Bisubstrate Kinetics and Processivity Measurements on *Escherichia Coli* DNA Ligase A

Claire Louise Fraser

This thesis is submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth.

University of Portsmouth, School of Biological Sciences, IBBS Biophysics Research Laboratories, King Henry I Street, Portsmouth PO1 2DY

January 2012

Acknowledgements

I first must thank my husband Overio for his support and encouragement throughout the years. Even when he has been thousands of miles away, he has always given me the strength to continue with my Ph.D. I also want to thank my son Ben, who has been my inspiration since his arrival in 2009.

I would like to thank my Director of Studies Dr Darren Gowers, mainly for the encouragement he has given me, especially when real life has been difficult, I have always been able to depend on his understanding and support. I thank you for all the time you have dedicated to getting me to finish this thesis. Thank you for believing in me, I will always appreciate it.

There are so many others that I want to thank, my family and my friends, too many to mention. Thank you for all your advice and guidance throughout my Ph.D.

I finally thank Dr Richard Bowater and his group who kindly gave up their time and taught me how to make the Ligase I used in this thesis.

Abstract

DNA ligases are essential repair enzymes required for maintaining genomic integrity in cells. The first ligase to be discovered was *Escherichia* coli DNA ligase; a 670 amino acid, 74 kDa, NAD⁺ dependent ligase. This work reports a series of studies into the behaviour of His-tagged *E.coli* ligase.

Order-of-addition studies on singly-nicked oligoduplexes under steady state conditions revealed that ligase undergoes an obligatory off-step from the DNA after sealing a break in a phosphodiester strand before readenylation in solution. These results corroborate the findings of Lehman that a sequential model is the normal mode of Ligase operation. Ligase affinity for its substrates NAD⁺ and DNA were 3.5 μ M and 3.5 nM respectively.

Length dependency studies on singly-nicked PCR substrates revealed that when two different DNA lengths were in the same solution, the initial association rate was always faster for the longer DNA substrate. For example, 40 bp versus 902 bp gave initial rate values 0.06 nM/min (40 bp) and 0.28 nM/min (902 bp); increasing the length 22 fold increased the initial rate 4 fold. This hints that Ligase uses DNA flanking a nick to locate its specific site.

Processivity studies were achieved to determine the one- or three-dimensional pathway of Ligase using doubly-nicked DNA. Nicks were either directly repeated (on the same DNA strand) or inverted (opposite strands). Results revealed Ligase is weakly processive; 32% processive. However, when beta-clamp and gamma-loader were added to the reaction processivity significantly increased.

Contents

	PAGE
Acknowledgements	II
Abstract	III
Contents	IV
List of Figures	VII
List of Tables	IX
Abbreviations	XI
Declaration	XIV
1. Introduction	1
1.1 DNA-protein interactions	1
1.2 Target site location	2
1.2.2 Experimental methods for investigating site	6
location.	
1.3 DNA ligases	8
1.3.1 Ligase function	9
1.3.2 Ligase structure	12
1.3.3 Escherichia coli ligase	15
1.4 Beta-clamp and gamma-loader proteins	17
1.5 Purpose of this work	19
2. Materials and Methods	21
2.1 Suppliers	21
2.2 Stock solutions	21
2.3 Buffers	22

	2.4 Plasmids used in this work	24
	2.5 Microbiology techniques	26
	2.6 Preparation of plasmids	28
	2.7 Oligonucleotides used in this work	34
	2.8 Preparation of oligoduplex DNA	36
	2.9 Preparation of PCR substrates	37
	2.10 Nicking reactions on DNA substrates	41
	2.11 Preparation of enzymes	42
	2.11.1 DNA ligase	42
	2.11.2 Beta-sliding clamp	48
	2.11.3 Gamma clamp-loader complex	48
	2.11.4 BbvCI enzymes	49
	2.12 Cofactor experiments	49
	2.13 Length-dependency experiments	52
	2.14 Processivity experiments	53
	2.14.1 Ligase – sliding clamp experiments	55
	2.15 Agarose gel electrophoresis	55
	2.16 Native polyacrylamide gel electrophoresis	56
	2.17 Denaturing polyacrylamide gel electrophoresis	57
	2.18 Data analysis	58
	2.19 Samples for preliminary SAXS analysis.	59
3. Or	der-of-Addition Studies	60
	3.1 Introduction	60
	3.2 Preparing singly-nicked DNA	60
	3.3 Burst kinetic studies	63
	3.4 Cofactor studies	66

3.5 Order-of-addition studies (40 bp oligoduplex)	72
3.6 Order-of-addition studies (42 bp oligoduplex)	88
3.8 Discussion	97
4. Length Dependency Studies	99
4.1 Introduction	99
4.2 Extended method for DNA preparation	100
4.3 Length dependency competition experiments	107
4.4 Discussion	116
5. Processivity Studies	119
5.1 Introduction	119
5.2 Preparation of DNA substrates	119
5.3 Processivity results for DNA substrates containing two	125
direct repeated nicks	
5.4 Changing salt concentrations	134
5.5 Results on DNA substrates containing two inverted nicks	141
5.6 Processivity results for DNA substrates containing	145
inverted nicks	
5.7 Preliminary beta-clamp and gamma-loader experiments.	149
5.8 Discussion	152
6. Final Discussion	155
6.1 Conclusions	155
6.2 Future work	156
6.2.1 Future Publications.	157
References	165
Appendices	175

List of Figures

PAGE

Figure 1.1	Facilitated diffusion search mechanisms	4
Figure 1.2	DNA ligase three-step reaction mechanism	10
Figure 1.3	Known crystal structures of three representative DNA	13
	ligases	
Figure 1.4	Structure of Escherichia coli DNA Ligase A	16
Figure 1.5	Structure of Escherichia coli beta-clamp bound to DNA	18
Figure 1.6	Interaction between beta-clamp and ligase	20
Figure 2.1	Plasmids used in this work	25
Figure 2.2	Sequencing traces of plasmids pUC19, pL1, pL2, pL4,	31
	pL6, pL8, pL10 and pL12	
Figure 2.3	Plasmid minipreps	33
Figure 2.4	Overview of DNA fragments used	38
Figure 2.5	E.coli DNA Ligase expression clone	43
Figure 2.6	E.coli Ligase purification	44
Figure 2.7	Fractional assay of Ligase protein prep.	47
Figure 2.8	BbvCI nicking restriction enzyme	50
Figure 2.9	Typical scheme for preparation and use of singly- or	54
	doubly-nicked PCR products	
Figure 3.1	Preparation of labelled 40mer oligonucleotides	62
Figure 3.2	Burst assays to reveal amount of pre-adenylated Ligase	65
Figure 3.3	Cofactors used in this work	68
Figure 3.4	Cofactor studies on 25 µM cofactors	69
Figure 3.5	Cofactor studies on 100 µM cofactors	71
Figure 3.6	Order-of-addition	73

Figure 3.7 Timecourses on 40mer bp duplex at 100 nM DNA	75
Figure 3.8 Timecourses on 40mer bp duplex at 50 nM or 20 nM	78
DNA	
Figure 3.9 Timecourses on 40mer bp duplex at 10 nM or 8 nM DNA	79
Figure 3.10 Timecourses on 40mer bp duplex at 6 nM or 4 nM DNA	81
Figure 3.11 Timecourses on 40mer bp duplex at 2 nM or 1 nM DNA	83
Figure 3.12 Summary of results for DNA on 40 bp oligoduplex	85
Figure 3.13 Summary of results for NAD^+ on 40 bp oligoduplex	87
Figure 3.14 Lineweaver Burk plots for all 40 bp results	89
Figure 3.15 Timecourses on 42mer bp duplex	91
Figure 3.16 Summary of results for DNA on 42 bp oligoduplex	94
Figure 3.17 Summary of results for NAD^+ on 42 bp oligoduplex	95
Figure 3.18 Lineweaver Burk plots for all 42 bp results	96
Figure 4.1 Initial production of nicked PCR fragments	101
Figure 4.2 Investigating source of intermediate band contaminants	103
Figure 4.3 Polyacrylamide gel purification	106
Figure 4.4 2707 competition results	110
Figure 4.5 Competition against same DNA	112
Figure 4.6 Competition results	114
Figure 4.7 Summary of length dependency results	116
Figure 5.1 Mechanism of processivity	120
Figure 5.2 Naming convention of DNA substrates used in this chapter	122
Figure 5.3 Method for purifying DNA	124
Figure 5.4 Timecourses on 21dir or 30dir	126
Figure 5.5 Timecourses on 36dir or 40dir	129
Figure 5.6 Timecourses on 45dir or 75dir	131

Figure 5.7 Summary of results for direct repeats	133
Figure 5.8 Timecourses on 45dir or 75dir, 1 mM MgCl ₂	136
Figure 5.9 Timecourses on 45dir or 75dir, 4 mM MgCl ₂	138
Figure 5.10 Summary of results for varying salt concentrations	140
Figure 5.11 Timecourses on 24inv or 30inv	143
Figure 5.12 Timecourses on 34inv or 39inv	144
Figure 5.13 Timecourses on 69inv	146
Figure 5.14 Summary of results for inverted nick repeats	147
Figure 5.15 Timecourses for 24inv and 34inv, either top or bottom	150
strands labelled	
Figure 5.16 Ligase reaction with beta-clamp and gamma loader	151
Figure 6.1 Preliminary shape (SAXS) work on ligase, clamp and	161
ligase-clamp complex	
Figure 6.2 Making Catenanes	163

List of Tables

PAGE

Table 2.1 Biochemical stocks used in this work	22
Table 2.2 Multicomponent solutions used in this work	24
Table 2.3 Oligonucleotides used in this work	34
Table 2.4 Typical oligonucleotide 5'-labelling reaction	35
Table 2.5 Components for oligoduplex formation	36
Table 2.6 Recipes for PCR	39
Table 2.7 PCR steps and temperature profile	39
Table 2.8 Typical components for BbvCI nicking reactions	41
Table 2.9 Recipes for SDS-PAGE components	46
Table 2.10 Components of cofactor reactions	51
Table 2.11 Components of order of addition reactions	51
Table 2.12 Components of length dependency studies	52
Table 2.13 Components of processivity studies	53
Table 2.14 Components of sliding clamp studies	55
Table 2.15 Recipe for native PAGE components	56
Table 2.16 Recipes for native PAGE components	58
Table 2.17 Preliminary data from SAXS	59
Table 3.1 Results on 40 bp substrates	88
Table 4.1 Competition experiments	107

Abbreviations and notations

Units, prefixes, parameters

1D, 3D	one or three-dimensional motion
Å	Angstrom $(1 \times 10^{-10} \text{ m})$
A ₂₆₀ , A ₂₈₀	UV absorbance at 260 or 280 nm
bp	base pair(s)
Da	Daltons (kDa)
fp	fractional processivity
g	gram (mg, µg, ng)
hr, min, sec	hour(s), minutes(s), second(s)
k, k _{cat}	rate constant (s ⁻¹ , min ⁻¹)
K _d , K _m	dissociation/Michaelis constant (µM, nM)
1	litres(s) (ml, µl)
М	molar concentration (mM, μ M, nM)
psi	pounds per square inch (15 psi ~ 1 kg/cm ²)
rpm	revolutions per minute
RT	room temperature
T _m	melting temperature (50% annealing)
V _{max}	maximal enzyme velocity
Reagents	
AMPS	ammonium persulphate
BSA	bovine serum albumin
DTT	dithiothreitol
DW	distilled water (>16 MOhm)
E. coli	Escherichia Coli strain HB101
EDTA	ethylenediaminetetraacetic acid
EtBr	ethidium bromide
EtOH	ethanol
IPTG	isopropyl-β-D-thiogalactopyranoside

SDS	sodium dodecyl sulphate
TAE	Tris-acetate EDTA buffer
TBE	Tris-borate EDTA buffer
TE	Tris-EDTA buffer
TEMED N,N,N',N'	tetramethylethylenediamine
Tris	2-amino-2-hydroxymethylaminomethane
Techniques	
EMSA	electrophoretic mobility-shift assay
HPLC	high-pressure liquid chromatography
PAGE	polyacrylamide gel electrophoresis
PCR	polymerase chain reaction
Nucleic acids	
³³ P	³³ P-labelled phosphorous atom
A, T, C, G	adenine, thymine, cytosine, guanine
AMP	adenosine 5'-monophosphate
ATP	adenosine 5'-triphosphate
DNA	deoxyribonucleic acid
dNTP	deoxynucleotide triphosphate
dsDNA	double-stranded DNA
MCS	multiple-cloning site
\mathbf{NAD}^+	Nicotinamide adenine dinucleotide (oxid)
RNA	ribonucleic acid
Enzymes	
β-clamp	E.coli beta-sliding clamp
BRCT	BRCA1-C-terminal domain
HhH	Helix-turn-helix
His-tag	N-terminal polyhistidine tag
LigA	E.coli DNA ligase A
OB	oligomer binding
PNK	polynucleotide kinase
Zn	zinc finger motif

Plasmids

Details of all plasmids used in this work, including sequences, are given in the Appendices (page 175 onwards). Brief details are given below:

- pL1Plasmid with one BbvCI site cloned into the mutilple clong site of pUC19.This was used to make PCR fragments containing a single nick (Chapters 3 and 4).
- pL2, 4, 6, 8, 10, 12 Plasmids with two BbvCI sites (21, 30, 36, 40, 45, 75 b apart respectively), derived from plasmid pL1. Following PCR, each BbvCI site was cut in one strand only to give a defined DNA nick. These Ligase substrates had two directly-repeated nicks, so were termed dir substrates. These plasmids were used in processivity experiments (Chapter 5).
- pL5, 7, 9, 11, 13 Plasmids with two BbvCI sites (24, 30, 34, 39, 69 b apart respectively), derived from plasmid pL1. Following PCR, each BbvCI site was cut in one strand only to give a defined DNA nick. These Ligase substrates had two inverted repeated nicks, so were termed inv substrates. These plasmids were used in processivity experiments (Chapter 5).
- pRB20 *EcoLigA* over-expression plasmid to produce His-tagged DNA ligase. This plasmid was a kind gift from Dr Richard Bowater (UEA).

Declaration

Whilst registered as a candidate for the above degree, I have not been registered for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award.