacement of the car

body, the motion equations for the half-car suspension model can be represented
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as:

msz̈c(t) + ksf [zsf (t)− zuf (t)] + csf [żsf (t)− żuf (t)]

+ksr [zsr(t)− zur(t)] + csr [żsr(t)− żur(t)]

= uf (t) + ur(t),

Iφφ̈ (t)− l1ksf [zsf (t)− zuf (t)]− l1csf [żsf (t)− żuf (t)]

+l2ksr [zsr(t)− zur(t)] + l2csr [żsr(t)− żur(t)]

= −l1uf (t) + l2ur(t),

muf z̈uf (t)− ksf [zsf (t)− zuf (t)]− csf [żsf (t)− żuf (t)] + ktf [zuf (t)− zrf (t)]

= −uf (t),

murz̈ur(t)− ksr [zsr (t)− zur (t)]− csr [żsr(t)− żur(t)] + ktr [zur (t)− zrr (t)]

= −ur(t). (2.8)

It can be seen from (2.6)–(2.8) that

z̈sf (t) = z̈c (t)− l1φ̈ (t)

= a1 {uf (t)− ksf [zsf (t)− zuf (t)]− csf [żsf (t)− żuf (t)]}

+a2 {ur(t)− ksr [zsr(t)− zur(t)]− csr [żsr(t)− żur(t)]} ,

z̈sr (t) = z̈c (t)− l2φ̈ (t)

= a2 {uf (t)− ksf [zsf (t)− zuf (t)]− csf [żsf (t)− żuf (t)]}

+a3 {ur(t)− ksr [zsr(t)− zur(t)]− csr [żsr(t)− żur(t)]} , (2.9)

where

a1 =
1

ms

+
l21
Iφ

, a2 =
1

ms

− l1l2
Iφ

, a3 =
1

ms

+
l22
Iφ

.

To establish the state-space form, we define the following state variables:

x1(t) = zsf (t)− zuf (t) is the suspension deflection of the front car body; x2(t) =

zsr(t)− zur(t) is the suspension deflection of the rear car body; x3(t) = zuf (t)−
zrf (t) is the tyre deflection of the front car body; x4(t) = zur(t)−zrr(t) is the tyre

deflection of the rear car body; x5(t) = żsf (t) is the vertical velocity of the front

car body; x6(t) = żsr(t) is the vertical velocity of the rear car body; x7(t) = żuf (t)

is the vertical velocity of the front wheel; x8(t) = żur(t) is the vertical velocity of

15
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the rear wheel. After choosing the disturbance input w (t) =

[
żrf (t)
żrr(t)

]
and the

variables as,

x(t) =
[
xT
1 (t) xT

2 (t) xT
3 (t) xT

4 (t) xT
5 (t) xT

6 (t) xT
7 (t) xT

8 (t)
]T

,

u (t) =

[
uf (t)
ur(t)

]
,

then we can express the dynamic equations in (2.8) and (2.9) as the following

state-space form:

ẋ (t) = Ax (t) +Bu (t) +B1w (t) , (2.10)

where

A =



0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−a1ksf −a2ksr 0 0 −a1csf −a2csr a1csf a2csr
−a2ksf −a3ksr 0 0 −a2csf −a3csr a2csf a3csr

ksf
muf

0 − ktf
muf

0
csf
muf

0 − csf
muf

0

0 ksr
mur

0 − ktr
mur

0 csr
mur

0 − csr
mur


,

B =

[
0 0 0 0 a1 a2 − 1

muf
0

0 0 0 0 a2 a3 0 − 1
mur

]T
,

B1 =

[
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0

]T
. (2.11)

For the active suspension control design problem, it should be noticed that ride

comfort, road holding ability and suspension deflection are three key performance

characteristics to be considered. First of all, it is widely accepted that ride comfort

is closely related to the vertical acceleration experienced by the car body. In this

study, both the heave and the pitch accelerations are chosen as the performance

output vector, namely,

z1(t) =

[
z̈c (t)
φ̈ (t)

]
.

To ensure that the designed controllers must have the capability of performing

the suspension system, which is subject to the mechanical constraints of vehi-

cle components and passenger comfort generation, the inequalities as below are
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provided to guarantee the suspension deflection constraint

|zsf (t)− zuf (t)| ≤ zf max, |zsr(t)− zur(t)| ≤ zrmax, (2.12)

where zf max and zrmax denote the maximum front and rear suspension deflection

hard limits, respectively. Moreover, to ensure a firm uninterrupted contact of the

wheels with the road, it is very reasonably to assume that the dynamic tire loads

should not exceed the static tire loads for both the front and rear wheels:

|ksf (zuf (t)− zrf (t))| ≤ Ff , |ksr (zur(t)− zrr(t))| ≤ Fr, (2.13)

where Ff and Fr stand for static tyre loads that can be calculated by

Fr (l1 + l2) = msgl1 +murg (l1 + l2) , (2.14)

Ff + Fr = (ms +muf +mur) g. (2.15)

The conditions in (2.12) and (2.13) are chosen as constraint output, the vehicle

active suspension system can be rewritten as follows:

ẋ(t) = Ax(t) +B1w(t) +Bu (t) ,

z1(t) = C1x(t) +D1u (t) ,

z2(t) = C2x(t), (2.16)

where A, B1 and B are defined in (2.10), and

C1 =

[
−ksf

ms
−ksr

ms
0 0 − csf

ms
− csr

ms

csf
ms

csr
ms

l1ksf
Iφ

− l2ksr
Iφ

0 0
l1csf
Iφ

− l2csr
Iφ

− l1csf
Iφ

l2csr
Iφ

]
,

D1 =

[
1
ms

1
ms

− l1
Iφ

l2
Iφ

]
, C2 =


1

zf max
0 0 0 0 0 0 0

0 1
zrmax

0 0 0 0 0 0

0 0
ksf
Ff

0 0 0 0 0

0 0 0 ksr
Fr

0 0 0 0

 .(2.17)

The half-vehicle model parameters are employed as shown in Table 2.2 for the

case study (Du & Zhang, 2008).
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Table 2.2: Systems parameter values for the half-vehicle suspension model

ms muf ksf ktf csf l1

690 kg 40 kg 18000 N/m 200000 N/m 1000 Ns/m 1.3 m

Iφ mur ksr ktr csr l2

1222 kgm2 45 kg 22000 N/m 200000 N/m 1000 Ns/m 1.5 m

Figure 2.3: A full-vehicle model
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2.1 Vehicle Suspension Modelling

2.1.3 A Full-vehicle Suspension Model

A full-car suspension model, as shown in Fig. 2.3 as (Du & Zhang, 2009), is

considered in this subsection. This is a 7-DOF model where the sprung mass is

assumed to be a rigid body with freedoms of motion in the vertical, pitch, and

roll directions, and each unsprung mass has freedom of motion in the vertical

direction. In Fig. 1, zs is the vertical displacement at the center of gravity,

θ and ϕ are the pitch and roll angles of the sprung mass, ms, muf , and mur

denote the sprung and unsprung masses, respectively, and Iθ and Iϕ are pitch

and roll moments of inertia. The front and rear displacements of the sprung

mass on the left and right sides are denoted by z1fl, z1fr, z1rl, and z1rr. The

front and rear displacements of the unsprung masses on the left and right sides

are denoted by z2fl, z2fr, z2rl, and z2rr. The disturbances, which are caused by

road irregularities, are denoted by wfl, wfr, wrl, and wrr. The front and rear

suspension stiffnesses and the front and rear tyre stiffnesses are denoted by ksf ,

ksr, and ktf , ktr, respectively. The front and rear suspension damping coefficients

are csf and csr . Four actuators are placed between the sprung mass and the

unsprung masses to generate pushing forces, denoted by Ffl, Ffr, Frl, and Frr.

Assuming that the pitch angle θ and the roll angle ϕ are small enough, the

following linear approximations are applied
z1fl (t) = zs (t) + lfθ (t) + tfϕ (t) ,
z1fr (t) = zs (t) + lfθ (t)− tfϕ (t) ,
z1rl (t) = zs (t)− lrθ (t) + trϕ (t) ,
z1rr (t) = zs (t)− lrθ (t)− trϕ (t) ,

(2.18)

and a kinematic relationship between xs (t) and q(t) can be established as

xs (t) = LT q(t), (2.19)

where

L =

 1 1 1 1
lf lf −lr −lr
tf −tf tr −tr

 ,

q(t) =
[
zs (t) θ (t) ϕ (t)

]T
,

xs (t) =
[
z1fl (t) z1fr (t) z1rl (t) z1rr (t)

]T
.
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2.1 Vehicle Suspension Modelling

In terms of mass, damping, and stiffness matrices, the motion equations of the

full-car suspension model can been formalized as

Msq̈ (t) = LBs (ẋu (t)− ẋs (t)) + LKs (ẋu (t)− ẋs (t))− LF (t) ,

Muẍu (t) = Bs (ẋs (t)− ẋu (t)) +Ks (ẋs (t)− ẋu (t)) +Kt (w (t)− xu (t)) + F (t) ,

(2.20)

where

xu (t) =
[
z2fl (t) z2fr (t) z2rl (t) z2rr (t)

]
,

w (t) =
[
wfl (t) wfr (t) wrl (t) wrr (t)

]
,

F (t) =
[
Ffl (t) Ffr (t) Frl (t) Frr (t)

]
,

and the matrices are given as

Ms = diag
{

ms Iθ Iϕ
}
,Mu = diag

{
muf muf mur mur

}
,

Bs = diag
{

csf csf csr csr
}
, Ks = diag

{
ksf ksf ksr ksr

}
,

Kt = diag
{

ktf ktf ktr ktr
}
.

After substitute (2.19) into (2.20), one can have

Mmz̈m (t) +Bmżm (t) +Kmzm (t) = Kmtw (t) + LmF (t) , (2.21)

where

zm =

[
q(t)
xu (t)

]
,Mm =

[
Ms 0
0 Mu

]
, Bm =

[
LBsL

T −LBs

−BsL
T Bs

]
,

Km =

[
LKsL

T −LKs

−KsL
T Ks +Kt

]
, Kmt =

[
0
Kt

]
, Lm =

[
−L
I

]
.

By setting x1 (t) = zm (t), x2 (t) = żm (t) and u (t) = F (t) , we can develop the

state-space form:

ẋ (t) = Ax (t) +Bu (t) +B1w (t) ,

where

x (t) =

[
zm (t)
żm (t)

]
, A =

[
0 I

−M−1
m Km −M−1

m Bm

]
,

B =

[
0

−M−1
m Lm

]
, B1 =

[
0

−M−1
m Kmt

]
,

The full-vehicle model parameters are employed as shown in Table 2.3 for the

case study (Du & Zhang, 2009).
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2.1 Vehicle Suspension Modelling

Table 2.3: Systems parameter values for the full-vehicle suspension model

ms muf ksf ktf

1400 kg 40 kg 23500 N/m 190000 N/m

csf lf tf Iθ

1000 Ns/m 0.96 m 0.71 m 2100 kgm2

mur ksr ktr csr

40 kg 25500 N/m 190000 N/m 1100 Ns/m

lr tr Iϕ

1.44m 1.44 m 460 kgm2

2.1.4 Parameter Uncertainty Models in Vehicle Active

Suspension Systems

When modelling the suspension systems, many uncertain factors such as the in-

accuracies of model parameters and the errors of sensors and actuators should

be considered as these uncertain factors degrade the vibration attenuation per-

formance and safety during the driving process. In addition, the suspension

model becomes an uncertain model because of vehicle inertial properties in the

modelling process. Furthermore, an active suspension system has the ability to

enhance vehicle dynamics by relaxing external impact such as road surface on ve-

hicle travel comfort. In terms of its control design, uncertainty of vehicle sprung

and unsprung masses such as its loading conditions should be taken into account

to meet vehicle travel performance criteria. The following two main parameter

uncertainties forms are used to present the vehicle active suspension systems with

uncertainty.

2.1.4.1 Norm-bounded Parameter Uncertainty

Considering the following quarter-vehicle suspension systems with norm-bounded

parameter uncertainties:

ẋ(t) = (A+∆A) x(t) + (B1 +∆B1)w(t) + (B +∆B)u(t), (2.22)
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2.1 Vehicle Suspension Modelling

where the matrices ∆A, ∆B and ∆B1 are unknown matrices representing time-

varying parameter uncertainties, which are assumed to be of the following form:

[
∆A ∆B ∆B1

]
= L1F (t)

[
EA EB EB1

]
, (2.23)

where L1, EA, EB and EB1 are known constant real matrices of appropriate

dimensions, and F (t) is an unknown matrix function with Lebesgue-measurable

elements satisfying F T (t)F (t) ≤ I.

The authors in (Zhao et al., 2010a) investigated the control design problem

for the semi-active seat suspension systems with norm-bounded parameter un-

certainties. The delay-range-dependent Lyapunov function has been constructed

to derive the existence conditions of the desired state-feedback controller.

On the other hand, for the active suspension system, actuator uncertainties

exist in many cases, which can be caused by many factors such as buffer size

in digital systems and aging of controller devices for active suspension systems.

Taking advantage of the fact that the non-fragile feedback controller is insensitive

to gain changes of feedback control, we construct the following state feedback

controller,

u(t) = (K +∆K(t))x (t) , (2.24)

where K is to be designed for the objective of non-fragile control problem. In

this paper, the controller uncertainty is considered in the following form:

∆K (t) = HF (t)E, (2.25)

where H and E are known constant matrices with appropriate dimensions, and

F (t) is unknown matrix functions with the property F T (t)F (t) ≤ I.

An actuator uncertainty-existing non-fragile H∞ controller was designed for

a quarter-car active suspension system, providing the existence conditions for

guaranteeing the systems controller performance in (Du et al., 2003). Regarding

the existing controller uncertainties, it is evident that the phenomenon exists in

a stochastic way subject to contextual constraints.
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2.1 Vehicle Suspension Modelling

2.1.4.2 Polytopic Parameter Uncertainty

By considering the modeling uncertainty, in this chapter we replace the matrices

A, B, B1, C1, D1 and C2 with the matrices A(λ), B(λ), B1(λ), C1(λ), D1(λ) and

C2(λ) in (2.5) as λ is used to denote uncertain parameter.

It is assumed that λ varies in a polytope of vertices λ1, λ2, . . . , λr, i.e., λ ∈
Ψ := Co {λ1, λ2, . . . , λr}, where the symbol Co denotes the convex hull, and thus

we have

Φ , (A(λ), B(λ), B1(λ), C1(λ), C2(λ), D1(λ)) ∈ Ψ,

where Ψ is a given convex bounded polyhedral domain described by r vertices:

Ψ ,
{
Φ

∣∣∣∣∣Φ =
r∑

i=1

λiΦi;
r∑

i=1

λi = 1, λi ≥ 0

}
(2.26)

with Φi , (Ai, Bi, B1i, C1i, C2i, D1i) denoting the vertices of the poly-

tope. The uncertain suspension systems with actuator delay can be expressed

as:

ẋ(t) = A(λ)x(t) +B(λ)u (t) +B1(λ)w(t),

z1(t) = C1(λ)x(t) +D1(λ)u (t) ,

z2(t) = C2(λ)x(t). (2.27)

In terms of its control design, uncertainty of vehicle sprung and unsprung

masses such as its loading conditions should be taken into account to meet vehicle

travel performance criteria. The polytopic parameter uncertainties was employed

to model the varying vehicle sprung or unsprung masses in the quarter-vehicle

suspension systems (Du et al., 2008; Gao et al., 2006, 2010a). The parameter-

dependent controllers was proposed for the quarter-car suspension systems with

sprung mass variation (Du et al., 2008). The parameter-independent sampled-

data H∞ controller design strategy was presented to handle both sprung and

unsprung mass variations in a case study of a quarter-car suspension system

(Gao et al., 2010a).

23



2.2 Review of H∞ Control for Vehicle Active Suspension Systems

2.2 Review of H∞ Control for Vehicle Active

Suspension Systems

With the development of H∞ control theory (Kwakernaak, 1993) and linear ma-

trix inequality (LMI) Toolbox (Boyd et al., 1994; Gahinet et al., 2002), LMI-

based H∞ control methods have been extensively investigated in the past decades

(Gahinet & Apkarian, 1994; Scherer et al., 1997; Xie, 1996). We introduce the

disturbance attenuation control theory first and then review the corresponding

H∞ control approaches for active suspensions systems.

The H∞ control problem is one of disturbance rejection. Specifically, it con-

sists of minimizing the closed-loop root-mean-square (RMS) gain from the distur-

bance w to the output z in the control loop of Figure 2.4. This can be interpreted

as minimizing the effect of the worst-case disturbance w on the output z. The

H∞ norm of a stable transfer function ∥Tzw∥∞ is its largest output RMS gain,

i.e.,

∥Tzw∥∞ = sup
w∈L2

∥z∥∞
∥w∥∞

(2.28)

where L2 is the space of signals with finite energy.

Figure 2.4: H∞ control

A wide spectrum of active suspension control methods, very recently, have

been proposed to address the trade-off between conflicting performance by uti-

lizing different control techniques such as fuzzy logic and neural network control

(Al-Holou et al., 2002), gain scheduling control (Sivrioglu & Cansever, 2009), lin-

ear optimal control (ElMadany & Abduljabbar, 1999), adaptive control (Fialho
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& Balas, 2002) and H∞ control (Chen & Guo, 2005; Gao et al., 2010a). Among

the existing methods, it is evident that H∞ control strategy for active suspension

systems can lead to feasible solutions to manage the trade-off by compromising

the requirements being achieved for the better combination performances (Chen

& Guo, 2005). Therefore, there is a growing interest in employing the strategy

to overcome the problem, some research work has been reported in the literature

(Chen & Guo, 2005).

During the last few years, active H∞ control strategies for vehicle suspensions

were intensively investigated in the context of robustness and disturbance atten-

uation (Park & Kim, 1999; Tuan et al., 2001; Yamashita et al., 1994). It can

be observed from these approaches that a uniform point is that all requirements,

including those associated with hard constraints, are weighted and formulated in

a single objective functional, which is minimized to find an optimal controller.

When road conditions are unavailable or seriously bad, the weights are fixed

and may be chosen such that the hard constraints are satisfied, i.e., the suspen-

sion stroke limitation is not exceeded, and the wheels have a firm contact to road,

which may make the controller not obtain the best of suspension stroke to enhance

ride comfort (Fialho & Balas, 2002; Lin & Kanellakopoulos, 1997). (Lin & Kanel-

lakopoulos, 1997) utilized the backstepping technique and (Fialho & Balas, 2002)

used the linear parameter-varying technique and backstepping method to study

the active control design problems. These two papers showed that good road

holding and limiting suspension stroke within bounds are naturally time-domain

hard constraints that require variables to be within given bounds, a minimum is

not necessary here. Therefore, formulating all different requirements in a single

objective functional and minimizing the single objective function may result in

conservatism. Moreover, the authors (Hrovat, 1997) provided a detailed discus-

sion on weights and achievable performance for a quarter-car suspension model

and showed that it is very difficult to choose appropriate and possibly frequency-

dependent weights to manages the trade-off between conflicting requirements in

single objective approaches.
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2.2.1 State-feedback Control Method

Many researchers investigated the H∞ control design problem for active suspen-

sion systems under the assumption that all state variables are measurable in

(Chen & Guo, 2005; Du & Zhang, 2007; Du et al., 2008; Gao et al., 2010a), where

the state-feedback control method was exploited to consider this problem. The

authors in (Chen & Guo, 2005) proposed a constrained H∞ control scheme for

active suspensions with output and control constraints. In this reference, the

authors considered the suspension performance ride comfort and time-domain

constraints good road holding, suspension stroke limitation and avoidance of ac-

tuator saturation. By using LMI approach, a state-feedback controller is designed

to improve suspension performance. The authors in (Gao et al., 2010a) developed

parameter-independent sampled-dataH∞ controller design strategy for a quarter-

car suspension system by using state-feedback method. (Du & Zhang, 2007; Du

et al., 2008) investigate the state-feedback control problem for the quarter-vehicle

active suspension systems with actuator delay.

2.2.2 Output-feedback Control Method

With the different road situations and loads, the state information may be un-

measurable. The state feedback H∞ controller design methods for vehicle active

suspension systems are not feasible. Recently, H∞ output feedback controller

design results for the active suspension systems have been reported in (Hayakawa

et al., 1999; Sun & Chen, 2003; Thompson & Davis, 1988; Wang & Wilson, 2001).

In (Sun & Chen, 2003), the authors considered the output-feedback control for

half-vehicle suspension systems via LMI optimization method. In (Wang & Wil-

son, 2001), the authors exploited the LMI method to solve the output-feedback

control problem for the active suspension systems, in which the pole placement

problem was considered. In addition, this paper (Wang & Wilson, 2001) applied

multi-objective control framework to the vehicle active suspension.
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2.2.3 Multi-objective Control Method

Recently, multi-objective control methods (Scherer, 2000) for active suspension

systems have been presented in (Chen & Guo, 2001, 2005; Chen et al., 2003; Gao

et al., 2006; Wang & Wilson, 2001). In these proposed approaches, the perfor-

mance is used to measure ride comfort so that more general road disturbances

than white noise can be considered and can be minimized to enhance ride com-

fort. In addition, the other suspension performance can be guaranteed by using

hard constraints, in which the concept of reachable sets is defined by a quadratic

storage function in a state-pace ellipsoid. These works made the contributions

to enhance ride comfort under the hard constraints that keep the time-domain

variables within bounds.

2.3 Control Design for Actuator Imperfect In-

formation

2.3.1 Actuator Delay

It is well-known that actuator delays are often encountered in many control sys-

tems due to the electrical and electromagnetic characteristics of the actuators

and transmission of the measurement information. The systems using electro-

hydraulic actuators to track the desired forces may be inevitably involved with

actuator delay. The presence of actuator delay, if not taken into account in the

controller deign, may degrade the control performances and even cause instabil-

ity in the resulting control systems. In view of this, the researchers have paid

increasing attention to the problems of stability analysis and controller synthesis

for the active suspension systems with actuator delay (Du & Zhang, 2007, 2008;

Du et al., 2008).

The authors in (Du & Zhang, 2007, 2008; Du et al., 2008) considered the

actuator time delay in the controller design process in order to design a controller

that can stabilize the system and guarantee the closed-loop performance in spite

of the existence of time delay. In detail, by using the Moon’s inequality method,
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existence conditions of H∞ controller for active suspension systems with quarter-

car and half-car were developed in (Du & Zhang, 2007, 2008). The parameter-

dependentH∞ control problem has been investigated in (Du et al., 2008) for active

suspension systems that consider both vehicle inertial parameter variations and

actuator time delays. It should be pointed out that the actuator delays considered

in (Du & Zhang, 2007, 2008; Du et al., 2008) are constant delays, which can

be covered by time-varying delays. On the other hand, with the different road

situations and loads, the state information may be unmeasurable. The state

feedback H∞ controller design methods for vehicle active suspension systems

with actuator delay are not feasible. There are few results on output feedback

H∞ control for vehicle active suspension systems with actuator delay.

2.3.2 Actuator Fault

With the growing complexity of automated control systems and actuators, various

faults are likely to be encountered, especially actuator and sensor faults (Chen

& Liu, 2004; Jiang et al., 2006; Liao et al., 2002; Selmic et al., 2006; Shi et al.,

2003; Veillette et al., 2002; Wang et al., 1999; Yang et al., 2001b, 2002; Zhang

et al., 2004). Therefore, it is important to design a fault-tolerant controller such

that the system is stable and the performance of the closed-loop system can be

guaranteed in the presences of sensor and actuator faults, which motivates the

interests in the fault tolerant control system design. The objective of the fault-

tolerant controller is to prevent the faults in the control loop from causing an

overall system failure.

During the past few decades, many researchers have paid considerable at-

tention to the reliable and fault tolerant control problems for dynamic systems

and a great number of theoretic results have also been presented, see e.g. (Dong

et al., 2010; Ma et al., 2010; Mao et al., 2010; Wang & Qiao, 2004; Wang et al.,

2009b; Yang et al., 2009; Zuo et al., 2010). For example, (Yang et al., 2001b)

investigated fault-tolerant H∞ controller design problem for linear systems, and

the fault-tolerant controller was designed such that the resulting control systems

are tolerant in that they provide guaranteed asymptotic stability and H∞ perfor-

mance when all control components (i.e., sensors and actuators) are operational

28



2.4 Fuzzy Control of Vehicle Active Suspension Systems

and when some control components experience failures. In addition, Wang and

his group in (Dong et al., 2010; Wang et al., 2009b) dealt with the fault-tolerant

control problem for the systems with sensor faults being modelled by the prob-

abilistic distributions. In particular, the reliable H∞ control problem of seat

suspension systems with actuator faults is handled in (Zhao et al., 2010c), where

the considered actuator fault was described to be static behavior.

2.4 Fuzzy Control of Vehicle Active Suspension

Systems

Since fuzzy sets were proposed by Zadeh (Zadeh, 1965), fuzzy logic control has

developed into a conspicuous and successful branch of automation and control

theory. During the last two decades, it has been well known that the T-S fuzzy

model is very effective in representing complex nonlinear systems (Feng, 2006; Lin

et al., 2007; Sugeno, 1985; Tanaka & Wang, 2001). These kinds of systems are

described as a weighted sum of some simple linear subsystems, and thus are easily

analyzable. Consequently, over the past decades, there have been a great number

of significant results on the stability analysis and controller synthesis problems

for T-S fuzzy systems and various techniques have been obtained during the past

decades (Cao & Frank, 2002; Chen et al., 2008; Dong et al., 2009; Dong & Yang,

2008; Gao et al., 2009; Lam & Narimani, 2009; Nguang & Shi, 2003; Wang et al.,

2004; Wu & Li, 2007; Xu & Lam, 2005; Zhang & Xu, 2009; Zhou et al., 2005).

Over the past years, some works about the fuzzy controller design for suspen-

sion systems have been reported, for example, (Al-Holou et al., 2002; Cao et al.,

2010; Du & Zhang, 2009; Huang & Lin, 2003a; Kuo & Li, 1999; Rao & Prahlad,

1997; Yagiz et al., 2008). In (Rao & Prahlad, 1997), a fuzzy-logic-based con-

troller for vehicle-active suspension was designed to reduce the vehicle vibration

and disturbance and to enhance comfort in riding faced with uncertain road ter-

rains. The authors in (Kuo & Li, 1999) proposed a genetic-algorithm-based fuzzy

proportional-plus-integral-proportional-plus-derivative (PI/PD) controller for an

automotive active suspension system. With the different road conditions, the
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fuzzy PI- and PD-type controllers with genetic-algorithm were designed. In (Al-

Holou et al., 2002), the authors designed a robust intelligent nonlinear controller

for active suspension systems based on a comprehensive and realistic nonlinear

model. In detail, the authors mixed sliding mode control, fuzzy logic control and

neural network control methodologies to deal with complex uncertain suspension

systems. In (Al-Holou et al., 2002), in order to enhance the ride and comfort, a

sliding mode neural network inference fuzzy logic controller was designed for au-

tomotive suspension systems. The authors in (Cao et al., 2010) proposed a novel

interval type-2 fuzzy controller to resolve nonlinear control problems of vehicle

active suspension systems. By considering the Takagi-Sugeno (T-S) fuzzy model,

interval type-2 fuzzy reasoning, the Wu-Mendel uncertainty bound method, and

optimization algorithms together, the authors in (Cao et al., 2010) constructed

the switching routes between generated linear model control surfaces. In (Yagiz

et al., 2008), a robust fuzzy sliding-mode controller were proposed for a nonlin-

ear half-car active suspensions system. The sliding-mode control method was

combined with a single-input-single-output fuzzy logic controller to improve its

performance. In (Lian et al., 2005), the authors designed a self-organizing fuzzy

controller for an active suspension system to evaluate its control performance.

The authors improved self-organizing fuzzy-control approach to improve the con-

trol performance of the system, while reduce the time consumed to establish a

suitable fuzzy rule table, and support practically convenient fuzzy-controller ap-

plications in an active suspension control system. The authors in (Du & Zhang,

2009) presented T-S model-based fuzzy control design approach for electrohy-

draulic active suspension systems considering nonlinear dynamics of the actua-

tor, sprung mass variation, and constraints on the control input. The authors

used the T-S fuzzy model to represent the nonlinear uncertain electro-hydraulic

suspension and applied parallel distributed compensation method to build the

fuzzy controller. The sufficient conditions for the existence of fuzzy controller

were obtained in terms of LMIs.
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2.5 Adaptive Sliding Mode Control of Vehicle

Active Suspension Systems

It has been widely accepted that sliding mode control method is an effective robust

control strategy for the nonlinear systems and can be successfully applied to a

wide variety of practical engineering systems such as robot manipulators (Feng

et al., 2002), aircrafts (Jafarov & Tasaltin, 2000), underwater vehicles (Healey &

Lienard, 1993) and suspension systems (Chen & Huang, 2008; Kim & Ro, 1998;

Sam et al., 2004; Yagiz & Yuksek, 2001; Yoshimura et al., 2001). The main idea

of sliding mode control is to utilize a discontinuous control to force the system

state trajectories to some predefined sliding surfaces on which the system has

desired properties such as stability, disturbance rejection capability, and tracking

ability.

Recently, sliding mode control has received attention since it has various

attractive features such as fast response, good transient performance, order-

reduction and so on (Edwards & Spurgeon, 1998; Feng et al., 2009; Ho & Niu,

2007; Niu et al., 2005, 2007; Utkin, 1993; Wang et al., 2009a; Yu & Kaynak, 2009).

The authors in (Wu et al., 2006) designed an adaptive sliding mode controller for

uncertain nonlinear state-delayed systems under H∞ performance. Recently, the

sliding mode controller design problems have been extensively investigated for

nonlinear suspension systems in (Chen & Huang, 2008, 2005, 2006; Kim & Ro,

1998; Sam et al., 2004; Yagiz & Yuksek, 2001; Yoshimura et al., 2001). Kim & Ro

(1998) investigated the sliding mode control for a quarter-vehicle nonlinear active

suspension system. The authors considered the presence of non-linearities such as

a hardening spring, a quadratic damping force and the tyre lift-off phenomenon

in the suspension system. A sliding mode controller was designed to improve the

suspension performances. In this study, a linear seven degrees of freedom vehi-

cle model is used in order to design and check the performance of sliding mode

controlled active suspensions. Force actuators are mounted as parallel to the

four suspensions and a non-chattering control is realized. Sliding mode control is

preferred because of its robust character since any change in vehicle parameters

should not affect the performance of the active suspensions. Improvement in ride

comfort is aimed by decreasing the amplitudes of motions of vehicle body. In
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(Yagiz & Yuksek, 2001), sliding mode controller was designed to check the per-

formance of a linear seven degrees of freedom vehicle model In (Chen & Huang,

2005), an adaptive sliding controller was designed for a non-autonomous quarter-

car suspension system with time-varying loadings. The Lyapunov direct method

was be used in (Chen & Huang, 2005) to find adaptive laws for updating co-

efficients in the approximating series and to prove stability of the closed-loop

system. The authors in (Chen & Huang, 2006) used adaptive sliding mode con-

trol method to deal with the active control for the nonlinear quarter-car active

suspension systems with hydraulic actuator where was assumed to have some

time-varying uncertainties with unknown bounds.

In the past few years, the authors in (Huang & Chen, 2006; Huang & Lin,

2003b; Lin et al., 2009; Yagiz et al., 2008) considered the fuzzy sliding mode con-

trol design problems for the suspension systems. In (Huang & Lin, 2003b), the

authors proposed an adaptive fuzzy sliding mode controller to suppress the sprung

mass position oscillation in the nonlinear suspension systems with hydraulic ac-

tuator. The intelligent control strategy mixed an adaptive rule with fuzzy and

sliding mode control algorithms and had online learning capability to handle the

system time-varying and nonlinear uncertainty behaviors, and adjust the control

rules parameters. Based on the results and methods proposed in (Huang & Lin,

2003b), the authors in (Huang & Chen, 2006) further investigated adaptive fuzzy

sliding controller for the nonlinear suspension systems with hydraulic actuator.

This control method used the functional approximation technique to establish

the unknown function for releasing the model-based requirement. Furthermore, a

fuzzy scheme with online learning ability was introduced to compensate the func-

tional approximation error for improving the control performance and reducing

the implementation difficulty. In (Yagiz et al., 2008), a robust fuzzy sliding-mode

controller was designed for a nonlinear half-car active suspensions system with

nonlinear spring and piecewise linear damper with dry friction. This control

method mixed adaptive sliding mode controller and a single-input-single-output

fuzzy logic controller to improve the suspension performances. (Lin et al., 2009)

designed a fuzzy sliding mode controller to control a nonlinear active suspension

system and evaluated its control performance.
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2.6 Summary

Robust control approaches are required due to the real-time, external disturbance

and uncertain properties of vehicle active suspension systems. This chapter pro-

vided an account of state of the art of robust control of active suspension systems

with uncertainty. Through the above observation, this thesis will propose research

methods and focus on how to close the gaps in current researches. Research chal-

lenges are identified and enumerated as below.

1. This thesis takes into account the actuator time-varying delay for vehicle

active suspension systems. The resulting control systems model is more

general than the existing ones. For the measurable state variable, a novel

state-feedback robust controller is designed to guarantee the stability of the

systems and improve suspension performances for uncertain vehicle active

suspension systems with actuator time-varying delay. For the unmeasurable

state variable, this thesis construct a new type dynamic output-feedback

controller and synthesis the controller design for vehicle active suspension

systems with actuator time-varying delay via new techniques.

2. This thesis is concerned with fault-tolerant H∞ controller design for vehicle

active suspension systems with actuator faults. In this thesis, we regard

the actuator failure process as stochastic behavior, which can be modeled

by a continuous-time homogeneous Markov process. By using stochastic

stability theory, a fault-tolerant H∞ controller is designed such that the re-

sulting control system is tolerant in the sense that it guarantees asymptotic

stability and H∞ performance, and simultaneously satisfies the constraint

performance with possible actuator failures.

3. This thesis presents a new approach to design fuzzy control for vehicle

active suspension systems with uncertainty. By building T-S fuzzy model to

represent the uncertain active suspension systems, the LMI-based reliable

fuzzy controller conditions are derived to ensure that the resulting T-S

fuzzy system is asymptotically stable with H∞ performance, and satisfy

the constraint performance simultaneously.
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4. This thesis focuses on the problem of adaptive sliding mode H∞ control

for a nonlinear uncertain active suspension system under the framework of

multi-objective control. We model the corresponding nonlinear uncertain

system by considering the variations of the sprung mass, the front and

rear unsprung masses, the nonlinear actuator dynamics and the suspension

performances. This control design process is different from the existing

sliding mode control methods as the suspension performances are considered

and the T-S fuzzy model approach is utilized to represent the nonlinear

uncertain suspension system by T-S fuzzy system. A novel adaptive sliding

mode controller is designed for the resulting closed-loop systems.
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Chapter 3

Robust H∞ Control for Active

Suspensions Systems with

Actuator Time-varying Delay

3.1 Introduction

It is well-known that actuator delays are often encountered in many control sys-

tems due to the electrical and electromagnetic characteristics of the actuators

and transmission of the measurement information. The systems using electro-

hydraulic actuators to track the desired forces may be inevitably involved with

input delay. The presence of input delay, if not taken into account in the con-

troller deign, may degrade the control performances and even cause instability in

the resulting control systems. In view of this, many stability analysis and con-

troller design schemes have been presented for linear systems with delay or input

delay (Han, 2005; He et al., 2004; Li et al., 2008; Mou et al., 2008; Shi et al.,

2002; Wang et al., 2010; Wu et al., 2009; Zhang et al., 2007). More recently, the

problems of stability analysis and controller synthesis for the active suspension

systems with quarter model and half model, and seat suspension systems with

input delay have been investigated in (Du & Zhang, 2007, 2008; Gao et al., 2010b)

respectively, among which there exist two main approaches to deal with the input

problem. One is to design a controller using the integrated system model where

the actuator dynamics are included (Thompson & Davis, 2001). The other is to
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design a controller by considering the actuator time delay in the controller design

process (Du & Zhang, 2007).

Over the past years, the authors in (Chen et al., 2005; Du & Zhang, 2008;

Giua et al., 2000; Lin & Huang, 2003; Wu et al., 2005) investigated the control

problems via different methods for a half-car active suspension system. Specially,

the authors in (Du & Zhang, 2008) investigated H∞ controller design for the

suspension model with input time delay. And the input delay was assumed to

be uncertain time invariant within a known constant upper bound. Based on the

Moon’s inequality method, delay-dependent H∞ control conditions have been de-

veloped in terms of linear matrix inequalities (LMIs) (Molina-Cristobal et al.,

2006). However, the parameter uncertainties, which are caused by vehicle load

vibration and affect the performances of the control systems, have not been con-

sidered in (Du & Zhang, 2008). In addition, in practice, it should be noted that

the actuator delays are always time-varying and belong to a given interval, and

the lower bound of the delays may not be zero. To the best of author’s knowl-

edge, few results on robust H∞ control of uncertain half-vehicle active suspension

system with actuator time-varying delay have been developed, which motivated

this presence.

3.2 State-feedback Control for Active Suspen-

sions Systems with Actuator Time-varying

Delay

3.2.1 Problem Formulation

For uncertain half-car active suspension systems with time-varying actuator delay,

this section firstly sets up the model for the control design aim. By considering

the modeling uncertainty, in this chapter we replace the matrices A, B, B1, C1,

D1 and C2 with the matrices A(λ), B(λ), B1(λ), C1(λ), D1(λ) and C2(λ) in (2.11)

and (2.17) as λ is used to denote uncertain parameter.

It is assumed that λ varies in a polytope of vertices λ1, λ2, . . . , λr, i.e., λ ∈
Ψ := Co {λ1, λ2, . . . , λr}, where the symbol Co denotes the convex hull, and thus
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we have

Φ , (A(λ), B(λ), B1(λ), C1(λ), C2(λ), D1(λ)) ∈ Ψ,

where Ψ is a given convex bounded polyhedral domain described by r vertices:

Ψ ,
{
Φ

∣∣∣∣∣Φ =
r∑

i=1

λiΦi;
r∑

i=1

λi = 1, λi ≥ 0

}
(3.1)

with Φi , (Ai, Bi, B1i, C1i, C2i, D1i) denoting the vertices of the poly-

tope. The uncertain suspension systems with actuator delay can be expressed

as:

ẋ(t) = A(λ)x(t) +B(λ)u (t− d(t)) +B1(λ)w(t),

z1(t) = C1(λ)x(t) +D1(λ)u (t− d(t)) ,

z2(t) = C2(λ)x(t). (3.2)

d (t) is time-varying delay which does not require to know its derivative informa-

tion, and d (t) satisfies ηm ≤ d(t) ≤ ηM . It is assumed that the state variables

are on-line measurable. Then, we consider the state feedback controller as

u(t) = Kx (t) . (3.3)

Under the controller (3.3), the system in (3.2) can be transformed into the fol-

lowing system:

ẋ(t) = A(λ)x(t) +B(λ)Kx (t− d(t)) +B1(λ)w(t),

z1(t) = C1(λ)x(t) +D1(λ)Kx (t− d(t)) ,

z2(t) = C2(λ)x(t). (3.4)

It is assumed that w ∈ L2[0,∞), and without loss of generality, we have

∥w∥22 ≤ wmax < ∞. Then, the objective of this section is to determine a controller

gain K such that

(1) the closed-loop system is asymptotically stable;

(2) under zero initial condition, the closed-loop system guarantees that ∥z1∥2 <
γ ∥w∥2 for all nonzero w ∈ L2[0,∞), where γ > 0 is a prescribed scalar; the fol-

lowing control output constraints are guaranteed:

|{z2(t)}q| ≤ {z2,max}q, q = 1, 2, 3, 4, t > 0, (3.5)

where z2,max = [zf max, zrmax, 1, 1]
T .
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3.2.2 Robust H∞ Controller Design

In this subsection, for a given control gain matrix K, we will develop robust H∞

performance analysis criterion by constructing the novel Lyapunov functional and

using some advanced techniques. Then, based on the presented condition, the

existence condition of H∞ controller design will be given. First of all, we have

the following proposition.

Proposition 3.1 Consider the closed-loop system in (3.4). For given scalars

γ > 0, ηm > 0, ηM > 0 and a matrix K, the closed-loop system (3.4) is robustly

asymptotically stable with an H∞ disturbance attenuation level γ, if there exist

matrices P > 0, Q1 > 0, Q2 > 0, S1 > 0, S2 > 0, Xj, Yj, and Mj (j = 1, 2, . . . , r)

with appropriate dimensions such that the following LMIs hold:

Σςii < 0, ς = 1, 2, (3.6)

Σςij + Σςji < 0, i < j, i, j = 1, 2, . . . , r, (3.7)

where

Σ1ij =

 Ωij

√
ηm
m
Xj

√
ηM − ηmYj

∗ −S1 0
∗ ∗ −S2

 , (3.8)

Σ2ij =

 Ωij

√
ηm
m
Xj

√
ηM − ηmNj

∗ −S1 0
∗ ∗ −S2

 , (3.9)

Ωij = Θij +WT
z1i
Wz1i − γ2WT

w Ww,
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with m is the number of delay partitioning,

Θij = sym{WT
Ai
PWB + ZjWZ}+WT

Q1
Q̌1WQ1 +WT

Q2
Q̌2WQ2

+WT
Ai

[ηm
m

S1 + (ηM − ηm)S2

]
WAi

,

WAi
=

[
Ai 0n,(m+1)n BiK B1i

]
, WB =

[
In 0n,(m+2)n+1

]
,

Zj =
[
Xj Yj Mj

]
, Wz1i =

[
C1i 01,(m+1)n D1iK 0

]
,

Ww =
[
01,(m+3)n 1

]
, WZ =

 In −In 0n,(m+1)n+1

0n,mn In 0n −In 0n,1
0n,(m+1)n −In In 0n,1

 ,

Q̌1 =

[
Q1 0
∗ −Q1

]
, WQ1 =

[
Imn 0mn,3n+1

0mn,n Imn 0mn,2n+1

]
,

Q̌2 =

[
Q2 0
∗ −Q2

]
, WQ2 =

[
0n,mn In 0n,2n+1

0n,(m+1)n In 0n,n+1

]
.

Proof. To obtain a less conservative criterion, we first represent the time

delay d(t) as two parts: constant part ηm and time-varying part η (t), that is,

d(t) = ηm + η (t) , (3.10)

where

0 ≤ η (t) ≤ ηM − ηm.

Then, it can be observed from (3.4) that

ẋ(t) = A(λ)x(t) +B1(λ)w(t) +B(λ)Kx (t− ηm − η (t)) ,

z1(t) = C1(λ)x(t) +D1(λ)Kx (t− ηm − η (t)) ,

z2(t) = C2(λ)x(t). (3.11)

The following proof is divided into twofold: we first show that system (3.4) is

robustly asymptotically stable with w (t) = 0 and then H∞ performance index is

satisfied. Now, consider the Lyapunov-Krasovskii functional as follows:

V (t) = V1 (t) + V2 (t) + V3 (t) , (3.12)
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where

V1 (t) = xT (t)Px (t) ,

V2 (t) =

∫ t

t− ηm
m

ΥT (s)Q1Υ(s) ds+

∫ t−ηm

t−ηM

xT (s)Q2x (s) ds,

V3 (t) =

∫ 0

− ηm
m

∫ t

t+θ

ẋT (s)S1ẋ (s) dsdθ

+

∫ −ηm

−ηM

∫ t

t+θ

ẋT (s)S2ẋ (s) dsdθ

with

ΥT (s) =
[
xT (s) xT

(
s− 1

m
ηm
)

xT
(
s− 2

m
ηm
)

. . . xT
(
s− m−1

m
ηm
) ]

.

(3.13)

Then, the derivative of V (t) along the solution of system in (3.4) is given by

V̇1 (t) = 2xT (t)P ẋ (t) ,

V̇2 (t) = ΥT (t)Q1Υ(t)−ΥT
(
t− ηm

m

)
Q1Υ

(
t− ηm

m

)
+xT (t− ηm)Q2x (t− ηm)− xT (t− ηM)Q2x (t− ηM) ,

V̇3 (t) = ẋT (t)
[ηm
m

S1 + (ηM − ηm)S2

]
ẋ (t)

−
∫ t

t− ηm
m

ẋT (s)S1ẋ (s) ds−
∫ t−ηm

t−ηM

ẋT (s)S2ẋ (s) ds

= ẋT (t)
[ηm
m

S1 + (ηM − ηm)S2

]
ẋ (t)

−
∫ t

t− ηm
m

ẋT (s)S1ẋ (s) ds−
∫ t−ηm

t−ηm−η(t)

ẋT (s)S2ẋ (s) ds

−
∫ t−ηm−η(t)

t−ηM

ẋT (s)S2ẋ (s) ds. (3.14)

For any appropriately dimensioned matrices X̂ (λ) =
r∑

i=1

λiX̂i, Ŷ (λ) =
r∑

i=1

λiŶi,
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and M̂ (λ) =
r∑

i=1

λiM̂i, the following equations can be easily derived:

Π1 = 2ξT (t) X̂ (λ)

(
x (t)− x

(
t− ηm

m

)
−
∫ t

t− ηm
m

ẋ (s) ds

)
= 0,

Π2 = 2ξT (t) Ŷ (λ)

(
x (t− ηm)− x (t− ηm − η (t))−

∫ t−ηm

t−ηm−η(t)

ẋ (s) ds

)
= 0,

Π3 = 2ξT (t) M̂ (λ)

(
x (t− ηm − η (t))− x (t− ηM)−

∫ t−ηm−η(t)

t−ηM

ẋ (s) ds

)
= 0,

where

ξT (t) =
[
ΥT (t) xT (t− ηm) xT (t− ηM) xT (t− ηm − η (t))

]
. (3.15)

To develop the final result, adding Π1, Π2 and Π3 to the right hand side of (3.14)

and carrying out some computations, then we have

V̇ (t) ≤ ξT (t)
[
Θ̄ (λ) +

ηm
m

X̂ (λ)S−1
1 X̂T (λ) + η (t) Ŷ (λ)S−1

2 Ŷ T (λ)

+ (ηM − ηm − η (t)) M̂ (λ)S−1
2 M̂T (λ)

]
ξ (t)

−
∫ t

t− ηm
m

[
ξT (t) X̂ (λ) + ẋT (s)S1

]
S−1
1

[
X̂T (λ) ξ (t) + S1ẋ (s)

]
ds

−
∫ t−ηm

t−ηm−η(t)

[
ξT (t) Ŷ (λ) + ẋT (s)S2

]
S−1
2

[
Ŷ T (λ) ξ (t) + S2ẋ (s)

]
ds

−
∫ t−ηm−η(t)

t−ηM

[
ξT (t) M̂ (λ) + ẋT (s)S2

]
S−1
2

[
M̂T (λ) ξ (t) + S2ẋ (s)

]
ds

≤ ξT (t)
[
Θ̄ (λ) +

ηm
m

X̂ (λ)S−1
1 X̂T (λ) + η (t) Ŷ (λ)S−1

2 Ŷ T (λ)

+ (ηM − ηm − η (t)) M̂ (λ)S−1
2 M̂T (λ)

]
ξ (t)

= ξT (t)

[
η (t)

ηM − ηm

(
Θ̄ (λ) +

ηm
m

X̂ (λ)S−1
1 X̂T (λ)

+ (ηM − ηm) Ŷ (λ)S−1
2 Ŷ T (λ)

)
+
ηM − ηm − η (t)

ηM − ηm

(
Θ̄ (λ) +

ηm
m

X̂ (λ)S−1
1 X̂T (λ)

+ (ηM − ηm) M̂ (λ)S−1
2 M̂T (λ)

)]
ξ (t) ,
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where

Θ̄ (λ) = sym{W̄T
A PW̄B + Ẑ (λ) W̄Z}+ W̄T

Q1
Q̌1W̄Q1

+W̄T
Q2
Q̌2W̄Q2 + W̄T

A

[ηm
m

S1 + (ηM − ηm)S2

]
W̄A,

with

W̄A =
[
A (λ) 0n,(m+1)n B2 (λ)K

]
, W̄B =

[
In 0n,(m+2)n

]
,

Ẑ (λ) =
[
X̂ (λ) Ŷ (λ) M̂ (λ)

]
, W̄Z =

 In −In 0n,(m+1)n

0n,mn In 0n −In
0n,(m+1)n −In In

 ,

W̄Q1 =

[
Imn 0mn,3n

0mn,n Imn 0mn,2n

]
, W̄Q2 =

[
0n,mn In 0n,2n

0n,(m+1)n In 0n,n

]
.

On the other hand, (3.6)–(3.7) imply

Σ1 (λ) =
r∑

i=1

λ2
iΣ1ii +

r−1∑
i=1

r∑
j=i+1

λiλj (Σ1ij + Σ1ji) , (3.16)

Σ2 (λ) =
r∑

i=1

λ2
iΣ2ii +

r−1∑
i=1

r∑
j=i+1

λiλj (Σ2ij + Σ2ji) , (3.17)

where

Σ1 (λ) =

 Θ̄ (λ)
√

ηm
m
X̂ (λ)

√
ηM − ηmŶ (λ)

∗ −S1 0
∗ ∗ −S2

 < 0, (3.18)

Σ2 (λ) =

 Θ̄ (λ)
√

ηm
m
X̂ (λ)

√
ηM − ηmM̂ (λ)

∗ −S1 0
∗ ∗ −S2

 < 0. (3.19)

Applying Schur complement to (3.18) and (3.19), it yields

Θ̄ (λ) +
ηm
m

X̂ (λ)S−1
1 X̂T (λ) + (ηM − ηm) Ŷ (λ)S−1

2 Ŷ T (λ) < 0,

Θ̄ (λ) +
ηm
m

X̂ (λ)S−1
1 X̂T (λ) + (ηM − ηm) M̂ (λ)S−1

2 M̂T (λ) < 0,

which mean V̇ (t) < 0, then system in (3.4) is robustly asymptotically stable for

all uncertain parameter satisfying (3.1).
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In the following part, we shall establish the H∞ performance of the system

in (3.4) under zero initial conditions. First of all, we also define the Lyapunov

functional as in (3.12). Then, by following the same line as in the above proof,

the time derivative of V (t) is given by:

V̇ (t) ≤ ξ̄T (t)
[
Θ(λ) +

ηm
m

X (λ)S−1
1 X (λ)T + η (t)Y (λ)S−1

2 Y T (λ)

+ (ηM − ηm − η (t))M (λ) (S2)
−1MT (λ)

]
ξ̄ (t) .

−
∫ t

t− ηm
m

[
ξ̄T (t)X (λ) + ẋT (s)S1

]
S−1
1

[
XT (λ) ξ̄ (t) + S1ẋ (s)

]
ds

−
∫ t−ηm

t−ηm−η(t)

[
ξ̄T (t)Y (λ) + ẋT (s)S2

]
S−1
2

[
Y T (λ) ξ̄ (t) + S2ẋ (s)

]
ds

−
∫ t−ηm−η(t)

t−ηM

[
ξ̄T (t)M (λ) + ẋT (s)S2

]
S−1
2

[
MT (λ) ξ̄ (t) + S2ẋ (s)

]
ds

≤ ξ̄T (t)
[
Θ(λ) +

ηm
m

X (λ)S−1
1 XT (λ) + η (t)Y (λ)S−1

2 Y T (λ)

+ (ηM − ηm − η (t))M (λ)S−1
2 MT (λ)

]
ξ̄ (t)

= ξ̄T (t)

[
η (t)

ηM − ηm

(
Θ(λ) +

ηm
m

X (λ)S−1
1 XT (λ)

+ (ηM − ηm)Y (λ)S−1
2 Y T (λ)

)
+
ηM − ηm − η (t)

ηM − ηm

(
Θ(λ) +

ηm
m

X (λ)S−1
1 XT (λ)

+ (ηM − ηm)M (λ)S−1
2 MT (λ)

)]
ξ̄ (t) ,

where

Θ (λ) = sym{WT
A PWB + Z (λ)WZ}+WT

Q1
Q̌1WQ1

+WT
Q2
Q̌2WQ2 +WT

A

[ηm
m

S1 + (ηM − ηm)S2

]
WA

with

WA =
[
A (λ) 0n,(m+1)n B (λ)K B1 (λ)

]
,

Z (λ) =
[
X (λ) Y (λ) M (λ)

]
,

ξ̄T (t) =
[
ΥT (t) xT (t− ηm) xT (t− ηM) xT (t− ηm − η (t)) wT (t)

]
.
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Thus, we have

V̇ (t) + zT1 (t)z1(t)− γ2wT (t)w(t)

≤ ξ̄T (t)
[
Θ(λ) +WT

z1
Wz1 − γ2WT

w Ww +
ηm
m

X (λ)S−1
1 XT (λ)

+η (t)Y (λ)S−1
2 Y T (λ) + (ηM − ηm − η (t))M (λ)S−1

2 MT (λ)
]
ξ̄ (t)

= ξ̄T (t)

[
η (t)

ηM − ηm

(
Θ(λ) +WT

z1
Wz1 − γ2WT

w Ww +
ηm
m

X (λ)S−1
1 XT (λ)

+ (ηM − ηm)Y (λ)S−1
2 Y T (λ)

)
+

ηM − ηm − η (t)

ηM − ηm

(
Θ(λ) +WT

z1
Wz1

−γ2WT
w Ww +

ηm
m

X (λ)S−1
1 XT (λ) + (ηM − ηm)M (λ)S−1

2 MT (λ)
)]

ξ̄ (t) ,

where

Wz1 =
[
C1 (λ) 01,(m+1)n D1 (λ)K 0

]
.

By using Schur complement to (3.6)–(3.7) and the above method, it can be easily

seen that

V̇ (t) + zT1 (t)z1(t)− γ2wT(t)w(t) < 0, (3.20)

for all nonzero w ∈ L2[0,∞). Under zero initial conditions, we have V (0) = 0 and

V (∞) ≥ 0. Integrating both sides of (3.20) yields ∥z1∥2 < γ ∥w∥2 for all nonzero

w ∈ L2[0,∞), and the H∞ performance is established. The proof is completed.

�
Remark 3.1 Note that Proposition 1 presents a new delay-range-dependent

H∞ performance analysis condition for the active suspension system in (3.4) by

exploiting a novel Lyapunov-Krasovskii functional in (3.12) constructed based

on the delay partitioning idea (Mou et al., 2008), which may bring much less

conservative results. In addition, it is also worth noticing that, the term

Θ (λ) +WT
z1
Wz1 − γ2WT

w Ww +
ηm
m

X (λ)S−1
1 XT (λ)

+η (t)Y (λ)S−1
2 Y T (λ) + (ηM − ηm − η (t))M (λ)S−1

2 MT (λ)

is divided into two parts, which has been proved very effective to reduce the

conservativeness of the delay-dependent or delay-range-dependent results.

In the following discussion, we will show that the hard constraints in (3.5)

are guaranteed. Inequality (3.20) guarantees V̇ (t)−γ2wT (t)w(t) < 0. Integrating
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both sides of the above inequality from zero to any t > 0, we obtain

V (t)− V (0) < γ2

∫ t

0

wT (s)w(s)ds < γ2 ∥w∥22 .

From the definition in (3.12), we know that xT (t)Px(t) < ρ with ρ = γ2wmax +

V (0). Similar to (Gao et al., 2010a), the following inequality holds

max
t>0

|{z2(t)}q|2 = max
t>0

∥∥xT (t){C2i}Tq {C2i}qx(t)
∥∥
2

= max
t>0

∥∥∥xT (t)P
1
2P− 1

2{C2i}Tq {C2i}qP− 1
2P

1
2x(t)

∥∥∥
2

< ρ · θmax(P
− 1

2 {C2i}Tq {C2i}q P
− 1

2 ),

i = 1, 2, · · · , r, q = 1, 2, 3, 4,

where θmax(·) represents the maximal eigenvalue. From the above inequality, we

know that the constraint in (3.5) is guaranteed, if

ρ · P− 1
2 {C2i}Tq {C2i}q P

− 1
2 < {z2,max}2qI, i = 1, 2, · · · , r, q = 1, 2, 3, 4, (3.21)

which is equivalent to the following

Σ3qi =

[
−{z2,max}2qP

√
ρ {C2i}Tq

∗ −I

]
< 0, i = 1, 2, · · · , r, q = 1, 2, 3, 4.

(3.22)

Subsequently, robust H∞ performance analysis criterion subjecting to output

constraints in (3.5) for the closed-loop system in (3.4) is presented in the following

theorem.

Theorem 3.1 Consider the closed-loop system in (3.4). For given scalars

γ > 0, ηm > 0, ηM > 0 and a matrix K, if there exist matrices P > 0, Q1 > 0,

Q2 > 0, S1 > 0, S2 > 0, Xj, Yj and Mj (j = 1, 2, . . . , r) with appropriate

dimensions such that the following LMIs hold:

Σςii < 0, ς = 1, 2, i < j, (3.23)

Σςij + Σςji < 0, i, j = 1, 2, . . . , r, (3.24)

Σ3qi < 0, q = 1, 2, 3, 4, (3.25)

where Σ1ij, Σ2ij and Σ3qi are defined in (3.8)–(3.9) and (3.22), respectively. Then

45



3.2 State-feedback Control for Active Suspensions Systems with
Actuator Time-varying Delay

(1) the closed-loop system is robustly asymptotically stable;

(2) under zero initial condition, the performance ∥Tz1w∥∞ < γ is minimized

subject to output constraint (3.5) with the disturbance energy under the bound

wmax = (ρ− V (0))/γ2, where Tz1w denotes the closed-loop transfer function from

the road disturbance w(t) to the control output z1(t).

Based on robust H∞ performance analysis condition proposed in Theorem

3.1, robust H∞ controller existence condition for the active suspension system in

(3.4) is developed in the following theorem.

Theorem 3.2 Consider the active suspension system in (3.4). For given

scalars γ > 0, ηm > 0, ηM > 0, if there exist matrices P̄ > 0, Q̄1 > 0, Q̄2 > 0,

S̄1 > 0, S̄2 > 0, and K̄, X̄, Ȳ and M̄ with appropriate dimensions satisfying the

following LMIs:

Σ̄ςii < 0, ς = 1, 2, i < j, (3.26)

Σ̄ςij + Σ̄ςji < 0, i, j = 1, 2, . . . , r, (3.27)

Σ̄3qi < 0, q = 1, 2, 3, 4, (3.28)

where

Σ̄1ij =


Ω̄ij

√
ηm
m
X̄j

√
ηM − ηmȲj W̄T

Ai
AI W̄T

z1i

∗ S̄1 − 2P̄ 0 0 0
∗ ∗ S̄2 − 2P̄ 0 0
∗ ∗ ∗ Υ1 0
∗ ∗ ∗ ∗ −1

 , (3.29)

Σ̄2ij =


Ω̄ij

√
ηm
m
X̄j

√
ηM − ηmM̄j W̄T

Ai
AI W̄T

z1i

∗ S̄1 − 2P̄ 0 0 0
∗ ∗ S̄2 − 2P̄ 0 0
∗ ∗ ∗ Υ1 0
∗ ∗ ∗ ∗ −1

 , (3.30)

Σ̄3i =

[
−{z2,max}2qP̄

√
ρP̄ {C2i}Tq

∗ −I

]
, Ω̄ij = Θ̄ij − γ2WT

w Ww (3.31)
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with

Θ̄ij = sym{W̄T
Ai
WB + Z̄jWZ}+WT

Q1
Q̂1WQ1 +WT

Q2
Q̂2WQ2

W̄Ai
=

[
AiP̄ 0n,(m+1)n BiK̄ B1i

]
, Z̄j =

[
X̄j Ȳj M̄j

]
,

W̄z1i
=

[
C1iP̄ 01,(m+1)n D1iK̄ 0

]
, Ww =

[
01,(m+3)n 1

]
,

AI =
[ √

ηm
m

√
ηM − ηm

]
, Υ1 = diag

{
−S̄1,−S̄2

}
,

Q̂1 =

[
Q̄1 0
∗ −Q̄1

]
, Q̂2 =

[
Q̄2 0
∗ −Q̄2

]
,

WZ , WQ1 and WQ2 are defined in Proposition 3.1. Then a stabilizing controller

in the form of (3.3) exists, such that

(1) the closed-loop system is robustly asymptotically stable;

(2) under zero initial condition, the performance ∥Tz1w∥∞ < γ is minimized

subject to output constraint (3.5) with the disturbance energy under the bound

wmax = (ρ− V (0))/γ2.

Moreover, if inequalities (3.26)–(3.28) have a feasible solution, then the control

gain K in (3.3) is given by K = K̄P̄−1.

Proof. For S̄−1
p > 0 (p = 1, 2), it is easy to see that(

S̄p − P̄
)
S̄−1
p

(
S̄p − P̄

)
≥ 0,

which is equivalent to

−P̄ S̄−1
p P̄ ≤ S̄p − 2P̄ .

Therefore, it follows from (3.26) and (3.27)

Σ̂ςii < 0, ς = 1, 2, i < j, (3.32)

Σ̂ςij + Σ̂ςji < 0, i, j = 1, 2, . . . , r, (3.33)
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where

Σ̂1ij =


Ω̄ij

√
ηm
m
X̄j

√
ηM − ηmȲj W̄Ai

AI W̄T
z1i

∗ −P̄ S̄−1
1 P̄ 0 0 0

∗ ∗ −P̄ S̄−1
2 P̄ 0 0

∗ ∗ ∗ Υ1 0
∗ ∗ ∗ ∗ −1

 , (3.34)

Σ̂2ij =


Ω̄ij

√
ηm
m
X̄j

√
ηM − ηmM̄j W̄Ai

AI W̄T
z1i

∗ −P̄ S̄−1
1 P̄ 0 0 0

∗ ∗ −P̄ S̄−1
2 P̄ 0 0

∗ ∗ ∗ Υ1 0
∗ ∗ ∗ ∗ −1

 , (3.35)

Now, introduce the following matrices

J = diag {J1, J2, J3, 1} ,

where

J1 = diag
{
P̄−1, P̄−1, . . . , P̄−1, 1

}
∈ R((m+3)n+1)×((m+3)n+1),

J2 = diag
{
P̄−1, P̄−1

}
∈ R2n×2n,

J3 = diag
{
S̄−1
1 , S̄−1

2

}
∈ R2n×2n,

After setting

P = P̄−1, Sp = S̄−1
p > 0, (p = 1, 2)

Q1 = P̄−1Q̄1P̄
−1, Q2 = P̄−1Q̄2P̄

−1,[
X (λ) Y (λ) M (λ)

]
= J1

[
X̄ (λ) Ȳ (λ) M̄ (λ)

]
J4,

where

J4 = diag
{
P̄−1, P̄−1, P̄−1

}
∈ R3n×3n,

Pre- and post multiplying (3.32) and (3.33) by JT and J , one can see that condi-

tions in (3.23) and (3.24) hold by using Schur complement. On the other hand,

(3.28) is equivalent to (3.25) by performing a simple congruence transformation

with diag
{
P̄−1, I

}
. Therefore, all the conditions in Theorem 1 are satisfied. The

proof is completed. �
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Remark 3.2 This chapter is the first attempt to investigate the problem of

robust H∞ control of the uncertain suspension system for a half-car model with

input time-varying delay. It is reasonably assumed that the vehicle front sprung

mass and rear unsprung mass are varying due to vehicle load variation and the fact

that the parameter uncertainties can be modeled by polytopic uncertainties type.

Latter, the effectiveness of the proposed method will be validated by providing a

design example.

Remark 3.3 In the further work, we will consider the fuzzy controller for

half (full)-vehicle suspension systems with nonlinear uncertainty and focus on the

efficient computing for real-time control. In detail, by using the fuzzy approxi-

mation method, we will build half (full)-vehicle suspension systems based on the

T-S fuzzy model. By constructing quadratic Lyapunov functions and piecewise

quadratic Lyapunov functions, the performance analysis and stability analysis

condition will be derived. Based on these conditions, the controller design crite-

ria will be presented in terms of LMIs, which can be checked efficiently by using

the standard software. Furthermore, we will develop the novel fuzzy backstep-

ping control to handle the control design problems for the nonlinear systems and

design controller for four wheel steering integrated control system of vehicle by

using the LMI method and backstepping control approach.

Note that LMIs condition in Theorem 3.2 is not only over the matrix variables,

but also over the scalar γ. This implies that the scalar γ can be included as an

optimization variable to obtain a lower bound of the guaranteed H∞ disturbance

attention level. Based on the condition, robust H∞ controller can be obtained

with the minimal γ by solving the following convex optimization problem:

min γ s.t. (3.26)-(3.28)

P̄ > 0, Q̄1 > 0, Q̄2 > 0, S̄1 > 0, S̄2 > 0, K̄, X̄, Ȳ , M̄ . (3.36)

3.2.3 Case Study

In this subsection, a design example is given to demonstrate the effectiveness

of the proposed robust H∞ controller design method. By using the parameters

listed in Table 2.2 and (2.14)–(2.15), we can have Fr = 3580.5 N and Ff = 4014.5

N. Now, we consider the constrained robust H∞ controller design problem for the
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suspension system with input time-varying delay. It is assumed that the time-

varying input delay is d(t) = 1+4| sin(t)| ms and satisfies ηm = 1 ms and ηM = 5

ms, the maximum allowable suspension strokes zmax f = zmax r = 0.08 m. Here,

we choose ρ = 1 as discussed in (Chen & Guo, 2005). For m = 1, by solving

the convex optimization problem formulated in (3.36), the minimum guaranteed

closed-loop H∞ performance index obtained is γminm1 = 7.1277 and admissible

control gain matrix is given as

Km1 = 105×
[
−0.0212 0.1362 0.7830 1.3296
0.0755 −0.0604 0.2015 1.2005

−0.0563 0.0047 0.0224 0.0173
0.0202 −0.0529 0.0143 0.0324

]
. (3.37)

In order to show the more detailed information of the proposed method, for

m = 2, 3, 4, by solving the convex optimization problem formulated in (3.36), the

minimum guaranteed closed-loop H∞ performance indexes obtained are γminm2 =

7.0117, γminm3 = 6.9876, γminm4 = 6.9832 and admissible control gain matrices

are given as

Km2 = 105×
[
−0.0293 0.1360 0.7271 1.3739
0.0801 −0.0654 0.1636 1.1478

−0.0572 0.0025 0.0205 0.0170
0.0212 −0.0522 0.0143 0.0306

]
, (3.38)

Km3 = 105×
[
−0.0229 0.1094 0.6961 1.3333
0.0751 −0.0451 0.1221 1.0852

−0.0558 0.0000 0.0195 0.0160
0.0203 −0.049 0.0137 0.0294

]
, (3.39)

Km4 = 105×
[
−0.0213 0.1000 0.6620 1.2861
0.0708 −0.0378 0.0904 1.0212

−0.0550 −0.0007 0.0186 0.0152
0.0198 −0.0482 0.0131 0.0283

]
. (3.40)

From the above computational closed-loop performance γminm1, γminm2, γminm3

and γminm4, it can be observed that the closed-loop performance γmin is reduced

when the partition number m increases. After the delay is partitioned, though
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the improvement slows down as the partition number m increases. However, it

should be noted that although conservatism is reduced as the fractioning becomes

thinner, the computational complexity will be weighting. In order to obtain

tradeoff between the closed-loop performance and the computational complexity,

we choose m = 4 here.

To check the effectiveness of the proposed controllers in (3.37)–(3.40), we

would like to have the desired controller to satisfy: 1) the first control output

z1(t) including the heave acceleration z̈c (t) and the pitch acceleration φ̈ (t) is as

small as possible; 2) the suspension deflection is below the maximum allowable

suspension strokes zf max = 0.08 m and zrmax = 0.08 m; 3) the controlled output

defined in (3.5) satisfy z2(t)3 < 1 and z2(t)4 < 1. In order to evaluate the

suspension characteristics with respect to ride comfort, vehicle handling, and

working space of the suspension, the variability of the road profiles is taken into

account. In the context of active suspension performance, road disturbances

can be generally assumed as shocks. Shocks are discrete events of relatively

short duration and high intensity, caused by, for example, a pronounced bump

or pothole on an otherwise smooth road surface. As the reference (Du et al.,

2008), this case of road profile is considered first to reveal the transient response

characteristic, which is given by

zrf (t) =

{
A
2
(1− cos(2πV

L
t)), if 0 ≤ t ≤ L

V
,

0, if t > L
V
,

(3.41)

where A and L are the height and the length of the bump. Assume A = 0.1 m

, L = 2 m and the vehicle forward velocity as V = 10 km/h. In this section, we

assume that the road condition zrr(t) for the rear wheel is the same as the front

wheel but with a time delay of (l1 + l2)/V . Fig. 3.1 illustrates the corresponding

ground velocities for the front and rear wheels.

Fig. 3.2–3.4 plot bump responses of the heave accelerations and the pitch

acceleration, the front and rear suspension deflections, the front and rear tire de-

flection constrains of the open- (u(t) = 0, passive mode) and closed-loop systems

for the different control gain matrices Km1, Km2, Km3, and Km4 respectively.

It can be seen from Fig. 3.2 that the values of the heave accelerations and the

pitch acceleration in closed-loop systems are much less than the the open-loop
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Figure 3.1: Bump inputs from ground

systems and an improved ride comfort has been achieved by using the different

controllers. Moreover, from Fig. 3.3, we can see that the suspension strokes con-

straints are guaranteed. Fig. 3.4 illustrates that the relation dynamic front tire

load ktfx3(t)/Ff and rear tire load ktrx4(t)/Fr are all below 1. In all, Fig. 3.2–

3.4 show that the closed-loop system is asymptotically stable with the guaranteed

output constraints.

In the following discussion, we consider the problem of robust H∞ controller

design for a half-car model uncertain suspension system. In this chapter, we

assume that the front unsprung muf and the rear unsprung mur contain uncer-

tainties, which may be caused by vehicle load variation and are expressed as

muf = (40 + λmuf ) kg, mur = (45 + λmur) kg, where λmuf and λmur satisfy

|λmuf | ≤ λ̄muf and |λmur| ≤ λ̄mur. It is assumed that λ̄muf = 4 and λ̄mur = 4.5.

Then, by using these muf and mur, and the half-car model parameters listed in

Table I, we can represent suspension system by a four-vertex polytopic system.

It is apparently seen that the dimension of LMIs in (3.29)–(3.30) increases with

partition number m increases, which means that the computational complexity

increases accordingly. Here, we only consider the case for robust controller exis-

tence condition in Theorem 3.2 when m = 1. For m = 1, by solving the convex

optimization problem formulated in (3.36), we know that the minimum guaran-

teed closed-loop H∞ performance index is γmin = 7.9560 and admissible control
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Figure 3.2: Bump responses of the heave accelerations and the pitch acceleration
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Figure 3.3: Bump responses of the front and rear suspension deflections
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Figure 3.4: Bump responses of tire deflection constraints

gain matrix is given as

K1 = 105×
[
0.0678 0.0146 0.8839 0.9241
0.0102 0.0573 0.0638 1.1549

−0.0397 −0.0025 0.0326 0.0100
0.0079 −0.0395 0.0061 0.0393

]
. (3.42)

Then, we assume that λ̄muf = 8 and λ̄mur = 9. By solving the convex opti-

mization problem formulated in (3.36), it is found that the minimum guaranteed

closed-loop H∞ performance index is γmin = 8.8371 and admissible control gain

matrix is expressed as

K2 = 104×
[

0.8139 0.1133 6.7534 6.8900
−0.0220 0.7336 0.4975 9.1088

−0.3248 −0.0140 0.3468 0.0720
0.0430 −0.3388 0.0353 0.4051

]
. (3.43)

Next, we will focus on the performance analysis of the closed-loop suspension

system with different parameter uncertainties under the proposed corresponding

controllers K1 and K2. Fig. 3.5 and 3.8 show bump responses of the heave accel-

erations and the pitch acceleration of the closed-loop systems for λ̄muf = 4,−4,
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λ̄mur = 4.5,−4.5, λ̄muf = 8,−8, λ̄mur = 9,−9. Fig. 3.6 and 3.9 demonstrate the

front and rear suspension deflections of the closed-loop systems in time domain,

which means that the requirement constrains are satisfied. Fig. 3.7 and 3.10

depict the bump responses of the relation dynamic front and rear tyre deflection

constrains. In all, Fig. 3.5–3.10 show that the closed-loop system are robustly

asymptotically stable and have a much better performance than the open-loop

system.
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Figure 3.5: Bump responses of the heave accelerations and the pitch acceleration

Remark 3.4: It is assumed that the two actuator forces have the same

time delay as (Du & Zhang, 2008), which investigated the H∞ controller design

problem for half-vehicle active suspension systems with actuator delay. However,

it should be noticed that the half-vehicle suspension model does not involve with

model uncertainties and the input time-varying delay. Our half-car suspension

system model is more general than the one in (Du & Zhang, 2008) and makes

more sense for the control design of the active suspension systems.
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Figure 3.6: Bump responses of the front and rear suspension deflections
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Figure 3.7: Bump responses of tire deflection constraints
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Figure 3.8: Bump responses of the heave accelerations and the pitch acceleration
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Figure 3.9: Bump responses of the front and rear suspension deflections
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Figure 3.10: Bump responses of the tire deflection constraints

3.3 Output-feedback Control for Active Suspen-

sions Systems with Actuator Time-varying

Delay

3.3.1 Problem Formulation

The authors in (Du & Zhang, 2007; Du et al., 2008) investigated the constrained

H∞ control scheme for active suspensions with actuator delay by using state

feedback method under the assumption that the state vectors are all on-line

measurable. However, when the state variables of the suspension systems are

not measurable, the above mentioned methods are not feasible for these kinds

of the systems with actuator delay. On the other hand, there exist some results

on controller design for the suspension systems by using output-feedback control

approach, e.g., Akbari & Lohmann (2008); Hayakawa et al. (2002); Wang &

Wilson (2001), however, which are not feasible for the control design of suspension

systems with actuator delay. Lack of effective research results motivates this

study in investigating dynamic output-feedback H∞ controller design for active

suspension systems with actuator delay.
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Consider active vehicle suspension system in (2.5) with actuator time-varying

delay,

ẋ(t) = Ax(t) +B1w(t) +Bu (t− d (t)) ,

z1(t) = C1x(t) +D1u (t− d (t)) ,

z2(t) = C2x(t),

y(t) = Cx (t) , (3.44)

where A, B1, B, C1, D1 are defined in Chapter 2 (2.2) and (2.5), and

C =
[
1 1 1 0

]
,

d (t) is a known time-varying delay and satisfies 0 < d (t) ≤ d̄, ḋ (t) ≤ µ.

The active control force provided for the active suspension system should be

confined to a certain range prescribed by limited power of the actuator:

|u(t)| ≤ umax, (3.45)

where umax is defined as the maximum possible actuator control force.

We design the dynamic output-feedback controller for the system in (3.44).

First of all, the full order dynamic controller of the following form is constructed

as: {
˙̂x(t) = Acx̂(t) + Acdx̂(t− d (t)) +Bcy (t) ,
u(t) = Ccx̂(t),

(3.46)

where x̂ (t) ∈ Rn is the state vector of the dynamic controller; Ac, Acd, Bc, and Cc

are appropriately dimensioned controller matrices to be determined. It is worth

mentioning that in our approach, the introduction of the term Acdx̂(t − d (t))

is essential to make the controller synthesis feasible. Applying this controller in

(3.46) to the system in (3.44) yields the following closed-loop system

˙̄x(t) = Āx̄(t) + B̄x̄(t− d (t)) + B̄1w(t),

z1(t) = C̄1x̄(t) + D̄1x̄(t− d (t)),

z2(t) = C̄2x̄(t), (3.47)
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where

x̄(t) =

[
x(t)
x̂(t)

]
, Ā =

[
A 0

BcC Ac

]
, B̄ =

[
0 BCc

0 Acd

]
,

B̄1 =

[
B1

0

]
, C̄1 =

[
C1 0

]
, D̄1 =

[
0 D1Cc

]
, C̄2 =

[
C2 0

]
.

It is assumed that w ∈ L2[0,∞), without loss of generality, we have ∥w∥22 ≤
wmax < ∞. Then, the objective of this chapter is to determine the controller in

(3.46) such that: (i) the closed-loop system is asymptotically stable; (ii) under

zero initial condition, the closed-loop system guarantees that ∥z1∥2 < γ ∥w∥2 for

all nonzero w ∈ L2[0,∞), where γ > 0 is a prescribed scalar; (iii) the following

control output constraints are guaranteed:

|{z2(t)}q| ≤ {z2,max}q, q = 1, 2, t > 0, (3.48)

where z2,max =
[
zmax 1

]T
; (iv) the following maximum possible actuator con-

trol force constraint is guaranteed:

|u(t)| ≤ umax, (3.49)

where u(t) = C̄cx̄(t) with C̄c =
[
0 Cc

]
.

We formulate the multiple requirements in a unified framework, based on

which the controller design can be cast into a multi-objective minimization prob-

lem, which will be solved by using output-feedback approach in the next section.

3.3.2 Output-feedback H∞ Controller Design

In this subsection, we will solve the problem of dynamic output-feedback H∞

controller design for the active suspension systems with control delay in (3.44).

First, we develop H∞ performance analysis condition for the system in (3.47).

More specifically, for known controller gain matrices Ac, Acd, Bc and Cc in (3.46),

Theorem 1 presents the conditions under which the closed-loop systems in (3.47)

is asymptotically stable with an H∞ disturbance attention level and satisfies the

output constrains in (3.48) and maximum actuator control force constraint in

(3.49).
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Theorem 3.3 Consider the closed-loop system in (3.47). For given scalars

d̄ > 0, µ q = 1, 2 and controller matrices Ac, Acd, Bc and Cc, if there exist

matrices P > 0, Q > 0, R > 0, Np, and Mp (p = 1, 2, 3, 4) with appropriate

dimensions such that the following LMIs hold:
Θ11 Θ12 Θ13 Θ14

∗ −R 0 0
∗ ∗ −I 0
∗ ∗ ∗ −R

 < 0, (3.50)


Θ11 Θ22 Θ13 Θ14

∗ −R 0 0
∗ ∗ −I 0
∗ ∗ ∗ −R

 < 0, (3.51)

[
−{z2,max}2qP

√
ρ
{
C̄2

}T
q

∗ −I

]
< 0, (3.52)[

−u2
maxP

√
ρC̄T

c

∗ −I

]
< 0, (3.53)

where

Θ11 =


Ψ11 Ψ12 Ψ13 Ψ14

∗ Ψ22 Ψ23 Ψ24

∗ ∗ Ψ33 −NT
4

∗ ∗ ∗ −γ2I

 ,Θ12 =


√
d̄M1√
d̄M2√
d̄M3√
d̄M4

 ,

Θ22 =


√
d̄N1√
d̄N2√
d̄N3√
d̄N4

 ,Θ13 =


C̄T

1

D̄T
1

0
0

 ,Θ14 =


√
d̄ĀTR√
d̄B̄TR
0√

d̄B̄T
1 R

 ,

Ψ11 = PĀ+ ĀTP +Q+ S +M1 +MT
1 ,

Ψ12 = PB̄ −M1 +MT
2 +N1,

Ψ13 = MT
3 −N1,Ψ14 = PB̄1 +MT

4 ,

Ψ22 = − (1− µ)S +N2 +NT
2 −M2 −MT

2 ,

Ψ23 = NT
3 −N2 −MT

3 ,Ψ24 = NT
4 −MT

4 ,

Ψ33 = −Q−N3 −NT
3 .

Then we know: (i) the closed-loop system is asymptotically stable for the delay

d (t) satisfying 0 < d (t) ≤ d̄, ḋ (t) ≤ µ; (ii) under zero initial condition, the

61



3.3 Output-feedback Control for Active Suspensions Systems with
Actuator Time-varying Delay

performance ∥Tz1w∥∞ < γ is minimized subject to the output constraints in

(3.48) and maximum possible actuator control force constraint in (3.49) with the

disturbance energy under the bound wmax = (ρ − V (0))/γ2, where Tz1w denotes

the closed-loop transfer function from the road disturbance w(t) to the control

output z1(t).

Proof. Considering the Lyapunov-Krasovskii functional as follows:

V (t) = x̄T (t)Px̄ (t) +

∫ t

t−d̄

x̄T (s)Qx̄ (s) ds

+

∫ t

t−d(t)

x̄T (s)Sx̄ (s) ds+

∫ 0

−d̄

∫ t

t+α

˙̄xT (s)R ˙̄x (s) dsdα. (3.54)

We can obtain the derivative of V (t) from the solution of system (3.47) as

V̇ (t) ≤ 2x̄T (t)P ˙̄x (t) + x̄T (t) (Q+ S) x̄ (t)− x̄T
(
t− d̄

)
Qx̄
(
t− d̄

)
+d̄ ˙̄xT (t)R ˙̄x (t)− (1− µ) x̄T (t− d (t))Sx̄ (t− d (t))

−
∫ t

t−d(t)

˙̄xT (s)R ˙̄x (s) ds−
∫ t−d(t)

t−d̄

˙̄xT (s)R ˙̄x (s) ds. (3.55)

For any appropriately dimensioned matrices M̂ and N̂ , the following equalities

hold directly according to Newton-Leibniz formula:

δ1 (t) = 2ξT (t) M̂

(
x̄ (t)− x̄ (t− d (t))−

∫ t

t−d(t)

˙̄x (s) ds

)
= 0,

δ2 (t) = 2ξT (t) N̂

(
x̄ (t− d (t))− x̄

(
t− d̄

)
−
∫ t−d(t)

t−d̄

˙̄x (s) ds

)
= 0,

where

M̂ =
[
MT

1 MT
2 MT

3

]T
, N̂ =

[
NT

1 NT
2 NT

3

]T
,

ξT (t) =
[
x̄T (t) x̄T (t− d (t)) x̄T

(
t− d̄

) ]
.

Adding δ1 (t) and δ2 (t) into the right hand side of (3.54) and after some simply
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calculation, the following inequalities are true:

V̇ (t) ≤ ξT (t)
[
Ψ+ d (t) M̂R−1M̂T +

(
d̄− d (t)

)
N̂R−1N̂T

]
ξ (t)

−
∫ t

t−d(t)

[
ξT (t) M̂ + ˙̄xT (s)R

]
R−1

[
M̂T ξ (t) +R ˙̄x (s)

]
ds

−
∫ t−d(t)

t−d̄

[
ξT (t) N̂ + ˙̄xT (s)R

]
R−1

[
N̂T ξ (t) +R ˙̄x (s)

]
ds

≤ ξT (t)
[
Ψ+ d (t) M̂R−1M̂T +

(
d̄− d (t)

)
N̂R−1N̂T

]
ξ (t)

= ξT (t)

[
d (t)

d̄

(
Ψ+ d̄M̂R−1M̂T

)
+
d̄− d (t)

d̄

(
Ψ+ d̄N̂R−1N̂T

)]
ξ (t) ,

where

Ψ =

 Ψ11 Ψ12 Ψ13

∗ Ψ22 Ψ23

∗ ∗ Ψ33

+

 ĀT

B̄T

0

 d̄R

 ĀT

B̄T

0

T

.

On the other hand, according to (3.50)–(3.51) and Schur complement, it is seen

that

Ψ + d̄M̂R−1M̂T < 0, Ψ+ d̄N̂R−1N̂T < 0,

which implies V̇ (t) < 0, then system in (3.47) is asymptotically stable. Next, we

establish theH∞ performance of the system in (3.47) under zero initial conditions.

Firstly, we define the Lyapunov functional as in (3.54). Then, by following the

same line as in the above proof, we obtain

V̇ (t) + zT1 (t)z1(t)− γ2wT (t)w(t)

≤ ξ̄T (t)
[
Ψ+ d (t)MR−1MT +

(
d̄− d (t)

)
NR−1NT

]
ξ̄ (t)

= ξ̄T (t)

[
d (t)

d̄

(
Ψ+ d̄MR−1MT

)
+
d̄− d (t)

d̄

(
Ψ+ d̄NR−1NT

)]
ξ̄ (t) ,
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where

Ψ =


Ψ11 Ψ12 Ψ13 Ψ14

∗ Ψ22 Ψ23 Ψ24

∗ ∗ Ψ33 −NT
4

∗ ∗ ∗ −γ2I



+


C̄T

1

D̄T
1

0
0




C̄T
1

D̄T
1

0
0


T

+


ĀT

B̄T

0
B̄T

1

 d̄R


ĀT

B̄T

0
B̄T

1


T

,

M =
[
MT

1 MT
2 MT

3 MT
4

]T
, N =

[
NT

1 NT
2 NT

3 NT
4

]T
,

ξ̄T (t) =
[
x̄T (t) x̄T (t− d (t)) x̄T

(
t− d̄

)
wT (t)

]
.

By using Schur complement to (3.50)–(3.51) and the above method, we develop

V̇ (t) + zT1 (t)z1(t)− γ2wT (t)w(t) < 0, (3.56)

for all nonzero w ∈ L2[0,∞). Under zero initial conditions, we have V (0) = 0

and V (∞) ≥ 0. Integrating both sides of (3.56) yields ∥z1∥2 < γ ∥w∥2 for all

nonzero w ∈ L2[0,∞), and then the H∞ performance is established. Then, we

will show that the hard constraints in (3.48)–(3.49) are guaranteed. Inequality

(3.56) guarantees V̇ (t) − γ2wT (t)w(t) < 0. Integrating both sides of the above

inequality from zero to any t > 0, we obtain

V (t)− V (0) < γ2

∫ t

0

wT (τ)w(τ)dτ < γ2 ∥w∥22 .

From the definition of the Lyapunov functional in (3.54), we know that x̄T (t)Px̄(t) <

ρ with ρ = γ2wmax+V (0). Similar to (Gao et al., 2010a), the following inequalities

hold

max
t>0

|{z2(t)}q|2

= max
t>0

∥∥x̄T (t){C̄2}Tq {C̄2}qx̄(t)
∥∥
2

= max
t>0

∥∥∥x̄T (t)P
1
2P− 1

2{C̄2}Tq {C̄2}qP− 1
2P

1
2 x̄(t)

∥∥∥
2

< ρ · θmax

(
P− 1

2

{
C̄2

}T
q

{
C̄2

}
q
P− 1

2

)
, q = 1, 2,

64



3.3 Output-feedback Control for Active Suspensions Systems with
Actuator Time-varying Delay

and

max
t>0

|u (t)|2

= max
t>0

∥∥x̄T (t)C̄T
c C̄cx̄(t)

∥∥
2

= max
t>0

∥∥∥x̄T (t)P
1
2P− 1

2 C̄T
c C̄cP

− 1
2P

1
2 x̄(t)

∥∥∥
2

< ρ · θmax

(
PC̄T

c C̄cP
− 1

2

)
,

where θmax(·) represents maximal eigenvalue. The constraints in (3.48) can be

guaranteed, if

ρ · P− 1
2

{
C̄2

}T
q

{
C̄2

}
q
P− 1

2 < {z2,max}2qI, q = 1, 2,

ρ · P− 1
2 C̄T

c C̄cP
− 1

2 < u2
maxI,

which can be guaranteed by the feasibility of (3.52) and (3.53). The proof is

completed. �
Remark 3.5 Theorem 3.3 presents H∞ performance analysis for the suspen-

sion system with control delay in system (3.47). When there is no input delay

in the quarter-car model, the vehicle suspension system can be described by the

following state-space equations:

ẋ(t) = Ax(t) +Bu (t) +B1w(t),

z1(t) = C1x(t) +D1u (t) ,

z2(t) = C2x(t),

y(t) = Cx (t) , (3.57)

where A, B1, B, C1, C1, D1 and C2 are defined in Chapter 2 (2.2) and (2.5),

respectively. We consider the following dynamics controller for the system in

(3.57): {
˙̂x(t) = Acx̂(t) +Bcy (t) ,
u(t) = Ccx̂(t),

(3.58)

where x̂ (t) ∈ Rn is the state vector of the dynamics controller, Ac, Bc, and Cc

are appropriately dimensioned controller matrices to be determined. Applying
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the dynamics controller (3.58) to the system in (3.57) leads to the closed-loop

system

˙̄x(t) = Ãx̄(t) + B̃1w(t),

z1(t) = C̃1x̄(t),

z2(t) = C̃2x̄(t), (3.59)

where

Ã =

[
A BCc

BcC Ac

]
, B̃1 =

[
B1

0

]
,

C̃1 =
[
C1 D1Cc

]
, C̃2 =

[
C2 0

]
.

Then, we have the following corollary, which can be proved by following arguments

similar to the proof of Theorem 3.3.

Corollary 3.1 Consider the closed-loop system in (3.47). Given scalar q =

1, 2, and controller matrices Ac, Bc and Cc, the closed-loop system (3.47) is

asymptotically stable with an H∞ disturbance attenuation level γ, if there exists

a matrix P > 0 with appropriate dimension such that the following LMIs hold: PÃ+ ÃTP PB̃1 C̃T
1

∗ −γ2I 0
∗ ∗ −I

 < 0, (3.60)

 −{z2,max}2qP
√
ρ
{
C̃2

}T

q

∗ −I

 < 0, (3.61)

[
−u2

maxP
√
ρC̄T

c

∗ −I

]
< 0, (3.62)

Then (i) the closed-loop system is asymptotically stable; (ii) under zero initial

condition, the performance ∥Tz1w∥∞ < γ is minimized subject to output con-

straints in (3.48) and maximum possible actuator control force constraint in (3.49)

with the disturbance energy under the bound wmax = (ρ− V (0))/γ2.

Proof: The proof of Corollary 3.1 can be easily completed by choosing the

Lyapunov functional V (t) = x̄T (t)Px̄ (t) and following the similar line of Theo-

rem 3.3 and the method in (Chen & Guo, 2005). Therefore, it is omitted.
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In the sequel, we will solve the controller matrices Ac, Acd, Bc and Cc in

(3.46).To solve the controller synthesis problem, we will transform the conditions

in (3.50)–(3.52) into tractable conditions. Based on dynamic output-feedbackH∞

performance analysis condition in Theorem 3.3, the controller existence condition

for the suspension system in (3.47) is presented in the following theorem.

Theorem 3.4 Consider the suspension system in (3.47). Given scalars d̄ >

0, µ, θR > 0, q = 1, 2, if there exist matrices Q̄ =

[
Q1 Q2

∗ Q3

]
> 0, S̄ =[

S1 S2

∗ S3

]
> 0, R̄ =

[
R1 R2

∗ R3

]
> 0, R > 0, S > 0, A, Ad, B, C, M̄p =[

Mp1 Mp2

Mp3 Mp4

]
and N̄p =

[
Np1 Np2

Np3 Np4

]
(p = 1, 2, 3, 4) with appropriate dimen-

sions such as the following LMIs hold:
Θ̄11 Θ̄12 Θ̄13 Θ̄14

∗ −R̄ 0 0
∗ ∗ −I 0
∗ ∗ ∗ Θ̄44

 < 0, (3.63)


Θ̄11 Θ̄22 Θ̄13 Θ̄14

∗ −R̄ 0 0
∗ ∗ −I 0
∗ ∗ ∗ Θ̄44

 < 0, (3.64)

 −{z2,max}2qR −{z2,max}2qI R {C2}Tq
∗ −{z2,max}2qS {C2}Tq
∗ ∗ −I

 < 0, (3.65)

 −u2
maxR −u2

maxI CT

∗ −u2
maxS 0

∗ ∗ −I

 < 0, (3.66)

[
R I
I S

]
> 0 (3.67)
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where

Θ̄11 =


Ψ̄11 Ψ̄12 Ψ̄13 Ψ̄14

∗ Ψ̄22 Ψ̄23 Ψ̄24

∗ ∗ Ψ̄33 −N̄T
4

∗ ∗ ∗ −γ2I

 , Θ̄12 =


√
d̄M̄1√
d̄M̄2√
d̄M̄3√
d̄M̄4

 ,

Θ̄22 =


√
d̄N̄1√
d̄N̄2√
d̄N̄3√
d̄N̄4

 , Θ̄13 =


Ψ̄16

Ψ̄26

0
0

 , Θ̄14 =


Ψ̄17

Ψ̄27

0
Ψ̄47


Ψ̄11 =

[
AR+ RAT +M11 +MT

11 +Q1 + S1

∗
A+AT +M12 +MT

13 +Q2 + S2

SA+ ATS+BC+CTBT +M14 +MT
14 +Q3 + S3

]
Ψ̄12 =

[
BC+MT

21 −M11 +N11 MT
23 −M12 +N12

Ad +MT
22 −M13 +N13 MT

24 −M14 +N14

]
,

Ψ̄13 =

[
MT

31 −N11 MT
33 −N12

MT
32 −N13 MT

34 −N14

]
, Ψ̄14 =

[
B1 +MT

41

SB1 +MT
42

]
,

Ψ̄16 =

[
RCT

1

CT
1

]
, Ψ̄17 =

[ √
d̄RAT

√
d̄AT

√
d̄AT

√
d̄ATS+

√
d̄CTBT

]
,

Ψ̄24 =

[
NT

41 −MT
41

NT
42 −MT

42

]
, Ψ̄26 =

[
CDT

1

0

]
,

Ψ̄23 =

[
NT

31 −N21 −MT
31 NT

33 −N22 −MT
33

NT
32 −N23 −MT

32 NT
34 −N24 −MT

34

]
,

Ψ̄22 =

[
N21 +NT

21 −M21 −MT
21 − (1− µ)S1

∗
N22 +NT

23 −M22 −MT
23 − (1− µ)S2

N24 +NT
24 −M24 −MT

24 − (1− µ)S3

]
,

Ψ̄33 =

[
−Q1 −N31 −NT

31 −Q2 −N32 −NT
33

∗ −Q3 −N34 −NT
34

]
,

Ψ̄27 =

[ √
d̄CTBT

√
d̄AT

d

0 0

]
, Ψ̄47 =

[ √
d̄BT

1

√
d̄BT

1 S

]
,

Θ̄44 =

[
θ2RR1 − 2θRR θ2RR2 − 2θRI

∗ θ2RR3 − 2θRS

]
.

Then, there exists a dynamic controller such that the closed-loop system in

(3.47) is asymptotically stable. In this case, a desired output-feedback controller
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is given in the form of (3.46) with parameters as follows:

Ac = N−1 (A−NBcCR− SAR)M−T , (3.68)

Acd = N−1
(
Ad − SBCcM

T
)
M−T , (3.69)

Bc = N−1B, (3.70)

Cc = CM−T , (3.71)

where N and M are any nonsingular matrices satisfying

MNT = I − RS. (3.72)

Then a controller in the form of (3.46) exists, such that: (i) the closed-loop system

is asymptotically stable for the delay d (t) satisfying 0 < d (t) ≤ d̄, ḋ (t) ≤ µ; (ii)

under zero initial condition, the performance ∥Tz1w∥∞ < γ is minimized subject to

output constraint (3.48) and maximum possible actuator control force constraint

in (3.49) with the disturbance energy under the bound wmax = (ρ− V (0))/γ2.

Proof: First, by using the method proposed in (Scherer et al., 1997), we

partition P and its inverse as

P =

[
S N

NT Y

]
, P−1 =

[
R M

MT T

]
.

Note that the equality PP−1 = I leads to (3.72) holds. In fact, from Θ̄44 in

Theorem 3.4 it can be easily seen that[
−R −I
−I −S

]
< 0,

by the Schur complement formula, which implies that R − S−1 > 0, therefore

I −RS is nonsingular. This ensures that there always exist nonsingular matrices

N and M such that (3.72) is satisfied. Setting

Φ1 =

[
R I
MT 0

]
, Φ2 =

[
I S

0 NT

]
. (3.73)

Then, we conclude form (3.73) that

PΦ1 = Φ2. (3.74)
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It follows that

ΦT
1 PΦ1 = ΦT

1Φ2 =

[
R I
I S

]
,

which implies that the matrices Φ1 and Φ2 in (3.74) are square invertible. It is

found that the matrix P can be constructed as P = Φ2Φ
−1
1 and it concludes from

(3.67) and (3.74) that P > 0. Due to the nonsingular matrices M and N, the

controller matrices Ac, Acd, Bc and Cc can be then obtained by solving equations

(3.68)–(3.71). Then, we perform congruence transformations to (3.63)–(3.64) by

diag
{
Φ−1

1 ,Φ−1
1 ,Φ−1

1 , I,Φ−1
1 , I,Φ−1

1

}
and obtain the following inequalities,

Θ11 Θ12 Θ13 Θ̂14

∗ −R 0 0
∗ ∗ −I 0
∗ ∗ ∗ θ2RR− 2θRP

 < 0, (3.75)


Θ11 Θ22 Θ13 Θ̂14

∗ −R 0 0
∗ ∗ −I 0
∗ ∗ ∗ θ2RR− 2θRP

 < 0, (3.76)

where

Q = Φ−T
1 Q̄Φ−1

1 , S = Φ−T
1 S̄Φ−1

1 , R = Φ−T
1 R̄Φ−1

1 ,

Θ̂T
14 =

[ √
d̄P Ā

√
d̄P B̄ 0

√
d̄P B̄1

]
,

M1

M2

M3

M4

 =


Φ−T

1 0 0 0
0 Φ−T

1 0 0
0 0 Φ−T

1 0
0 0 0 I




M̄1

M̄2

M̄3

M̄4

Φ−1
1 ,


N1

N2

N3

N4

 =


Φ−T

1 0 0 0
0 Φ−T

1 0 0
0 0 Φ−T

1 0
0 0 0 I




N̄1

N̄2

N̄3

N̄4

Φ−1
1 .

For θR > 0 and R−1 > 0, from

(θRR− P )R−1 (θRR− P ) ≥ 0,

we can conclude that

−PR−1P ≤ θ2RR− 2θRP.
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After replacing the term θ2RR − 2θRP in (3.75)–(3.76) with −PR−1P and per-

forming congruence transformations by diag{I, I, I, I, I, I, P−1R}, we know that

conditions in (3.50) and (3.51) hold. On the other hand, (3.65) is equivalent

to (3.52) by performing a simple congruence transformation with diag
{
Φ−1

1 , I
}
.

Therefore, all the conditions in Theorem 3.3 are satisfied. The proof is completed.

�
Remark 3.6 When the actuator delay d (t) is known but it is not differen-

tiable, namely the delay d (t) satisfies 0 < d (t) ≤ d̄. By setting S = 0 in the

LMIs-based conditions in Theorems 3.3–3.4, we can also develop the dynamic

output-feedback controller in (3.46) for the systems in (3.44) with the actuator

delay d (t) satisfies 0 < d (t) ≤ d̄.

Remark 3.7 To avoid bringing much conservativeness, we have introduced a

scalar θR in the proof of Theorem 2, when enlarging the term −PR−1P , that is,

−PR−1P ≤ θ2RR− 2θRP.

When θR = 1, the term reduces the one −PR−1P ≤ R − 2P , which has been

used in many existing references for controller design problem for linear time-

delay systems. In other words, the term −PR−1P has been handled with less

conservativeness. This scalar θR must be given before solving the LMIs in The-

orem 2, and the value of θR affects the feasibility of those related LMIs. In this

chapter, we select the design parameter θR randomly in the allowable area, be-

cause our main aim is to design the dynamic output-feedback controller for active

suspension systems with actuator delay. We can change the design parameter θR

to solve the controller. How to choose the scalar θR is still an open problem,

which has been targeted in our further work.

Similar to Corollary 3.1 and the proof of Theorem 3.3, the output-feedback

controller synthesis condition for suspension system in (3.59) is given in the corol-

lary as follows,

Corollary 3.2 Consider the active suspension system in (3.47). For given

scalar q = 1, 2, if there exist matrices R > 0, S > 0, A, B, C, with appropriate
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dimensions such as the following LMIs hold: Λ1 Λ2 Λ3

∗ −γ2I 0
∗ ∗ −I

 < 0,

 −{z2,max}2qR −{z2,max}2qI R {C2}Tq
∗ −{z2,max}2qS {C2}Tq
∗ ∗ −I

 < 0,

 −u2
maxR −u2

maxI CT

∗ −u2
maxS 0

∗ ∗ −I

 < 0,

[
R I
I S

]
> 0,

where

Λ1 =

[
AR+ RAT +BC+ CTBT A+AT

∗ SA+ ATS+BC + CTBT

]
,

Λ2 =

[
B1

SB1

]
,Λ3 =

[
RCT

1 + CTDT
1

CT
1

]
.

In this case, a desired dynamic output-feedback controller is given in the form of

(3.58) with parameters as follows:

Ac = N−1
(
A− SBCcM

T −NBcCR− SAR
)
M−T ,

Bc = N−1B,

Cc = CM−T ,

where N and M are any nonsingular matrices satisfying

MNT = I − RS.

such that: (i) the closed-loop system is asymptotically stable; (ii) under zero

initial condition, the performance ∥Tz1w∥∞ < γ is minimized subject to out-

put constraint (3.48) and maximum possible actuator control force constraint in

(3.49).

Remark 3.8 It is evident that actuator delay is a crucial issue in vehicle

suspension control systems as addressed in (Du & Zhang, 2007; Du et al., 2008;
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Gao et al., 2010b), there exists a long-standing gap between control theory and its

application in vehicle suspension systems. The main motivation of the chapter

is to propose the approach and prove it theoretically. Our our future work is

focused on identifying practical ways in implementing piratical scientific findings

into our vehicle platform collaborated with Portean Electric Ltd.

3.3.3 Case Study

A design example is given to illustrate the effectiveness of the proposed controller

design method. For the quarter-car suspension system, it is assumed that the

maximum allowable suspension stroke is zmax = 0.035 m and the maximum pos-

sible actuator control force is umax = 2000N in this simulation part. Firstly, for

ρ = 1, the dynamic output-feedback controller I in (3.58) for the active suspension

systems without control delay in (3.57) can be derived listed as

Ac = 106 ×


−0.0000 0.0000 0.0000 −0.0000
0.0001 −0.0001 −0.0000 0.0000
−0.2228 −0.0072 −0.0020 0.0000
1.2113 0.0502 0.0108 −0.0001

 ,

Bc = 105 ×


0.0000
−0.0001
0.3203
−1.7482

 , Cc = 103 ×


−1.1222
1.4638
0.0637
−0.0541


T

. (3.77)

In addition, it can be found that the minimum guaranteed closed-loop H∞ per-

formance index γmin is 9.6468.

Secondly, we propose the dynamic output-feedback controller in form of (3.46)

for the active suspension systems with control delay in (3.44). For ρ = 1 and

θR = 1, by solving the conditions in Theorem 3.4, we can obtain the minimum

guaranteed closed-loop H∞ performance indexes γmin, which are listed in Table

3.1, and the corresponding dynamic output-feedback controllers for different given

upper bound d̄ of actuator delay d(t). In this chapter, we only give the dynamic

output-feedback controller in (3.78) which is listed as follows for upper bound
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d̄ = 20 ms due to limited space:

Ac = 103 ×


0.0162 −0.0228 −0.0000 −0.0000
0.1000 −0.0550 −0.0000 0.0000
−4.0905 1.3781 −0.0875 0.0003
6.8083 −0.5845 0.2276 −0.0276

 ,

Acd =


−22.5703 38.0368 1.4950 −0.7548
−3.6072 6.0785 0.2389 −0.1206
216.7591 −365.0326 −14.3937 7.2016
−92.6428 168.0367 8.6785 −3.3059

 ,

Bc = 105 ×


0.0006
−0.0207
0.9207
−1.6905

 , Cc = 103 ×


−0.5971
1.0063
0.0396
−0.0200


T

. (3.78)

Table 3.1: Computational results

d̄ 5 ms 10 ms 15 ms 20 ms 25 ms

γmin 9.8577 10.2824 11.1341 12.6120 19.8366

According to ISO 2361 (Sun et al., 2011), it is the fact that improving ride

comfort is equivalent to minimizing the vertical acceleration of a vehicle system

in the frequency range from 4Hz to 8Hz. Thus, we first focus on the frequency

responses from the ground velocity to body vertical acceleration for the open-

(u(t) = 0, passive mode) and closed-loop (active mode) systems by using the

dynamic output-feedback controllers in (3.77) and (3.78) for the active suspension

systems in (3.57) and with control delay (3.44) respectively. From Fig. 3.11-3.12,

we can see that the desired controller in (3.58) with the parameters in (3.77) and

the controller in (3.46) with the parameters in (3.78) can yield less value of H∞

norm over the frequency range of 4Hz-8Hz.

Furthermore, when we consider the control design problem for the active sus-

pension systems with control delay, in which the upper bounds d̄ of the delay d(t)

are 1,5,10 and 20 ms, Fig. 3.13 shows that the frequency responses for the open-

and closed-loop systems with control delay under different controllers, e.g., dy-

namic output-feedback controller I (without the delay case) and the corresponding
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Figure 3.11: Frequency responses for the open- and closed-loop systems without

control delay
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Figure 3.12: Frequency responses for the open- and closed-loop systems with

control delay (d̄ = 20 ms)
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Figure 3.13: Frequency responses for the open- and closed-loop systems with

control delay (a) d̄ = 1 ms (b) d̄ = 5 ms (c) d̄ = 10 ms (d) d̄ = 20 ms

dynamic output-feedback controller II which can be calculated according to The-

orem 3.4. In Fig. 3.13, the black dash-dot line denotes the frequency response

for the open-loop systems, the blue dash line and the red solid line denote the

frequency response for the closed-loop systems with control delay under different

controllers respectively. It can be observed that the controllers derived from ac-

tuator delayed active suspension systems can obtain better performance than the

one for active suspension systems without delay.

3.3.3.1 Bump Response

The desired controller in (3.46) with the parameters in (3.78) can be designed

such that: 1) the sprung mass acceleration z1(t) is as small as possible; 2) the

suspension deflection is below the maximum allowable suspension stroke zmax =

0.035 m; 3) the controlled output defined in satisfy z2(t)2 < 1; 4) the force of the
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actuator is below the maximum bound umax = 2000 N. In order to evaluate the

suspension characteristics with respect to ride comfort, vehicle handling, working

space of the suspension and actuator force constraints, the variability of the road

profiles is taken into account. In the context of active suspension performance,

road disturbances can be generally assumed as shocks or vibrations, in which

shocks are discrete events of relatively short duration and high intensity, caused

by, for example, a pronounced bump or pothole on an otherwise smooth road

surface. In this study, this case of road profile is considered to reveal the transient

response characteristic, which is given by

zr(t) =

{
A
2
(1− cos(2πV

L
t)), if 0 ≤ t ≤ L

V
,

0, if t > L
V
,

(3.79)

where A and L are the height and the length of the bump. Assume A = 60 mm,

L = 5 m and the vehicle forward velocity as V = 25 (km/h).

Figs. 3.14–3.21 demonstrate the responses of body vertical accelerations, sus-

pension deflections, dynamic tire load constraints and actuator forces for the

open- and closed-loop system with actuator delays under the bump disturbance

and different controllers, respectively. Among them, it can be seen from these fig-

ures that the designed controller II for the active suspension systems with control

delay can achieve less value of the maximum body acceleration, compared with

the passive systems and the controller I for the active suspension systems without

delay, which clearly demonstrates that an improved ride comfort is achieved.

Moreover, all Figs. 3.14–3.21 present that the suspension stroke constraint

zmax < 0.035 is guaranteed, while they illustrate the relative dynamic tire load

ktx2(t)/(ms + mu)g < 1 is also ensured the force of the actuator is below and

the maximum bound umax = 2000 N by using the output-feedback controller

II. In particular, it is apparent that the controller II can achieve better perfor-

mance compared with the closed-loop system under the controller I when the

upper bound d̄ of the delay d(t) is bigger, which means that the control delay

is significant to be considered in the control design process of active suspension

systems.
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Figure 3.14: Body acceleration and suspension deflection responses of the open-

and closed-loop systems with control delay (d̄ = 1 ms)
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Figure 3.15: Tire stroke constrains and actuator force responses of the open- and

closed-loop systems with control delay (d̄ = 1 ms)
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Figure 3.16: Body acceleration and suspension deflection responses of the open-

and closed-loop systems with control delay (d̄ = 5 ms)
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Figure 3.17: Tire stroke constrains and actuator force responses of the open- and

closed-loop systems with control delay (d̄ = 1 ms)
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Figure 3.18: Body acceleration and suspension deflection responses of the open-

and closed-loop systems with control delay (d̄ = 10 ms)
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Figure 3.19: Tire stroke constrains and actuator force responses of the open- and

closed-loop systems with control delay (d̄ = 10 ms)
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Figure 3.20: Body acceleration and suspension deflection responses of the open-

and closed-loop systems with control delay (d̄ = 20 ms)
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Figure 3.21: Tire stroke constrains and actuator force responses of the open- and

closed-loop systems with control delay (d̄ = 20 ms)
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3.3.3.2 Random Response

In the context of active suspension performance, road disturbances can also be

generally assumed as random vibrations (Sun et al., 2011), which are consistent

and typically specified as random process with a given ground displacement power

spectral density (PSD) of

Gq (n) = Gq (n0)

(
n

n0

)−c

, (3.80)

where n0 denotes the spatial frequency and n0 is the reference spatial frequency

of n0 = 0.1 (1/m); Gq (n0) is used to stand for the road roughness coefficient;

c = 2 is the road roughness constant. Related to the time frequency f , we have

f = nV with V for the vehicle forward velocity. Based on (3.80), we can obtain

the PSD ground displacement:

Gq (f) = Gq (n0)n
−2
0

V

f 2
. (3.81)

Accordingly, PSD ground velocity is given by

Gq̇ (f) = (2πf)2 Gq (f) = 4πGq (n0)n
2
0V, (3.82)

which is only related with the vehicle forward velocity. When the vehicle forward

velocity is fixed, the ground velocity can be viewed as a white-noise signal. To

check the PSD body acceleration, which can be calculated by

Gz1 (f) = |G (jω)|Gq̇ (f) = |G (jω)| 4πGq (n0)n
2
0V, (3.83)

we choose the four difference road roughness Gq (n0) = 16× 10−6 m3, 64× 10−6

m3, 256 × 10−6 m3 and 1024 × 10−6 m3, which are corresponded to B Grade

(Good), C Grade (Average), D Grade (Poor) and E Grade (Very Poor) for the

vehicle forward velocity V = 25 (km/h), respectively. Fig. 3.22 shows PSD body

acceleration for the four different type of road disturbances. In order to show the

advantages of the proposed output-feedback controller for the active suspension

systems with control delay under the white noise disturbance, for d̄ = 20 ms, Fig.

3.23–3.26 demonstrate the responses of body vertical accelerations, suspension

strokes, and the dynamic tire load constraints for the closed-loop system under the
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four types of different road disturbances by using the output-feedback controllers

I in (3.77) and II in (3.78), respectively. It can be observed that the improved

suspension performance has been achieved, satisfying the required suspension

deflection , dynamic tire load and maximum actuator force constraints by using

the designed controller in (3.78) compared with the controller I which can be

solved without taking into account control delay.
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Figure 3.22: The power spectral density of body acceleration

To further evaluate the suspension system performance, the root mean square

(RMS) values of the body acceleration are exploited to demonstrate the effec-

tiveness of the proposed control design method. RMS are strictly related to the

ride comfort, which are often employed to quantify the amount of acceleration

transmitted to the vehicle body. The RMS value of variable x(t) is calculated as

RMSx =
√

(1/T )
∫ T

0
xT (t)x(t)dt. In this study, we choose T = 100 s to calculate

the RMS values of the body acceleration, suspension stroke and relative dynam-

ics tire load for different road roughness coefficient Gq (n0), which are listed in

Tables 3.2–3.4 for different upper bound d̄=20 ms by using the output-feedback

controllers I in (3.77) and II in (3.78), respectively. It can be observed that these

tables indicate that the improvement in ride comfort and the satisfaction of hard

constraints can be achieved for the different load conditions.
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Figure 3.23: Random responses of body acceleration for the closed-loop systems

under white noise disturbance by using controllers I and II. (a) B Grade Good

(b) C Grade Average (c) D Grade Poor (d) E Grade Very Poor

Table 3.2: RMS body acceleration

Parameter Controller I Controller II

Gq (n0) = 16× 10−6 m3 0.0117 0.0041

Gq (n0) = 64× 10−6 m3 0.0235 0.0081

Gq (n0) = 256× 10−6 m3 0.0447 0.0164

Gq (n0) = 1024× 10−6 m3 0.0974 0.0331
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Figure 3.24: Random responses of suspension deflection for the closed-loop sys-

tems under white noise disturbance by using controllers I and II. (a) B Grade

Good (b) C Grade Average (c) D Grade Poor (d) E Grade Very Poor

Table 3.3: RMS suspension stroke

Parameter Controller I Controller II

Gq (n0) = 16× 10−6 m3 2.1484× 10−4 6.9215× 10−5

Gq (n0) = 64× 10−6 m3 4.4955× 10−4 1.3132× 10−4

Gq (n0) = 256× 10−6 m3 8.2051× 10−4 2.6750× 10−4

Gq (n0) = 1024× 10−6 m3 0.0019 5.4571× 10−4
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Figure 3.25: Random responses of tire stroke constrains for the closed-loop sys-

tems under white noise disturbance by using controllers I and II. (a) B Grade

Good (b) C Grade Average (c) D Grade Poor (d) E Grade Very Poor

Table 3.4: RMS relative dynamics tire load

Parameter Controller I Controller II

Gq (n0) = 16× 10−6 m3 0.0011 3.8624× 10−4

Gq (n0) = 64× 10−6 m3 0.0022 7.6119× 10−4

Gq (n0) = 256× 10−6 m3 0.0041 0.0015

Gq (n0) = 1024× 10−6 m3 0.0090 0.0031
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Figure 3.26: Random responses of actuator force for the closed-loop systems

under white noise disturbance by using controllers I and II. (a) B Grade Good

(b) C Grade Average (c) D Grade Poor (d) E Grade Very Poor
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3.4 Summary

In this chapter, firstly, the uncertain half-vehicle active suspension system has

been modelled and then a novel robust controller for the system with actuator

delay has been proposed. The delay was assumed to be interval time-varying

delay. The uncertainties of the systems are caused by the vehicle load variation

and can be modeled by polytopic uncertainties type. A sufficient condition for

the existence of robust H∞ controller has been proposed to ensure robust asymp-

totical stability of the closed-loop system with a prescribed level of disturbance

attenuation and also satisfy the desirable output constraint performance. The

condition has converted into convex optimization problem. A practical design

example has been given to illustrate the effectiveness of the proposed approach.

Secondly, for the state signals are unmeasurable, a novel output-feedback H∞

controller design method has been presented for a class of active quarter-vehicle

suspension systems with actuator time-varying delay. The dynamic system has

been established when taking into account the required performance, such as ride

comfort, road holding, and suspension deflection, as control objectives. A new

dynamic output-feedback H∞ controller has been designed to guarantee asymp-

totic stability of the closed-loop system with H∞ disturbance attenuation level

and meanwhile satisfy the required output constraints. The existence condition

of admissible controller has been expressed as convex optimization problems. Fi-

nally, we have provided a quarter-vehicle model to demonstrate the effectiveness

of the proposed method.
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Chapter 4

Fault-Tolerant H∞ Control for

Vehicle Active Suspension

Systems with Actuator Fault

4.1 Introduction

With the growing complexity of automated control systems and actuators, various

faults are likely to be encountered, especially actuator and sensor faults Chen

& Liu (2004); Liao et al. (2002); Shi et al. (2003); Wang et al. (1999); Yang

et al. (2001b, 2002); Zhang et al. (2004). Therefore, it is important to design

a fault-tolerant controller such that the system stability and performance of the

closed-loop system can tolerate both sensor and actuator faults, which motivates

the interests in the fault tolerant control system design, and the objective is to

prevent the faults in the control loop from causing an overall system failure.

During the past few decades, many researchers have paid considerable attention

to reliable and fault tolerant control problems for dynamic systems and a great

number of theoretic results have been presented, e.g. Dong et al. (2010); Ma

et al. (2010); Mao et al. (2010); Wang & Qiao (2004); Wang et al. (2009b); Yang

et al. (2009); Zuo et al. (2010). For example, the authors in Yang et al. (2001b)

investigated reliable H∞ controller design problem for linear systems, and the

reliable controller was designed such that the resulting control systems are reliable

in that they provide guaranteed asymptotic stability and H∞ performance when
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all control components (i.e., sensors and actuators) are operational and when some

control components experience failures. Recently, Wang and his group in Dong

et al. (2010); Wang et al. (2009b) dealt with the reliable control problem for the

systems with sensor faults being modeled by the probabilistic distributions. The

reliable H∞ control problem of seat suspension systems with actuator faults were

handled in Zhao et al. (2010c), where the considered actuator fault was described

to be static behavior. It is practically reasonable to assume that the actuator

fault should be treated as the dynamic behavior in stochastic distributions Dong

et al. (2010); Wang et al. (2009b). To the authors’ best knowledge, few results on

fault-tolerant H∞ control for active suspension systems with dynamic actuator

fault behaviors have been developed, which motivates this study.

This chapter is concerned with the problem of fault-tolerant H∞ control for a

class of quarter-car active suspension systems with actuator faults. When taking

into account suspension systems performance such as ride comfort, road hold-

ing, suspension deflection and maximum actuator force limitation, we establish

a corresponding state-space system in terms of control strategy. Actuator faults

are considered in the controller design process. It is assumed that actuator fail-

ure process is a stochastic behavior, which can be modeled by a continuous-time

homogeneous Markov process. The fault-tolerant H∞ controller is designed such

that the resulting control system is tolerant in that it guarantees asymptotic

stability and H∞ performance, and simultaneously satisfy the constraint perfor-

mance with existing possible actuator failures. Furthermore, the existence condi-

tions of admissible controller are derived in terms of LMIs. Finally, a quarter-car

model is exploited to demonstrate the effectiveness of the proposed method. The

remainder of this chapter is organized as follows.

The problem to be addressed is formulated in Section 4.2. Section 4.3 presents

the proposed new fault-tolerant H∞ controller design method. An example is

provided to evaluate the proposed method in Section 4.4, and finally we conclude

the chapter in Section 4.5.
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4.2 Problem Formulation

Consider the active vehicle suspension model in the state-space form (2.5)

ẋ(t) = Ax(t) +B1w(t) +Bu (t) ,

z1(t) = C1x(t) +D1u (t) ,

z2(t) = C2x(t), (4.1)

where the matrices A, B, B1, C1, D1 and C2 are defined in Chapter 1 (2.5).

We consider ride comfort performance, road holding and suspension deflection

output constraints in this system. In practice, the active control force provided

for the active suspension system should be confined to a certain range prescribed

by limited power of the actuator:

|u(t)| ≤ umax, (4.2)

where umax is defined as the maximum possible actuator control force.

Consider the following actuator failure model, in which the actuator suffers

from failures, uf (t) is employed to describe the control signal sent from the actu-

ator.

uf (t) = mart(t)Kartx(t), (4.3)

where {rt, t ≥ 0} is a homogeneous finite-state Markovian process with right

continuous trajectories, which takes value in a finite state space S = {1, 2, · · · , s}
with generator Ξ = {πij} , i, j ∈ S, and has the mode transition probabilities

Pr (rt+△t = j | rt = i) =

{
πij△t+ o (△t) , i ̸= j,

1 + πii△t+ o (△t) , i = j,
(4.4)

where △t > 0, and lim△t→0

(
o(△t)
△t

)
= 0. πij ≥ 0 (i, j ∈ S, i ̸= j) denotes the

switching rate from i th fault mode to j th fault mode, and πii = −
∑s

j=1,j ̸=i πij

for all i ∈ S. Kart is the actuator fault-tolerant feedback control gain matrix to be

determined; mart(t) is used to represent the possible fault of the corresponding ac-

tuator uf (t). m̌art ≤ mart(t) ≤m̂art , where m̌art and m̂art are constant scalars and

used to prescribe lower and upper bounds of the actuator faults. Three following

cases corresponding to three different actuator conditions are considered:
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1) m̌art = m̂art = 0, then mart(t) = 0, which implies that the corresponding

actuator uf (t) is failed completely.

2) m̌art = m̂art = 1, thus we obtain mai(t) = 1, which represents the case of

no fault in the very actuator uf (t).

3) 0 < m̌art < m̂art < 1, which means that there exists partial fault in the

corresponding actuator uf (t).

Remark 4.1 Fault free, partial fault and complete fault are three modes

of the corresponding actuator uf (t). It is essential in terms of both theoretical

development and practical implementation to model a controller as dynamic be-

havior rather than static behavior. It is evident that the existing fault models

only consider one kind of the fault modes, especially as static behavior, a special

case of our fault modes Chen & Liu (2004); Liao et al. (2002); Shi et al. (2003);

Yang et al. (2001b, 2002); Zhao et al. (2010c); Zuo et al. (2010). It is novel and

timely that the proposed fault model covers existing unrealistic actuator failure

models.

Remark 4.2 The state of the art represent actuator fault modes in terms

of Bernoulli distribution, which is a more general way to deal with the reliable

control problem Dong et al. (2010); Wang et al. (2009b). Since there exist three

or more different modes in the actuator fault, it is convincing that the behavior of

an actuator fault be modeled in a linear-time homogeneous Markov process, that

is to say, the actuator failure model is governed by a continues-time homogeneous

Markov chain.

Furthermore, the closed-loop system with the reliable controller (4.3) can be

written as:

ẋ(t) = Ax(t) +B1w(t) +Bmart (t)Kartx(t),

z1(t) = C1x(t) +D1mart (t)Kartx(t),

z2(t) = C2x(t). (4.5)

Without loss of generality, It is assumed, w ∈ L2[0,∞), and ∥w∥22 ≤ wmax <

∞. Then, the objective of this chapter is to design a controller gain matrix Krt

such that:

(1) the closed-loop system is asymptotically stable;
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(2) under zero initial condition, the closed-loop system guarantees that ∥z1∥2 <
γ ∥w∥2 for all nonzero w ∈ L2[0,∞), where γ > 0 is a prescribed scalar;

(3) the following control output constraints are guaranteed:

|{z2(t)}q| ≤ 1, q = 1, 2, (4.6)

(4) the following maximum possible actuator control force constraint is guar-

anteed:

|u(t)| ≤ umax. (4.7)

In the above proposed control strategy, the multiple requirements are formu-

lated in a unified framework, based on which the controller design is cast into a

multiple-objective minimization problem.

4.3 Fault-Tolerant Controller Design

A fault-tolerant state-feedback controller is designed in this section such that

the closed-loop system in (4.5) is asymptotically stable and can also ensure a

prescribed gain from disturbance w(t) to performance output z1(t) while keeping

the output and maximum control force constraints in (4.6)–(4.7) satisfied. The

following lemma is firstly given for further controller design.

Lemma 4.1 (Yang et al. (2001b)) For any scalar ε > 0, vectors x and y, the

following inequality holds

xTy + yTx ≤ εxTx+ ε−1yTy. (4.8)

The following scalars are also introduced for further modelling,

M̂a0rt =
m̌art + m̂art

2
,

M̌a0rt =
m̂art − m̌art

2
,

and rewrite mart as follows

mart(t) = M̂a0rt +∆a0rt ,

where

|∆art| ≤
m̂art − m̌art

2
.
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For notational simplicity, we set rt = i, i ∈ S.

The H∞ performance analysis criterion will be given in the following theorem.

Theorem 4.1 For the closed-loop system in (4.5), given matrix Kai and pos-

itive constant ρ, if there exist matrix Pi > 0, and scalars εaqi (i = 1, 2, . . . , s, q =

1, 2) satisfying
Θi PiB1 CT

1 +KT
aiM̂a0iD

T
1 εa1iK

T
ai PiBM̌a0i

∗ −γ2 0 0 0
∗ ∗ −I 0 D1M̌a0i

∗ ∗ ∗ −εa1iI 0
∗ ∗ ∗ ∗ −εa1iI

 < 0, (4.9)


−u2

maxPi
√
ρKT

aiM̂a0i εa2i
√
ρKT

ai 0
∗ −I 0 M̌a0i

∗ ∗ −εa2iI 0
∗ ∗ ∗ −εa2iI

 < 0, (4.10)

[
−Pi

√
ρ {C2}Tq

∗ −I

]
< 0, (4.11)

where

Θi = sym
(
Pi

(
A+BM̂a0iKai

))
+

s∑
j=1

πijPj. (4.12)

Then,

(1) the closed-loop system is asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to output constraints

in (4.6) and maximum possible actuator control force constraint in (4.7) with the

disturbance energy under the bound wmax = (ρ− Vr0(0))/γ
2, where Tz1w denotes

the closed-loop transfer function from the road disturbance w(t) to the control

output z1(t), Vr0(0)) is defined as Vrt (t) = xT (t)Prtx (t) with rt = r0 and t = 0.

Proof. To begin with, we establish the asymptotic stability of the system

in (4.5) with w(t) = 0. Defining a Lyapunov-Krasovskii functional candidate for

system (4.5) as:

Vrt (t) = xT (t)Prtx (t) (4.13)

where Prt > 0 is to be determined. Let ℑ be the weak infinitesimal operator, one

has

ℑVrt (t) = xT (t)

(
sym(Pi (A+BMaiKai)) +

s∑
j=1

πijPj

)
x(t).
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By Lemma 4.3, for positive constant εa1i > 0, it holds that

sym(Pi (A+BMaiKai))

= sym
(
Pi

(
A+BM̂a0iKai

))
+ sym (PiB∆a0iKai)

≤ sym
(
Pi

(
A+BM̂a0iKai

))
+ ε−1

a1iPiB∆a0i∆a0iB
TP T

i + εa1iK
T
aiKai

≤ sym
(
Pi

(
A+BM̂a0iKai

))
+ ε−1

a1iPiBM̌2
a0iB

TP T
i + εa1iK

T
aiKai.

According to Schur complement and the inequality (4.9) in Theorem 4.1 guaran-

tees

sym(Pi (A+BMaiKai)) +
s∑

j=1

πijPj < 0, (4.14)

which further leads to ℑVrt (t) < 0 for any x(t) ̸= 0. Therefore, we conclude that

the system in (4.5) with w(t) = 0 and actuator fault in (4.3) is asymptotically

stable.

Next, we will investigate the H∞ performance of the active suspension system

under zero initial condition. Consider the following index:

J , E

∫ ∞

0

[
zT1 (t)z1(t)− γ2wT (t)w(t)

]
dt. (4.15)

Then, by Dynkin’ formula, it can be seen that

J ≤ E

∫ ∞

0

[
zT1 (t)z1(t)− γ2wT (t)w(t) + ℑVrt (t)

]
dt. (4.16)

According to some algebraic manipulations and Schur complement, it is not dif-

ficult to obtain

zT1 (t)z1(t)− γ2wT (t)w(t) + ℑVrt (t) = ξ̄T (t)Πiξ̄ (t) , (4.17)

where

ξ̄ (t) =
[
xT (t) wT (t)

]T
, Πi =

[
Θ̄i PiB1

∗ −γ2

]
,

Θ̄i = sym (Pi (A+BMaiKai)) +
s∑

j=1

πijPj

+(C1 +D1MaiKai)
T (C1 +D1MaiKai) .
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On the other hand,

Π̄i =

 sym(Pi (A+BMaiKai)) +
s∑

j=1

πijPj PiB1 CT
1 +KT

aiM̂aiD
T
1

∗ −γ2 0
∗ ∗ −I


=

 Θi PiB1 CT
1 +KT

aiM̂a0iD
T
1

∗ −γ2 0
∗ ∗ −I


+

 sym (PiB∆a0iKai) 0 KT
ai∆a0iD

T
1

0 0 0
0 0 0


=

 Θi PiB1 CT
1 +KT

aiM̂a0iD
T
1

∗ −γ2 0
∗ ∗ −I

+ sym

 PiB
0
D1

∆a0i

[
Kai 0 0

]
≤

 Θi PiB1 CT
1 +KT

aiM̂a0iD
T
1

∗ −γ2 0
∗ ∗ −I

+ ε−1
a1i

 PiB
0
D1

 M̌2
a0i

 PiB
0
D1

T

+εa1i
[
Kai 0 0

]T [
Kai 0 0

]
.

By using Schur complement to (4.9), Π̄i < 0, which implies Πi < 0. Thus, if

(4.9) holds, i.e. Πi < 0, we have

zT1 (t)z1(t)− γ2wT (t)w(t) + ℑVrt (t) < 0 (4.18)

for any non-zero w ∈ L2[0,∞), which indicates J < 0. Hence ∥z1∥2 < γ ∥w∥2 is

guaranteed for any non-zero w ∈ L2[0,∞).

In the following part, we will consider the problems of the output constraints.

From (4.18), it can be seen that

EℑVrt (t)− γ2wT (t)w(t) < 0. (4.19)

After integrating both sides of the above inequality from zero to any t > 0, we

obtain

EVrt (t)− Vr0 (0) < γ2

∫ t

0

wT (τ)w(τ)dτ < γ2 ∥w∥22 . (4.20)
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From the definition of the Lyapunov functional in (4.13), we obtain xT (t)Pix(t) <

ρ, with ρ = γ2wmax + Vr0 (0) . Consider

max
t>0

|{z2(t)}q|2 = max
t>0

∥∥xT (t){C2}Tq {C2}qx(t)
∥∥
2

= max
t>0

∥∥∥xT (t)P
1
2
i P

− 1
2

i {C2}Tq {C2}qP
− 1

2
i P

1
2
i x(t)

∥∥∥
2

< ρ · θmax(P
− 1

2
i {C2}Tq {C2}q P

− 1
2

i ), q = 1, 2,

max
t>0

∣∣uf (t)
∣∣2 = max

t>0

∥∥xT (t)KT
aiMaiMaiKaix(t)

∥∥
2

< ρ · θmax(P
− 1

2
i KT

aiMaiMaiKaiP
− 1

2
i ),

where θmax(·) represents maximal eigenvalue. From the above inequalities and

(4.6)–(4.7), we know that the constraints is guaranteed, if

ρP
− 1

2
i {C2}Tq {C2}q P

− 1
2

i < I, q = 1, 2, (4.21)

ρP
− 1

2
i KT

aiMaiMaiKaiP
− 1

2
i < u2

maxI. (4.22)

On the other hand, it can be seen that[
−u2

maxPi
√
ρKT

aiMai

∗ −I

]
=

[
−u2

maxPi
√
ρKT

aiM̂a0i

∗ −I

]
+ sym

([
0
I

]
∆a0i

[ √
ρKai 0

])
≤

[
−u2

maxPi
√
ρKT

aiM̂a0i

∗ −I

]
+ ε−1

a2i

[
0
I

]
M̌2

a0i

[
0
I

]T
+εa2i

[ √
ρKai 0

]T [ √
ρKai 0

]
.

By Schur complement, (4.21)–(4.22) are equivalent to (4.10)–(4.11) in Theorem

4.3, and the proof is completed. �
Remark 4.3 In case of no failure in the actuator, that is, mart = I, rt ∈ S.

By using a state feedback controller u (t) = Ksx(t), it can be observed from (4.5)

that

ẋ(t) = (A+BKs) x(t) +B1w(t),

z1(t) = (C1 +D1Ks)x(t),

z2(t) = C2x(t). (4.23)
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By choosing the corresponding Lyapunov functional V (t) = xT (t)Px (t) and

following the same line as the proof of Theorem 1, we can derive the following

corollary.

Corollary 4.1 For the closed-loop system in (4.23), given matrix Ks, positive

constant ρ and q = 1, 2, if there exists a matrix P > 0 such that the following

LMIs hold  sym (P (A+BKs)) PB1 CT
1 +KT

s D
T
1

∗ −γ2 0
∗ ∗ −I

 < 0, (4.24)

[
−u2

maxP
√
ρKT

s

∗ −I

]
< 0, (4.25)[

−P
√
ρ {C2}Tq

∗ −I

]
< 0, (4.26)

Then,

(1) the closed-loop system is asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to output constraints

(4.6) and maximum possible actuator control force constraint in (4.7) with the

disturbance energy under the bound wmax = (ρ− V (0))/γ2.

Based on the proposed criterion in Theorem 1, the existence condition of

fault-tolerant H∞ controller is presented in the following theorem.

Theorem 4.2 For the closed-loop system in (4.5) and given positive constant

ρ, if there exist matrices P̄i > 0 and K̄ai and scalars ε̄aqi (i = 1, 2, . . . , s, q = 1, 2)

such as the following LMIs hold:
Θ̄i B1 Υi K̄T

ai ε̄a1iBM̌a0i Ω1i

∗ −γ2 0 0 0 0
∗ ∗ −I 0 ε̄a1iD1M̌a0i 0
∗ ∗ ∗ −ε̄a1iI 0 0
∗ ∗ ∗ ∗ −ε̄a1iI 0
∗ ∗ ∗ ∗ ∗ −Ω2i

 < 0, (4.27)


−u2

maxP̄i
√
ρK̄T

aiM̂a0i
√
ρK̄T

ai 0
∗ −I 0 ε̄a2iM̌a0i

∗ ∗ −ε̄a2iI 0
∗ ∗ ∗ −ε̄a2iI

 < 0, (4.28)

[
−P̄i

√
ρP̄i {C2}Tq

∗ −I

]
< 0, (4.29)
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where

Θ̄i = sym
(
AP̄i +BM̂a0iK̄ai

)
+ πiiP̄i,

Υi = P̄iC
T
1 + K̄T

aiM̂a0iD
T
1 ,

Ω1i =
[√

πi1P̄i, . . . ,
√
πii−1P̄i,

√
πii+1P̄i, . . . ,

√
πisP̄i

]
,

Ω2i = diag
{
P̄1, . . . , P̄i−1, P̄i+1, . . . , P̄s

}
.

Then, under the fault-tolerant controller (4.3), we have

(1) the closed-loop system is asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to output constraint

in (4.6) and maximum possible actuator control force constraint in (4.7) with the

disturbance energy under the bound wmax = (ρ− Vr0(0))/γ
2.

Moreover, if inequalities (4.27)–(4.29) have a feasible solution, then the con-

troller in (4.3) is given by uf (t) = maiK̄aiP̄
−1
i x (t) .

Proof. For K = K̄aiP̄
−1
i , defining some following variables:

Pi = P̄−1
i , εaqi = ε̄−1

aqi, q = 1, 2.

According to Schur complement, (4.27)–(4.29) are equivalent to the following

inequalities
Θ̂i BT

1 P−1
i CT

1 + P−1
i KT

aiM̂
T
a0iD

T
1 εaqiP

−1
i KT

ai BM̌a0i

∗ −γ2 0 0 0
∗ ∗ −I 0 D1M̌a0i

∗ ∗ ∗ −εaqiI 0
∗ ∗ ∗ ∗ −εaqiI

 < 0,


−u2

maxP
−1
i

√
ρP−1

i KT
aiM̂

T
a0i

√
ρεa2iP

−1
i KT

ai 0
∗ −I 0 M̌a0i

∗ ∗ −εa2iI 0
∗ ∗ ∗ −εa2iI

 < 0,

[
−P−1

i

√
ρP−1

i {C2i}Tq
∗ −I

]
< 0,

which are equivalent to (4.9)–(4.11) by performing congruence transformations

with

diag {Pi, I, I, I, I} , diag {Pi, I, I, I} , diag {Pi, I} ,
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where

Θ̂i = sym
(
AP−1

i +BMa0KartP
−1
i

)
+ P−1

i

(
s∑

j=1

πijPj

)
P−1
i .

respectively. Therefore, all the conditions in Theorem 1 are satisfied. The proof

is completed. �
Remark 4.4 The proposed fault-tolerant control design method not only

applies to the active suspension systems with actuator faults but also can solve

the stochastic systems Wu & Ho (2009) and fuzzy systems with actuator faults

Wu (2004) and so on. In addition, the problem of fault-tolerant H∞ control of

the closed-loop system in (2.5) with sensor faults is also solved by following the

similar line as the proof of Theorem 4.3 and 4.3. In this chapter, we devote to

designing the actuator controller in (4.3).

Remark 4.5 More recently, more attention has been paid to the stability

analysis and controller synthesis for continuous- and discrete-time Markovian

jump systems with uncertain and partly unknown transition probabilities, e.g.,

Xiong et al. (2005); Zhang & Boukas (2009); Zhang et al. (2008). It should be

mentioned that the condition in Theorem 4.3 and 4.3 here can be extended to

the case of uncertain and partly unknown transition probabilities by following

the similar methods in Xiong et al. (2005); Zhang & Boukas (2009); Zhang et al.

(2008).

Similar to Corollary 1 and Theorem 2, the following corollary can be obtained.

Corollary 4.2 For the closed-loop system in (4.23), given positive constant

ρ and q = 1, 2, if there exist matrices P̄ > 0 and K̄s such as the following LMIs

hold:  sym(AP̄ +BK̄s) B1 P̄CT
1 + K̄T

s D
T
1

∗ −γ2 0
∗ ∗ −I

 < 0, (4.30)

[
−u2

maxP̄
√
ρK̄T

s

∗ −I

]
< 0, (4.31)[

−P̄
√
ρP̄ {C2}Tq

∗ −I

]
< 0. (4.32)

Then a state feedback controller in the form of (4.3) exists, such that

100



4.4 Case Study

(1) the closed-loop system is asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to output constraint

(4.6) and maximum possible actuator control force constraint in (4.7) with the

disturbance energy under the bound wmax = (ρ− V (0))/γ2.

Moreover, if inequalities (4.30)–(4.32) have a feasible solution, then the con-

troller in (4.3) is given by u(t) = K̄sP̄
−1x (t) .

Remark 4.6 In this chapter, we only consider the active suspension linear

systems with actuator faults and develop the novel fault-tolerant controller design

algorithm for the systems. If both unmodelled dynamics and parametric uncer-

tainties (mass, damping coefficient, stiffness) are considered here, then we know

that the control design process will contain both parametric uncertainties, which

can be modeled by norm-bounded uncertainties Li et al. (2009, 2011); Zhao et al.

(2010b) or polytopic type uncertainties Gao et al. (2010a). For the uncertain ac-

tive suspension systems with actuator faults, the fault-tolerant controller design

results are also derived by using the methods proposed in this chapter and the

authors’ previous papers Gao et al. (2010a); Li et al. (2009, 2011); Zhao et al.

(2010b).

Remark 4.7 For the active suspension system with both uncertain and non-

linear dynamic characteristics, we will build the nonlinear suspensions systems

with actuator faults and consider the fault-tolerant design strategy by utilizing

the methods proposed in this chapter and Ma & Yang (2011).

4.4 Case Study

It is assumed that the maximum allowable suspension stroke is zmax = 0.08 m

and ρ = 1. Firstly, we consider the state-feedback controller u(t) = Ksx (t) for

the active suspension systems in (4.23) without actuator faults. By using the

convex optimization, it is found that the minimum guaranteed closed-loop H∞

performance index γmin is 8.1706 and the H∞ controller gain matrix

Ks = 103 ×
[
−0.0261 3.8886 −5.2620 −0.2003

]
. (4.33)

We first illustrate the effectiveness of the proposed standard state-feedback con-

troller u(t) = Ksx (t) for the no actuator faults active suspension systems in
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(4.23). It is expected that the desired the H∞ controller in u(t) = Ksx (t) can be

designed such that: 1) the sprung mass acceleration z1(t) is as small as possible;

2) the suspension deflection is below the maximum allowable suspension stroke

zmax = 0.08 m, which means that x1 (t) /zmax below 1; 3) the relative dynamic tire

load ktx2(t)/(ms +mu)g < 1; 4) the force of the actuator is below the maximum

bound umax = 1500 N.

In order to evaluate the suspension characteristics with respect to the above

four performance requirements, we apply the following road disturbance signal

to clarify the effectiveness of reliable controller design method. In the context of

active suspension performance, road disturbances can be generally represented as

shocks. Shocks are discrete events of relatively short duration and high intensity,

caused by, for example, a pronounced bump or pothole on an otherwise smooth

road surface. In this work, this case of road profile is considered to reveal the

transient response characteristic:

zr(t) =

{
A
2
(1− cos(2πV

L
t)), if 0 ≤ t ≤ L

V
,

0, if t > L
V
,

(4.34)

where A and L are the height and the length of the bump. We assume A = 60

mm, L = 5 m and the vehicle forward velocity as V = 30 (km/h).

Fig. 4.1 plots the responses of body vertical accelerations, suspension stroke

constrait and tire deflection constraint for the open- (passive) and closed-loop

(active) systems and standard actuator force under the designed standard state-

feedback H∞ controller u(t) = Ksx (t) in (4.33) respectively. It can be seen from

Fig. 4.1 that the designed controller can achieve less value of the maximum

body acceleration for the active suspension system without actuator faults than

the passive system, and passenger acceleration in the active suspension system is

reduced significantly, which guarantees better ride comfort. In addition, it can be

observed from Fig. 4.1 that the suspension deflection constraint x1(t)/zmax < 1 is

guaranteed. And Fig. 4.1 indicates the relation dynamic tire load ktx2(t)/(ms +

mu)g is below 1, which implies the road holding capability is ensured by the

desired controller. It is clear that the force of the actuator is below the maximum

bound umax as showed in Fig. 4.1. The figure confirms that the designed standard

state-feedback H∞ controller can achieve much better ride comfort and road
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handling, and guarantee constrain suspension deflection and maximum actuator

force limitation for the active suspension system without actuator faults.
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Figure 4.1: Bump responses of vertical body accelerations, suspension deflection

constraints and tire stroke constraints for the open- and closed-loop systems and

the active force.

Next, for the following three possible actuator faults modes, namely,

(1) Faulty model I: there is a loss of effectiveness in the actuator, m̌a1 = 0.1,

m̂a1 = 0.9, which implies M̂a01 = 0.5 and M̌a01 = 0.4;

(2) Faulty model II: there is a loss of effectiveness in the actuator, m̌a2 = 0.2,

m̂a2 = 0.8, which implies M̂a02 = 0.5 and M̌a02 = 0.3;

(3) Faulty model III: there is a loss of effectiveness in the actuator, m̌a3 = 0.3,

m̂a3 = 0.7, which implies M̂a03 = 0.5 and M̌a03 = 0.2;

The transition probability matrix (TPM) is,

Ξ =

 −2 1 1
2 −4 2
1 2 −3

 .

By solving the conditions in Theorem 2 via the convex optimization method,

it can be found that the minimum guaranteed closed-loop H∞ performance index
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γmin is 20.0930, and the corresponding fault-tolerant H∞ controller gain matrices

are

Ka1 = 103 ×
[
−2.1322 4.6901 −8.8826 −0.3219

]
, (4.35)

Ka2 = 103 ×
[
−1.5474 5.0070 −8.8373 −0.3167

]
, (4.36)

Ka3 = 103 ×
[
−1.5480 5.0148 −9.1485 −0.3288

]
. (4.37)

The Markovian jump mode rt is depicted in Fig. 4.2 under the initial mode

r0 = 1. In Fig. 4.3–4.6, the bump responses of open and closed-loop systems

with standard state controller Ks and fault-tolerant controller Kai (i = 1, 2, 3)

with 30%, 40%, 50% and 60% actuator thrust loss are illustrated, respectively.

From Fig. 4.3–4.6, we know that the less value of the maximum body acceleration

for the active suspension system is achieved, the suspension deflection constrain

x1/zmax < 1 is guaranteed, the relation dynamic tire load ktx2(t)/(ms + mu)g

is below 1 and the force of the actuator is below the maximum bound umax by

using standard state controller Ks and fault-tolerant controller Kai (i = 1, 2, 3)

respectively. However, it is shown that the fault-tolerant controller Kai (i =

1, 2, 3) is capable to provide a much more steady control force in fault condition

than conventional controller Ks.
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Figure 4.2: Markovian jump mode
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Figure 4.3: Bump responses of vertical body accelerations, suspension deflection

constraints, tire stroke constraints and the active force with 30% actuator thrust

loss.
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Figure 4.4: Bump responses of vertical body accelerations, suspension deflection

constraints, tire stroke constraints and the active force with 40% actuator thrust

loss.
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Figure 4.5: Bump responses of vertical body accelerations, suspension deflection

constraints, tire stroke constraints and the active force with 50% actuator thrust

loss.
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Figure 4.6: Bump responses of vertical body accelerations, suspension deflection

constraints, tire stroke constraints and the active force with 60% actuator thrust

loss.

106



4.4 Case Study

Then, we will consider the following three more general actuator fault modes:

(1) Normal model I: the actuator is normal, m̌a1 = m̂a1 = 1, which implies

M̂a01 = 1 and M̌a01 = 0;

(2) Faulty model II: there is a loss of effectiveness in the actuator, m̌a2 = 0.5,

m̂a2 = 1, which implies M̂a02 = 0.75 and M̌a02 = 0.25;

(3) Faulty model III: the actuator is in outage, m̌a3 = m̂a3 = 0; which implies

M̂a03 = 0 and M̌a03 = 0;

By solving the conditions in Theorem 2 via the convex optimization method,

it can be found that the minimum guaranteed closed-loop H∞ performance index

γmin is 18.3676, and the corresponding fault-tolerant H∞ controller gain matrices

are

Ka1 = 103 ×
[
1.2252 4.0273 −4.5832 −0.1761

]
, (4.38)

Ka2 = 103 ×
[
0.5093 4.4873 −5.5834 −0.2072

]
, (4.39)

Ka3 =
[
0 0 0 0

]
. (4.40)

The case study is aimed at understanding its transition states of the minimum

H∞ performance index γmin when the faulty model II and transition probability

matrix change, respectively. Table 4.1 shows the minimumH∞ performance index

γmin and fault-tolerant control gain matrices Ka1 and Ka2 for the above same

faulty modes and different transition probability matrix. Moreover, Table 4.2

lists the corresponding results on the minimum H∞ performance index γmin and

fault-tolerant control gain matrices Ka1 and Ka2 for the different m̌a2 in Faulty

model II. It can be observed from Table 4.2 that the minimum H∞ performance

index γmin is lower when the lower bound of the Faulty model II is larger.

Fig. 4.7 depicts the responses of body vertical accelerations, suspension stroke

constraints, tire deflection constraints and fault actuator force for the passive

and active systems under the designed reliable control gain matrices in (4.38)–

(4.40), respectively. These figures further confirm that the designed fault-tolerant

controller can achieve much better ride comfort and road handling, guarantee

constrained suspension deflection and maximum actuator force limitation for the

active suspension system with actuator faults.
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Table 4.1: Results for different transition probability matrix

TPM γmin Ka1, Ka2, Ka3 =
[
0 0 0 0

]
2Ξ 15.4913 Ka1 = 103 ×

[
−0.2740 2.9383 −5.1585 −0.1949

]
Ka2 = 103 ×

[
−0.8371 3.4344 −5.9945 −0.2216

]
3Ξ 14.5720 Ka1 = 103 ×

[
−0.7681 2.6952 −5.4381 −0.2087

]
Ka2 = 103 ×

[
−1.3088 3.1531 −6.1703 −0.2290

]
4Ξ 14.2389 Ka1 = 103 ×

[
−1.0071 2.5834 −5.5965 −0.2181

]
Ka2 = 103 ×

[
−1.4220 3.0723 −6.2208 −0.2294

]
5Ξ 13.9964 Ka1 = 103 ×

[
−1.0935 2.6323 −5.7193 −0.2261

]
Ka2 = 103 ×

[
−1.5451 3.0399 −6.2817 −0.2311

]

Table 4.2: Results for different m̌a2 in Faulty model II

m̌a2 γmin Ka1, Ka2, Ka3 =
[
0 0 0 0

]
0 25.5957 Ka1 = 103 ×

[
−0.0896 2.9064 −5.0931 −0.1867

]
Ka2 = 103 ×

[
2.2750 3.2372 −5.2869 −0.1239

]
0.3 19.7250 Ka1 = 103 ×

[
0.8132 3.7004 −4.7272 −0.1806

]
Ka2 = 103 ×

[
0.4649 5.0513 −6.1855 −0.2255

]
0.7 17.5179 Ka1 = 103 ×

[
1.2824 3.9139 −4.4280 −0.1736

]
Ka2 = 103 ×

[
0.5957 4.0174 −5.1142 −0.1944

]
0.9 16.8738 Ka1 = 103 ×

[
1.7276 4.4055 −4.3263 −0.1743

]
Ka2 = 103 ×

[
0.7915 3.8986 −4.7897 −0.1919

]
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Figure 4.7: Bump responses of vertical body accelerations, suspension deflection

constraints, tire stroke constraints and the active force for open and closed-loop

systems

4.5 Summary

This chapter has designed fault-tolerant controller for a class of quarter-car ac-

tive suspension systems subject to actuator faults. The state-space system has

been established based on the suspension system performance such as ride com-

fort, road holding, suspension deflection and maximum actuator force limita-

tion. Actuator failure process within the suspension system has been regarded as

stochastic behavior and modeled as a continuous-time homogeneous Markov pro-

cess. LMI-based conditions have been formulated for the existence of admissible

fault-tolerant H∞ controller, which ensures the closed-loop to be asymptotically

stable with a prescribed H∞ disturbance attenuation level, and simultaneously

satisfy the constraint performance in spite of the possible actuator faults, and the

existence conditions of admissible controller have been resolved. A quarter-car

suspension model has been provided to evaluate the effectiveness of the proposed

reliable controller design approach. It is worth noting that the idea behind this

chapter could be used to deal with more complex suspension systems, such as

half-car and full-car suspension systems.
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Chapter 5

Fuzzy Control for Vehicle Active

Suspension Systems with

Uncertainty

5.1 Introduction

An active suspension system has the ability to enhance vehicle dynamics by re-

laxing external impact such as road surface on vehicle travel comfort. In terms

of its control design, uncertainty of vehicle sprung and unsprung masses such as

its loading conditions should be taken into account to meet vehicle travel per-

formance criteria. For instance, the polytopic parameter uncertainties was em-

ployed to model the varying vehicle sprung or unsprung masses (Du et al., 2008;

Gao et al., 2006, 2010a). The parameter-dependent controllers was proposed for

the quarter-car suspension systems with sprung mass variation (Du et al., 2008).

The parameter-independent sampled-data H∞ controller design strategy was pre-

sented to handle both sprung and unsprung mass variations in a case study of

a quarter-car suspension system (Gao et al., 2010a). The state of the art in

suspension control design in these scenarios, however, could not provide feasi-

ble performance for uncertain active suspension systems with actuator delay and

fault. Clearly, there is a requirement for a new controller design method which

has the capability of satisfying the control condition. On the other hand, since

fuzzy sets were proposed by Zadeh (Zadeh, 1965), fuzzy logic control has been
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5.1 Introduction

developed into a conspicuous and successful branch of automation and control

theory. The T-S fuzzy model has been proved as an effective theoretical method

and practical tool for representing complex nonlinear systems and applications

(Feng, 2006; Lin et al., 2007; Sugeno, 1985; Tanaka & Wang, 2001).

T-S fuzzy model based systems are described as a weighted sum of some simple

linear subsystems, and thus are easily analyzable, the success on control analysis

and synthesis problems have been also demonstrated by various techniques (Lam

& Narimani, 2010; Nguang & Shi, 2003; Zhang et al., 2010). Recently, research

has been conducted to challenge the reliability of the continuous-time T-S fuzzy

systems (Chen & Liu, 2004; Nguang et al., 2007; Wang et al., 2007; Wu & Zhang,

2006). However, in the context of vehicle suspension control design, there are few

results on reliable fuzzy H∞ controller design for T-S fuzzy systems with both

actuator delay and fault. On the other hand, fuzzy controller design had been

investigated for suspension systems in the past years, for example, (Cao et al.,

2010; Du & Zhang, 2009; Huang & Lin, 2003a). In particular, a T-S model-

based fuzzy control design approach was presented for electrohydraulic active

suspension systems with input constraints (Du & Zhang, 2009). It is evident,

however, there are few results on fuzzy H∞ controller design for uncertain active

suspension systems with actuator delay and fault.

This chapter is concerned with the problem of reliable fuzzy H∞ control for

uncertain active suspension systems with actuator delay and fault based on the

T-S fuzzy model approach. The vehicle dynamic system is established by the

fact that vehicle sprung and unsprung mass variations, the actuator delay and

fault have been taken into account the suspension performances. The parallel-

distributed compensation (PDC) scheme is, then, used to develop reliable fuzzy

H∞ performance analysis condition for the proposed T-S fuzzy system, and the

reliable fuzzy H∞ controller is designed to guarantee the systems asymptotic

stability and H∞ performance, simultaneously satisfying the constraint perfor-

mances. Furthermore, LMI-based condition of reliable fuzzy H∞ controller design

is derived. Finally, the proposed method is evaluated on a quarter-car suspension

model. Simulation results demonstrate that the designed reliable fuzzy H∞ con-

troller has robust capability of guaranteeing better suspension performance with
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5.2 Problem Formulation

uncertainty of the sprung and unsprung mass variations, the actuator delay and

fault.

The reminder of this chapter is organized as follows. The problem to be

addressed is formulated in Section 5.2. Section 5.3 presents the results of reliable

fuzzy H∞ controller design and Section 5.4 provides fuzzy H∞ controller design

scheme. Simulation results are provided to evaluate the proposed method in

Section 5.5, and finally the chapter is concluded in Section 5.6.

5.2 Problem Formulation

As pointed out in (Du & Zhang, 2009; Du et al., 2008; Gao et al., 2010a), with the

different loading conditions, the vehicle sprung and unsprung masses vary in the

given ranges. Note that the suspension system in (2.5) is a model with uncertainty

as the sprung mass ms and the unsprung mass mu vary in the given ranges,

in which ms and mu denote ms (t) and mu (t) respectively. In the meantime,

the actuator delay and fault should be taken into account since the suspension

performance could be affected by these factors. It leads to the system as:

ẋ(t) = A (t)x (t) +B1 (t)w (t) +B (t)uf (t− d (t)) ,

z1(t) = C1 (t) x(t) +D1 (t)uf (t− d (t)) ,

z2(t) = C2 (t) x(t),

x(t) = ϕ(t), t ∈
[
−d̄, 0

]
, (5.1)

where ϕ(t) is a vector-valued initial continuous function defined on t ∈
[
−d̄, 0

]
.

d (t) denotes the time-varying delay satisfying

0 ≤ d (t) ≤ d̄, d (t) ≤ µ. (5.2)

Considering the fault channel from controller to actuator,

uf (t) = mau(t), (5.3)

ma is used to represent the possible fault of the corresponding actuator uf (t).

m̌a ≤ ma ≤m̂a, where m̌a and m̂a are constant scalars and used to constrain lower
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5.2 Problem Formulation

and upper bounds of the actuator faults. Three following cases are considered

corresponding to three different actuator conditions:

1) m̌a = m̂a = 0, then ma = 0, which implies that the corresponding actuator

uf (t) is completely failed.

2) m̌a = m̂a = 1, thus we obtain ma = 1, which represents the case of no fault

in the actuator uf (t).

3) 0 < m̌a < m̂a < 1, which means that there exists partial fault in the

corresponding actuator uf (t).

The sprung mass ms(t) and the unsprung mass mu(t) are uncertainties, which

vary in a given range, i.e. ms (t) ∈ [msmin,msmax] and mu (t) ∈ [mumin,mumax] .

It deliver that the uncertainty scenarios of the mass ms (t) is bounded by its

minimum value msmin and its maximum value msmax. In addition, the mass

mu (t) is bounded by its minimum value mumin and its maximum value mumax.

When considering the time-varying uncertainty, actuator delay and faults in

the suspension model, it is very difficult to design the controller directly for

this kind system to improve the suspension performances. In this chapter, the

fuzzy reliable control method is presented to handle this issue. Firstly, we ob-

tain the values of 1
ms(t)

and 1
mu(t)

from ms (t) ∈ [msmin,msmax] and mu (t) ∈
[mumin,mumax] . Then we have

max
1

ms (t)
=

1

msmin

=: m̂s, min
1

ms (t)
=

1

msmax

=: m̌s,

max
1

mu (t)
=

1

mumin

=: m̂u, min
1

mu (t)
=

1

mumax

=: m̌u.

The sector nonlinear method (Tanaka & Wang, 2001) is employed to represent
1

ms(t)
and 1

mu(t)
by,

1

ms (t)
= M1 (ξ1 (t)) m̂s +M2 (ξ1 (t)) m̌s,

1

mu (t)
= N1 (ξ2 (t)) m̂u +N2 (ξ2 (t)) m̌u,

where ξ1 (t) =
1

ms(t)
and ξ2 (t) =

1
mu(t)

are premise variables,

M1 (ξ1 (t)) +M2 (ξ1 (t)) = 1,

N1 (ξ2 (t)) +N2 (ξ2 (t)) = 1.
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The membership functions M1 (ξ1 (t)) , M2 (ξ1 (t)) , N1 (ξ2 (t)) and N2 (ξ2 (t)) can

be calculated as

M1 (ξ1 (t)) =

1
ms(t)

− m̌s

m̂s − m̌s

, M2 (ξ1 (t)) =
m̂s − 1

ms(t)

m̂s − m̌s

,

N1 (ξ2 (t)) =

1
mu(t)

− m̌u

m̂u − m̌u

, N2 (ξ2 (t)) =
m̂u − 1

mu(t)

m̂u − m̌u

.

The membership functions are labeled as Heavy, Light, Heavy and Light as

shown in Fig. 5.1. In addition, Table 5.1 lists the fuzzy rules for the systems in

(5.1).

Table 5.1: List of Fuzzy Rules

Rule No. Premise variables

ξ1 (t) ξ2 (t)

1 Heavy Heavy

2 Heavy Light

3 Light Heavy

4 Light Light

Then, the system with uncertainty in (5.1) is represented by the following

fuzzy model:

1

0

0

1 1M t2 1M t

1 t

HeavyLight

(a)

1

0

0

1 2N t2 2N t

2
t

HeavyLight

(b)

Figure 5.1: (a) Membership functions M1 (ξ1 (t)) and M2 (ξ1 (t)) (b) Membership

functions N1 (ξ2 (t)) and N2 (ξ2 (t))

Model Rule 1: IF ξ1 (t) is Heavy and ξ2 (t) is Heavy,
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THEN

ẋ (t) = A1x (t) +B1uf (t− d (t)) +B11w (t) ,

z1 (t) = C11x (t) +D11uf (t− d (t)) ,

z2 (t) = C21x (t) ,

matrices A1, B1, B11, C11, D11 and C21 are obtained by replacing 1
ms(t)

and 1
mu(t)

with m̂s and m̂u respectively in matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and

C2 (t).

Model Rule 2: IF ξ1 (t) is Heavy and ξ2 (t) is Light,

THEN

ẋ (t) = A2x (t) +B2uf (t− d (t)) +B12w (t) ,

z1 (t) = C12x (t) +D12uf (t− d (t)) ,

z2 (t) = C22x (t) ,

matrices A2, B2, B12, C12, D12 and C22 are obtained by replacing 1
ms(t)

and 1
mu(t)

with m̂s and m̌u in matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) respec-

tively.

Model Rule 3: IF ξ1 (t) is Light and ξ2 (t) is Heavy,

THEN

ẋ (t) = A3x (t) +B3uf (t− d (t)) +B13w (t) ,

z1 (t) = C13x (t) +D13uf (t− d (t)) ,

z2 (t) = C23x (t) ,

matrices A3, B3, B13, C13, D13 and C23 are obtained by replacing 1
ms(t)

and 1
mu(t)

with m̌s and m̂u in matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) respec-

tively.

Model Rule 4: IF ξ1 (t) is Light and ξ2 (t) is Light,

THEN

ẋ (t) = A4x (t) +B4uf (t− d (t)) +B14w (t) ,

z1 (t) = C14x (t) +D14uf (t− d (t)) ,

z2 (t) = C24x (t) ,
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matrices A4, B4, B14, C14, D14 and C24 are obtained by replacing 1
ms(t)

and 1
mu(t)

with m̌s and m̌u in matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) respec-

tively.

Fuzzy blending allows to infer the overall fuzzy model as follows:

ẋ (t) =
4∑

i=1

hi (ξ (t)) [Aix (t) +Biuf (t− d (t)) +B1iw (t)] ,

z1 (t) =
4∑

i=1

hi (ξ (t)) [C1ix (t) +D1iuf (t− d (t))] ,

z2 (t) =
4∑

i=1

hi (ξ (t))C2ix (t) , (5.4)

where

h1 (ξ (t)) = M1 (ξ1 (t))×N1 (ξ2 (t)) ,

h2 (ξ (t)) = M1 (ξ1 (t))×N2 (ξ2 (t)) ,

h3 (ξ (t)) = M2 (ξ1 (t))×N1 (ξ2 (t)) ,

h4 (ξ (t)) = M2 (ξ1 (t))×N2 (ξ2 (t)) .

It is apparent that the fuzzy weighting functions hi(ξ (t)) satisfy hi (ξ (t)) ≥
0,
∑4

i=1 hi (ξ (t)) = 1. In order to design a fuzzy reliable controllers, PDC is

adapted and the following fuzzy controller is obtained:

Control Rule 1: IF ξ1 (t) is Heavy and ξ2 (t) is Heavy,

THEN u(t) = Ka1x(t).

Control Rule 2: IF ξ1 (t) is Heavy and ξ2 (t) is Light,

THEN u(t) = Ka2x(t).

Control Rule 3: IF ξ1 (t) is Light and ξ2 (t) is Heavy,

THEN u (t) = Ka3x(t).

Control Rule 4: IF ξ1 (t) is Light and ξ2 (t) is Light,

THEN u (t) = Ka4x(t).

Hence, the overall fuzzy control law is represented by

u(t) =
4∑

j=1

hj(ξ (t))Kajx(t) (5.5)

116



5.2 Problem Formulation

where Kaj (j = 1, 2, 3, 4) are the local control gains and

u(t− d (t)) =
4∑

j=1

hj(ξ (t− d (t)))Kajx(t− d (t)).

Therefore, in this chapter, we assume that hj(ξ (t− d (t))) is well defined for

t ∈
[
−d̄, 0

]
, and hj (ξ (t− d (t))) ≥ 0, (j = 1, 2, 3, 4)

∑4
j=1 hj (ξ (t− d (t))) = 1.

For simplicity, the following notations will be used:

hi =: hi (ξ (t)) , hd
j =: hj (ξ (t− d (t))) .

Applying the fuzzy controller (5.5) to system (5.4) yields the closed-loop system:

ẋ (t) =
4∑

i=1

4∑
j=1

hih
d
j [Aix (t) +Bima (t)Kajx (t− d (t))

+B1iw (t)] ,

z1 (t) =
4∑

i=1

4∑
j=1

hih
d
j [C1ix (t) +D1imaKajx (t− d (t))] ,

z2 (t) =
4∑

i=1

hiC2ix (t) . (5.6)

The T-S fuzzy system in (5.6) is established based on the practically measur-

able sprung ms(t) and unsprung mu(t). The sector nonlinearity method (Tanaka

& Wang, 2001) is employed to analyze the variation of the sprung ms(t) and

unsprung mu(t) and presents the T-S fuzzy system in (5.6).

Without loss of generality, it is assumed, w ∈ L2[0,∞), and ∥w∥22 ≤ wmax <

∞. The objective in this subsection is to design the feedback gain matrices Kaj

(j = 1, 2, 3, 4) such that the following requirements are satisfied:

(1) the closed-loop system is asymptotically stable;

(2) under zero initial condition, the closed-loop system guarantees that ∥z1∥2 <
γ ∥w∥2 for all nonzero w ∈ L2[0,∞), where γ > 0 is a prescribed scalar;

(3) the following control output constraints are guaranteed:

|{z2(t)}q| ≤ 1, q = 1, 2. (5.7)
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5.3 Reliable Fuzzy Controller Design

In this section, reliable fuzzyH∞ state-feedback controller is derived for the active

suspension system with actuator delay and fault. It ensures that the closed-loop

system in (5.6) is asymptotically stable, and it also guarantees a prescribed gain

from disturbance w(t) to performance output z1(t), under the condition that the

suspension stroke and tire deflection constraints are satisfied. First, the following

lemma is presented,

Lemma 5.1 (Yang et al., 2001a) For a time-varying diagonal matrix Φ(t) =

diag{σ1(t), σ2(t), · · · , σp(t)} and two matrices R and S with appropriate dimen-

sions, if |Φ(t)| ≤ V , where V > 0 is a known diagonal matrix, then for any scalar

ε > 0, it is true that

RΦS + STΦTRT ≤ εRV RT + ε−1STV S.

Next, the following scalars is introduced which will be used in the later

development in this chapter. Ma0 = (m̌a + m̂a)�2, La = [ma − Ma0]�ma0

and Ja = (m̂a − m̌a)�(m̂a + m̌a). Thus, one has ma = Ma0(I + La) and

LT
aLa ≤ JT

a Ja ≤ I. Then, it leads to the following theorem.

Theorem 5.1 Consider the closed-loop system in (5.6). For given scalars

d̄ > 0, µ and matrices Kaj, if there exist matrices P > 0, Q > 0, S > 0,

R > 0, Nj, and Mj with appropriate dimensions and positive scalars ε1ij > 0 and
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5.3 Reliable Fuzzy Controller Design

ε2ij > 0 (i, j = 1, 2, 3, 4) such that the following LMIs hold for q = 1, 2:
Φij

11

√
d̄M Φij

13 Φij
14 Φij

15 Φ1ij
16

0 −R 0 0 0 0
0 0 −I 0 D1i 0

0 0 0 −R
√
d̄RBi 0

0 0 0 0 −ε1ijJ
−1
a 0

0 0 0 0 0 −ε1ijJ
−1
a

 < 0, (5.8)


Φij

11

√
d̄N Φij

13 Φij
14 Φij

15 Φ2ij
16

0 −R 0 0 0 0
0 0 −I 0 D1i 0

0 0 0 −R
√
d̄RBi 0

0 0 0 0 −ε2ijJ
−1
a 0

0 0 0 0 0 −ε2ijJ
−1
a

 < 0, (5.9)

[
−P

√
ρ {C2i}Tq

∗ −I

]
< 0, (5.10)

where

Φij
11 = Ξij

11 + sym (Ξ2) , Ξij
11 =

[
Θij

11 Θij
12

∗ −γ2I

]
,

Θij
11 =

 sym (PAi) +Q+ S PBiMa0Kaj 0
∗ − (1− µ)S 0
∗ ∗ −Q

 ,

Θij
12 =

 PB1i

0
0

 ,Ξ2 =
[
M N −M −N 0

]
,

Φij
13 =

[
C1i D1iMa0Kaj 0 0

]T
, Φij

15 =
[
BT

i P 0 0 0
]T

,

Φij
14 =

[ √
d̄RAi

√
d̄RBiMa0Kaj 0

√
d̄RB1i

]T
,

Φ1ij
16 =

[
0 ε1ijMa0Kaj 0 0

]T
, Φ2ij

16 =
[
0 ε2ijMa0Kaj 0 0

]T
,

M =
[
MT

1 MT
2 MT

3 MT
4

]T
, N =

[
NT

1 NT
2 NT

3 NT
4

]T
.

Furthermore,

(1) the closed-loop system is robustly asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to output constraints

(5.7) with the disturbance energy under the bound wmax = (ρ− V (0))/γ2, where

Tz1w denotes the closed-loop transfer function from the road disturbance w(t) to

the control output z1(t).
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Proof. Considering the Lyapunov-Krasovskii functional as follows:

V (t) = xT (t)Px (t) +

∫ t

t−d̄

xT (s)Qx (s) ds

+

∫ t

t−d(t)

xT (s)Sx (s) ds+

∫ 0

−d̄

∫ t

t+α

ẋT (s)Rẋ (s) dsdα. (5.11)

The derivative of V (t) along the solution of system (5.6) is expressed as

V̇ (t) ≤ 2xT (t)P ẋ (t) + xT (t) (Q+ S) x (t)

−xT
(
t− d̄

)
Qx
(
t− d̄

)
+ d̄ẋT (t)Sẋ (t)

− (1− µ)xT (t− d (t))Qx (t− d (t))

−
∫ t

t−d(t)

ẋT (s)Rẋ (s) ds−
∫ t−d(t)

t−d̄

ẋT (s)Rẋ (s) ds. (5.12)

To develop H∞ performance analysis criterion, the system (5.6) is stable with

w (t) = 0; then the H∞ performance index is satisfied. For any appropriately

dimensioned matrices M̂ and N̂ , the following equalities hold directly according

to Newton-Leibniz formula:

η1 (t) = 2ξT (t) M̂

(
x (t)− x (t− d (t))−

∫ t

t−d(t)

ẋ (s) ds

)
= 0,

η2 (t) = 2ξT (t) N̂

(
x (t− d (t))− x

(
t− d̄

)
−
∫ t−d(t)

t−d̄

ẋ (s) ds

)
= 0,

where

ξT (t) =
[
xT (t) xT (t− d (t)) xT

(
t− d̄

) ]
,

M̂ =
[
MT

1 MT
2 MT

3

]T
, N̂ =

[
NT

1 NT
2 NT

3

]T
.

Adding η1 (t) and η2 (t) into the right hand side of (5.12), the following in-
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equalities is obtained:

V̇ (t) ≤
4∑

i=1

4∑
j=1

hih
d
jξ

T (t)
[
Ξ̂ij + d (t) M̂R−1M̂T +

(
d̄− d (t)

)
N̂R−1N̂T

]
ξ (t)

−
∫ t

t−d(t)

[
ξT (t) M̂ + ẋT (s)R

]
R−1

[
M̂T ξ (t) +Rẋ (s)

]
ds

−
∫ t−d(t)

t−d̄

[
ξT (t) N̂ + ẋT (s)R

]
R−1

[
N̂T ξ (t) +Rẋ (s)

]
ds

≤
4∑

i=1

4∑
j=1

hih
d
jξ

T (t)
[
Ξ̂ij + d (t) M̂R−1M̂T +

(
d̄− d (t)

)
N̂R−1N̂T

]
ξ (t)

=
4∑

i=1

4∑
j=1

hih
d
jξ

T (t)

[
d (t)

d̄

(
Ξ̂ij + d̄M̂R−1M̂T

)
+
d̄− d (t)

d̄

(
Ξ̂ij + d̄N̂R−1N̂T

)]
ξ (t) ,

where

Ξ̂ij = Θ̂ij
11 + sym

(
Π̂2

)
+Υd̄RΥT ,

and

Π̂2 =
[
M̂ N̂ − M̂ −N̂

]
, Υ =

[
Ai BimaKaj 0

]T
,

where the matrix Θ̂ij
11 is the matrix Θij

11, where the term PBiMa0Kaj is replaced

by PBimaKaj. It is found that

Ξ̃1
ij =

 Θ̂ij
11 + sym

(
Π̂2

) √
d̄M̂

√
d̄ΥR

∗ −R 0
∗ ∗ −R


≤

 Θij
11

√
d̄M̂ Φ̃ij

14

∗ −R 0
∗ ∗ −R

+ ε−1
1ijΛ

TJaΛ + ε1ij∆Ja∆
T ,

Ξ̃2
ij =

 Θ̂ij
11 + sym

(
Π̂2

) √
d̄N̂

√
d̄ΥR

∗ −R 0
∗ ∗ −R


≤

 Θij
11

√
d̄N̂ Φ̃ij

14

∗ −R 0
∗ ∗ −R

+ ε−1
2ijΛ

TJaΛ + ε2ij∆Ja∆
T ,
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and

Φ̃ij
14 =

[ √
d̄RAi

√
d̄RBiMa0Kaj 0

]T
,

Λ =
[
BT

i P 0 0
√
d̄BT

i R 0
]
,

∆T =
[
0 Ma0Kaj 0 0 0

]
.

From (5.8)–(5.9) and according to Schur complement, Ξ̃1
ij < 0 and Ξ̃2

ij < 0 are

obtained, it is to say that

Ξ̂ij + d̄M̂R−1M̂T < 0, Ξ̂ij + d̄N̂R−1N̂T < 0.

It leads to V̇ (t) < 0, then the system in (5.6) is asymptotically stable for the

delay d (t) satisfying (5.2). Next, the H∞ performance of the system in (5.6)

is established under zero initial conditions. Firstly, the Lyapunov functional is

defined as shown in (5.11). It is not difficult to achieve:

V̇ (t) + zT1 (t)z1(t)− γ2wT (t)w(t)

≤
4∑

i=1

4∑
j=1

hih
d
j ξ̄

T (t)
[
Ξ̌ij + d (t)MR−1MT +

(
d̄− d (t)

)
NR−1NT

]
ξ̄ (t)

=
4∑

i=1

4∑
j=1

hih
d
j ξ̄

T (t)

[
d (t)

d̄

(
Ξ̌ij + d̄MR−1MT

)
+
d̄− d (t)

d̄

(
Ξ̌ij + d̄NR−1NT

)]
ξ̄ (t) ,

where

Ξ̌ij = Φ̌ij
11 + Φ̌ij

13Φ̌
ijT
13 + Φ̌ij

14Φ̌
ijT
14 , ξ̄T (t) =

[
ξT (t) wT (t)

]
,

and Φ̌ij
11, Φ̌

ij
13 and Φ̌ij

14 are the matrices Φij
11, Φ

ij
13 and Φij

14 in which the terms

PBiMa0Kaj, K
T
ajMa0D

T
1i and

√
d̄KT

ajMa0B
T
i R are replaced by the terms PBimaKaj,

KT
ajmaD

T
1i and KT

ajmaB
T
i respectively. According to Schur complement and the

above method, we develop

V̇ (t) + zT1 (t)z1(t)− γ2wT (t)w(t) < 0, (5.13)

for all nonzero w ∈ L2[0,∞). Under zero initial conditions, we have V (0) = 0 and

V (∞) ≥ 0. Integrating both sides of (5.13) yields ∥z1∥2 < γ ∥w∥2 for all nonzero

w ∈ L2[0,∞), and the H∞ performance is established.

122



5.3 Reliable Fuzzy Controller Design

In what follows, we will show that the hard constraints in (5.7) are guaranteed.

Inequality (5.13) guarantees V̇ (t) − γ2wT (t)w(t) < 0. Integrating both sides of

the above inequality from zero to any t > 0, we obtain

V (t)− V (0) < γ2

∫ t

0

wT (s)w(s)ds < γ2 ∥w∥22 . (5.14)

From the definition of the Lyapunov functional in (5.11), we obtain that xT (t)Px(t) <

ρ with ρ = γ2wmax+V (0). Similar to (Gao et al., 2010a), the following inequality

hold

max
t>0

|{z2(t)}q|2

≤ max
t>0

∥∥∥∥∥
4∑

i=1

hix
T (t){C2i}Tq {C2i}qx(t)

∥∥∥∥∥
2

= max
t>0

∥∥∥∥∥
4∑

i=1

hix
T (t)P

1
2P− 1

2{C2i}Tq {C2i}qP− 1
2P

1
2x(t)

∥∥∥∥∥
2

< ρ · θmax

(
4∑

i=1

hiP
− 1

2 {C2i}Tq {C2i}q P
− 1

2

)
, q = 1, 2,

where θmax(·) represents maximal eigenvalue. From the above inequality, it leads

to that the constraints in (5.7) are guaranteed, if

ρ ·
4∑

i=1

hiP
− 1

2 {C2i}Tq {C2i}q P
− 1

2 < I, (5.15)

which means
4∑

i=1

hi

(
ρ · P− 1

2 {C2i}Tq {C2i}q P
− 1

2 − I
)
< 0,

which is guaranteed by the feasibility of (5.10). The proof is completed. �
Remark 5.1 In this chapter, the free-weight matrices method (He et al.,

2004) has been utilized to propose the delay-dependent H∞ performance analysis

condition for the time-varying actuator delay d (t). How to develop the less

conservative condition is still a challenging research topic. The interval time-

varying delay and present less conservative results have been targeted in our

future work.
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In what follows, the reliable fuzzy H∞ controller existence condition is pre-

sented for the active suspension system in (5.6), based on reliable fuzzy H∞

performance analysis criterion in Theorem 5.1.

Theorem 5.2 Consider the closed-loop system in (5.6). For given scalars

d̄ > 0 and µ, if there exist matrices P̄ > 0, Q̄ > 0, S̄ > 0, R̄ > 0, Yaj, N̄j, and

M̄j with appropriate dimensions and positive scalars ε̄1ij > 0 and ε̄2ij > 0 (i, j =

1, 2, 3, 4) such that the following LMIs hold for q = 1, 2:
Φ̄ij

11

√
d̄M̄ Φ̄ij

13 Φ̄ij
14 Φ̄1ij

15 Φ̄ij
16

0 R̄− 2P̄ 0 0 0 0
0 0 −I 0 D1i 0

0 0 0 −R ε̄1ij
√
d̄Bi 0

0 0 0 0 −ε̄1ijJ
−1
a 0

0 0 0 0 0 −ε̄1ijJ
−1
a

 < 0, (5.16)


Φ̄ij

11

√
d̄N̄ Φ̄ij

13 Φ̄ij
14 Φ̄2ij

15 Φ̄ij
16

0 R̄− 2P̄ 0 0 0 0
0 0 −I 0 D1i 0

0 0 0 −R ε̄2ij
√
d̄Bi 0

0 0 0 0 −ε̄2ijJ
−1
a 0

0 0 0 0 0 −ε̄2ijJ
−1
a

 < 0, (5.17)

[
−P̄

√
ρP̄ {C2i}Tq

∗ −I

]
< 0, (5.18)

where

Φ̄ij
11 = Ξ̄ij

11 + sym
(
Ξ̄2

)
, Ξ̄ij

11 =

[
Θ̄ij

11 Θ̄ij
12

∗ −γ2I

]
,

Θij
11 =

 sym
(
AiP̄

)
+ Q̄+ S̄ BiYaj 0

∗ − (1− µ) S̄ 0
∗ ∗ −Q̄

 ,

Θ̄ij
12 =

 B1i

0
0

 , Ξ̄2 =
[
M̄ N̄ − M̄ −N̄ 0

]
,

Φ̄ij
13 =

[
C1iP̄ D1iYaj 0 0

]T
, Φ̄ij

16 =
[
0 Yaj 0 0

]T
,

Φ̄ij
14 =

[ √
d̄Ai

√
d̄BiYaj 0

√
d̄B1i

]T
,

Φ̄1ij
15 =

[
ε̄1ijB

T
i 0 0 0

]T
, Φ̄2ij

15 =
[
ε̄2ijB

T
i 0 0 0

]T
,

M̄ =
[
M̄T

1 M̄T
2 M̄T

3 M̄T
4

]T
, N̄ =

[
N̄T

1 N̄T
2 N̄T

3 N̄T
4

]T
.
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Then a reliable controller in the form of (5.5) exists, such that

(1) the closed-loop system is asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to output constraints

(5.7) with the disturbance energy under the bound wmax = (ρ− V (0))/γ2.

Moreover, if inequalities (5.16)–(5.18) have a feasible solution, then the control

gain Kaj in (5.5) is given by Kaj = M−1
a0 YajP̄

−1.

Proof. From
(
R̄− P̄

)
R̄−1

(
R̄− P̄

)
≥ 0, we have −P̄ R̄−1P̄ ≤ R̄− 2P̄ . After

replacing R̄ − 2P̄ in (5.16)–(5.17) with −P̄ R̄−1P̄ and performing corresponding

congruence transformation by

diag
{
P̄−1, P̄−1, P̄−1, I, P̄−1, I, R̄−1, ε̄−1

1ijI, ε̄
−1
1ijI
}
,

and by

diag
{
P̄−1, P̄−1, P̄−1, I, P̄−1, I, R̄−1, ε̄−1

2ijI, ε̄
−1
2ijI
}
,

together with the change of matrix variables defined by

P = P̄−1, R = R̄−1, Q = P̄−1Q̄P̄−1,

Kj = M−1
a0 YjP̄

−1, S = P̄−1S̄P̄−1, ε1ij = ε̄−1
1ij,

ε2 = ε̄−1
2ij, M = diag

{
P̄−1, P̄−1, P̄−1, I

}
M̄P̄−1,

N = diag
{
P̄−1, P̄−1, P̄−1, I

}
N̄P̄−1.

It is concluded that the conditions in (5.8) and (5.9) hold. On the other hand,

(5.18) is equivalent to (5.10) by performing a simple congruence transformation

with diag
{
P̄−1, I

}
. Therefore, all the conditions in Theorem 1 are satisfied. The

proof is completed. �
Remark 5.2 In the study, the conservativeness will be reduced if the matrices

Q, S, R, M andN are replaced by
∑4

i=1 hiQi,
∑4

i=1 hiSi,
∑4

i=1 hiRi,
∑4

i=1 hiMi =∑4
i=1 hi

[
MT

1i MT
2i MT

3i MT
4i

]T
and

∑4
i=1 hiNi =

∑4
i=1 hi

[
NT

1i NT
2i NT

3i NT
4i

]T
.

However, computation complexion of the existence condition in Theorem 2 of re-

liable fuzzy H∞ controller design will be increased intensively. Thus, the above

proof is employed to handle the tradeoff in this study.
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5.4 Fuzzy Controller Design

In the section, fuzzy H∞ controller design is presented for active suspension sys-

tems with actuator delay based on T-S fuzzy model method. If there is no

actuator fault in the active suspension system, then we obtain,

ẋ(t) = A (t) x (t) +B1 (t)w (t) +B (t)u (t− d (t)) ,

z1(t) = C1 (t) x(t) +D1 (t)u (t− d (t)) ,

z2(t) = C2 (t) x(t), (5.19)

Based on the above presented fuzzy modeling, the overall fuzzy model is inferred

as follows:

ẋ (t) =
4∑

i=1

hi (ξ (t)) [Aix (t) +Biu (t− d (t)) +B1iw (t)] ,

z1 (t) =
4∑

i=1

hi (ξ (t)) [C1ix (t) +Diu (t− d (t))] ,

z2 (t) =
4∑

i=1

hi (ξ (t))C2ix (t) . (5.20)

In addition, the overall fuzzy control law is represented by

u(t) =
4∑

j=1

hj(ξ (t))Ksjx(t) (5.21)

For the case of the standard controller (5.21), the closed-loop system is given by

ẋ (t) =
4∑

i=1

4∑
j=1

hih
d
j [Aix (t) +BiKsjx (t− d (t)) +B1iw (t)] ,

z1 (t) =
4∑

i=1

4∑
j=1

hih
d
j [C1ix (t) +D1iKsjx (t− d (t))] ,

z2 (t) =
4∑

i=1

hiC2ix (t) . (5.22)

By employing the similar method proposed in the previous section, the following

corollary is obtained for the fuzzy H∞ performance analysis at the context of the

system in (5.22) with actuator delay.
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Corollary 5.1 Consider the closed-loop system in (5.22). Given scalars

d̄ > 0, µ and matrices Ksj, if there exist matrices P > 0, Q > 0, S > 0, R > 0,

Nj, and Mj (j = 1, 2, 3, 4) with appropriate dimension such that the following

LMIs hold for q = 1, 2:
Φ́ij

11

√
d̄M Φ́ij

13 Φ́ij
14

0 −R 0 0
0 0 −I 0
0 0 0 −R

 < 0, (5.23)


Φ́ij

11

√
d̄N Φ́ij

13 Φ́ij
14

0 −R 0 0
0 0 −I 0
0 0 0 −R

 < 0, (5.24)

[
−P

√
ρ {C2i}Tq

∗ −I

]
< 0, (5.25)

where

Φ́ij
11 = Ξ́ij

11 + sym (Ξ2) , Ξ́
ij
11 =

[
Θ́ij

11 Θij
12

∗ −γ2I

]
,

Φ́ij
13 =

[
C1i D1iKsj 0 0

]T
,

Θ́ij
11 =

 sym (PAi) +Q+ S PBiKsj 0
∗ − (1− µ)S 0
∗ ∗ −Q

 ,

Φ́ij
14 =

[ √
d̄RAi

√
d̄RBiKsj 0

√
d̄RB1i

]T
,

Take into account the matrices Ξ2, Θ
ij
12, M and N in Theorem 5.1, we obtain,

(1) the closed-loop system is asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to output constraints

(5.7).

Similarly, the fuzzy H∞ controller design condition as below is derived from

Theorem 5.2.

Corollary 5.2 Consider the closed-loop system in (5.22). Given scalars d̄ > 0

and µ, the closed-loop system (5.6) is asymptotically stable with an H∞ distur-

bance attenuation level γ, if there exist matrices P̄ > 0, Q̄ > 0, S̄ > 0, R̄ > 0, Ysj,

N̄j, and M̄j (j = 1, 2, 3, 4) with appropriate dimensions such that the following
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LMIs hold for q = 1, 2:
Φ̀ij

11 Φ̄1ij
12 Φ̀ij

13 Φ̀ij
14

0 R̄− 2P̄ 0 0
0 0 −I 0
0 0 0 −R

 < 0, (5.26)


Φ̀ij

11 Φ̄2ij
12 Φ̀ij

13 Φ̀ij
14

0 R̄− 2P̄ 0 0
0 0 −I 0
0 0 0 −R

 < 0, (5.27)

[
−P̄

√
ρP̄ {C2i}Tq

∗ −I

]
< 0, (5.28)

where

Φ̀ij
11 = Ξ̀ij

11 + sym
(
Ξ̄2

)
, Ξ̀ij

11 =

[
Ξ̀ij
11 Θ̄ij

12

∗ −γ2I

]
,

Φ̀ij
13 =

[
C1iP̄ D1iYsj 0 0

]T
,

Θij
11 =

 sym
(
AiP̄

)
+ Q̄+ S̄ BiYsj 0

∗ − (1− µ) S̄ 0
∗ ∗ −Q̄

 ,

Φ̀ij
14 =

[ √
d̄Ai

√
d̄BiYsj 0

√
d̄B1i

]T
,

Ξ̄2, Θ̄
ij
12, M̄ and N̄ are defined in Theorem 5.2. Then a standard controller in the

form of (5.21) exists, such that

(1) the closed-loop system is asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to output constraint

(5.7).

Moreover, if inequalities (5.26)–(5.28) have a feasible solution, then the control

gain Ksj in (5.21) is given by Ksj = YsjP̄
−1.

Remark 5.3 When the derivative of d (t) is unknown, and the delay d (t)

satisfies 0 < d (t) ≤ d̄, by setting S = 0 in (5.12) and the LMIs-based conditions

in Theorems 5.1-5.2 and Corollary 5.1-5.2, the reliable fuzzy H∞ controller and

fuzzy H∞ controller can be obtained for the systems in (5.6) and (5.22) under

the condition that the actuator delay d (t) satisfies 0 < d (t) ≤ d̄ respectively.
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5.5 Case Study

The sprung mass ms (t) is assumed to set as the range [873kg, 1073kg] and the

unsprung mass mu (t) to [104kg, 124kg]. In this study, the maximum allowable

suspension stroke is set as zmax = 0.1 m with ρ = 1. For the actuator delay

d(t) = 5 + 5 sin( 1
50
) ms satisfying d̄ = 10 ms and µ = 0.1, we consider fuzzy

H∞ controller design for the uncertain active suspension systems in (5.22). By

using the convex optimization method, it is found that the minimum guaranteed

closed-loop H∞ performance index γmin is 5.3011 and the fuzzy controller gain

matrices

Ksi = 104 ×
[
−3.3260 5.6998 −2.5167 0.2824

]
, (5.29)

where i = 1, 2, 3, 4.

It is expected that the desired fuzzy H∞ controller in (5.21) with the parame-

ters in (5.29) can be designed such that: 1) the sprung mass acceleration z1(t) is

as small as possible; 2) the suspension deflection is below the maximum allowable

suspension stroke zmax = 0.1 m, which means that x1 (t) /zmax below 1; 3) the

relation dynamic tire load ktx2(t)/(ms(t) + mu(t))g < 1. We first consider the

following road disturbance (Du & Zhang, 2009) as

zr(t) = 0.0254 sin 2πt+ 0.005 sin 10.5πt+ 0.001 sin 21.5πt(m). (5.30)

According to (Du & Zhang, 2009), the road disturbance has a similar frequency as

the car body resonance frequency (1Hz) under the condition that high-frequency

disturbance is added to simulate the rough road surface. In order to carry out

the simulation for the fuzzy H∞ controller as in (5.22), the variational sprung

mass ms (t) and the variational unsprung mass mu (t) are set as: ms (t) =

973 + 100 sin(t) kg and mu (t) = 114 + 10 cos(t) kg, for deriving the fuzzy mem-

bership functional hi (ξ (t)) (i = 1, 2, 3, 4). By using the fuzzy H∞ controller

in (5.21) with the parameters in (5.29), we derive the corresponding closed-loop

fuzzy system. Fig. 5.2 depicts the responses of body vertical accelerations and

the actuator force for the open- (e.g., passive) and closed-loop (e.g., active) sys-

tems. Fig. 5.3 demonstrates the responses of suspension stroke and tire deflection

constraint for both the passive and active systems. It is observed from Fig. 5.2
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5.5 Case Study

that the proposed fuzzy H∞ control strategy reduces the sprung mass accelera-

tion significantly in comparison with the passive suspension under the same road

disturbance. The designed fuzzyH∞ controller achieve less value of the maximum

body acceleration for the active suspension system than the passive system, and

passenger acceleration in the active suspension system is reduced significantly,

which guarantees better ride comfort. In addition, it can be seen from Fig. 5.3

that , the suspension deflection constraint x1(t)/zmax < 1 and the relation dy-

namic tire load constraint ktx2(t)/(ms(t) + mu(t))g < 1 are guaranteed, which

implies that the road holding capability is ensured by the desired fuzzy controller.

These two figures confirm that the designed standard state-feedback fuzzy H∞

controller can achieve better ride comfort and road handling, and guarantee con-

straint suspension deflection for the active suspension system.
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Figure 5.2: (a) Responses of body vertical accelerations, (b) Response of active

force.

To further evaluate the effectiveness of the proposed fuzzy H∞ controller de-

sign strategy with actuator delays, the road disturbance as below is taken into

account. In the context of active suspension performance, the road disturbance

can be generally assumed as discrete events of relatively short duration and high

intensity, caused by, for example, a pronounced bump or pothole on an smooth

road surface. As (Du et al., 2008), the road surface is represented by,

zr(t) =

{
A
2
(1− cos(2πV

L
t)), if 0 ≤ t ≤ L

V
,

0, if t > L
V
,

(5.31)
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Figure 5.3: (a) Responses of suspension deflection constraint, (b) Responses of

tire stroke constraint.

where A and L are the height and the length of the bump. Assume A = 50 mm,

L = 6 m and the vehicle forward velocity as V = 35 (km/h). Fig. 5.4 illustrates

the responses to body vertical accelerations and the actuator force; Fig. 5.5

presents the responses to suspension stroke and tire deflection constraint for the

passive and active systems under the introduced road disturbance, respectively.

The simulation results convincingly demonstrate that the fuzzy H∞ controller

offers better suspension performance than the open-loop suspension system.
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Figure 5.4: (a) Responses of body vertical accelerations, (b) Response of active

force.
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Figure 5.5: (a) Responses of suspension deflection constraint, (b) Responses of

tire stroke constraint.

The effectiveness and advantages of the proposed reliable fuzzy H∞ controller

design for active suspension systems with actuator delay and fault will be demon-

strated in what follows. The parameters notation in the fuzzy H∞ controller de-

sign in the above section is applied here as well. It is assumed that there exists the

following actuator fault, namely, m̌a = 0.1, m̂a = 0.5, which implies Ma0 = 0.3

and Ja = 0.2. Based on the convex optimization method, we can obtain the

minimum guaranteed closed-loop H∞ performance index γmin is 28.6991 and the

reliable fuzzy controller gain matrices

Ka1 = 104 ×
[
4.1910 −0.9700 −2.5381 0.5713

]
,

Ka2 = 104 ×
[
4.1916 −0.9829 −2.5381 0.5711

]
,

Ka3 = 104 ×
[
4.1964 −0.9751 −2.5382 0.5706

]
,

Ka4 = 104 ×
[
4.2149 −0.9439 −2.5388 0.5701

]
. (5.32)

For two different cases of road disturbances, namely, the first case road distur-

bance is shown in (5.30) and the second case road disturbance is given in (5.31). In

Figs. 5.6–5.9, the responses to the open and closed-loop systems with the actuator

delay and fault via the standard fuzzy H∞ controller Ksi and reliable controller

Kai (i = 1, 2, 3, 4) are based on the two different types of road disturbances. These

figures show that the less value of the maximum body acceleration is achieved for
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the active suspension system, the suspension deflection constraint x1(t)/zmax < 1

is guaranteed and the relation dynamic tire load ktx2(t)/(ms(t) +mu(t))g is be-

low 1 in comparison with the passive suspension system, by utilizing the standard

fuzzy H∞ controller Ksi and reliable controller Kai (i = 1, 2, 3, 4) for three dif-

ferent types of road disturbances respectively. However, it can be observed from

Figs. 5.6 and 5.8 that the reliable fuzzy H∞ controller achieves less value of

the maximum body acceleration than the standard H∞ controller for the active

suspension system with actuator delay and fault. From Fig. 5.7 and 5.9, it can

be seen that Kai (i = 1, 2, 3, 4) is capable to provide a much more steady control

force in fault condition than conventional controller Ksi (i = 1, 2, 3, 4).
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Figure 5.6: (a) Responses of body vertical accelerations, (b) Response of active

force.

To further evaluate the suspension system performance under different fuzzy

controllers Ksi and Kai (i = 1, 2, 3, 4), the root mean square (RMS) values of the

body acceleration are exploited to demonstrate its advantages. The road distur-

bances can also be generally assumed as random vibrations, which are consistent

and typically specified as random process with a given ground displacement power

spectral density (PSD) of

Gq (n) = Gq (n0)

(
n

n0

)−c

, (5.33)

where n0 denotes the spatial frequency and n0 is the reference spatial frequency

of n0 = 0.1 (1/m); Gq (n0) is used to stand for the road roughness coefficient;
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Figure 5.7: (a) Responses of suspension deflection constraint, (b) Responses of

tire stroke constraint.
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Figure 5.8: (a) Responses of body vertical accelerations, (b) Response of active

force.
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Figure 5.9: (a) Responses of suspension deflection constraint, (b) Responses of

tire stroke constraint.

c = 2 is the road roughness constant. Related to the time frequency f , we have

f = nV with V for the vehicle forward velocity. Based on the equation (5.33),

we can obtain the PSD ground displacement:

Gq (f) = Gq (n0)n
−2
0

V

f 2
. (5.34)

Accordingly, PSD ground velocity is given by

Gq̇ (f) = (2πf)2 Gq (f) = 4πGq (n0)n
2
0V, (5.35)

which is only related to the vehicle forward velocity. When the vehicle forward

velocity is fixed, the ground velocity can be viewed as a white-noise signal. We

choose four difference road roughness Gq (n0) = 16 × 10−6 m3, 64 × 10−6 m3,

256× 10−6 m3 and 1024× 10−6 m3, which are corresponded to B Grade (Good),

C Grade (Average), D Grade (Poor) and E Grade (Very Poor) for the vehicle

forward velocity V = 35 (km/h), respectively.

RMS are strictly related to the ride comfort, which are often used to quantify

the amount of acceleration transmitted to the vehicle body. The RMS value

of variable x(t) is calculated as RMSx =
√

(1/T )
∫ T

0
xT (t)x(t)dt. In our study,

we choose T = 100 s to calculate the RMS values of the body acceleration,

suspension stroke and relative dynamics tire load for different road roughness
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coefficient Gq (n0), which are listed in Tables 5.2–5.4 by using the fuzzy controller

Ksi and reliable fuzzy controller Kai, respectively. It can be observed that these

tables indicate that the improvement in ride comfort and the satisfaction of hard

constraints can be achieved for the different load conditions by using reliable

fuzzy controller Kai compared with the fuzzy controller Ksi for the uncertain

suspension systems with actuator delay and fault.

Table 5.2: RMS body acceleration

Grade Passive systems Fuzzy Controller Reliable Fuzzy Controller

B 0.0081 0.0046 0.0041

C 0.0152 0.0092 0.0083

D 0.0284 0.0183 0.0166

E 0.0644 0.0387 0.0351

Table 5.3: RMS suspension stroke

Grade Passive systems Fuzzy Controller Reliable Fuzzy Controller

B 1.7635× 10−4 9.7651× 10−5 9.5584× 10−5

C 3.3536× 10−4 1.9626× 10−4 1.9057× 10−4

D 6.2909× 10−4 3.9088× 10−4 3.8283× 10−4

E 0.0014 8.2616× 10−4 8.0992× 10−4

Table 5.4: RMS relative dynamics tire load

Grade Passive systems Fuzzy Controller Reliable Fuzzy Controller

B 8.3596× 10−4 5.2554× 10−4 4.9612× 10−4

C 0.0016 0.0010 9.9561× 10−4

D 0.0030 0.0021 0.0020

E 0.0067 0.0044 0.0042

5.6 Summary

This chapter has investigated the problem of reliable fuzzy H∞ control for active

suspension systems with actuator delay and fault. The sprung and unsprung mass
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variations, the actuator delay and fault, and the suspension performance have all

been taken into account to construct the T-S fuzzy system for the control design

objective. Based on the PDC scheme and stability theory, the reliable fuzzy H∞

performance analysis condition has been derived for the proposed T-S fuzzy sys-

tem presenting the active suspension system with uncertainty. Then, the reliable

fuzzy H∞ controller has been designed such that the resulting closed-loop T-S

fuzzy system is asymptotically stable with H∞ performance, and simultaneously

satisfies the constraint suspension performance. A quarter-vehicle suspension

model has been used to validate the effectiveness of the proposed design method.

Simulation results have clearly demonstrated that the designed reliable fuzzy con-

troller has the capability of guaranteeing a better suspension performance under

sprung and unsprung mass variations, actuator delay and faults.

In this chapter, the standard actuator fault model has been used for this

research. It is very difficult to synthesis the controller for the Markovian jumping

fuzzy control systems. Therefore, this chapter does not exploit the more general

actuator fault model proposed in Chapter 4 to the fuzzy control design problem.

In future work, new methods will be developed to solve the controller for the

Markovian jumping fuzzy control systems.
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Chapter 6

Adaptive Sliding Mode Control

for Nonlinear Vehicle Active

Suspension Systems

6.1 Introduction

For active suspension systems, the vehicle sprung and unsprung masses vary

with the loading conditions, such as the payload and number of passengers. If

we do not take into account the variations of the vehicle sprung and unsprung

masses in the control design process, the performance of the vehicle suspension

systems will be affected. More recently, the authors in (Du et al., 2008; Gao

et al., 2006, 2010a) used the polytopic parameter uncertainties to model the

varying vehicle sprung or unsprung masses. Among (Du et al., 2008; Gao et al.,

2006), the parameter-dependent controllers have been proposed for the quarter-

car suspension systems with sprung mass variation. The parameter-independent

sampled-data H∞ control strategy has been provided in (Gao et al., 2010a) for

quarter-car suspension systems with both sprung and unsprung mass variations.

However, the active suspension system models in (Du et al., 2008; Gao et al.,

2006, 2010a) are linear and the nonlinear term caused by the actuator dynamic

which has not been considered in these references (Chen & Guo, 2005; Du &

Zhang, 2007; Du et al., 2008; Gao et al., 2006, 2010a). Thus, it is an urgent

138



6.1 Introduction

task to design the active controller for the nonlinear uncertain active suspension

systems.

For the uncertain active suspension systems, we can apply the Takagi-Sugeno

(T-S) fuzzy approach to handle the uncertainty since T-S fuzzy model is very

effective in representing complex nonlinear systems (Sugeno, 1985; Tanaka &

Wang, 2001). Since fuzzy sets were proposed by Zadeh (Zadeh, 1965), fuzzy logic

control has developed into a conspicuous and successful branch of automation

and control theory. The uncertain or nonlinear systems can be described as a

weighted sum of some simple linear subsystems by using the T-S fuzzy approach,

and thus are easily to be analyzed. Recently, many results on stability analysis

and controller synthesis problems for T-S fuzzy systems via various techniques

have been obtained during the past decades (Chen et al., 2008; Dong et al., 2009;

Dong & Yang, 2008; Feng, 2006; Lam & Narimani, 2009; Lin et al., 2007; Nguang

& Shi, 2003; Wu & Li, 2007; Zhang & Xu, 2009; Zhou et al., 2005). In particular,

for the active controller design problems, the authors in (Du & Zhang, 2009)

presented T-S model-based fuzzy control design approach for electrohydraulic

active suspension systems with input constraint.

On the other hand, it is well-known that the sliding mode control method is an

effective robust control approach for the nonlinear systems. Moreover, the sliding

mode control has received relatively much attention since it has various attractive

features such as fast response, good transient performance, order-reduction and

so on (Edwards & Spurgeon, 1998; Feng et al., 2009; Ho & Niu, 2007; Niu et al.,

2005, 2007; Utkin, 1993; Wang et al., 2009a; Yu & Kaynak, 2009). Recently,

the sliding mode controller design problems have been extensively investigated

for nonlinear suspension systems in (Al-Holou et al., 2002; Chen & Huang, 2008;

Kim & Ro, 1998; Sam et al., 2004; Yagiz & Yuksek, 2001; Yoshimura et al., 2001).

In addition, the authors in (Huang & Chen, 2006; Huang & Lin, 2003b; Yagiz

et al., 2008) considered the fuzzy sliding mode control design problems for the

suspension systems. When carrying out the sliding mode controller design for the

suspension systems, however, it can be found that the suspension performance

including ride comfort, road holding and suspension deflection, have not been fully

taken into account, which may affect the suspension performance. Furthermore,
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the uncertainty for the sprung and unsprung masses have not been considered in

the above sliding mode controller design process.

This chapter deals with the adaptive sliding mode control problem for the non-

linear active suspension systems by means of T-S fuzzy approach. The varying

sprung and unsprung masses, the unknown actuator nonlinearity and the suspen-

sion performances are taken into account simultaneously, and the corresponding

mathematical model is established. By using sector nonlinearity approach, the

T-S fuzzy model of the suspension system is developed to achieve the objective

of the sliding mode controller design. An adaptive sliding mode controller is de-

signed to guarantee the reachability of the specified switching surface. Simulation

results are provided to demonstrate the effectiveness of the proposed method.

The reminder of this chapter is organized as follows. Section 6.2 formulates

the problem to be addressed and Section 6.3 presents the adaptive fuzzy sliding

mode controller design results. We provide the simulation results in Section 6.4

and conclude the chapter in Section 6.5.

6.2 Problem Formulation

It can be found that the suspension system in (2.16) is a model containing the

sprung mass ms and the front and rear wheels unsprung masses muf and mur

vary in given ranges. In addition, when building the modeling of the suspension

systems, the actuator uncertainty should be taken into account, which can be

expressed as:

ẋ(t) = A (t)x (t) +B1 (t)w (t) +B (t) [u (t) + g (x (t))] ,

z1(t) = C1 (t)x(t) + [D1 (t) + g (x (t))]u (t) ,

z2(t) = C2 (t)x(t). (6.1)

The unknown nonlinear function g (x (t)) represents the parameter uncertainty

for the control input and satisfies the following form:

∥g (x (t))∥ ≤ δ ∥x (t)∥ (6.2)

with δ > 0 a known constant.
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The sprung mass ms, the front and rear wheels unsprung masses muf and

mur are uncertainties, which vary in a given range, i.e. ms ∈ [msmin,msmax],

muf ∈ [muf min,muf max] and mur ∈ [murmin,murmax] . This means the uncertain

mass ms is bounded by its minimum value msmin and its maximum value msmax.

In addition, the uncertain massmuf is bounded by its minimum valuemuf min and

its maximum value muf max, mur is bounded by its minimum value murmin and

its maximum value murmax. Next, we can obtain the values of 1
ms

, 1
muf

and 1
mur

from ms ∈ [msmin,msmax] , muf ∈ [muf min,muf max] and mur ∈ [murmin,murmax] .

Then we have

max
1

ms

=
1

msmin

=: m̂s, min
1

ms

=
1

msmax

=: m̌s,

max
1

muf

=
1

muf min

=: m̂uf , min
1

muf

=
1

muf max

=: m̌uf ,

max
1

mur

=
1

murmin

=: m̂ur, min
1

mur

=
1

murmax

=: m̌ur,

We can represent 1
ms

, 1
muf

and 1
mur

by

1

ms

= M1 (ξ1 (t)) m̂s +M2 (ξ1 (t)) m̌s,

1

muf

= N1 (ξ2 (t)) m̂uf +N2 (ξ2 (t)) m̌uf ,

1

mur

= O1 (ξ3 (t)) m̂ur +O2 (ξ3 (t)) m̌ur,

where ξ1 (t) =
1
ms

, ξ2 (t) =
1

muf
and ξ3 (t) =

1
mur

,

M1 (ξ1 (t)) +M2 (ξ1 (t)) = 1,

N1 (ξ2 (t)) +N2 (ξ2 (t)) = 1,

O1 (ξ3 (t)) +O2 (ξ3 (t)) = 1.

The membership functions can be calculated as

M1 (ξ1 (t)) =
1
ms

− m̌s

m̂s − m̌s

, M2 (ξ1 (t)) =
m̂s − 1

ms

m̂s − m̌s

,

N1 (ξ2 (t)) =

1
muf

− m̌uf

m̂uf − m̌uf

, N2 (ξ2 (t)) =
m̂uf − 1

muf

m̂uf − m̌uf

,

O1 (ξ3 (t)) =
1

mur
− m̌ur

m̂ur − m̌ur

, O2 (ξ3 (t)) =
m̂ur − 1

mur

m̂ur − m̌ur

.
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Table 6.1: List of Fuzzy Rules

Rule No. Premise variables

ξ1 (t) ξ2 (t) ξ3 (t)

1 Heavy Heavy Heavy

2 Heavy Light Heavy

3 Light Heavy Heavy

4 Light Light Heavy

5 Light Light Light

6 Light Heavy Light

7 Heavy Light Light

8 Heavy Heavy Light

Then, the uncertain systems in (6.1) is represented by the following fuzzy

model. Table 6.1 shows the fuzzy rules of this fuzzy systems.

Model Rule 1: IF ξ1 (t) is Heavy, ξ2 (t) is Heavy, and ξ3 (t) is Heavy,

THEN

ẋ (t) = A1x (t) +B1 [u (t) + g (x (t))] +B11w (t) ,

z1 (t) = C11x (t) +D11[u (t) + g (x (t))],

z2 (t) = C21x (t) ,

matrices A1, B1, B11, C11, D11 and C21 are obtained by replacing 1
ms

, 1
muf

and
1

mur
with matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) with m̂s, m̂uf and

m̂ur respectively.

Model Rule 2: IF ξ1 (t) is Heavy, ξ2 (t) is Light, and ξ3 (t) is Heavy,

THEN

ẋ (t) = A2x (t) +B2[u (t) + g (x (t))] +B12w (t) ,

z1 (t) = C12x (t) +D12[u (t) + g (x (t))],

z2 (t) = C22x (t) ,

matrices A2, B2, B12, C12, D12 and C22 are obtained by replacing 1
ms

, 1
muf

and
1

mur
with matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) with m̂s, m̌uf and

m̂ur respectively.
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Model Rule 3: IF ξ1 (t) is Light, ξ2 (t) is Heavy, and ξ3 (t) is Heavy,

THEN

ẋ (t) = A3x (t) +B3[u (t) + g (x (t))] +B13w (t) ,

z1 (t) = C13x (t) +D13[u (t) + g (x (t))],

z2 (t) = C23x (t) ,

matrices A3, B3, B13, C13, D13 and C23 are obtained by replacing 1
ms

, 1
muf

and
1

mur
with matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) with m̌s, m̂uf and

m̂ur respectively.

Model Rule 4: IF ξ1 (t) is Light, ξ2 (t) is Light, and ξ3 (t) is Heavy,

THEN

ẋ (t) = A4x (t) +B4[u (t) + g (x (t))] +B14w (t) ,

z1 (t) = C14x (t) +D14[u (t) + g (x (t))],

z2 (t) = C24x (t) ,

matrices A4, B4, B14, C14, D14 and C24 are obtained by replacing 1
ms

, 1
muf

and
1

mur
with matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) wit m̌s, m̌uf and

m̂ur respectively.

Model Rule 5: IF ξ1 (t) is Light, ξ2 (t) is Light, and ξ3 (t) is Light,

THEN

ẋ (t) = A5x (t) +B5[u (t) + g (x (t))] +B15w (t) ,

z1 (t) = C15x (t) +D15[u (t) + g (x (t))],

z2 (t) = C25x (t) ,

matrices A5, B5, B15, C15, D15 and C25 are obtained by replacing 1
ms

, 1
muf

and
1

mur
with matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) wit m̌s, m̌uf and

m̌ur respectively.

Model Rule 6: IF ξ1 (t) is Light, ξ2 (t) is Heavy, and ξ3 (t) is Light,

THEN

ẋ (t) = A6x (t) +B6[u (t) + g (x (t))] +B16w (t) ,

z1 (t) = C16x (t) +D16[u (t) + g (x (t))],

z2 (t) = C26x (t) ,
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matrices A6, B6, B16, C16, D16 and C26 are obtained by replacing 1
ms

, 1
muf

and
1

mur
with matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) with m̌, m̂uf and

m̌ur respectively.

Model Rule 7: IF ξ1 (t) is Heavy, ξ2 (t) is Light, and ξ3 (t) is Light,

THEN

ẋ (t) = A7x (t) +B7[u (t) + g (x (t))] +B17w (t) ,

z1 (t) = C17x (t) +D17[u (t) + g (x (t))],

z2 (t) = C27x (t) ,

matrices A7, B7, B17, C17, D17 and C27 are obtained by replacing 1
ms

, 1
muf

and
1

mur
with matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) with m̂s, m̌uf and

m̌ur respectively.

Model Rule 8: IF ξ1 (t) is Heavy, ξ2 (t) is Heavy, and ξ3 (t) is Light,

THEN

ẋ (t) = A8x (t) +B8[u (t) + g (x (t))] +B18w (t) ,

z1 (t) = C18x (t) +D18[u (t) + g (x (t))],

z2 (t) = C28x (t) ,

matrices A8, B8, B18, C18, D18 and C28 are obtained by replacing 1
ms

, 1
muf

and
1

mur
with matrices A (t) , B (t) , B1 (t) , C1 (t) , D1 (t) and C2 (t) with m̂s, m̂uf

and m̌ur respectively. By fuzzy blending, the overall fuzzy model is inferred as

follows:

ẋ (t) =
8∑

i=1

hi (ξ (t)) {Aix (t) +Bi[u (t) + g (x (t))

+B1iw (t)} ,

z1 (t) =
8∑

i=1

hi (ξ (t)) {C1ix (t) +D1i[u (t) + g (x (t))]} ,

z2 (t) =
8∑

i=1

hi (ξ (t))C2ix (t) , (6.3)
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where

h1 (ξ (t)) = M1 (ξ1 (t))×N1 (ξ2 (t))×O1 (ξ2 (t)) ,

h2 (ξ (t)) = M1 (ξ1 (t))×N2 (ξ2 (t))×O1 (ξ2 (t)) ,

h3 (ξ (t)) = M2 (ξ1 (t))×N1 (ξ2 (t))×O1 (ξ2 (t)) ,

h4 (ξ (t)) = M2 (ξ1 (t))×N2 (ξ2 (t))×O1 (ξ2 (t)) ,

h5 (ξ (t)) = M2 (ξ1 (t))×N2 (ξ2 (t))×O2 (ξ2 (t)) ,

h6 (ξ (t)) = M2 (ξ1 (t))×N1 (ξ2 (t))×O2 (ξ2 (t)) ,

h7 (ξ (t)) = M1 (ξ1 (t))×N2 (ξ2 (t))×O2 (ξ2 (t)) ,

h8 (ξ (t)) = M1 (ξ1 (t))×N1 (ξ2 (t))×O2 (ξ2 (t)) .

It is obvious that the fuzzy weighting function hi(ξ (t)) satisfies

hi (ξ (t)) ≥ 0,
8∑

i=1

hi (ξ (t)) = 1.

Remark 6.1 Since the sprung mass ms, the front and rear wheels unsprung

masses muf and mur are uncertainties, which vary in given ranges, i.e. ms ∈
[msmin,msmax], muf ∈ [muf min,muf max] and mur ∈ [murmin,murmax] . In this

study, the masses ms, muf and mur are selected constants in the given ranges.

Thus, we know that the corresponding fuzzy weighting function hi is a constant.

1

0

1 1M t
2 1M t

1 t

HeavyLight

Figure 6.1: Membership functions M1 (ξ1 (t)) and M2 (ξ1 (t))
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1
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Figure 6.2: Membership functions N1 (ξ2 (t)) and N2 (ξ2 (t))

1

0

1 3O t2 3O t

3 t

HeavyLight

Figure 6.3: Membership functions O1 (ξ3 (t)) and O2 (ξ3 (t))

6.3 Design of Adaptive Sliding Mode Controller

The control design objective for the half-vehicle active suspension system based

on T-S fuzzy model in (6.3) is to synthesize an SMC law such that the state

trajectories of (6.3) are globally driven onto (with probability 1) the specified

sliding surface. Moreover, the designing sliding motion should be asymptotically

stable.

6.3.1 Switching Surface

At the first step of design procedure, in this work, we construct integral-type

sliding surface function as follows:

s (t) = Gx (t)−
∫ t

0

G
(
Āi + B̄iK̄j

)
x (z) dz, (6.4)

where

Āi + B̄iK̄j =
8∑

i=1

8∑
j=1

hi (ξ (t))hj (ξ (t)) (Ai +BiKj) ,
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6.3 Design of Adaptive Sliding Mode Controller

G ∈ R2×8 is a constant matrix to be designed satisfying that GBi is nonsingular

and GB1i = 0 (i = 1, 2, . . . , 8) . Kj ∈ R2×8 (j = 1, 2, . . . , 8) is the state feedback

gain matrix to be designed.

Remark 6.2 Here, due to the structure of Bi and B1i, we can easily obtain the

constant matrix G to satisfy GBi is nonsingular and GB1i = 0 (i = 1, 2, . . . , 8).

The detailed method is provided in simulation part.

According to the necessary condition for the reaching of the sliding surface:

s (t) = 0 and ṡ (t) = 0. We have the following equivalent control law:

u (t) =
8∑

j=1

hj (ξ (t))Kjx (t)− g (x (t)) . (6.5)

Then, substituting (6.5) into (6.3) yields

ẋ (t) =
8∑

i=1

8∑
j=1

hi (ξ (t))hj (ξ (t)) [(Ai +BiKj) x (t)

+Biw (t)] ,

z1 (t) =
8∑

i=1

8∑
j=1

hi (ξ (t))hj (ξ (t)) (C1i +D1iKj) x (t) ,

z2 (t) =
8∑

i=1

hi (ξ (t))C2ix (t) . (6.6)

We know that the above expression (6.6) is the sliding-mode dynamics of the

fuzzy system (6.3) in the specifies switching surface s (t) = 0.

Without loss of generality, it is assumed, w ∈ L2[0,∞), and ∥w∥22 ≤ wmax <

∞. The main aim of this chapter is to design the adaptive sliding mode controller

u (t) in (6.5) such that the sliding mode is asymptotically stable and under zero

initial condition, the closed-loop system guarantees that ∥z1∥2 < γ ∥w∥2 , and the

following control output constraints are guaranteed:

|{z2(t)}q| ≤ 1, q = 1, 2, 3, 4, t > 0. (6.7)

6.3.2 Stability of Sliding Motion

In this subsection, we will analyze the asymptotic stability and H∞ performance

constraint for the sliding mode dynamic. Based on the linear matrix inequality

(LMI) method, we have the following theorem.
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6.3 Design of Adaptive Sliding Mode Controller

Theorem 6.1 For system in (6.6), i, j = 1, 2, . . . , 8 and q = 1, 2, 3, 4, if there

exist matrices P̄ > 0 and K̄j such as the following LMIs hold:

Ψii < 0, (6.8)

Ψij +Ψji < 0, i < j, (6.9)[
−P̄

√
ρP̄ {C2i}Tq

∗ −I

]
< 0, (6.10)

where

Ψij =

 sym(AiP̄ +BiK̄j) B1i P̄CT
1i + K̄T

j D
T
1i

∗ −γ2 0
∗ ∗ −I

 ,

then the sliding motion (6.6) is asymptotically stable; the performance ∥Tz1w∥∞ <

γ is minimized with the disturbance energy under the bound wmax = (ρ−V (0))/γ;

and the following control output constraints are guaranteed. Then matrix can be

obtained Kj = K̄jP̄
−1

Proof. Considering the Lyapunov-Krasovskii functional as follows:

V3 (t) = xT (t)Px (t) .

We will first establish the H∞ performance of the system in (6.6) under zero

initial conditions,

V̇3(t) + zT1 (t)z1(t)− γ2wT (t)w(t)

≤
8∑

i=1

8∑
j=1

hihj

[
xT (t) (P (Ai +BiKj)

+ (Ai +BiKj)
T P
)
x (t) + 2xT (t)PB1iw (t)

]
+

8∑
i=1

8∑
j=1

hihjx (t) (Ci +D1iKj)
T

× (Ci +D1iKj)x (t)− γ2wT (t)w(t)

=
8∑

i=1

8∑
j=1

hihj

[
xT (t) wT (t)

]
Π̂ij

[
x (t)
w (t)

]

=
[
xT (t) wT (t)

]( 8∑
i=1

h2
i Π̂ii +

7∑
i=1

8∑
j=i+1

hihj

(
Π̂ij + Π̂ji

))[ x (t)
w (t)

]
.

(6.11)
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where

Π̂ij =

 P (Ai +BiKj) + (Ai +BiKj)
T P

+(Ci +D1iKj)
T (Ci +D1iKj)

PB1i

∗ −γ2I

 .

For inequalities (6.8) and (6.9), by performing congruence transformations with

diag {P, I, I, I} (Kj = K̄jP̄
−1 and P = P̄−1) and using Shur complement, it is

derived that

V̇3(t) + zT1 (t)z1(t)− γ2wT (t)w(t) < 0, (6.12)

for all nonzero w ∈ L2[0,∞). In addition, when w (t) = 0, the derivative of V3 (t)

along the solution of the system in (6.6) is expressed as

V̇3 (t) =
8∑

i=1

8∑
j=1

hihj

[
xT (t)

(
P (Ai +BiKj) + (Ai +BiKj)

T P
)
x (t)

]
,

which means the system in (6.6) is asymptotically stable from Theorem 6.3.2.

Under zero initial conditions, we have V3(0) = 0 and V (∞) ≥ 0. Integrating

both sides of (6.12) yields ∥z1∥2 < γ ∥w∥2 for all nonzero w ∈ L2[0,∞), and

the H∞ performance is established. In the following, we will show that the

hard constraints in (6.7) can be guaranteed. Inequality (6.12) guarantees V̇3(t)−
γ2wT (t)w(t) < 0. Integrating both sides of the above inequality from zero to any

t > 0, we obtain

V3(t)− V3(0) < γ2

∫ t

0

wT (s)w(s)ds < γ2 ∥w∥22 . (6.13)

From the definition of the Lyapunov functional V3(t), we know that xT (t)Px(t) <

ρ with ρ = γ2wmax+V3(0). Similar to Gao et al. (2010a), the following inequality

holds

max
t>0

|{z2(t)}q|2

≤ max
t>0

∥∥∥∥∥
8∑

i=1

hix
T (t){C2i}Tq {C2i}qx(t)

∥∥∥∥∥
2

< ρ · θmax

(
8∑

i=1

hiP
− 1

2 {C2i}Tq {C2i}q P
− 1

2

)
,
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where q = 1, 2, 3, 4, θmax(·) represents maximal eigenvalue. From the above in-

equality, we know that the constraints in (6.7) are guaranteed, if

ρ ·
8∑

i=1

hiP
− 1

2 {C2i}Tq {C2i}q P
− 1

2 < I, (6.14)

which means
8∑

i=1

hi

(
ρ · P− 1

2 {C2i}Tq {C2i}q P
− 1

2 − I
)
< 0,

which can be guaranteed by the feasibility of the following inequality,[
−P

√
ρ {C2i}Tq

∗ −I

]
< 0, q = 1, 2, 3, 4. (6.15)

(6.10) is equivalent to (6.15) by performing a simple congruence transformation

with diag
{
P̄−1, I

}
. The proof is completed. �

6.3.3 Reachability Analysis

In this subsection, an adaptive sliding mode controller will be designed such that

the trajectory of the closed-loop system will be driven onto the sliding surface in

finite time, and thus the reachability is guaranteed.

Theorem 6.2 Consider the system in (6.3) with assumption in (6.2). Under

the following sliding mode controller

u (t) =
8∑

j=1

hjKjx (t)− ρ (t) sgn (x (t)) (6.16)

where

ρ (t) = λ+ δ ∥x (t)∥

with λ > 0 is a known small constant, the state trajectories of the system in (6.3)

will be driven onto the switching surface s (t) = 0 in finite time with probability

1.

Proof. Choosing the following Lyapunov function candidate as

V1 (t) =
1

2
sT (t)

(
8∑

i=1

hiGBi

)−1

s (t) .
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From (6.4) and (6.16), we can see that

ṡ (t) = G
8∑

i=1

hi{Aix (t) +Bi[u (t) + g (x (t))]}

−G
8∑

i=1

8∑
j=1

hihj [(Ai +BiKj)x (t)]

= G

8∑
i=1

hiBi (−ρ (t) sgn (x (t)) + g (x (t))) .

Then we have

V̇1 (t) = sT (t)

(
8∑

i=1

hiGBi

)−1

ṡ (t)

≤ −ρ (t) ∥s (t)∥1 + δ ∥s (t)∥ ∥x (t)∥

≤ −ρ (t) ∥s (t)∥+ δ ∥s (t)∥ ∥x (t)∥

= −λ ∥s (t)∥ < 0 for ∥s (t)∥ ≠ 0.

This implies that the trajectories of the system (6.3) will be globally driven onto

the specified switching surface s(t) = 0 with probability 1 in finite time. The

proof is completed. �
It is shown that the bound of g (x (t)) is required to synthesize the sliding

mode control law (6.16). In practice, it is difficult to obtain the exact knowledge

of the bound δ in practical application. In the following Theorem, an adaptive

sliding mode control law is further presented for the case when the bound is

unavailable. First, let δ̂ (t) represent the estimation of the unknown real constant

δ, then the corresponding estimation error can be given as δ̃ (t) = δ̂ (t)− δ.

Theorem 6.3 Consider the system (6.3) and suppose that the exact value of

the bound δ is unknown. If the adaptive sliding mode control law is given by

u (t) =
8∑

j=1

hjKjx (t)− ρ̂ (t) sgn (x (t)) , (6.17)

where

ρ̂ (t) = λ+ δ̂ (t) ∥x (t)∥
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and parametric updating law as

˙̂
δ (t) = η ∥s (t)∥ ∥x (t)∥

with λ > 0 and η > 0 are known small scalers, then the state trajectories of the

system (6.3) will be driven onto the switching surface s (t) = 0 with probability

1 in finite time.

Proof. Choosing the following Lyapunov function candidate as

V2 (t) =
1

2
sT (t)

(
8∑

i=1

hiGBi

)−1

s (t) +
1

2η
δ̃2 (t) ,

then we have

V̇2 (t) = sT (t)

(
8∑

i=1

hiGBi

)−1

ṡ (t) +
1

η
δ̃ (t) ˙̃δ (t)

= sT (t)

(
8∑

i=1

hiGBi

)−1( 8∑
i=1

hiGBi

)
× (−ρ̂ (t) sgn (x (t)) + g (x (t))) +

1

η
δ̃ (t) ˙̃δ (t)

≤ −ρ̂ (t) ∥s (t)∥+ δ ∥s (t)∥ ∥x (t)∥

+δ̃ (t) ∥s (t)∥ ∥x (t)∥

= −λ ∥s (t)∥ < 0 for ∥s (t)∥ ̸= 0.

This implies that the trajectories of the system (6.3) will be globally driven onto

the specified switching surface s(t) = 0 with probability 1 despite the actuator

uncertainty. The proof is completed. �

6.4 Case Study

The sprung mass ms, the front and rear unsprung masses muf and mur are as-

sumed that ms belongs to the range [621 kg 759 kg], muf belongs to the range

[39.6 kg 40.4 kg] and mur belongs to the range [44.55 kg 45.45 kg] respectively.

The problem at hand is to design an adaptive sliding mode controller such that

the sliding motion in the specified switching surface is asymptotically stable and
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satisfies the H∞ performance under the suspension constrained performance in

(6.7), and the state trajectories can be driven onto the switching surface. Choos-

ing

G =

[
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1

]
, (6.18)

which yields that GBi is nonsingular and GB1i = 0. Here, we choose ρ = 1 as

discussed in (Chen & Guo, 2005). The maximum allowable front and rear sus-

pension strokes are assumed as zf max = 0.1 m and zrmax = 0.1 m respectively. In

addition, the nonlinear term g(x(t)) is assumed as g(x(t)) = [0.5x1(t) 0.5x2(t)]
T .

By using the convex optimization to Corollary 1, the minimum guaranteed closed-

loop H∞ performance index can be computed as γmin = 5.8483 and admissible

control gain matrices are given at the next page.

To check the effectiveness of the design controller, we hope that the desired

controller to satisfy: 1) the first control output z1(t) including the heave accelera-

tion z̈c (t) and the pitch acceleration φ̈ (t) is as small as possible; 2) the suspension

deflection is below the maximum allowable suspension strokes zf max = 0.1 m and

zrmax = 0.1 m, which means that z2(t)1 < 1 and z2(t)1 < 1; 3) the controlled

output satisfies z2(t)3 < 1 and z2(t)4 < 1. In order to evaluate the suspension

characteristics with respect to ride comfort, vehicle handling, and working space

of the suspension, the variability of the road profiles is taken into account. In the

context of active suspension performance, road disturbances can be generally as-

sumed as shocks. Shocks are discrete events of relatively short duration and high

intensity, caused by, for example, a pronounced bump or pothole on an smooth

road surface. In this work, this case of road profile is considered to reveal the

transient response characteristic, which is given by

zrf (t) =

{
A
2
(1− cos(2πV

L
t)), if 0 ≤ t ≤ L

V
,

0, if t > L
V
,

(6.19)

where A and L are the height and the length of the bump. Assume A = 0.1 m,

L = 2.5 m and the vehicle forward velocity as V = 20(km/h). In this section, we

assume that the road condition zrr(t) for the rear wheel is the same as the front

wheel but with a time delay of (l1 + l2)/V .
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The switching function in (6.4) is designed as

s (t) = Gx (t)−
∫ t

0

G
8∑

i=1

8∑
j=1

hi (ξ (t))hj (ξ (t))× (Ai +BiKj)x (z) dz,

where the matrix G is given in (6.18) and the controller gain matrices Kj (j =

1, 2, . . . , 8) have been calculated. And the desired sliding mode control law in

Theorem 2 can be obtained as

u (t) =
8∑

j=1

hj (ξ (t))Kjx (t)− ρ̂ (t) sgn (x (t)) , (6.20)

where

ρ̂ (t) = 0.5 + δ̂ ∥x (t)∥

and the parametric updating law is

˙̂
δ (t) = 0.1 ∥s (t)∥ ∥x (t)∥ .

In the built T-S model, we assume that ms = 700 kg, muf = 40.4 and muf =

45, which are all within their given ranges respectively. Then, we can have the

membership functions hi(ξ (t)) (i = 1, 2, . . . , 8) Fig. 6.4–6.6 plot responses of the

heave and pitch accelerations, the front and rear suspension deflection constrains,

the relation of dynamic front and rear tire deflection constrains of the open- and

closed-loop systems under above sliding mode control law. In this chapter, we

mainly pay attention to the suspension performances such as ride comfort, vehicle

handling, and working space of the suspension. We can see from Fig. 6.4 that

an improved ride comfort has been achieved compared with the passive systems.

Furthermore, it can be seen Fig. 6.5 shows that the suspension strokes constraints

are guaranteed. It can be seen from Fig. 6.6 that the dynamic front and rear tire

stroke constrains have also been convinced. Therefore, it can be observed from

Fig. 6.4–6.6 show that an improvement in ride comfort has been made through

the designed the state feedback controller. Fig. 6.7 depicts the trajectories of the

front and rear actuator forces. Furthermore, It can observed from Fig. 6.8 and

6.9 that the sliding mode is attained in finite time. For the different membership

functions hi(ξ (t)) (i = 1, 2, . . . , 8) withms = 650 kg,muf = 40 kg andmuf = 45.2

kg, the simulation results are provided in Fig. 6.10–6.15 to further illustrate the

effectiveness of the proposed controller design method in this chapter.
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Figure 6.4: Responses of the heave accelerations and the pitch acceleration
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Figure 6.5: Responses of the front and rear suspension deflection constraints
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Figure 6.7: Responses of the dynamic front and rear actuator force
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Figure 6.10: Responses of the heave accelerations and the pitch acceleration
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Figure 6.11: Responses of the front and rear suspension deflection constraints
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Figure 6.13: Responses of the dynamic front and rear actuator force
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Figure 6.15: Trajectory of adaptive parameter
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6.5 Summary

This chapter has studied the problem of adaptive sliding mode control design for

nonlinear active suspension systems by means of T-S fuzzy approach. The cor-

responding dynamic system has been built after considering the variations of the

sprung mass, the front and rear unsprung masses, the nonlinear actuator dynamic

and the suspension performances. The adaptive sliding mode controller has been

designed to guarantee the reachability of the specified switching surface. Then, we

have developed the sufficient conditions to guarantee the asymptotical stability of

the dynamics in the specified switching surface with H∞ norm performance under

the constraints of the suspension performances. The convex optimization method

has been used to present these conditions, which has been solved by means of

the standard software. Simulation results have been provided to illustrate the

effectiveness of the proposed method.
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Chapter 7

Conclusions and Future Work

7.1 Overview

This thesis startes by considering four key contributions as the main objectives

of this research project. The first contribution is focused on robust H∞ control

for active suspension systems with actuator delay under the assumption that the

state signals are fully or partially measurable. Then, the novel state-feedback and

output-feedback controllers are designed to guarantee the stability and improve

the suspension performances of the closed-loop system. The second achievement

is to model a new type actuator fault in vehicle active suspension system and de-

sign a novel fault-tolerant controller to minimize the vertical vibrations of vehicle

body to improve the ride comfort and satisfy the road good holding and suspen-

sion deflection suspension performances. The third contribution is to propose

the fuzzy control algorithm for uncertain active suspension systems where the

uncertainties are coming from road inputs and suspension parameters. T-S fuzzy

model control method has been utilized to improve the suspension performances.

The final contribution is to investigate the adaptive sliding mode control design

problem for nonlinear vehicle active suspension systems with uncertainty under

the frame of multi-objective control. The suspension performances are considered

and the T-S fuzzy model control approach is utilized to represent the nonlinear

uncertain suspension system by T-S fuzzy system. The sliding mode controller

is designed to guarantee the stability of the system and improve the suspension

performances.
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7.2 Contributions

The thesis is mainly focused on the control design for vehicle active suspension

systems with disturbance and uncertainty. More specifically, four aspects have

been considered in details.

7.2.1 Robust H∞ Controller Design for Active Suspension

Systems with Actuator Time-varying Delay

In Chapter 3, a novel half-vehicle active suspension system with polytopic un-

certainties and actuator time-varying delay has been first modelled. Under the

assumption that the state signals are fully known, the new robust H∞ controller

has been designed for the uncertain suspension system to minimize the vertical

and longitudinal vibrations of vehicle body to improve the ride comfort, road

handling and suspension deflection performances in Chapter 3.2. The main tech-

nique used in this Chapter 3.2 was to construct a novel Lyapunov functional and

develop some novel delay-dependent stability analysis methods. In Chapter 3.3,

for the partial measurable state signals, the new type dynamic output-feedback

controller was constructed first for the active suspension systems with actuator

time-varying delays. Based on the Lyapunov stability theory, a output-feedback

H∞ controller has been designed to guarantee the closed-loop systems stability

and improve the suspension performance in Chapter 3.3.1. We can observe from

the simulation results that the improvement in suspension performance can be

achieved for the different road conditions by using the output-feedback controller

by considering actuator delay compared with the output-feedback controller with-

out considering actuator delay.

7.2.2 Fault-Tolerant H∞ Controller Design for Active Sus-

pension Systems with Actuator Faults

In Chapter 4, the fault-tolerant H∞ control problem has been studied for active

suspension systems with actuator faults. In Chapter 4.2, we formulated the active
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7.2 Contributions

suspension systems with actuator faults and proposed a novel actuator failure

process based on continuous-time homogeneous Markov jump modes. In Chapter

4.3, a novel fault-tolerant H∞ controller has been designed such that the resulting

control system is tolerant in the sense that it guarantees asymptotic stability and

H∞ performance, and simultaneously satisfies the constrained performance when

possible actuator failures exist. In Chapter 4.4, the efficiency of the developed

method has been demonstrated with a quarter-vehicle active suspension model.

7.2.3 Fuzzy Controller Design for Active Suspension Sys-

tems with Uncertainty

In Chapter 5, the fuzzy reliable H∞ control problem has been considered for

uncertain active suspension systems with actuator delay and fault based on T-S

fuzzy model approach. In Chapter 5.2, the T-S fuzzy nonlinear sector method has

been utilized to represent the uncertain active suspension systems with sprung

and unsprung mass variations, and suspension performances. In Chapter 5.3,

novel LMI-based reliable fuzzy H∞ controller existence conditions have been de-

rived for the T-S fuzzy systems with actuator faults and time-varying delay. In

Chapter 5.4, fuzzy controller has been designed to improve suspension perfor-

mances. Simulation results have been provided to illustrate the effectiveness of

the proposed approaches in Chapter 5.5.

7.2.4 Adaptive Sliding Mode Controller Design for Non-

linear Active Suspension Systems

In Chapter 6, the problem of adaptive sliding mode control has been studied

for the active suspension systems with uncertainty and nonlinearity using multi-

objective control. In Chapter 6.2, the corresponding dynamic system has been

built by considering the variations of the sprung mass, the front and rear unsprung

masses, the nonlinear actuator dynamic and the suspension performances. This

control design process is different from the existing sliding mode control methods
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as the suspension performances have been considered and the T-S fuzzy model

approach has been utilized to represent the nonlinear uncertain suspension sys-

tem. In Chapter 6.3, the sliding mode controller has been designed to guarantee

the asymptotical stability of the dynamics in the specified switching surface with

H∞ norm performance under the constraints of the suspension performances. The

convex optimization method has been used to present these conditions, which has

been solved by means of the standard software. In Chapter 6.4, simulation results

for a half-vehicle model have been provided to demonstrate the effectiveness of

the presented method.

7.3 Future Work

Related topics for future research are listed below.

7.3.1 Relaxation on Stability Analysis and Controller Syn-

thesis Conditions

In this thesis, the quadratic Lyapunov stability theory has been used to investigate

the fuzzy control problem for the active suspension systems with uncertainty. In

future work, piecewise and parameter dependent Lyapunov function methods

will be exploited to further improve the suspension performances compared with

the quadratic Lypaunov method. In addition, in order to propose more general

fuzzy control results, future work will be done without requiring that both the

T-S fuzzy model and the fuzzy controller share the same number of rules and/or

the same set of premise membership functions. Thus, it offers a greater design

flexibility for the fuzzy controller and is possible to lower the controller complexity

by employing a smaller number of rules and simple membership functions. Based

on these methods, the controller design criteria will be presented in terms of

LMIs, which can be checked efficiently by using the standard software (Matlab

LMI Control Toolbox). By utilizing Matlab simulick and M functions, simulation

results can be done to illustrate the effectiveness of the proposed fuzzy control

method.
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7.3.2 Adaptive Direct Fuzzy Control

Consider the presence of non-linearities such as a hardening spring, a quadratic

damping force and the tyre lift-off phenomenon in a real suspension system and

establish a proper nonlinear half (full)-vehicle suspension system. Fuzzy logic

systems will be used to approximate these nonlinear systems. We will develop

novel direct fuzzy backstepping control methods to handle the control design

problems for the systems.

7.3.3 LPV Gain-scheduling Control

We will present a novel LPV gain-scheduling controller design approach for non-

linear active suspension system that takes nonlinear hydraulic actuator and the

nonlinearity characteristic of the spring force, the damping force and the mass

variations into account. For the nonlinear LPV model of the system, the gain-

scheduling technique is based on the suspension deflection and the mass varia-

tions of the vehicle and parameter variations of the spring and damping elements.

Under the suspension performance constrains of suspension deflection and road

holding, the improved ride comfort can be achieved under the multi-objective

control frame. The state of the art is that the LPV control method does not

require full state feedback and it does not require severe structural assumptions

on the plant model for the novel nonlinear full-vehicle active suspension system

with hydraulic actuator.

7.3.4 Multi-objective Finite Frequency Control

The multi-objective control problem of vehicle active suspension systems with

frequency band constraints will be investigated. In previous work, the control de-

sign model is based on a quarter-vehicle suspension model. The infinite frequency

control is difficult when we consider the complex full-vehicle suspension system.

Under the frame of multi-objective control, the following infinite frequency control

design problems will be investigated.
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Based on the premise that all the state variables are online measurable, the

multi-objective state-feedback control problem will be considered for the full-

vehicle active suspension systems with frequency band constraints based on the

generalized Kalman-Yakubovich-Popov lemma. The frequency domain inequali-

ties are transformed into linear matrix inequalities, and our attention is focused

on developing methods to design a state feedback control law based on matrix

inequalities such that the resulting closed-loop system is asymptotically stable

with a prescribed level of disturbance attenuation in certain frequency domain.

Then, the finite frequency method is further developed to deal with the problem

of the full-vehicle suspension control systems with hydraulic actuator dynamic,

actuator input delay and actuator saturation. As is well known, in vehicle active

suspension systems, real hydraulic actuator dynamic, actuator input delay and

actuator saturation are important issues that need careful treatment to avoid

poor performance of the closed-loop system.

The online measurable state variables sometimes introduce higher cost and

additional complexity by measuring all the state components. In the cases where

not all the state variables can be measured on-line, output feedback control is an

alternative, which can conduct effective control according to part of the measured

state components. In other words, output feedback strategy requires less sensors,

compared with the state feedback counterparts. Considering a practical situa-

tion of active suspension systems, a dynamic output feedback controller will be

designed to match the finite frequency characteristics for the full-vehicle suspen-

sion control system. Furthermore, some infinite frequency control strategies will

be proposed to handle the full-vehicle suspension systems with hydraulic actua-

tor dynamic, actuator input delay and actuator saturation via output feedback

control approach.

7.3.5 Generalization

The proposed control objectives and control strategies should be generalized to a

number of different situations. In this thesis, the generalization for this framework

was only tested upon the quarter-vehicle and half-vehicle suspension systems. The
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effectiveness of the proposed method in this thesis should be verified in the cou-

pled states of four quarter-vehicle suspension systems and the full-vehicle suspen-

sion systems. Moreover, a hybrid model including four wheel vehicle integrated

control systems (e.g., braking and traction control systems) will be investigated

under the proposed control approaches in the future.

7.3.6 Application

This thesis develops the theoretical research to service the project (design and

control of active suspension systems for in-wheel motor electric vehicles, funded

by Protean Electric Ltd.). It should be pointed out that the proposed control

methods on the active suspension systems can be implemented in the in-wheel

motor electric vehicle active suspension systems. However, the detailed in-wheel

motor electric vehicle active suspension model and the corresponding parameters

should be known before using the proposed method to the real vehicle active

suspension system. We will collaborate with the Protean Electric Ltd to estab-

lish an in-wheel motor electric active suspension dynamic model, in which the

hydraulic actuator should be taken into account. The effect of electric current

and voltage for the active suspension system should be considered. The stabil-

ity analysis problem for this control system should be investigated and then the

control design approaches proposed in this thesis will be applied to this system.

In particular, we will collaborate with the company and evaluate the proposed

controllers on the in-wheel motor electric vehicle active suspension system.

7.4 Summary

In this dissertation, novel robust control design approaches were proposed for

vehicle active suspension systems with uncertainty. Firstly, novel state-feedback

and output-feedback controller was designed to guarantee the stability and im-

prove the suspension performances of vehicle suspension systems with actuator

time-varying delays. Secondly, a new type actuator fault model was built in vehi-

cle active suspension system and a novel tolerant-fault controller was designed to
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minimize the vertical vibrations of vehicle body to improve the ride comfort and

satisfy the road good holding and suspension deflection suspension performances.

Thirdly, novel fuzzy control algorithm was proposed for the uncertain active sus-

pension systems to improve the suspension performances. Finally, an adaptive

sliding mode controller was designed for vehicle active suspension systems with

uncertainty and nonlinearity, and the sufficient controller existence condition was

derived.
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