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Abstract 

 

DNA ligases are essential repair enzymes required for maintaining genomic integrity in 

cells. The first ligase to be discovered was Escherichia coli DNA ligase; a 670 amino 

acid, 74 kDa, NAD
+
 dependent ligase. This work reports a series of studies into the 

behaviour of His-tagged E.coli ligase. 

Order-of-addition studies on singly-nicked oligoduplexes under steady state 

conditions revealed that ligase undergoes an obligatory off-step from the DNA after 

sealing a break in a phosphodiester strand before readenylation in solution. These 

results corroborate the findings of Lehman that a sequential model is the normal mode 

of Ligase operation. Ligase affinity for its substrates NAD
+
 and DNA were 3.5 µM and 

3.5 nM respectively. 

Length dependency studies on singly-nicked PCR substrates revealed that when 

two different DNA lengths were in the same solution, the initial association rate was 

always faster for the longer DNA substrate. For example, 40 bp versus 902 bp gave 

initial rate values 0.06 nM/min (40 bp) and 0.28 nM/min (902 bp); increasing the length 

22 fold increased the initial rate 4 fold. This hints that Ligase uses DNA flanking a nick 

to locate its specific site.  

Processivity studies were achieved to determine the one- or three-dimensional 

pathway of Ligase using doubly-nicked DNA. Nicks were either directly repeated (on 

the same DNA strand) or inverted (opposite strands). Results revealed Ligase is weakly 

processive; 32% processive. However, when beta-clamp and gamma-loader were added 

to the reaction processivity significantly increased. 
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