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ABSTRACT 

 

 
The concept of ranking fuzzy numbers has received significant attention from the 

research community due to its successful applications for decision making. It complements the 

decision maker exercise their subjective judgments under situations that are vague, imprecise, 

ambiguous and uncertain in nature. The literature on ranking fuzzy numbers show that 

numerous ranking methods for fuzzy numbers are established where all of them aim to correctly 

rank all sets of fuzzy numbers that mimic real decision situations such that the ranking results 

are consistent with human intuition. Nevertheless, fuzzy numbers are not easy to rank as they 

are represented by possibility distribution, which indicates that they possibly overlap with each 

other, having different shapes and being distinctive in nature. Most established ranking methods 

are capable to rank fuzzy numbers with correct ranking order such that the results are consistent 

with human intuition but there are certain circumstances where the ranking methods are 

particularly limited in ranking non – normal fuzzy numbers, non – overlapping fuzzy numbers 

and fuzzy numbers of different spreads. 

 

As overcoming these limitations is important, this study develops an intuition based 

decision methodology for ranking fuzzy numbers using centroid point and spread approaches. 

The methodology consists of ranking method for type – I fuzzy numbers, type – II fuzzy 

numbers and Z – numbers where all of them are theoretically and empirically validated. 

Theoretical validation highlights the capability of the ranking methodology to satisfy all 

established theoretical properties of ranking fuzzy quantities. On contrary, the empirical 

validation examines consistency and efficiency of the ranking methodology on ranking fuzzy 

numbers correctly such that the results are consistent with human intuition and can rank 

more than two fuzzy numbers simultaneously. Results obtained in this study justify that the 

ranking methodology not only fulfills all established theoretical properties but also ranks 

consistently and efficiently the fuzzy numbers. The ranking methodology is implemented to 

three related established case studies found in the literature of fuzzy sets where the 

methodology produces consistent and efficient results on all case studies examined. 

Therefore, based on evidence illustrated in this study, the ranking methodology serves as a 

generic decision making procedure, especially when fuzzy numbers are involved in the 

decision process. 
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CHAPTER ONE  
 
 

INTRODUCTION 
 
 

 

1.1 OVERVIEW 

 

 

Modern science is introduced in decision making environment as handling and 

solving current decision making problems are crucial and necessary. It suggests 

development or utilisation of computer or mathematical models to appropriately solve 

various decision making problems. In the literature of decision making, utilisation of 

established mathematical model to solve a decision making problem is clearly indicated 

as a much easier way than developing a mathematical model because the former involves 

only the application of a suitable established mathematical model while the latter requires 

a  novel  mathematical model development to handle the problem. Although development 

of a novel mathematical model is not easy, it suggests better quality in terms of describing 

and observing the situation than utilising the established model. 

 

As far as the current decision making environments are concerned, involvement 

of human perception in the mathematical based decision model is pointed out as one of the 

seriously considered factors in many research areas such as economic, engineering, 

artificial intelligent and socio-economic. This is because of human always involves in 

every investigation of the decision making conducted. Human perception is defined in a 

generic way as human expressions towards a situation perceived using their subjective 

judgments and preferences. Therefore, in developing an effective mathematical model 

for decision making, the model is first expected to have the capability to represent 

linguistic terms appropriately because human perception is often associated with natural 

language. Secondly, the model is anticipated to produce correct decision results such that 

the results obtained are consistent with human intuition. Nonetheless, both expectations 

are not easy to achieve as solving a human based decision making problem which is 

represented by linguistic terms using mathematical knowledge is impractical. This is due 

to the fact that one cannot solve linguistic terms as part of natural language using numbers. 
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As a  linguistic term is not easy to be interpreted using mathematical 

knowledge, a mathematical theory named fuzzy set theory is introduced as the medium of 

representation for human perception. Fuzzy set theory is a mathematical field that is 

capable to effectively deal with situations that are vague, imprecise and ambiguous in 

nature, like human decision making. It provides proper representation for the 

mathematical model in representing human perception appropriately. Since, application 

of fuzzy set theory in human decision making is relevant and suitable, this study aims 

at developing a fuzzy based mathematical decision model that is capable to well 

represent the linguistic terms and produces correct decision results such that the results 

obtained are consistent with human intuition. The model is also expected to serve as a 

generic decision model for human based decision making problems. 

 

 

1.2 THESIS ORGANISATION 

 

 

This section illustrates the overview in terms of organisation of the thesis. 

There are altogether nine chapters presented in the thesis including this chapter where 

the remaining eight chapters are described as follows. 
 

Chapter 2 discusses the literature review of the study whereby problem 

statements, objectives and significance of the study are pointed out. Chapter 3 outlines 

theoretical preliminaries of the thesis such that definitions and formulations used in this 

study are given. In Chapter 4, research methodology of this study is thoroughly discussed 

where information provided in this chapter underpins development of the methodology in 

Chapter 5, 6 and 7.  Thus,  all  discussions  in  Chapter  4,  5,  6  and  7  cover  on  the 

methodology section of the thesis. Chapter 8 focuses the implementation of the proposed 

work in solving established case studies while contributions are given in Chapter 9 

together with concluding remarks and recommendations for future work. 
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1.3 SUMMARY 

 

 

In this chapter, introductory section of thesis is provided. The thesis first 

mentions the overview on this study and this is later followed by the thesis organisation. 

In Chapter 2, the thesis discusses the literature review of this study. 
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CHAPTER TWO  

LITERATURE REVIEW 

 

 
2.1 INTRODUCTION 

 

 

This chapter illustrates details on the literature review of the thesis. It discusses 

established works found in the literature which are related to this study. The chapter starts 

its discussion with the description of basic notions of fuzzy sets which justify the 

applicability of fuzzy sets in human decision making. Then, chronological development of 

fuzzy sets tools is highlighted where overview on type – I fuzzy numbers and its 

extensions namely type – II fuzzy numbers and Z – numbers are covered. The main focus of 

this study is next addressed such that comprehensive reviews on ranking fuzzy numbers are 

provided. Two main areas of ranking fuzzy numbers namely ranking method based on 

centroid point and ranking method based on spread are thoroughly discussed in this chapter. 

Later on, more descriptions with regard to this study are underlined such as research 

problems, research questions and research objectives of this study. At the end of this 

chapter, research contribution is presented. Therefore, details on those aforementioned points 

are extensively discussed in sections and subsections of this chapter. 

 

 
2.2 NOTIONS UNDERLYING FUZZY SETS 

 

 

This section discusses the suitability and reliability of fuzzy sets when dealing with 

human decision making. In human decision making processes, natural language is often used 

as the medium of indication towards a situation perceived. This is because subjective 

perceptions expressed by humans are only appropriate when they are described using linguistic 

terms as part of natural language (Yeh et al., 2010). In research works done by Kwang & 

Lee (1999), Chen & Lu (2001), Lazzerini & Mkrtchyan (2009) and Chen & Chen (2009), 

fuzzy sets are pointed out as a suitable tool to deal with natural language. This is due to the 

fact that fuzzy sets theory underpins three basic notions namely graduality, epistemic 
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uncertainty and bipolarity factors which are capable to represent the natural language well 

(Dubois & Prade, 2012). Therefore, without loss of generality on Dubois & Prade (2012) 

investigation, descriptions of all the three notions of fuzzy sets are as follows. 

 

2.2.1 Graduality 

 

 

According to Zadeh (1965), the concept of natural language is often regarded 

as a matter of degree, including the truth. This is because natural language used by 

humans on describing a subject is distinguished by different degrees of beliefs. For 

example in the case of height of a man, if height of a man is considered as ‘tall’ with 

1.65 meters, then 1.75 meters is not regarded as ‘tall’ but is classified as ‘very tall’, 

where ‘very tall’ is another natural language used to described the height of a man. 

Utilisation of both ‘tall’ and ‘very tall’ in this case, implies that there is a transitional 

process occurs in terms of degree of belief used when information about the subject 

perceived is changed. This is expressed when degree of belief ‘tall’ decreases and 

degree of belief ‘very tall’ increases as values of height approaches 1.75 meters. The 

continuous but alternate pattern transition between these degrees of belief implies that 

natural languages conveyed by humans are gradual and not abrupt (Zadeh, 1965; Dubois 

& Prade, 2012). 

 

2.2.2 Epistemic Uncertainty 

 

 

Epistemic uncertainty of fuzzy sets is viewed as representation of incomplete 

information about a situation (Dubois, 2008). This underpins t h e  effort on gaining 

better knowledge of decision processes because natural language used in human decision 

making are sometimes incomplete (Lazzerini & Mktrchyan, 2009). Among examples of 

the decision making situations involve in this case are forecasting and group decision 

making (Chen & Chen, 2007). In representing the natural language, epistemic 

uncertainty complements the capability of membership functions of fuzzy sets so that the 

ill – known situations are represented appropriately (Dubois, 2008). 

 



6  

2.2.3 Bipolarity 

 

Bipolarity or double – sided nature refers to a process where human tend to 

follow their positive and negative attributes in decision making. This is expressed the fact 

that even if enough information about a decision is collected, human sometimes relies on 

their corresponding positive, negative or neutral effects on a situation. For example, 

options under consideration are separated based on good or bad alternatives and a 

decision is made in accordance to the strongest attribute produced by one of the 

alternatives. According to Cacioppo et al. (1997), results in cognitive psychology 

highlight the importance of bipolar reasoning in human cognitive activities. This is due to 

the fact that in multi-agent decision analysis, doubled – sided judgment are  always 

applied to solve human based decision making problems (Zhang, 1994). Moreover, 

bipolarity perspective complements the capability of membership functions in 

representing both causal relations of positive and negative attributes of a situation 

appropriately (Zhang et al., 1989; Uehara & Fujise, 1993). 

 

Even though, it is notable that human based decision making are usually 

subjective, vague and linguistically defined (natural language), basic notions of fuzzy sets 

namely the graduality, epistemic uncertainty and bipolarity prove that fuzzy sets are 

capable to represent human based decision making appropriately. 

 

2.3 DEVELOPMENT OF FUZZY SETS 

 

 
This section discusses the chronological development of fuzzy sets, specifically 

on tools used in decision making process. In section 2.2, fuzzy sets are pointed out as a 

suitable knowledge for human decision making where this is justified when basic notions 

of fuzzy sets capable to represent the natural language appropriately. Even though, fuzzy 

sets represent the natural language well, it is not easy to distinguish two or more natural 

languages used in a decision making problem as they are all defined qualitatively. Due to 

this, Zadeh (1965) suggests a quantitative definition for fuzzy sets which is well – suited 

for natural language known as fuzzy numbers. 
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In the literature of fuzzy sets, there are three kinds of fuzzy numbers found 

namely type – I fuzzy number, type – II fuzzy number and Z – number. These fuzzy 

numbers are considered in this study because they are all introduced by Zadeh. Among 

those three, a type – I fuzzy number is the most utilised fuzzy number in the literature of 

fuzzy sets followed by a type – II fuzzy number and then a Z – number. This happens 

because the chronological development of these fuzzy numbers, type – I is developed in 

1965, type – II (1975) and Z – number (2011), which affect their utilisation frequency in 

the literature of fuzzy sets. Even though there are three types of fuzzy numbers 

considered in this study, they are not utilised simultaneously in representing the natural 

language. This is because they are all different in theoretical nature, thus indicate that 

only one type of fuzzy numbers is used at one time. Therefore, with respect to all 

fuzzy numbers considered in this study and literature of fuzzy sets, details on type – I 

fuzzy numbers, type – II fuzzy numbers and Z – numbers are as follows. 

 

 

2.3.1 Type – I Fuzzy Numbers 

 

 

Type – I fuzzy number or the classical fuzzy number is the first fuzzy numbers 

introduced in the literature of fuzzy sets. In some established research studies done by 

Chen & Lu (2001), Wang et al. (2006), Thorani et al. (2012) and Yu et al. (2013), the 

term fuzzy number is used in their discussions as this is the original fuzzy number 

established in the literature of fuzzy sets. The term fuzzy number is changed into type – I 

fuzzy number only when type – II fuzzy numbers are introduced in the literature of fuzzy 

sets. This is because both type – I fuzzy numbers and type – II fuzzy numbers are 

themselves fuzzy numbers but they are differed in nature. According to Chen & Chen 

(2009), type – I fuzzy numbers consist of both membership degree and the spread 

features which are later discussed in detailed in Section 3.2 and subsection 3.5.3 

respectively, correspond to confidence level and opinion of decision makers 

respectively. Due to this, type – I fuzzy numbers are applied in many decision making 

problems such as in evaluating Taiwan’s urban public transport system performance 

(Yeh et al., 2000), evaluation of engineering consultants’ performances (Chow & Ng, 

2007), fuzzy risk analysis (Chen & Chen, 2009), selection of beneficial project 



8  

investment (Jiao et al., 2009) and solving air fighter selection problem (Vencheh 

& Mokhtarian, 2011). 

 

 

2.3.2 Type – II Fuzzy Numbers 

 

 

Type – II fuzzy number is introduced in literature of fuzzy sets by Zadeh 

(1975) as an extension of type – I fuzzy numbers to model perceptions. This is because 

the uncertainty representation of type – I fuzzy number on natural language is insufficient 

to model perception (Dereli et al., 2011). Furthermore, imprecision level about a situation 

increases when number is translated into word (natural language) and finally to 

perceptions (John & Coupland, 2009). This implies that the representation adequacy of 

type – I fuzzy numbers on uncertainty is arguable. According to Wallsten & Budescu 

(1995), there are two types of uncertainties that are related with natural language namely 

intra – personal uncertainty and inter – personal uncertainty where both uncertainties are 

viewed as a group of type – I fuzzy numbers. Among research studies utilised type – II 

fuzzy numbers in their decision making applications are Figueroa et al. (2005) in mobile 

object based control tracking, Zeng & Liu (2006) in speech database classification and 

recognition, Seremi & Montazer (2008) in selection of website structures, Own (2009) in 

pattern recognition involving medical diagnosis reasoning problem, Bajestani & Zare 

(2009) in prediction of stock market index in Taiwan and Akay et al. (2011) in selection 

of appropriate adhesive tape dispenser. Although, type – II fuzzy numbers are introduced 

to enhance type – I fuzzy numbers in modelling perceptions, they are not often used for 

decision making applications as type – II fuzzy numbers are more complex than type – I 

fuzzy numbers in nature. 
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2.3.3 Z – Numbers 

 

As compared to type – I fuzzy number and type – II fuzzy number, Z – number 

is the newest presented fuzzy numbers in the literature of fuzzy sets. Z – number is 

introduced by Zadeh (2011) as an extension of type – I fuzzy numbers but is completely 

differed from type – II fuzzy number. Even though both Z – number and type – II fuzzy 

number are extensions of type – I fuzzy numbers, the former is capable in measuring 

the reliability of the decision made as compared to the latter. Since, fuzzy numbers are 

the medium of quantitative representation for natural language, Z – number enhances 

the capability of both type – I and type – II fuzzy numbers by taking into 

account the reliability of the numbers used (Zadeh, 2011). According to Kang et al. 

(2012a), Z – number is represented by two embedded type – I fuzzy numbers where one 

of them plays the role that is similar as in subsection 2.3.1, while the other defines the 

reliability of the first one. Research on utilising Z – numbers in decision making 

applications is inadequate as compared to other fuzzy numbers, as it is a new fuzzy 

concept developed in the theory of fuzzy sets. As far as this study is concerned, only two 

decision making applications are found in literature of fuzzy sets namely the vehicle 

selection under uncertain environment (Kang et al., 2012b) and ranking of  financial 

institutes in India based on their financing technical aspect (Azadeh et al., 2013). 

 

Despite all aforementioned capabilities of fuzzy sets, in particular fuzzy 

numbers, when dealing with subjective human judgment and representing natural 

language quantitatively, it is not easy to presume one fuzzy number is greater or smaller 

than other fuzzy numbers under consideration. This is due to the fact that fuzzy numbers 

are represented by possibility distributions which indicate that they may overlap among 

them (Zimmerman, 2000; Kumar et al., 2010). This implies that each natural language 

represented by fuzzy number is hard to differentiate or distinguish, thus evaluating the 

natural language used in decision making is a difficult task. Therefore, one fundamental 

concept known as ranking fuzzy numbers (Jain, 1976) is introduced in the literature of 

fuzzy sets to solve this issue. 
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2.4 RANKING OF FUZZY NUMBERS 

 

 

This section illustrates a thorough review on ranking fuzzy numbers which 

stands as the basis in handling fuzzy numbers appropriately. It is worth mentioning 

that descriptions made in this section consider only discussions on ranking of type – I 

fuzzy numbers as discussion on ranking of type – II fuzzy numbers and Z – numbers are 

inadequate in the literature of ranking fuzzy numbers. However, this aspect can be 

disregarded given that both type – II fuzzy numbers and Z – numbers are defined as the 

extensions of type – I fuzzy numbers as discussed in Section 2.3.2 and 2.3.3. This 

indicates that details associated with ranking of type – I fuzzy numbers are applicable for 

ranking of type – II fuzzy numbers and Z – numbers. Thus, all discussions made on 

ranking fuzzy numbers, especially ranking of type – I fuzzy numbers, are also relevant for 

ranking of type – II fuzzy numbers and Z – numbers. Hence, the phrase ranking fuzzy 

numbers is used in this case as a generic phrase for ranking of type – I fuzzy 

numbers, type – II fuzzy numbers and Z – numbers. It is also worth noting here that 

several crucial terms such as embedded fuzzy numbers, spread of fuzzy numbers, 

singleton fuzzy numbers, trapezoidal fuzzy numbers, triangular fuzzy numbers, 

overlapping fuzzy numbers, non – overlapping fuzzy numbers, normal fuzzy numbers, 

non – normal fuzzy numbers, height of fuzzy numbers and  α – cuts are extensively used 

in this chapter but information with regard to them are given in detailed in Chapter 3 and 

Chapter 4.Therefore, with no loss of generality, the literature on established existing 

works of ranking fuzzy numbers are as follows. 

 

Ranking fuzzy numbers is introduced in fuzzy sets as a concept that 

determines which fuzzy number is greater when two or more fuzzy numbers are 

compared. A definition by Collan (2009) refers ranking fuzzy numbers as a process of 

comparing and organising fuzzy numbers in a specific ordering. This definition indicates 

that each fuzzy number under consideration is assigned a value whereby this value is 

used as comparing measure with other fuzzy numbers. Values obtained from each 

fuzzy number under consideration are then compared accordingly. As far as 

investigations on ranking fuzzy numbers are concerned, there are ranking methods that 

rank fuzzy numbers simultaneously (Chen & Chen, 2009) and some utilise pairwise 
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ranking (Zhang & Yu, 2010) to rank fuzzy numbers. In ranking fuzzy numbers, 

simultaneous ranking refers to the capability of ranking method to simultaneously rank 

any quantity of fuzzy numbers at one time while pairwise ranking is the capability of 

ranking method to rank only two fuzzy numbers at one time. In this case, the capability of 

ranking methods to rank more than two fuzzy numbers determines the efficiency level of 

the ranking method. Baas & Kwakernaak (1977), Jain (1978) and Dubois & Prade (1978) 

are the first research groups that explore this area whereby notions underlying ranking of 

fuzzy numbers are discussed. Then, numerous efforts on finding appropriate ranking 

fuzzy numbers methods are demonstrated. Even though, fuzzy numbers are represented 

by possibility distributions and are not easily compared (Lee et al., 1999), there are 

numerous ranking methods are presented such as ranking methods based on area 

such as ranking methods by Wang et al. (2005), Kumar et al. (2010), Chen & 

Sanguatsan (2011), and Thorani et al. (2013), ranking using centroid approach (Cheng, 

1998; Chu & Tsao, 2002; Wang & Yang (2006), Chen & Chen, 2009; Wang & Lee, 

2009; Bakar et al., 2010) and ranking methods based on distance (Yao & Wu, 2000; 

Asady & Zendehnam, 2007; Asady, 2009, Asady & Abbasbandy, 2009; Rao & Shankar, 

2013; Wang et al., 2013). Although, all aforementioned methods are of different 

perspectives, they aim to rank all types of fuzzy numbers in a correct ranking order such 

that ranking results obtained are consistent with human intuition. 

  

A comprehensive survey on ranking fuzzy numbers method is conducted by 

Wang & Kerre (2001) where categorisation of ranking fuzzy numbers methods is 

presented. According to Wang & Kerre (2001), there are three categories of ranking fuzzy 

numbers methods in the literature of fuzzy sets namely preference relation, fuzzy mean 

and spread and fuzzy scoring. Under preference relation, ranking methods presented are 

those that usually map fuzzy numbers to respective real numbers where natural ordering 

exist (Deng, 2009). Among them are preference weighting function expectations based 

ranking method (Liu & Han, 2005), utilisation of distance minimisation to ranking 

fuzzy numbers (Asady, 2011), ranking fuzzy numbers based on maximum and 

minimum sets (Chou et al., 2011), ranking fuzzy numbers using left and right transfer 

coefficient (Yu et a., 2013) and ranking based on integral value (Yu & Dat, 2014). 
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In fuzzy mean and spread, ranking methods considered usually determine 

their ranking values by computing values of mean and spread for each fuzzy numbers. 

Then, using both values, a  fuzzy number with greater mean value but lower spread 

value is ranked higher compared to other fuzzy numbers under consideration (Lee & 

Kwang, 1999). Among methods considered under this category are ranking fuzzy 

numbers based on α – cut, beliefs features and ratio between signal and noise (Chen & 

Wang, 2009), ranking based on deviation degree (Wang et al., 2009; Hajjari & 

Abbasbandy, 2011), ranking fuzzy numbers based on epsilon deviation (Yu et al., 2013). 

 

Under fuzzy scoring, ranking methods considered generally utilise 

proportional optimal, left or right scores, centroid index and area measurement techniques 

to ranking fuzzy numbers. For ranking fuzzy numbers purposes, fuzzy numbers with the 

highest ranking value using one of the aforementioned techniques is ranked higher than 

the rest of fuzzy numbers under consideration. Among ranking fuzzy numbers methods 

that are considered under this category are ranking method using lexicographic screening 

procedure (Wang et al., 2005), ranking method based radius of gyration (Wang & Lee, 

2009), ranking fuzzy numbers of different heights and spreads (Chen & Chen, 2009; 

2012), ranking method using deviation degree (Asady, 2010) and centroid – based 

technique (Xu & Wei, 2010), ranking using area on the left and right of fuzzy numbers 

(Nejad & Mashinci, 2011), ranking method based on deviation degree (Phuc et al., 2012), 

ranking based on distance from largest value of a fuzzy numbers to original point 

(Shureshjani & Darehmiraki, 2013), ranking fuzzy numbers based on ideal solution 

(Deng, 2014) and ranking using altitudinal expected score and accuracy function (Wu & 

Chiclana, 2014). The following Table 2.1 illustrates list of ranking methods with their 

respective categories. 

Table 2.1: Categorisation of Ranking Fuzzy Numbers 

Ranking Method 

Category 

Preference 

Relation 

Fuzzy Mean 

and Spread 
Fuzzy Scoring 

Fortemps & Roubens (1996)   √ 

Cross & Setnes (1998) √   

Kwang & Lee (1999)  √  

Lee (2000) √   

Kwang & Lee (2001)  √  
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Chen & Lu (2001)  √  

Facchinetti (2002)   √ 

Chen & Lu (2002)  √  

Wang et al. (2005)   √ 

Nojavan & Ghazanfari (2006) √   

Asady & Zendehnam (2007) √   

Wang & Lee (2008)    

Ramli & Mohamad (2009) √   

Chen & Chen (2009)  √ √ 

Chen et al. (2010)   √ 

Vencheh & Mokhtarian (2011)   √ 

Nejad & Mashinci (2011)   √ 

Phuc et al. (2012)   √ 

Shureshjani & Darehmiraki (2013)   √ 

Wu & Chiclana, 2014   √ 
 

‘√’ denotes as ranking method falls in this category 

 

Although, there are three main categories in term of methods in ranking fuzzy 

numbers as shown in Table 2.1, many studies in the literature of ranking fuzzy numbers 

combine more than one category in ranking fuzzy numbers. This is shown when Chen & 

Chen (2009), Nejad & Mashinchi (2011) and Yu et al. (2013) contribute their research 

works using this direction. Chen & Chen (2009) ranking method merges fuzzy scoring 

and fuzzy mean and spread categories where the method utilises defuzzified value, height 

and spread to ranking fuzzy numbers. Nejad & Mashinchi (2011) ranking method 

combines fuzzy mean and spread category and preference relation category as this 

method ranks fuzzy numbers using transfer coefficient and deviation degree. Yu et al. 

(2013) ranking method on the other hand utilises fuzzy scoring and fuzzy mean and 

spread categories as the method focusing on combinations of centroid and epsilon 

deviation degree. 

 

It is worth mentioning here that even if there are numerous methods for ranking 

fuzzy numbers are discussed in the literature of fuzzy sets, all of them posses their own 

advantages and disadvantages. In this study, the centroid point and spread are chosen as 

methods for ranking fuzzy numbers as both are capable to ranking fuzzy numbers 

correctly such that the ranking results are consistent with human intuition. Centroid, a 

defuzzification technique that transforms a fuzzy number into a crisp value, interprets a 

decision in an easy way as compared to other approaches because it provides only one 
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value to represent a fuzzy number. Apart from that, centroid point enables ranking 

methods to ranking fuzzy numbers simultaneously. Spread on the other hand captures 

decision makers’ opinions well by viewing optimistic, pessimistic and neutral decision 

makers’ viewpoints using different spreads. These justifications imply that both 

centroid point and spread methods are worth considering and discussed in this study as 

both are in line with human intuition. 

 

2.4.1 Ranking Using Centroid Point Approach 

 

 

Literature of ranking fuzzy numbers indicate that a centroid point is made up 

by horizontal – x component and vertical – y component where both are utilised to 

determine the ranking value for each fuzzy number under consideration (Wang et al., 

2005; Shieh, 2007). Values for the horizontal – x component and vertical – y component 

are calculated based values cover along the x – axis and y – axis respectively. Both values 

are then combined as the centroid point of a fuzzy number. However, in some 

exceptional cases, only the horizontal – x component is used to ranking fuzzy numbers.  
 

Research on utilising centroid point in ranking fuzzy numbers is first 

initiated by Yager (1981) where only the horizontal – x component is considered in 

the ranking formulation. In the investigation, g(x) is introduced as the weight function in 

measuring the important of x values where g(x) complements the calculation for the 

horizontal – x component. The value obtained from the process represents the ranking 

value for each fuzzy number under consideration and is used to determine the 

ordering of fuzzy numbers. According to Yager (1981) ranking method, a fuzzy 

number with the greatest horizontal – x component value among other fuzzy numbers 

under consideration is classified as the highest ranked fuzzy number. Although, 

appropriate ranking results are obtained when this method is utilised, the method 

neglects the normality (heights of fuzzy number) and convexity components of fuzzy 

numbers in the ranking formulation where both components are crucial when cases 

involving non – normal fuzzy numbers are considered (Ramli & Mohamad, 2009). 
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Effort by Yager (1981) in ranking fuzzy numbers is then continued by 

Murakami et al. (1983) where a vertical – y component is introduced for the first time 

in the literature of ranking fuzzy numbers. This component is calculated by multiplying 

the value of the horizontal – x component with function of fuzzy number and is later 

paired up with the horizontal – x component to ranking fuzzy numbers. It has to be 

noted here that the horizontal – x component is the same as in Yager (1981). According 

to Murakami et al. (1983), fuzzy numbers with greater value of horizontal – x 

component and (or) vertical – y component is ranked higher than other fuzzy numbers 

under consideration. However, this ranking method gives unreasonable ranking results 

for all cases of fuzzy numbers considered where the values obtained for the vertical 

– y component are the same for all fuzzy numbers under consideration (Bortolan & 

Degani, 1985). 

 

A different perspective from Murakami et al. (1983) point of view in 

ranking fuzzy numbers is proposed by Cheng (1998). If Murakami et al. (1983) 

ranking method considers at least one component, either horizontal – x component or 

(and) vertical – y component, then Cheng (1998) ranking method utilises both 

components in ranking fuzzy numbers. Cheng (1998) ranking method enhances 

Murakami et al. (1983) ranking method by introducing a new formulation for the 

vertical – y component as Murakami et al. (1983) vertical – y component is unable to 

differentiate each fuzzy number under consideration effectively. Cheng (1998) defines 

the vertical – y component as the inverse function of the horizontal – x component 

where the horizontal – x component is equivalent as in Yager (1981) and Murakami et 

al. (1983). 

Even if Cheng (1998) ranking method enhances Murakami et al. (1983) 

ranking method, the former produces incorrect ranking result such that the ranking result 

is inconsistent with human intuition on non – overlapping cases fuzzy numbers of 

different spreads but same height (Chu & Tsao, 2002). Therefore, Chu & Tsao (2002) 

present a novel method for ranking fuzzy numbers where it is based on the area between 

the centroid point and the point of origin. In the investigation, computational works 

for both the horizontal – x component and vertical – y component utilised in this method 

are the same as Murakami et al. (1983) and Cheng (1998) ranking methods where values 
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for both components are in this case multiplied with each other in obtaining the 

ranking values for all fuzzy numbers under consideration. 

 

A new direction of computing the centroid point is then presented by Chen 

& Chen (2003) where both formulations of horizontal – x component and vertical 

– y component are calculated using the medium curve approach. Medium curve is an 

approach of finding the median where the median is calculated based on the 

values between infimum and supremum of α – cuts of a fuzzy number. The median is 

used in this case to obtain a straight line that determines the values for both horizontal – 

x component and vertical – y component. According to Chen & Chen (2003), 

advantage of using this approach in ranking fuzzy numbers is the approach capable to 

appropriately deal with both symmetric and asymmetric fuzzy numbers. Nonetheless, 

Chen & Chen (2003) ranking method is limited to overlapping fuzzy numbers cases 

while no work on non – overlapping fuzzy numbers cases is investigated. 

 

A novel formulation of the centroid point for ranking fuzzy numbers purposes 

is presented by Wang et al. (2006) in the literature of ranking fuzzy numbers where 

both horizontal – x component and vertical – y component are introduced based on 

analytical geometric point of views (Ramli & Mohamad, 2009). In Wang et al. 

(2006) research work, Cheng (1998) and Chu & Tsao (2002) ranking methods are 

pointed out as methods that are not suitable for ranking fuzzy numbers. This is 

because Cheng’s (1998) ranking method neglects negative fuzzy numbers case as it 

only deals with positive fuzzy numbers case while Chu & Tsao (2002) ranking 

method treats mirror image cases of fuzzy numbers with equal ranking (Wang et al., 

2006). Wang et al. (2006) also proves that formulations in term of horizontal – x 

component and vertical – y component by both Cheng (1998) and Chu & Tsao (2002) 

dissatisfy their two properties of correct centroid formulations. The properties are 
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Property 1: If    and    are fuzzy numbers with their membership functions  
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Property 2: I If    and    are fuzzy numbers with their membership functions  
  
    and 

 
  
    respectively have the relation of  

  
    =  

  
   , for all     ℛ, then    (  )     (  ). 

 

In Wang et al. (2006) centroid point formulation, horizontal – x component 

is calculated by associating the height of fuzzy numbers, w. For vertical – y 

component, it is computed by finding inverse function of membership function of fuzzy 

numbers. Even if the centroid point method proposed by Wang et al. (2006) is justified 

as correct based on the two aforementioned properties, there is no evidence that 

indicates that the method is suitable for ranking fuzzy numbers. 

 

According to Shieh (2007), Wang et al.’s (2006) centroid point method is 

inappropriate for ranking fuzzy numbers as it dissatisfies the condition on computing the 

value of vertical – y component. In order to compute the vertical – y component value, the 

membership function of fuzzy numbers must always be the same even  if x – axis and y – 

axis are changed in position (Shieh, 2007). Due to this,  Shieh  (2007)  introduces  a  new  

vertical  –  y  component  for  fuzzy  numbers  the where the component is computed 

using distance of an  - cut of a fuzzy number. It is worth mentioning here that the 

horizontal – x component by Shieh (2007) is the same as Wang et al. (2006). It is proven 

by Bakar et al. (2012) that the Shieh (2007) centroid point method satisfies properties 

of correct centroid point formulation by Wang et al. (2006). 

 

Another ranking method is introduced in the literature of ranking fuzzy 

numbers where Chen & Chen (2007) incorporate the centroid point in the standard 

deviation formulation to replace the mean. In Chen & Chen (2007), fuzzy numbers 

with greater standard deviation are ranked lower than other fuzzy numbers under 

consideration. This method ranks all cases of trapezoidal fuzzy numbers appropriately but 

no discussion is made on other types of fuzzy numbers. 
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Further investigation on finding appropriate ranking fuzzy numbers method is 

conducted by Wang & Lee (2008) where Chu & Tsao’s (2002) ranking method on area 

between centroid and original point is enhanced. Using the same viewpoint as 

Murakami et al. (1983), Wang & Lee (2008) also considers the horizontal – x component 

as a more important component than vertical – y component in ranking fuzzy 

numbers. This is because multiplication process between the horizontal – x component 

and vertical – y component by Chu & Tsao (2002) reduces the importance of the 

horizontal – x component when ranking fuzzy numbers. 

 

A wide – range study on the development of ranking of fuzzy numbers based 

on the centroid point method is thoroughly prepared by Ramli & Mohamad (2009) where 

the study investigates the advantages and weaknesses of all centroid point based 

methods in the literature of ranking fuzzy numbers. In Ramli & Mohamad (2009), 

ranking methods by Yager (1981), Murakami et al. (1983), Chen & Chen (2003), Wang 

et al. (2006), Shieh (2007) and Wang & Lee (2008) are explicitly discussed. Nonetheless, 

no ranking method is introduced by Ramli & Mohamad (2009). In a research work done 

by Chen & Chen (2009), twelve benchmarking examples of fuzzy numbers that mimic 

real world situations are introduced. Using these benchmarking examples, many 

drawbacks by previous established work are discovered. Among them are ranking 

methods by Yager (1981) and Murakami et al. (1983) where both ranking methods treat 

embedded or fully overlapped fuzzy numbers of different spreads as equal ranking and 

are unable to calculate ranking value for singleton fuzzy numbers. Limitations of 

Cheng (1998), Chu & Tsao (2002), Chen & Chen (2007) ranking methods are also 

mentioned in Chen & Chen (2009).  Another improvement of Chu & Tsao (2002) is 

introduced by Xu & Wei (2010) where the ranking method ranks symmetrical 

fuzzy numbers with the same centroid point appropriately and solves Cheng (1998) 

problem on ranking fuzzy numbers with their images well. 

 

Later on, Dat et al. (2012) apply Shieh (2007) centroid point formulation to 

rank fuzzy numbers. In the study by Dat et al. (2012), all cases of fuzzy numbers are 

correctly ranked such that the ranking results are consistent with human intuition. 

However, in a research work by Bakar & Gegov (2014), drawback of Dat et al. (2012) 
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work on ranking embedded fuzzy numbers is discovered. In order to rank two 

embedded symmetrical fuzzy numbers of same shape but different spread, Dat et al. 

(2012) ranking method gives both fuzzy numbers with equal ranking values. The result is 

considered to be misleading as fuzzy numbers examined are not the same. 

 

With respects to all ranking methods using centroid points mentioned above, it 

is noticeable that every ranking method performs its own advantages and weaknesses. It 

is also found that along with discussions made in this subsection, no single method 

which utilises centroid point is capable to rank all cases of fuzzy numbers 

appropriately. Hence, this study suggests that centroid point needs at least a 

complementary approach to ranking fuzzy numbers correctly such that the ranking results 

are consistent with human intuition. As far as research in ranking fuzzy numbers are 

concerned, a fuzzy number is ranked higher than other fuzzy numbers under 

consideration when it has the larger mean and lower spread values (Lee et al., 1999; 

Chu & Tsao, 2002; Chen & Chen, 2009). This indicates that the spread is suitable in 

complementing the centroid point in ranking fuzzy numbers. Therefore, in the 

following subsection, discussions on the utilisation of the spread method in ranking 

fuzzy numbers are reviewed. 

 

2.4.2 Ranking Using Spread Approach 

 

 

Spread in the literature of ranking fuzzy numbers is first proposed by Chen & 

Lu (2001) whereby it is defined based on total dominance of a fuzzy number. In Chen & 

Lu (2001) ranking method, an area dominance based approach is utilised where spreads 

of fuzzy numbers are calculated in determining the total dominance of fuzzy 

numbers. Total dominance of fuzzy numbers in this case reflects as the ranking value 

for each fuzzy number under consideration. According to Chen & Lu (2001), 

computation of the total dominance of fuzzy numbers is evaluated in accordance to 

decision maker’s index of optimism which are classified into three namely 

pessimistic, optimistic and neutral. Using this method, large index of optimism implies 

that right area dominance is more important than area dominance on the left and vice 

versa. It is worth mentioning here that Chen & Lu’s (2001) ranking method is 
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capable to appropriately rank embedded fuzzy numbers and non – overlapping fuzzy 

numbers cases but gives incorrect ranking results such that the results are 

inconsistent with human intuition for non – normal fuzzy numbers. 

 

Chen & Lu (2002) gives another version of spread based – ranking method 

where the spread in this case is defined using both indices of quantity and quality aspects 

of a fuzzy number. Quantity index refers to dominance value of a fuzzy number which is 

expressed using α – cuts while quality index is signified by the ratio of signal and 

noise which is represented by midpoint and spreads of each α – cuts respectively (Chen 

& Lu, 202). According to Chen & Lu (2002), if a fuzzy number is described with 

stronger signal but weaker noise than other fuzzy numbers under consideration, then 

the fuzzy number is ranked higher than the others. Utilisation of various α – cuts in 

addressing the quality aspect of fuzzy numbers by Chen & Lu (2002), complements 

the ordering of fuzzy numbers where each fuzzy number is ranked by aggregating 

both quantity and quality aspects of a fuzzy number. It has to be noted that the ranking 

method by Chen & Lu (2002) is capable to rank many types of fuzzy numbers 

appropriately but discussion on non – normal fuzzy numbers is again neglected. 

 

A different viewpoint in terms of formulation for the spread is introduced by 

Chen & Chen (2007) in ranking fuzzy numbers. According to Chen & Chen (2007), 

spread is defined as a standard deviation between the mean and points along the x – axis 

of a fuzzy number. Another research work by Chen & Chen (2009), same spread 

formulation as Chen & Chen (2007) method is used for ranking fuzzy numbers. Chen 

& Chen (2009) apply their ranking method on risk analysis problem but the ranking 

method produces incorrect ranking order such that the ranking result is inconsistent 

with human intuition on embedded fuzzy numbers of different spread. This is 

because Chen & Chen (2009) ranking method considers the spread as a component 

that is not as important as the centroid point and the height when ranking fuzzy 

numbers. A different direction on utilising the spread in ranking fuzzy numbers is 

prepared by Yu et al. (2013) where the ranking method also treats the spread as 

unimportant factor in ranking fuzzy numbers compared to centroid point. However, in 

Yu et al. (2013) investigation, the spread method is utilised when the centroid point gives 



21  

incorrect ranking results such that the ranking results are inconsistent with intuition on 

cases of fuzzy numbers observed. 

 

Although, literature on the spread of fuzzy numbers in ranking method is not 

as extensive as the centroid point, the spread is crucial whene cases of fuzzy numbers 

are unsolved by the centroid point (Yu et al., 2013). Table 2.2 outlines summary of 

ranking methods that utilise centroid point and spread components. 

 

Table 2.2: Summary of Components Used In Ranking Fuzzy Numbers Methods 

 

Ranking Method    
Component  

 Horizontal – x Vertical - y Spread 

Yager (1981) √   
Murakami et. al (1983) √ √  
Cross & Setnes (1998) 

Cheng (1998)   √ 

Chen & Lu (2001)   √ 

Chen & Lu (2002) 

Chu & Tsao (2002)  √  
Chen & Chen (2003)  √  
Deng & Liu (2005)  √  
Wang et. al (2006)  √  
Shieh (2007)  √  
Chen & Chen (2007)  √ √ 

Wang & Lee (2008)  √  
Ramli & Mohamad (2009) 

Chen & Chen (2009) √  √ 

Bakar et al. (2010) √ √  
Xu &Wei (2010)  √  
Bakar et al.(2012) √ √ √ 

Dat et al. (2012) √ √  
Yu et al. (2013) √  √ 

Zhang et al. (2014) √  √ 

Bakar & Gegov (2014) √ √ √ 
 

Note: ‘√’indicates component is used by given ranking method. 
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2.5 RESEARCH PROBLEMS  

 

 

This section discusses research problems of this study. It covers gaps and 

limitations faced by established ranking methods when ranking fuzzy numbers. The 

following details signify gaps and limitations of the established methods in the literature 

of ranking fuzzy numbers. 

 

The first main gap in the literature of ranking fuzzy numbers is the incapability 

of ranking methods on ranking some cases of fuzzy numbers appropriately. Cheng’s 

(1998) ranking method is incapable to rank singleton fuzzy numbers as the method only 

takes into account fuzzy numbers with area such as triangular and trapezoidal fuzzy 

numbers. Hence, there is no ranking result obtained for singleton fuzzy numbers 

when Cheng (1998) ranking method is used. Another drawback by Cheng (1998) 

ranking method is the method distinguishes embedded fuzzy numbers of different 

spreads with incorrect result such that the ranking result is inconsistent with human 

intuition because this method only considers fuzzy numbers with same spread. Apart 

from Cheng (1998), Chen & Lu (2001) ranking method is found out to have limitation 

on appropriately ranking fuzzy numbers of non – normal as the method considers only 

fuzzy numbers which are normal. A different weakness is found in Chu & Tsao (2002) 

ranking method where this method is unable to treat singleton fuzzy numbers well and 

provides incorrect ranking order such that the ranking result is inconsistent with 

human intuition for most cases of embedded fuzzy numbers. A crucial decision making 

problem is not covered by Cheng (1998), Chu & Tsao (2002) and Wang et al. (2006) 

where all of them neglect negative fuzzy numbers in their analyses. Chen & Chen 

(2009), Bakar et al. (2010) and Dat et al. (2012) give incorrect ranking order such that 

the ranking result is inconsistent with human intuition on embedded fuzzy numbers of 

different shapes and spreads. 

 

The second main gap in the literature of ranking fuzzy numbers is there are 

some established ranking methods that are not applicable to solve decision making 

problems. With regards to discussions made on the first gap in terms of ranking fuzzy 

numbers, it is worth considering that some of the aforementioned ranking methods are 
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capable to deal with real decision making problems appropriately while some provide 

inappropriate results. This is due to the fact that every ranking method has their own 

strength and weaknesses when dealing with fuzzy numbers. Thus, capabilities of each 

ranking method introduced in solving real decision making problems are vary from one to 

another. 

 

Though the literature of ranking fuzzy numbers indicates that methods for 

ranking fuzzy numbers is extensive, gaps and limitations faced by established 

research works are still unsolved. Therefore, this study is carried out to solve these 

limitations appropriately. 

 

2.6 RESEARCH QUESTIONS 

 

 

This section lists relevant research questions based on research problems 

mentioned in Section 2.5 shown as follows. 

 

a) Is there any established ranking method that integrates centroid point and 

spread in their formulation which is capable to correctly rank all types of fuzzy 

numbers such that the ranking results are consistent with human intuition? 

 

b) Is there any established ranking method in literature of ranking fuzzy numbers 

which is capable to produce correct ranking results such that the ranking results 

are consistent with human intuition for every type of fuzzy numbers 

considered in literature, and efficiently rank more than two fuzzy numbers 

at one time or simultaneously? 

 

c) Is there any established ranking method in literature of ranking fuzzy numbers 

which is capable to consistently and efficiently solving real decision making 

problem correctly such that the results are consistent with human intuition? 
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2.7 RESEARCH OBJECTIVES 

 

 

This study embarks on the following objectives which are in accordance with Section 2.6. 

 

 

a) To develop a methodology for ranking type – I fuzzy numbers based on 

centroid point and spread. 

 

b) To extend the methodology for ranking type – I fuzzy numbers based on 

centroid point and spread on ranking type – II fuzzy number and Z – numbers. 

 

c) To validate the consistency and efficiency of the methodology for ranking type 

– I fuzzy numbers based on centroid point and spread, its extension on ranking 

type – II fuzzy number and Z – numbers theoretically and empirically.  

 
d) To develop theoretical properties and benchmark test sets for Z – numbers. 

 

e) To apply the methodology for ranking type – I fuzzy numbers based on 

centroid point and spread, its extension on ranking type – II fuzzy number and 

Z – numbers to established decision – making case studies in the literature of 

fuzzy sets. 

 

2.8 RESEARCH CONTRIBUTIONS 

 

 

This section points out the main contribution of this study, especially in 

ranking fuzzy numbers. There are three main contributions displayed by this study 

where all of them are based on Section 2.7 and are described as follows. 

The first main contribution of this study is that the development of 

methodology for ranking fuzzy numbers based on centroid point and spread is proposed 

to solve gaps and limitations by established works as mentioned in section 2.5. 

Development work on the ranking method is validated using established benchmarking 

examples of fuzzy numbers, namely overlapping and non – overlapping fuzzy numbers, 

embedded and trivial cases of fuzzy numbers. This ensures that the ranking method 
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proposed ranks fuzzy numbers correctly such that the ranking results are consistent with 

human intuition. 

 

The second contribution of this study is that the suggested ranking method in 

the first highlight is extended to a methodology for ranking fuzzy numbers. This 

extension points out in this study to illustrate the significant capability of the 

suggested work to ranking other types of fuzzy numbers. The methodology is 

examined in terms of its consistency and efficiency to ranking fuzzy numbers using 

both theoretical and empirical validations. 

 

The third contribution of this study is that the methodology suggested in 

the second significant is applied to solve real decision making case studies in the 

literature of fuzzy sets. These implementations are necessary as in fuzzy decision making 

environment, fuzzy numbers are utilised as data representation. Thus, this indicates that 

the proposed ranking method is introduced not only to rank fuzzy numbers but able to 

solve decision making problems. 

 

2.9 SUMMARY 

 

 

In this chapter, a literature review with regards to this study is presented. 

Notions underlying fuzzy sets are first discussed in this chapter and this is followed 

by developments of fuzzy sets. Literature on ranking fuzzy numbers is then reviewed 

whereby thorough reviews on centroid point based ranking method and ranking method 

based on spread are explicitly illustrated. Later on, the research problem, research 

objectives and research highlights are presented such that all of them are gaps, targets 

and contributions by this study respectively. In Chapter 3, the thesis discusses the 

theoretical preliminaries of this study. 
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CHAPTER THREE 

THEORETICAL PRELIMINARIES 

 

 
 

3.1 INTRODUCTION 

 

 

This chapter illustrates theoretical preliminaries of the thesis. It discusses fuzzy 

concepts and terminology used throughout the thesis where some of the concepts are 

defined using definitions by the experts while the remaining concepts are provided with 

theoretical proves. Details on those aforementioned points are intensively discussed in 

sections and subsections provided in this chapter. 

 

3.2 BASIC UNDERSTANDING OF FUZZY SET 

 

 

Many research articles in the literature of decision making indicate that 

the classical set theory serves as a useful tool in solving decision making problems. It 

defines the membership degree of elements in a set using binary representation of 0 

and 1 to indicate whether an element is not a member and a member of a set 

respectively. If weather condition for today is considered as an example, then today 

weather is either ‘hot’ or ‘not hot’ when the classical sets are used. However, 

consideration only to two binary terms by classical sets is inadequate as human 

perceptions are vary among people, as different people employ different types of 

perceptions which are vague and fuzzy (Cheng, 1998). 

 

Due to the limitation of the classical sets, fuzzy sets theory is introduced in 

decision making environment as dealing with situations that are fuzzy in nature is 

important. In contrast with classical sets, fuzzy sets theory allows gradual assessments 

of an element’s degree of belongingness in the interval of 0 and 1 where these values 

indicate variation in terms of human perceptions about a situation perceived. 

Using definition by Cheng (1998), definition of fuzzy sets is given as follows. 

 

http://en.wikipedia.org/wiki/Set_theory
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Definition 3.1 (Cheng, 1998) A fuzzy set Ai in a universe of discourse U is characterized 

by a membership function  x
iA  which maps each element x in U such that x is real 

number in the interval [0, 1]. 

 

Membership function for Ai,  x
iA  is given as 

 
 

                                         
  
( )    [ , ]                                                                 (3.1) 

 

 

 

  

 

 

     

 

                                                                                                                  . 

Fig 3.1: Membership function of a fuzzy set 
 

 

Equation (3.1) and Figure (3.1) indicate that value of membership degree 

of fuzzy set is defined within interval [0, 1]. For instance, if  xhot  is defined as 

membership function of ‘hot’ as weather condition for today and the membership value is 

approaching  0, then x is closer to ‘not hot’ or ‘very hot’. In contrary, x is closer to ‘hot’ 

when the membership value is approaching 1. The following Table 3.1 illustrates 

differences between classical set theory and fuzzy set theory. 

Table 3.1: Differences between classical sets and fuzzy sets theories 
 

Theory Representation Membership degree 

Classical Binary 0 and 1 

Fuzzy Gradual [0, 1] 

  

  

 
  
( ) 
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3.2.1 Basic Fuzzy Sets Operations 

 
There are three basic operations of fuzzy sets defined in the literature of 

fuzzy sets namely fuzzy union, fuzzy intersection and fuzzy complement. All of these 

operations are defined in Klir (1997) by the following definitions. 

 

Let    and    be two fuzzy subsets of the universal interval   with membership 

functions for    and    are denoted by  
  
( ) and  

  
( ) respectively. Definitions of fuzzy 

union, fuzzy intersection and fuzzy complement based on Klir (1997) are given as 

 

a) Fuzzy union of    and    is denoted by     ∪   such that the membership function is 

defined as 

 
   ∪  

    max * 
  
( )  

  
( )+, for all      

 

b) Fuzzy intersection of    and    is denoted by    ∩    such that the membership 

function is defined as 

 

 
   ∩  

    min * 
  
( )  

  
( )+, for all      

 

c) Fuzzy complement of    is denoted by  
 ̅ 
( ) such that the membership function is 

defined as 

 

 
 ̅ 
( )     

  
( ), for all      
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3.3 FUZZY NUMBERS 

 

 

As discussed in section 2.3, three types of fuzzy numbers are pointed out in the 

literature of fuzzy sets namely type – I fuzzy numbers, type – II fuzzy numbers and Z – 

numbers where all of them are defined chronologically as follows. 

 

3.3.1 Type – I Fuzzy Numbers 

 

 

In subsection 2.3.1, type – I fuzzy number is chronologically developed as the 

first fuzzy numbers are established in literature of fuzzy sets (Zadeh, 1965). As fuzzy 

numbers are actually type – I fuzzy numbers, definition of fuzzy number given by 

Dubois & Prade (1983) which reflects as the definition of type – I fuzzy number, is as 

follows. 

 

Definition 3.2: (Dubois & Prade, 1978) A type – I fuzzy number    is a fuzzy subset of 

the real line ℛ that is both convex and normal and satisfies the following properties: 

 

i.  
  

 is a continuous mapping from ℛ to the closed interval [   ],        

ii.  
  
( )  , for all   [-   ], 

iii.  
  

 is strictly increasing on [   ], 

iv.  
  
( )  , for all   [   ] where   is a constant and       , 

v.  
  

 is strictly decreasing on [   ], 

vi.  
  
( )  , for all    [   ], 

where                 and   are components of a type – I fuzzy number and real 

while   represents the height of a type – I fuzzy number. 
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i 

3.3.2 Type – II Fuzzy Numbers 
 

 

Type – II fuzzy numbers are developed in the literature of fuzzy sets as the 

extension of type – I fuzzy numbers as the capability of type – I fuzzy numbers to 

represent human perception is inadequate (Walsten & Budescu, 1995). As type – II fuzzy 

sets are used in this stud, thus definition of type – II fuzzy sets by Mendel et al. (2006) is 

as follows. 

 

Definition 3.3: (Mendel et al., 2006) A type – II fuzzy set    in a universe of discourse   

is characterized by a type – II membership function  
  
( ) which maps each element x  in 

  a real number in the interval   ,   . 

 

The membership function for   ,  x
iA  is given as 

 

                          1,0,1,0,,,,  uxJuUxuxuxA
ii AxAi                    (3.2) 

 

where xJ  represents an interval in [0, 1]. 

According to Mendel et al. (2006), another representation of type – II fuzzy set 

is given in the following equation depicted as 

 

                                       Ux Ju Ai
x

uxuxA ,,                                                     (3.3) 

where xJ   [0, 1] and   represents the union over all allowable x and  u. 

 

It has to be noted that from equation (3.3), if   1, uxA , then Ai  is known as 

an interval type – IIfuzzy set. It is worth mentioning that interval type – II fuzzy set is a 

special case of type – II fuzzy set (Mendel et al., 2006) where it can be represented by the 

following equation 

 

                                     Ux Jui
x

uxA ,1                                                                (3.4) 

where xJ   [0, 1]. 
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Interval type – II fuzzy set is utilised in this study as this is the frequently used 

type – II fuzzy set in the literature. According to Zadeh (1975), representation of interval 

type – II fuzzy set using number is called as interval type – II fuzzy numbers. The 

following Figure 3.2 illustrates interval type – II fuzzy number. 

 

 

 

 

 

 

 

 

Fig 3.2: Interval type – II fuzzy number 

 

It is noticeable that type – II fuzzy number in Figure 3.2 is more complex than 

than type – I in terms of representation where this indicates that type – II fuzzy number 

needs a more complicated computational technique than type – I fuzzy number. 

According to Greenfield & Chiclana (2013), there are numerous defuzzification strategies 

developed in the literature of fuzzy sets which plan on converting type – II fuzzy number 

into type – I fuzzy number. This strategy is intentionally introduced to reduce the 

complexity of type – II fuzzy numbers without losing information on the 

computational results. Among them that consider this strategy are Karnik & Mendel 

(2001), Nie & Tan (2008), Wu & Mendel (2009) and Greenfield & Chiclana (2009; 

2013). Nevertheless, based on a thorough comparative analysis made by Greenfield and 

Chiclana (2013) on all the aforementioned methods, Nie & Tan (2008) reduction 

method outperforms other approaches on reducing type – II fuzzy number into type – 

I fuzzy number. Therefore, without loss of generality of Nie & Tan (2008), the reduction 

method is as follows.  

 

 

 
   

 

iA  

x  
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 x
B
~  

x x 

      AUALAT xxx  
2

1
                                                          (3.5) 

 

where T is the resultant type – I fuzzy numbers. 

 
 

3.3.3 Z – Number 

 
According to Zadeh (2011), Z – numbers are the newest type of fuzzy numbers 

introduced in the literature of fuzzy sets. Definition of Z – numbers given by Kang et al. 

(2012) is as follows. 

 

Definition 3.4: (Kang et al., 2012) A Z – number is an ordered pair of fuzzy number 

denoted as  BAZ
~

,
~

 . The first component, A
~

 is known as the restriction component where 

it is a real – valued uncertain on X whereas the second component B
~

, is a measure of 

reliability for A
~

. The following Figure 3.3 illustrates Z – number based on Kang et al. 

(2012) definition. 

 

 

 

 

                                                                                                                         

 
 
 
                  

                                

                          

 

 

 

                         
 1;,,,

~
4321 aaaaA 

                                 
 1;,,,

~
4321 bbbbB   

                                         Fig 3.3: A Z – number,   BAZ
~

,
~

  

 

As mentioned in Chapter 2, Z – numbers are better in terms of their 

representation as compared to type – I fuzzy number and type – II fuzzy number 

fuzzy numbers. This is due to the fact that Z – numbers (level 3) are classified as the 

highest level in terms of generalised numbers than type – I fuzzy number and type – II 

A
~

 B
~

 

 x
A
~  
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fuzzy number which level 2 (Zadeh, 2011). Therefore, Zadeh (2011) suggests any 

computational work involving Z – numbers needs first reduce the Z – numbers into 

certain level without losing the informativeness of the computational results. This 

suggestion is taken into account by Kang et al. (2012a) where a method of converting Z 

– numbers into fuzzy numbers based on Fuzzy Expectation of a fuzzy set is proposed. 

With no loss of generality of Kang et al. (2012a) work, the conversion of Z – numbers 

into fuzzy numbers is as follows. 

 

Step 1: Convert the reliability component, B
~

 into a crisp number,   using the following 

equation 

                                            








dxx

dxxx

B

B

)(

)(

~

~






                                                        (3.6) 

 

Note that,  represents the weight of the reliability component of a Z – number. 

  

Step 2: Add the weight of the reliability component B
~

 to the restriction component A
~

. The Z 

– number is now defined as weighted restriction of Z – number and can be denoted as 

 

                           
        1,0,,

~
~~~  xxxxxZ
AAA

 

 .                                        (3.7) 

 

Step 3: Convert the weighted restriction of Z – number into a fuzzy number which can be 

represented as 

 

                        

     




















 1,0,~'~'~,'~

x
x

A
x

Z
x

Z
xZ


 .                                  (3.8) 

 

In Kang et al. (2012), it is shown that the process of converting Z – 

numbers into fuzzy numbers was sensible and logical because the result obtained by the 

study indicates that a Z – number is reduced into a lower level of generality which is a 

fuzzy number, but the computational informativeness is unaffected. Moreover, the 
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conversion of a Z – number into a fuzzy number is reasonable due to the fact that both Z
~

and '~
Z are basically the same when the Fuzzy Expectation Theorem is applied. 

 

3.4 FORMS OF FUZZY NUMBERS 

 

 

This section covers discussions in terms of several forms of fuzzy numbers 

which are found in the literature of fuzzy sets. It has to be noted that all descriptions 

provided in this section focus only on type – I fuzzy numbers. As for type – II and Z – 

numbers, their discussions are similar to in type – I fuzzy numbers as both type – II 

numbers and Z – numbers are extension of type – I fuzzy numbers. Therefore, any 

descriptions of type – I fuzzy numbers provide in the following subsections are 

applicable to type – II fuzzy numbers and Z – numbers as well. Therefore, a generic 

term fuzzy numbers is used in this case to indicate that it covers type – I fuzzy 

numbers, type – II fuzzy numbers and Z – numbers. 

 

3.4.1 Linear Fuzzy Numbers 

 

 

According to Chen & Chen (2003), fuzzy numbers are divided into two types 

namely linear and non – linear. Nevertheless, linear fuzzy numbers are often used in 

many decision making situations as non – linear fuzzy numbers are too complex to 

handle and they are normally transformed into linear type for convenience (Chen & 

Linkens, 2004). In literature of fuzzy sets, there are two linear types fuzzy numbers which 

are often utilised namely triangular and trapezoidal fuzzy numbers. Nonetheless, there 

is another fuzzy number that is rather extensively used in the literature of decision making 

which is a  singleton fuzzy number. It is worth mentioning here that all of these 

mentioned fuzzy numbers are used throughout the thesis. Thus, the following definition 

3.5 and Figure 3.4 are definition and illustrations of triangular fuzzy number 

respectively while definition (3.6) and Figure (3.5) are definition and illustration for 

trapezoidal fuzzy number respectively. 

 

 



35  

Definition 3.5: (Laarhoven & Pedrycz, 1983) A triangular fuzzy number Ai is 

represented by the following membership function. Figure 3.1 illustrates triangular fuzzy 

numbers. 

 

 

 

 

 

 

 

 

 

  

 

 

      

 

                                                                                                                   . 

 
                                Fig 3.4: A Triangular Fuzzy Number 

 

 

Definition 3.6: A trapezoidal fuzzy number Ai is represented by the following membership 

function given by 
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                                                     Fig 3.5: A Trapezoidal Fuzzy Number 

 

 

It has to be noted here that for trapezoidal fuzzy numbers, if ai2= ai3, then 

a  fuzzy number is in the form of a triangular fuzzy number (Cheng, 1998).  While, if 

ai1= ai2= ai3= ai4   or ai1= ai2= ai3   for both trapezoidal and triangular fuzzy numbers, 

respectively, then both are in the form of singleton fuzzy number (Chen & Chen, 2009). 

The following Figure 3.6 illustrates singleton fuzzy numbers. 

 

 

 

 

 

 

 

 

 

 

                                                    Fig 3.6: A Singleton Fuzzy Number 
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3.4.2 Generalised Fuzzy Numbers 

 

 

This subsection provides discussions on another form of fuzzy numbers which 

is generalised fuzzy numbers. According to Chen & Chen (2003), a fuzzy number is better 

represented by generalised fuzzy numbers. This is because generalised fuzzy numbers 

provide a consistent representation for any fuzzy number even if any shape of fuzzy 

numbers is utilised. It has to be noted here that starting from this point until the last part of 

this chapter, only trapezoidal fuzzy numbers are utilised as medium of representation. This 

is due to the fact that both triangular and singleton fuzzy numbers are special cases 

of trapezoidal fuzzy numbers (Cheng, 1998 and Chen & Chen, 2003). Therefore, without 

loss of generality, definition of generalised trapezoidal fuzzy numbers is as follows. 

 

Definition 3.7: (Chen & Chen, 2003) Generalised Trapezoidal Fuzzy Number    is a 

fuzzy number    (                        
) where                     with 

height,    
 [   ]. 

 

As consideration only on positive values by generalised fuzzy numbers limits 

the capability of fuzzy numbers on decision making, Chen & Chen (2007) extend 

generalised fuzzy numbers to standardised generalised fuzzy numbers so that both 

positive and negative values are considered in the analysis. Based on Chen & Chen 

(2007), definition of standardised generalised fuzzy numbers is given as follows. 

 

Definition 3.8: (Chen & Chen, 2007) If fuzzy number    has the property such that 

-                             , then   ̃ is called a standardised generalised trapezoidal fuzzy 

number and is denoted as  

 

   
iAiiiii waaaaA ;~,~,~,~~

4321  

 

Any non – generalised fuzzy number is transformed into standardised generalised fuzzy 

numbers using a normalisation process depicted in equation (3.9). 
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         
iAiiii waaaa ;~,~,~,~

4321                                                                                  (3.9) 

 

where  4321 ,,,max iiii aaaak  . 

 

It is worth mentioning here that in the normalisation process, only components 

of fuzzy numbers are changed where ai1, ai2, ai3, ai4 change to 4321
~,~,~,~

iiii aaaa , but this 

does not apply to the height of fuzzy number (Chen & Chen, 1986). 

 

3.5 COMPONENTS OF FUZZY NUMBERS 

 

 

This section illustrates components of fuzzy numbers utilised in this study. It is 

worth mentioning that many components of fuzzy numbers are discussed in the 

literature of fuzzy sets but only components that are related to this study are considered in 

this section. Details with regards to components of fuzzy numbers considered in this 

study are described extensively as follows.  

 

3.5.1 Centroid Point 

 

 

Section 2.4 highlights some important points of centroid points in ranking 

fuzzy numbers where it consists of two values namely horizontal – x value and vertical 

– y value. Wang (2009) defined a centroid point, as in Figure 3.8, as a point which is 

situated at the middle of a fuzzy number which reflects as a representation of a fuzzy 

number using crisp value. The conversion of fuzzy numbers into one crisp value for each 

horizontal – x value and vertical – y value are known as defuzzification. In the literature 

of fuzzy sets, some research works used only the horizontal – x value while some 

considered both horizontal – x value and vertical – y value. Nonetheless, in this study, 

both values are considered and are used throughout the thesis as considering only 

horizontal – x value is inadequate in representing a fuzzy number (Murakami et al., 

1983; Cheng, 1998, Chen & Chen, 2009; Dat et al., 2012). In order to obtain these 
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values, formulas given by Shieh (2007) are utilised in this study. The following are 

centroid point formulation by Shieh (2007) which define horizontal – x value as 

 

          
  

∫   ( )  
 

  

∫  ( )
 

  
   

 
 

 
*                

(             )

(       )  (       )
+                                  .    

 

and vertical – y value as 
 
 

          
  

   
∫ α|  

α| α
   

 

∫ |  
α|

   

 
  α

 
   

 
[  

       

(       )  (       )
]                                                    .    

 

where |  
α| is the length of the α-cut of    and  (   

   
  

 ) is the centroid point for fuzzy 

numbers   . 

 

It is worth mentioning here that for  standardised generalised fuzzy numbers, the 

centroid point for the fuzzy number   ̃ is denoted as ( 
  ̃

   
  ̃

 ) with  
  ̃

  [- , ] and   
  ̃

  [ , ]. 

Based on Wang et al. (2006), properties of the correct centroid formula are used to 

validating the centroid formula by Shieh (2007) which is shown as follows. 

 

Property 1: 

 

If    and    are standardised generalised fuzzy numbers with their membership functions 

 
  

    and  
  

    respectively are  
  

    =  
  

   , where       , then   (  )  
 (  )  , 

  (  )    
    ).  

Proof: 

 

When  
  

    = 
  

   ,          , we have  
  
        =  

  
   . We obtain from equation 

(3.10)        

  (  ) 
 

 
*  

             

(  
 
          )  (   

      
 
   )

+ 
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*  

             

(  
 
   ) (   )  (   

   )  (  ))
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(     )  (     )
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                  .         

 

Hence,  

  (  )    
    ).                                                 (3.12) 

 

We also have, 
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Thus, 

  (  )  
 (  )                                                      (3.13) 

 

 

Property 2: 

 

If    and    are standardised generalised fuzzy numbers with their membership functions 

 
  

    and  
  

    respectively have the relation  
  
( )    

  
( ) for all     ℛ, then  

  (  )    
 (  ). 

 

Proof: 

 

From equation (3.11), we obtain 

  (  )   (
 

 
*  

     

(  
 
    )  (   

    )
+) 

                     ).           

 

Hence,  

  (  )     
    )                 (3.14)  

 

Then, from equation (3.10), we have 

 

  (  )   (
 

 
*            

         

  
 
       

 
    

+) 

 

               (  ). 

 

Therefore, we have 

    (  )   
 (  ).                                                   (3.15) 
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   Fig 3.8: The Centroid Point, (   
   

  

 ) of A Trapezoidal Fuzzy Number  
 

It is worth emphasising here that equation (3.12) until equation (3.15) 

indicate that centroid point formulation by Shieh (2007) is relevant and suitable for this 

study as the formulation fulfils both properties given by Wang et al. (2006). 

 

3.5.2 Height 

 

 

This subsection discusses the description of another basic component of 

fuzzy numbers which is height. Height of fuzzy numbers plays a very significant role in 

fuzzy decision making problems especially when confidence levels of decision makers 

vary. According to Chen & Chen (2003), if the height of a fuzzy number is high, 

then confidence level a decision maker is high. Based on Collan (2009), height of 

fuzzy numbers is defined as follows. 

 

Definition 3.9: (Collan, 2009) Height of fuzzy number     is the largest value within a 

given set of  
  
( ) over  . The height of a fuzzy number is denoted as 

 

   
 sup  

  
( ), where    

  1,0 . 

 

If the height of a fuzzy number   , is equal to 1, 1
iAw , then      is known as a normal 

fuzzy number. Otherwise it is called as a non-normal fuzzy number. In Figure 3.9, two 

fuzzy numbers with different heights are illustrated. 

 

 

 (   
   

  

 ) 
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Fig 3.9: Two Fuzzy Numbers of Different Heights,    
 and    

. 

 

 

3.5.3 Spread 

 

 

Spread is another component of fuzzy numbers which is important in 

fuzzy decision making. Main importance of spread in the decision making process is its 

capability to interpreting decision makers’ viewpoints very well. According to Kwang & 

Lee (2000), different decision maker viewpoints are reflected with different spreads. This 

is due to the fact that the viewpoint of a decision maker is categorised into three 

namely pessimistic, normal and optimistic (Kwang & Lee, 1999). The following 

Figure 3.10 illustrates the maximum spread area of a fuzzy number (Chen & Chen, 

2009) while definition of spread given by Lee & Li (1998) is as follows. 

 

Definition 3.10: (Lee & Li, 1988) Spread is defined as the measure of variability length of 

the support of fuzzy numbers. In this case, it refers to the variability between points of 

fuzzy number with its centroid of horizontal – x value. 

 

Definition 3.11: (Dutta et al., 2011) Support of fuzzy number A defined in X is the crisp 

set defined as 

                                  0:  AXxASupp A   
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Using the method given by Chen & Lu (2001), spread of fuzzy number is expressed 

and calculated as 

sA = dist (a4 – a1) = 14 axxa AA 
 

              

                       
=  14 aa                                                                                                                 (3.16) 

 

 

 

 
 

 

 

  

 

 

 

 

Fig 3.10: Maximum Spread Area of Fuzzy Number (Chen & Chen, 2009). 

 

 

Lee & Li (1988) states that the spread is used in many ranking fuzzy numbers 

methodologies. This is also shown in Bakar & Gegov (2014) when the spread 

complements the capability of centroid point in ranking all cases of fuzzy numbers. 

According to Bakar & Gegov (2014), the role played by the spread is twofold namely 

complementing centroid point in ranking fuzzy numbers and supporting decision makers 

in the decision making process. This is illustrated when spread provides great effect in 

ranking fuzzy numbers especially when the centroid point is incapable to rank the fuzzy 

numbers of different spreads and embedded fuzzy numbers of different shapes. In addition, 

spread complements different types of decision makers namely pessimistic, neutral and 

optimistic in decision making process. 
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As mentioned earlier in this subsection, there are three types of decision makers 

which are pessimistic, neutral and optimistic. This has also been shown in the literature of 

decision making (Kwang & Lee, 1999 and Ramli & Mohamad, 2009). They basically 

view the same situation but define the situation using different interpretations. These 

variations in terms of decision makers’ interpretations allow the utilisation of different 

spread when fuzzy numbers are used. 

 

3.6 SUMMARY 

 

 

In this chapter, the theoretical preliminaries of this thesis are presented. It 

covers definitions, terminology and fuzzy concepts utilised throughout the thesis. In 

Chapter 4, the thesis discusses the research methodology. 
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CHAPTER FOUR 

RESEARCH METHODOLOGY 

 

 
4.1 INTRODUCTION 

 

 

This chapter illustrates details on the research methodology of the thesis. Main 

subject of this chapter focuses on development of the proposed novel methodology for 

ranking fuzzy numbers based on centroid point and spread. In developing the ranking 

methodology, a novel way of calculating the spread is proposed where this method is 

incorporated with an established centroid point method as a novel ranking fuzzy numbers 

approach. Since this is the first time the spread method is developed, the capability of 

the spread method in complementing the centroid point method for ranking fuzzy 

numbers is validated using relevant theoretical properties which are introduced in this 

study. As for the novel ranking methodology developed, it is validated based on theoretical 

and empirical validations which determine reliability, consistency and efficiency of the 

new ranking method. Reliability, a theoretical based – validation, validates the novel 

ranking methodology using several established ranking properties. The other two 

criteria namely consistency and efficiency, which are two distinct empirically based – 

validations, evaluate the capability of the novel ranking methodology to correctly rank 

fuzzy numbers such that the ranking results are consistent with human intuition and 

ranking more than two fuzzy numbers at one time respectively. Both theoretical and 

empirical validations mentioned are thoroughly defined in this chapter but their 

implementations are illustrated in the following three chapters of the thesis. This 

indicates that this chapter underpins the next three chapters of the thesis. Details on 

those aforementioned points are extensively discussed in sections and subsections of this 

chapter. 
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4.2 CENTROID POINT BASED – SPREAD METHOD 

 

 

In this section, a novel formulation on calculating the spread of fuzzy numbers is 

developed. The novel spread method is a distance – based approach where it employs 

distance from the centroid point of a fuzzy number in obtaining the spread value. This 

spread method is an extension of Chen & Lu (2001) spread method where it considers both 

distances on horizontal x – axis and vertical – y axis to find the spread value of a fuzzy 

number. Chen & Lu (2001) spread method utilised only distance on horizontal x – axis 

to find the spread value, then involvement of both distances of the horizontal x – axis and 

vertical – y axis by the novel spread formulation is illustrated as follows. 

 

Let  
1

~43211 ;~,~,~,~~
A

waaaaA   be a standardised generalised trapezoidal fuzzy number 

and  
11

~~ ,
AA

yx  be the centroid point for 1

~
A  such that 

1

~
A

x  and 
1

~
A

y are the horizontal x – axis 

and vertical y – axis of the standardised generalised fuzzy number 1

~
A , respectively. It has to 

be noted here that 
1

~
A

x  and 
1

~
A

y are obtained using equations (3.10) and (3.11) respectively. 

 

Step 1: Compute the distance along the horizontal x – axis of the standardised generalised 

fuzzy number 1

~
A  using the following distance formula. 

 

                      
1

~
A

i  = dist  14
~~ aa   = 1~~4

~~
11

axxa
AA


 

                                                            14
~~ aa                                                                    (4.1) 

 

where 
1

~
A

i   is  the  distance  along  horizontal  x  –  axis  of  standardised  generalised  fuzzy 

number 
1

~
A . 
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Step 2:   Find the distance on the vertical y – axis of standardised generalised fuzzy number

1

~
A  which is given as 

 

                                                           
1

~
A

ii  = 
1

~
A

y                                                                      (4.2) 

 

In this step, distance on vertical y – axis, 
1

~
A

ii  is the same as the value of vertical y – axis. 

The purpose of introducing this step in the spread formulation is to address fuzzy numbers 

of different heights and cater limitation of Chen & Lu (2001) spread method. This is 

because spread value of a fuzzy number is not the same as other fuzzy numbers under 

consideration given if all of them are of different heights. 

 

When both distances of horizontal x – axis and the vertical y – axis of a  

standardised generalised fuzzy number 1

~
A  are obtained, spread value of the fuzzy number is 

then computed. 

 

Step 3: Obtain spread value of standardised generalised fuzzy number 1

~
A  using the following 

formula given as 

 

                                                 s( 1

~
A ) = 

1

~
A

i  x 
1

~
A

ii                                                                                                      (4.3) 

 

where 
1

~
A

i  and 
1

~
A

ii  are dist  14
~~ aa  and 

1

~
A

y  respectively.   

 

 s( 1

~
A ), 

1

~
A

i , 
1

~
A

ii , dist  14
~~ aa  [0 ,1] and equation (4.3) is a scalar multiplication of 

1

~
A

i  and

1

~
A

ii  

 

 

The following Figure 4.1 illustrates the components of spread namely the distance along the 

horizontal x – axis, 
1

~
A

i , distance on the vertical y – axis, 
1

~
A

ii , and the centroid point,   (
1

~
A

x , 

1

~
A

y ) of fuzzy number 1

~
A . 
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)(x  

x 

 

   

 

 

 

 

 

 

 

 

 

 

  
  

Fig 4.1: Component of spread, 
1

~
A

i and 
1

~
A

ii  and the centroid point, (
1

~
A

x , 
1

~
A

y ) of fuzzy 

number 1

~
A . 

4.2.1 Illustrative Example 

 

 

This subsection illustrates a numeric – based example adopted from Chen & 

Chen (2009) which is used to demonstrate the utilisation of the spread method developed 

in Section 4.2. Complete illustration of utilising the centroid point based spread method 

on this example is as follows. 

 

Let 1

~
A  = (0.1, 0.3, 0.3, 0.5; 1.0) be a standardised generalised fuzzy number for which to 

be calculated its spread and (0.3, 0.3333) as the centroid point for 1

~
A  which is obtained 

using equations (3.10) and (3.11).  

 

Step 1: Compute the distance along the horizontal x – axis of standardised generalised 

fuzzy number 1

~
A  given as 

 

                      
1

~
A

i  = dist  14
~~ aa   = 1.03.03.05.0 

 

                                                     
1.05.0                                                                   

                                                                         
4.0  

 

1

~
A  

1

~
A

i  

1

~
A

ii  

 (
1

~
A

x , 
1

~
A

y ) 
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Step 2:  Find the distance on the vertical y – axis of standardised generalised fuzzy number 

1

~
A .  

 

          Since, centroid of vertical y – value is the distance on the vertical y – axis, hence 

 

                                 1

~
A

ii  = 
1

~
A

y 3333.0                                                                               

 

Step 3:     Obtain the spread value of standardised generalised fuzzy number 1

~
A  using the 

following formula given as 

 

    s( 1

~
A ) 3333.04.0       

 

            
1333.0                                                                                           

 

Thus, spread value of fuzzy number 1

~
A  is 0.1333. 

  

s( 1

~
A ), 

1

~
A

i , 
1

~
A

ii , dist  14
~~ aa  [0 ,1]. 

 

 

  

 

 

 

 

 

 

                                       1

~
A  = (0.1, 0.3, 0.3, 0,5; 1.0) 

Fig 4.2: Fuzzy number 1

~
A . 

 

 

 
 

 

 x
A1

~  

  ̃ 

0.5 0.3 0.1 

1.0 

x 
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4.2.2 Theoretical Validation 

 

 

This subsection validates theoretically the proposed centroid point based spread 

method using several theoretical properties which are introduced in this study. These 

relevant properties justify the capability of the centroid point based spread method in 

complementing the centroid point in ranking fuzzy numbers. It is worth mentioning here 

that this validation focuses mainly on the embedded cases of fuzzy numbers where 

centroid point is incapable to rank them appropriately (Bakar & Gegov, 2014). Therefore, 

capability of centroid point based spread method in ranking fuzzy numbers especially on 

embedded case of fuzzy numbers is validated using the following theoretical properties. 

 

Let 1

~
A  and 2

~
A be trapezoidal and triangular standardised generalised fuzzy numbers 

respectively. 

 

Property A1: If 1

~
A  and 2

~
A  are embedded and having different centroid points but similar 

support, then s( 1

~
A ) > s( 2

~
A ). 

 

Proof:  

 

Since 1

~
A  and 2

~
A  are embedded and having similar support, hence it has to be noted that 

 

 
1

~
A

x  = 
2

~
A

x  and 
1

~
A

y > 
2

~
A

y .Then, from equation (4.3), the following are obtained such that 

 

1

~
A

i  = 
2

~
A

i  and 
1

~
A

ii > 
2

~
A

ii . Therefore, s( 1

~
A ) > s( 2

~
A ). 

 

 

Property A2: If 1

~
A  is a singleton fuzzy numbers, then s( 1

~
A ) = 0. 

 

Proof:  

 

For any crisp (real) numbers, it has to be noted that 4321
~~~~ aaaa   implies that  

1

~
A

i  = 0 

and 
1

~
A

ii  = w/3. Therefore, s( 1

~
A ) = 0. 
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Property 3: If 1

~
A  is an asymmetrical triangular fuzzy numbers then s( 1

~
A ) = 

1

~
A

i  x 
1

~
A

ii . 

 

Proof: 

 

For any asymmetrical triangular fuzzy numbers, it is obvious that 32
~~ aa  

1

~
A

x . By 

definition, the following are obtained where 

 

 dist  34
~~ aa   + dist  13

~~ aa   = dist  24
~~ aa   + dist  12

~~ aa   = dist  14
~~ aa  = 

1

~
A

i .  

 

Therefore, s( 1

~
A ) = 

1

~
A

i  x 
1

~
A

ii . 

 
 

The above theoretical validation clearly signifies that the proposed centroid 

point based spread method is capable to complement centroid point in ranking fuzzy 

numbers. Although, the main focus of this validation is on the embedded case of 

fuzzy numbers, other cases of fuzzy numbers such as overlapping and non – 

overlapping cases of fuzzy numbers are well considered in this validation. This is 

because embedded case of fuzzy numbers is the only case which the centroid point 

method is incapable to deal with. For other cases, centroid point differentiate them 

appropriately. It is worth mentioning here that details with regard to embedded, 

overlapping and non – overlapping cases of fuzzy numbers are given later in Section 4.5. 

In the next section, the centroid point based spread method is incorporated with the 

centroid point approach to develop a novel ranking fuzzy numbers methodology.   

 
 

4.3 HYBRID APPROACH FOR RANKING FUZZY NUMBERS 

 
 

In this section, a novel methodology for ranking fuzzy numbers is proposed. 

The methodology is developed using the established centroid point method by Shieh 

(2007) and the novel spread approach presented in Section 4.2 where it is applied to 

ranking fuzzy numbers. As mentioned in Section 2.2, fuzzy numbers are a generic term 

for type – I fuzzy numbers, type – II fuzzy numbers and Z – numbers, thus indicating 

that the novel ranking methodology is a ranking methodology for type – I fuzzy 

numbers, type – II fuzzy numbers and Z – numbers. Therefore, illustrations of the ranking 

methodology are as follows. 
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4.3.1 Ranking Methodology for Type – I Fuzzy Numbers 

 

 

This subsection illustrates the methodology for ranking type – I fuzzy numbers based on 

centroid point and spread, CPSI which is given as follows. 

 

Let  
1

~43211 ;~,~,~,~~
A

waaaaA   be a standardised generalised trapezoidal type – I fuzzy 

number and ranked. 

 
 

  Step 1:  Calculate centroid point  *
~

*
~ ,

AA
yx  of standardised generalised type – I fuzzy number

1

~
A  using Shieh (2007). The horizontal – x centroid of type – I fuzzy number 1

~
A , 

*
~

1A
x  is calculated as  

 

                                            

 

 










dxxf

dxxxf

x
A

*
~

1

                            (4.4) 

 

and the vertical – y centroid of the type – I fuzzy number 1

~
A , *

~
1A

y  is given as  

                                           








dA

dA
y

iA

iA

w

i

w

i

A






~

~

1

0

0*
~

~

~

                                                       (4.5) 

 
 

where  


iA

~
is length of  – cuts of type – I fuzzy number 1

~
A , *

~
1A

x [–1 , 1] and 
*
~

1A
y  [0 ,wA]. 

  

Note that, the centroid point by Shieh (2007) used in this step is applied to standardised 

generalised type – I fuzzy numbers. 
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Step 2:  Obtain spread value of standardised generalised type – I fuzzy number 1

~
A using the 

following formula given as 

 

                                        s( 1

~
A ) = 

1

~
A

i  x 
1

~
A

ii                                                                                                      (4.6) 

 

 

where 
1

~
A

i  and 
1

~
A

ii  are dist  14
~~ aa  and *

~
1A

y  respectively.   

 s( 1

~
A ), 

1

~
A

i , 
1

~
A

ii , dist  14
~~ aa  [0 ,1]. 

 

 Note that, the spread formulation in equation (4.6) is the same as equation (4.3). This 

indicates that the centroid point based spread method developed in Section 4.2 is utilised 

in this step. 

 

Step 3: Compute ranking value for 1

~
A  using CPS ranking method which is defined as  

 

                             1

*
~

*
~1

~
1

~
11

AsyxACPS
AAI                                                   (4.7) 

  where  

*
~

1A
x is horizontal – x centroid for standardised generalised type – I fuzzy number 1

~
A  

*
~

1A
y  is horizontal – y centroid for standardised generalised type – I fuzzy number 1

~
A  

s( 1

~
A ) is spread for standardised generalised type – I fuzzy number 1

~
A .  

 

and  1

~
ACPSI

 [–1 , 1].  

 

If    21

~~
ACPSACPS II  ,  then 

21

~~
AA  . (i.e. 1

~
A  is ranked higher than

2

~
A ). 

If    21

~~
ACPSACPS II  ,  then 

21

~~
AA  . (i.e. 1

~
A  is ranked lower than

2

~
A ). 

If    21

~~
ACPSACPS II  ,  then 

21

~~
AA  . (i.e. the ranking for 1

~
A and

2

~
A  is equal). 
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1 2 3 

4 2 4 

Notice that,   1

~
1 As   is introduced in the ranking formulation to ensure that any 

type – I fuzzy number with greater spread value, s( 1

~
A ), than other type – I fuzzy number 

under consideration is treated as the smallest type – I fuzzy number among them. 

 

 

4.3.2 Ranking Methodology for Interval Type – II Fuzzy Numbers 

 

 

This subsection signifies the methodology for ranking type – II fuzzy numbers 

based on centroid point and spread, CPSII. As there are two distinct ways of ranking type 

– II fuzzy numbers considered in the literature of fuzzy sets namely the direct and 

indirect, the CPSII ranking method developed in this study also takes into account both 

ways to demonstrate its capability to ranking type – II fuzzy numbers. It is worth 

mentioning here that the interval type – II fuzzy numbers are utilised in this study as they 

are the generalisation of type – II fuzzy numbers (Mitchel, 2006) and are viewed as the 

special case and require less computational works compared to type – II fuzzy numbers 

(Hu et al., 2013). Therefore, without loss of generality, definition of interval type – II 

fuzzy number is given as follows. 

 

Let    
11

ˆˆ43214321 ;;ˆ,ˆ,ˆ,ˆ1;1;ˆ,ˆ,ˆ,ˆˆ
ji AA

LLLLUUUU wwaaaaaaaaA   be an interval type – II fuzzy 

number whereby components 
U

iâ  and 
L

iâ  such that i = 1, 2, 3, 4, are the upper 

membership function, UMF and lower membership function, LMF respectively (Wu & 

Mendel, 2009). Notice that, Â  is transformed into standardised generalised interval 

type – II fuzzy numbers using the following normalisation steps which are proposed in 

this study. 

 

 

If an interval type – II fuzzy number Â  has the property such that – 1 < 

 

aU 

 

< a
U

 

 

< a
U

 

 

<  aU < 1 and – 1 < a1
L

 <  aL <  a3
L

 <  aL < 1 then A  is called as a standardised 

generalised interval type – II trapezoidal fuzzy number and is denoted as 
 

 

   
11

;;,,,1;1;,,, 43214321 ji AA

LLLLUUUU wwaaaaaaaaA 
                                  (4.8) 
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Any interval type – II fuzzy numbers may be transformed into a standardised generalised 

interval type – II fuzzy numbers by normalisation process as described in (3.4.2). 

 








































 

L

A

L

A

LLLLUUUU

ww
m

a

m

a

m

a

m

a

k

a

k

a

k

a

k

a
A ;;

ˆ
,

ˆ
,

ˆ
,

ˆ
1;1;

ˆ
,

ˆ
,

ˆ
,

ˆ
43214321  

 

        L

A

L

A

LLLLUUUU wwaaaaaaaa 
 ;;,,,1;1;,,, 43214321

                          (4.9) 

 

where    LLLLUUUU aaaamaaaak 43214321
ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆmax  . 

 

In the normalisation process, only the components of interval type – II fuzzy numbers 

where UUUU aaaa 4321
ˆ,ˆ,ˆ,ˆ  and LLLL aaaa 4321

ˆ,ˆ,ˆ,ˆ are change to UUUU aaaa 4321 ,,,   and 
LLLL aaaa 4321 ,,,   respectively while the heights of interval type – II fuzzy numbers remain 

the same. 

 

As there are two ways of ranking type – II fuzzy numbers found in the literature namely 

the direct and indirect ways, the capability of the CPSII ranking method in ranking type – 

II fuzzy numbers using both ways are demonstrated as the following. Note that, the type – 

II fuzzy numbers utilised in this case are in the form of standardised generalised interval 

type – II fuzzy numbers. 

 

Let    L

A

L

A

LLLLUUUU wwaaaaaaaaA 
 ;;,,,1;1;,,, 43214321

 be a standardised generalised 

interval type – II fuzzy number. 

 

Step 1:    Compute the centroid point for A by finding the horizontal – x centroid using the 

following equation 

 

                                           

 

 









 

dxxf

dxxxf

xA

*

                            (4.10) 
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and the vertical – y centroid value of A as  

 

                                             




dA

dA
y

iA

iA

w

w

A







 ~

~

0

0*

                                                     (4.11) 

where  

A is length of  - cuts of A .  *

Ax  [–1 , 1] and *

Ay   [0 ,wA]. 

  

In this step, two centroid points are obtained for Awhereby the centroid points are 

 U

A

U

A yx ** ,   and  L

A

L

A yx ** ,   for each U

iâ  and 
L

iâ  respectively. 

 

Step 2:   Calculate the spread values for A such that the distance along the x – axis from 

the horizontal – x is 

  

    




  

LL

A

L

A

LUU

A

U

A

UUUUU

A axxaaxxaaaaadisti 1

**

41

**

41414 ,,  

               
LLUU aaaa 1414 ,                                                                                            (4.12) 

 

While the distance along the vertical y – axis from the vertical y – value is depicted as 

 

                                    
L

A

U

AA yyii ** ,                                                                           (4.13) 

 

Therefore, the spread of A ,  As   is defined as 

 

                                   AA iiiAs    

                                             U

A

LLU

A

UU yaayaa *

14

*

14 ,    

 

where Ai   and Aii   are     UUUU aaaadist 1414 ,  and *

Ay   respectively.   

  As  , Ai  , Aii  ,     UUUU aaaadist 1414 ,  [0 ,1]. 
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This step also produces two values like in Step 1 but in this case, both values are the spread 

for U

iâ  and 
L

iâ  which are separated by ‘,’. 

 

Step 3: Determine the ranking value for A  using the following equation   

 

                             AsyxACPS AAII
  1**

                                               (4.15)                                                 

   

where  

*

Ax  is the average of the horizontal – x centroid for A  

*

Ay   is average of the vertical – y centroid for A  

 As  is the average of the spread for A . 

 

CPS II A[–1 , 1]. 
 

If CPS II ACPS II B, then 

If CPS II ACPS II B, then 

If CPS II ACPS II B, then 

AB. (i.e. Ais greater than B). 

AB. (i.e. Ais lesser than B). 

AB. (i.e. Aand Bare equal ranked). 

 

 
 

Notice that,   As 1   is introduced in the ranking formulation to ensure that 

any type – II fuzzy number with greater spread value,  As   than other type – II fuzzy 

number under consideration is treated as the smallest type – II fuzzy number among them. 

Computations on finding the average in Step 3 are introduced in this methodology to 

ensure that CPSII ranking method is applicable to ranking interval type – II fuzzy 

numbers. It is also worth adding that computation of average introduced in this 

methodology is a generalisation of Wu & Mendel (2009) work on ranking type – II fuzzy 

number using approximation to the end points of type – reduced interval (Greenfield & 

Chiclana, 2013). 
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Indirect Approach 

 

 
This study defines the indirect way to ranking interval type – II fuzzy numbers 

as the involvement of additional process before the ranking procedure is carried out. In 

this case, interval type – II fuzzy numbers under consideration are reduced into other 

suitable form, which is type – I fuzzy numbers, before they are ranked accordingly. 

Consideration of the reduction process in this study is in line with reduction – based 

methods developed by Mendel (2001), Mendel & John (2002), Nie & Tan (2008), 

Greefield et al. (2009) and Greenfield & Chiclana (2012). Although, interval type – II 

fuzzy numbers are directly ranked by the CPSII ranking method in the previous 

subsection, the indirect way for ranking interval type – II fuzzy numbers is also provided 

in this study as this is another direction found in the literature of fuzzy sets. As the 

indirect approach requires reduction of the interval type – I fuzzy numbers into type – I 

fuzzy numbers, this study first extends the definition of interval type – II fuzzy numbers 

in Definition (3.12) into standardised generalised interval type – II fuzzy numbers shown 

as follows. 

 

Let    L

A

L

A

LLLLUUUU wwaaaaaaaaA 
 ;;,,,1;1;,,, 43214321

 be a standardised generalised 

interval type – II fuzzy number.    L

A

L

A

LLLLUUUU wwaaaaaaaaA 
 ;;,,,1;1;,,, 43214321

 is 

reduced into standardised generalised type – I fuzzy numbers using Nie – Tan (2008) 

reduction method shown as follows. 
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L

A

L

A
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A  

 

After the reduction process, it is noticeable that A  is currently in the form of 

standardised generalised type – I fuzzy number, A
~

 such that it is the same as A
~

 defined 

in 4.3.1. Therefore, with no loss of generality, the procedure to indirectly rank interval 

type – II fuzzy numbers is as follows. 
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Step 1:   Calculate centroid point  *
~

*
~ ,

AA
yx  of standardised generalised type – I fuzzy number

1

~
A  using Shieh (2007). The horizontal – x value of type – I fuzzy number 1

~
A , *

~
1A

x  

is calculated as  

 

                                     

 

 










dxxf

dxxxf

x
A

*
~

1

                             (4.4) 

 

and the vertical – y value of the type – I fuzzy number 1

~
A , *

~
1A

y  is given as  

                                             








dA

dA
y

iA

iA

w

i

w

i

A






~

~

1

0

0*
~

~

~

                                                       (4.5) 

 
 

where  


iA

~
is length of  – cuts of type – I fuzzy number 1

~
A , *

~
1A

x [–1 , 1] and 
*
~

1A
y  [0 ,wA]. 

  

Note that, the centroid point by Shieh (2007) used in this step is applied to standardised 

generalised type – I fuzzy numbers. 

 

Step 2:  Obtain spread value of standardised generalised type – I fuzzy number 1

~
A using the 

following formula given as 

 

                                        s( 1

~
A ) = 

1

~
A

i  x 
1

~
A

ii                                                                                                      (4.6) 

 

 

where 
1

~
A

i  and 
1

~
A

ii  are dist  14
~~ aa  and *

~
1A

y  respectively.   

 s( 1

~
A ), 

1

~
A

i , 
1

~
A

ii , dist  14
~~ aa  [0 ,1]. 
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 Note that, the spread formulation in equation (4.6) is the same as equation (4.3). This 

indicates that the centroid point based spread method developed in Section 4.2 is utilised 

in this step. 

 

Step 3: Compute ranking value for 1

~
A  using CPS ranking method which is defined as  

 

                             1

*
~

*
~1

~
1

~
11

AsyxACPS
AAI                                                   (4.7) 

  where  

*
~

1A
x is horizontal – x centroid for standardised generalised type – I fuzzy number 1

~
A  

*
~

1A
y  is horizontal – y centroid for standardised generalised type – I fuzzy number 1

~
A  

s( 1

~
A ) is spread for standardised generalised type – I fuzzy number 1

~
A .  

 

and  1

~
ACPSI

 [–1 , 1].  

 

If    21

~~
ACPSACPS II  ,  then 

21

~~
AA  . (i.e. 1

~
A  is ranked higher than

2

~
A ). 

If    21

~~
ACPSACPS II  ,  then 

21

~~
AA  . (i.e. 1

~
A  is ranked lower than

2

~
A ). 

If    21

~~
ACPSACPS II  ,  then 

21

~~
AA  . (i.e. the ranking for 1

~
A and

2

~
A  is equal). 
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4.3.3 Ranking of Z – Fuzzy Numbers 

 

 

This section discusses the methodology for ranking Z – fuzzy numbers based 

on centroid point and spread, CPSZ. As there is inadequate information on dealing with Z 

– fuzzy numbers, this study develops a method for ranking Z – fuzzy numbers using the 

following descriptions. Thus, with no loss of generality, the following description of Z 

– numbers is given. 

 

Let     
ji AjjjjjAiiiiiA waaaaAwaaaaAZ ;~,~,~,~,;~,~,~,~

43214321   be a Z – number where 

components iA  and 
jA  such that nji ,...,2,1,   are restriction and reliability components 

for A  respectively. A multi – layer decision making methodology for ranking Z – numbers 

is illustrated where it consists of two layers which are listed as follows. 

 

1. Layer One: Z – numbers conversion method (B. Kang et al., 2012a). 

2. Layer Two: CPS ranking method 

 
Full description for both layers is described as follows: 

 

Layer One 

 
 

Step A1:  Convert the reliability component, B into a crisp number,   (weight of 

the reliability component) using (3.6) 
 

Step A2:   Add   to restriction component, A to form a  weighted restriction of Z –

number as in (3.7). 

Step A3: Convert the weighted restriction of Z  –  number  into  standardised 

generalised type – I fuzzy numbers as in (3.8). 

 
 

It has to be noted that Step A1 until Step A3 of Layer One are the same as in Section 

3.3.3. However, Step A3 of Layer One extends the fuzzy numbers used by Kang et al. 

(2012) to standardised generalised type – I fuzzy numbers as defined in Section 3.4.2. 
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Layer Two 

 

Let  4321 ,,, aaaaA zzzzZ   be standardised generalised type – I fuzzy number obtained 

from Layer One known Z – fuzzy number A  and description for Layer Two is as the 

following. Notice that, a Z – fuzzy number, AZ , which is referred to as the standardised 

generalised type – I fuzzy number after conversion from Z – number in Layer One is 

equivalent to type – I fuzzy number, A
~

  defined in Chapter 4. Therefore, with no loss of 

generality, the procedure to rank Z – fuzzy number is the same as ranking procedure in 

Section 4.3. Thus, the complete procedure for ranking Z – fuzzy numbers using the CPSZ 

ranking method is not given in this chapter as repeating the same procedure in the thesis is 

redundant. 

 

  
A

1 I   
A

2 A1 A2 A1 A2 



64  

4.4 THEORETICAL VALIDATION OF RANKING METHODOLOGY 

 
 

According to Brunelli & Mezei (2013), theoretical validation of ranking fuzzy 

numbers is an axiomatic based – research as it concerns a broad scope of ranking 

fuzzy numbers where ranking methods are validated based on properties for ranking 

fuzzy quantities. Fuzzy quantities defined by Wang & Kerre (2001) are in principle more 

generic than fuzzy numbers, but they are not often used in the literature of fuzzy sets. 

Since fuzzy numbers are subsets of fuzzy quantities, hence any properties that are related 

to the latter are also applicable to the former. In the literature of fuzzy sets, reasonable 

properties for ranking fuzzy quantities are presented by Wang & Kerre (2001; 2002) 

where these properties are purposely developed for type – 1 and type – 2 fuzzy 

numbers. Wu & Mendel (2009), Kumar et al. (2010), Asady (2010) and Yu et al. (2013) 

are among the recently established ranking methods that utilise these properties in 

validating their methods. Therefore, based on Wang & Kerre (2001, 2002), reasonable 

properties for ranking fuzzy quantities which are fuzzy numbers are as follows. 

 

Let 1

~
A  and 2

~
A  be two standardised generalised fuzzy numbers where 1

~
A  and 2

~
A  are of 

any type of fuzzy numbers. 

 

  Property 1: If 1

~
A  ≽ 2

~
A  and 2

~
A ≽ 1

~
A , then 21

~~
AA   

  Property 2: If 1

~
A  ≽ 2

~
A  and 2

~
A ≽ 3

~
A , then 1

~
A  ≽ 3

~
A  

   Property 3: If 0
~~

21  AA  and 1

~
A  is on the right side of 2

~
A , then 1

~
A  ≽ 2

~
A  

Property 4: The order of 1

~
A  and 2

~
A  is not affected by the other fuzzy numbers under 

comparison. 

 

If a ranking method fulfils all the aforementioned ranking properties suggested by 

Wang & Kerre (2001; 2002), then the method is considered to be an effective ranking 

method theoretically. Table 4.1 illustrates the applicability of the properties of 

ranking fuzzy quantities towards fuzzy numbers. 



65  

Table 4.1: Applicability of the properties of ranking fuzzy quantities towards fuzzy 

numbers. 

 

Fuzzy Numbers Properties Applicability 

Type – I Yes 

Type – II Yes 

Type – II after reduction into Type – I Yes 

Z – numbers No 

Z – numbers after reduction into Type – I Yes 

 

Although the aforementioned properties are not developed for Z – numbers in the 

first place, as Z – numbers are new in the literature of fuzzy sets (Zadeh, 2011), they are 

all applicable whenever Z – numbers are reduced into type – I fuzzy numbers (Kang et al., 

2012).  

 

4.5 EMPIRICAL VALIDATION OF RANKING METHODOLOGY 

 

In this section, the empirical validation of a ranking fuzzy numbers method is 

extensively discussed. Discussions of this validation are made in accordance to case 

studies found in the literature for fuzzy sets. Among the case studies found are risk 

analysis under uncertainty (Chen & Chen, 2009), fuzzy programming in textile 

industry (Elamvazuthi et al., 2009), a  fuzzy approach in torque – sensorless control of 

DC motor (Liem et al., 2015), inspection planning in manufacturing problem (Mousavi 

et al., 2015) and uncertain stochastic nonlinear systems with input saturation (Sui et al., 

2015). Based on these case studies, Cheng (1998), Wang et al. (2005), Asady (2009), 

Chen & Chen (2007, 2009), Dat et al. (2012), Yu et al. (2013) and Bakar & Gegov 

(2014; 2015) suggest several numerical examples that generically represent all of the 

aforementioned case studies. All numerical examples presented in the literature are 

explained and illustrated as follows. 
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Trivial Case 

 
 

Trivial case category covers cases of fuzzy numbers which are simple and easy to 

differentiate. This is because ranking orders of all cases under this category are 

determined by observing the nature of fuzzy numbers under consideration. Thus, this 

category is carried out to assess the capability of ranking methods including CPS ranking 

method to appropriately rank simple cases of fuzzy numbers first before more complex 

fuzzy numbers cases are considered. In this study, two trivial cases of fuzzy numbers are 

considered. 

 

Embedded Case 

 
 

Embedded case category involves sets of fuzzy numbers which are fully overlapped with 

one another. Regardless whether the fuzzy numbers are of different heights or spreads, as 

long as they are fully overlapping with each other, they are considered to represent 

a embedded case. Under this category, three different kinds of embedded cases of fuzzy 

numbers are investigated. 

 

Overlapping Case 

 
 

Overlapping case category is among the most important cases in ranking fuzzy 

numbers area of research. If embedded fuzzy numbers cases are fuzzy numbers which 

are fully overlapped with each other, this category considers fuzzy numbers that are 

partially overlapping from one to another. For this category, two distinct cases of 

overlapping fuzzy numbers are examined. 

 

Non – overlapping Case 

 
 

Non – overlapping case category involves cases of fuzzy numbers that are separated 

from each other. This category is considered as the opposite of the overlapping case 

category where two distinct non – overlapping cases of fuzzy numbers are considered in 

this study. 
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4.5.1 Evaluation of Consistency 

 

 

Consistency is defined in the literature for ranking fuzzy numbers as the 

capability of a ranking method to produce correct ranking order such that the ranking 

result is consistent with human intuition. This evaluation is a common validation done by 

many established ranking methods like Cheng (1998), Chen & Lu (2001), Wang et al. 

(2006), Chen & Chen (2009), Dat et al. (2012), Bakar & Gegov (2014) where ordering 

results of a ranking method is compared based on several sets of fuzzy numbers with 

other ranking methods under consideration for their consistency evaluation. If a method 

ranks fuzzy numbers correctly such that the ranking results are consistent with human 

intuition, then the ranking result is justified as consistent, otherwise the ranking result is 

inconsistent. 

 

Let A
~

, B
~

 and C
~

 
be three fuzzy numbers to be ranked and Table 4.2 indicates 

the possible ranking order for A
~

, B
~

 and C
~

 
with respective level of consistency. 

  

Table 4.2: Evaluation of Consistency 

Human intuition = CBA
~~~

  

Ranking order Consistency 

CBA
~~~

  100 

BCA
~~~


      

 50 

CAB
~~~


      

 50 

ACB
~~~


      

 50 

ABC
~~~


      

 0 

BAC
~~~


      

 50 

CBA
~~~


      

 50 

CBA
~~~


       

50 

ACB
~~~


       

50 

ACB
~~~

  
0 

ABC
~~~


       

0 

ABC
~~~


       

0 

CBA
~~~


 

0 
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Table 4.2 clearly indicates that whenever three fuzzy numbers are used to 

represent cases of fuzzy numbers, two ranking operators are used to indicate the level of 

ordering consistency of a ranking fuzzy numbers method. In this case, the consistency 

evaluation provided by this study are categorised into three which are explained as 

follows. 

 

1) For any ranking methods that rank any cases of fuzzy numbers using two correct 

ranking operators, the ranking results obtained by these methods are classified as 

correct such that the ranking results are 100% consistent with human intuition. 

 

2) For any ranking methods that rank any cases of fuzzy numbers using one out of two 

correct ranking operators, the ranking results obtained by these methods are classified 

as partially correct such that the ranking results are 50% consistent with human 

intuition. 

 

3) For any ranking methods that rank any cases of fuzzy numbers using two incorrect 

ranking operators, the ranking results obtained by these methods are classified as 

incorrect such that the ranking results are 0% consistent with human intuition. 

 
 

The consistency evaluations on the ranking order of fuzzy numbers provided in this study 

indicate that the levels of consistency for any ranking fuzzy numbers methods are varied 

from one to another. Since explanations in term of consistency evaluation provided in 

this study are applicable for cases with three fuzzy numbers, they are relevant for any 

ranking method in the literature of ranking fuzzy numbers which also take into 

account three fuzzy numbers in their analysis. Therefore, this study presents a generic 

consistency validation for ranking fuzzy numbers in the literature of fuzzy sets. 



69  

4.5.2 Evaluation of Efficiency 

 
 

This subsection describes the efficiency evaluation of ranking fuzzy numbers 

methods including the CPS ranking methodology when ranking fuzzy numbers. According 

to Allahviranloo et al. (2013), Fries (2014) and Jahantigh & Hajighasemi (2014), 

efficiency of a ranking method is often determined in accordance to its computational 

complexity when ranking fuzzy numbers. In the literature of fuzzy sets, two kinds of 

ranking method are found namely simultaneous ranking and pairwise ranking. 

Simultaneous ranking refers to the capability of a method to ranking any quantity of 

fuzzy numbers simultaneously like Chen & Chen (2009) and Bakar & Gegov (2014; 

2015) while pairwise ranking is the capability of a method to ranking only two fuzzy 

numbers at one time such as Bakar et al. (2010; 2012) and Dat et al. (2012). Although 

there are different capabilities in terms of ranking fuzzy numbers, these are not 

empirically proven in the literature of fuzzy sets. Thus, this study provides empirical 

justification in terms of validating the efficiency level of ranking methods by taking into 

consideration the capability of ranking methods to rank more than two fuzzy numbers 

simultaneously. The complete explanation of the efficiency evaluation developed in this 

study is as follow. 

 

As far as the literature on ranking fuzzy numbers methods is concerned, both 

kinds of capability of ranking fuzzy numbers methods follow the same basic 

algorithms when ranking fuzzy numbers. In accordance to aforementioned ranking 

methods, basic algorithms for ranking fuzzy numbers are signified as Basic Algorithm 

and are shown as follows. 

Basic Algorithm for Ranking Fuzzy Numbers 

 
1) Assign a  value to each fuzzy number under consideration whereby this 

value is called an assignment. 

2) Make a  comparison based on the assignment obtained in 1). This step is also 

known as sorting stage. 
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Regardless to whether a ranking method utilises simultaneous or pairwise rankings, each 

ranking way underpins the same number of assignments and comparisons when fuzzy 

numbers under consideration. If fuzzy numbers examined are more than two, then 

number of assignments and comparisons are varied as simultaneous ranking ranks 

simultaneously all fuzzy numbers under consideration while pairwise ranking requires 

more steps to ranking the fuzzy numbers even if the quantity of fuzzy numbers are the 

same when simultaneous ranking is used. Therefore, depending on the quantity of fuzzy 

numbers considered, differences between simultaneous ranking and pairwise ranking in 

terms of number of assignments and comparison are summarised in Table 4.3. 

Table 4.3: Differences between simultaneous ranking and pairwise ranking in 

terms of number of assignments and comparisons. 

No. of Direct Ranking Pairwise Ranking 
 

No of 

Fuzzy 

Numbers 

Simultaneous Ranking Pairwise Ranking 

No. of 

Assignments 

No. of 

Comparisons 

No. of 

Assignments 

No. of 

Comparisons 

2 2 1 2 1 

3 3 1 6 3 

4 4 1 12 6 

5 5 1 20 10 

6 6 1 30 15 

7 7 1 42 21 

8 8 1 56 28 
 

 

Even though, Table 4.3 clearly indicates that number of assignments and 

comparisons for simultaneous and pairwise rankings methods are different even if the 

number of fuzzy numbers under consideration is the same, both ranking ways 

sometimes require additional operations to ranking fuzzy numbers appropriately. This 

is because in certain situations, a ranking method is incapable to rank fuzzy numbers 

appropriately only if one approach is used. Therefore, incorporation of other approaches 

as such the additional operation along with the established ranking method complements 

the ranking method in ranking fuzzy numbers appropriately. Among ranking methods 

found in the literature of fuzzy sets that rely on additional operations to ranking fuzzy 

numbers appropriately are Cheng (1998), Kumar & Kaur (2012), Yu et al. (2013) and 

Zhang et al. (2014). Thus, incorporation of additional operation by some ranking methods 

creates further extension of the basic algorithm mentioned earlier, where this study lists 

the extension algorithms as follows. 
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Extension of Basic Algorithm used for Ranking Fuzzy Numbers 

 
1) Assign a  value to each fuzzy number under consideration whereby this 

value is called an initial assignment. 

2) Make a comparison based on assignment obtained in 1) where this  is  defined  

as  initial comparison. 

3) Assign a value to each fuzzy number under consideration for second time 

whereby this value is called the secondary assignment. 

4) Make a  comparison based on secondary assignment obtained in 3) which is 

defined as secondary comparison. 

 

It has to be noted that steps 1 and 2 of basic algorithm are changed to initial assignment 

and initial comparison in this algorithm respectively as both steps are repeated in steps 3 

and 4 respectively. The terms initial assignment and initial comparison are introduced in 

this case as to avoid confusion between the steps used and to indicate that the 

ranking methods require additional operations in the methodology. Therefore, regardless 

if a ranking method uses simultaneous ranking or pairwise ranking, if the method 

incorporates an additional approach to ranking fuzzy numbers, then an extension of the 

basic algorithm is used where secondary assignment and secondary comparison are 

obtained in its result. The following Table 4.4 illustrates comparisons in terms of the 

algorithm used between simultaneous ranking, simultaneous ranking with additional 

operation, pairwise ranking and pairwise ranking with additional operation. 

Table 4.4: Algorithm comparison between simultaneous ranking, simultaneous 

ranking with additional operation, pairwise ranking and pairwise ranking with 

additional operation. 

 

Algorithm 

Simultaneous Ranking Pairwise Ranking 

Without 

Additional 

Operation 

With 

Additional 

Operation 

Without 

Additional 

Operation 

With 

Additional 

Operation 

Initial Assignment Yes Yes Yes  Yes 

Initial Comparison Yes Yes  Yes Yes 

Secondary Assignment No Yes No  Yes 

Secondary Comparison No  Yes No  Yes 
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Based on all discussions made above, a complete evaluation of efficiency for 

ranking fuzzy numbers methods is suggested. There are four classes of efficiency 

evaluations are introduced in this study namely very efficient, slightly efficient, slightly 

inefficient and very inefficient. All of these classes are determined through examining the 

capability of a method in ranking more than two fuzzy numbers simultaneously. Based on 

Table 4.3 and Table 4.4, the following Table 4.5 and Figure 4.3 are developed. 

 

Table 4.4: Evaluation of Efficiency. 

No. of Fuzzy 

numbers 

Efficiency 

Simultaneous Ranking Pairwise Ranking 

Without 

Additional 

Computation 

With Additional 

Computation 

Without Additional 

Computation 

With Additional 

Computation 

2 2 IA 2 IA 2 IA  2 IA  

3 3 IA 3 IA + 3 IC +3 SA +3 SC 6 IA + 3 IC  6 IA + 3 IC + 6 SA + 3 SC 

4 4 IA 4 IA + 4 IC +4 SA +4 SC 12 IA + 6 IC 12 IA + 6 IC + 12 SA + 6 SC 

5 5 IA 5 IA + 5 IC +5 SA +5 SC 20 IA + 10 IC 20 IA + 10 IC + 20 SA + 10 SC 

6 6 IA 6 IA+ 6 IC +6 SA +6 SC 30 IA + 15 IC 30 IA + 15 IC + 30 SA + 15 SC 

7 7 IA 7 IA+ 7 IC +7 SA +7 SC 42 IA + 21 IC 42 IA + 21 IC + 42 SA + 21 SC 

8 8 IA 8 IA+ 8 IC +8 SA +8 SC 56 IA + 28 IC 56 IA + 28 IC + 56 SA + 28 SC 

N    NNf     NNf 4  
  NNNf

2

3

2

3 2 

 

  NNNf 33 2   

Efficiency 

Classification 

Very 

Efficient 
Slightly Efficient Slightly Inefficient Very Inefficient 
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Fig 4.3:  Evaluation of efficiency. 

 

 

 

It is clearly indicate in Table 4.5 and Figure 4.3, a simultaneous – based 

ranking method like the CPS ranking method is more efficient than methods with pairwise 

ranking because it is represented by a linear function while the latter are signified by 

quadratic functions. Apart from that, the CPS ranking methodology and other 

simultaneous ranking methods are four times (4 times) more efficient than a simultaneous 

ranking method that requires additional operation in the formulation. This is shown when 

functions obtained for the CPS ranking methodology (simultaneous ranking without 

additional operation) and simultaneous ranking with additional operation are f(N) = N and 

f(N) = 4N respectively. For pairwise ranking, methods that require additional operation to 

ranking fuzzy numbers are twice less efficient than one without additional operation where 

the functions are    NNNf 33 2   and    NNNf
2

3

2

3 2 
 
for a method with additional 

operation and method without additional operation respectively. Therefore, based on these 

discussions, CPS ranking methodology or any simultaneous ranking methods which 

No. of Fuzzy 

numbers 

No. of ranking 

algorithm 

2 

2 

3 4 5 6 7 8 9 

8 

N 
(Simultaneous Ranking without 

Additional Computation) 

NN
2

3

2

3 2   

(Pairwise Ranking 

without Additional 

Computation) 

4N 
(Simultaneous Ranking 

with Additional 

Computation) 

NN 33 2   
(Pairwise Ranking 

with Additional 

Computation) 
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requires no additional operation is classified as very efficient, simultaneous ranking with 

additional operation as slightly efficient, pairwise ranking without additional operation as 

slightly inefficient and pairwise ranking with additional operation as very inefficient. 

Therefore, similarly as subsection 4.4.1, descriptions mentioned in this subsection are also 

utilised on the following three chapters of the thesis for validation purposes. 

 

4.3       SUMMARY 

 

 

In this chapter, the research methodology of the thesis is thoroughly discussed. 

A novel methodology for ranking fuzzy numbers is developed in this chapter which consists 

of centroid point and spread method, CPS. The spread method which is proposed based on 

distance from the centroid point, fulfils all relevant theoretical properties on 

differentiating fuzzy numbers introduced in this study. Then, the spread method is 

incorporated with an established centroid point method as a novel methodology for ranking 

fuzzy numbers where the ranking method satisfies all the ordering properties under 

consideration. Together with those discussions, two types of evaluation, namely the 

consistency and efficiency, are introduced in this chapter as the empirical validation for 

ranking fuzzy numbers methods. Descriptions on both types of evaluation in this chapter 

underpin discussions on the empirical validation for the next three chapters of the thesis. 

This indicates that Chapter 4 underpins Chapter 5, Chapter 6 and Chapter 7 of the thesis. In 

Chapter 5, the thesis discusses the capability of CPS ranking methodology in ranking type 

– I fuzzy numbers. 
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CHAPTER FIVE 

 
RANKING OF TYPE – I FUZZY NUMBERS 

 

 

5.1 INTRODUCTION 

 

 

This chapter discusses details on validation of the proposed new methodology for 

ranking type – I fuzzy numbers based on centroid point and spread, CPSI. Theoretical 

and empirical validation defined in Section 4.4 and 4.5 respectively are demonstrated in this 

chapter. These validations which are associated with properties of ranking fuzzy 

quantities as well as consistency and efficiency evaluation of ranking operations are 

described in detail here. Therefore, without loss of generality of Section 4.4 and 4.5, 

details on those aforementioned both validations are extensively discussed in sections and 

subsections of this chapter. 

 

5.1 THEORETICAL VALIDATION 

 

 

This subsection validates theoretically the CPSI ranking method using 

theoretical properties adopted from Wang & Kerre (2001, 2002). These properties justify 

the capability of the CPSI ranking method to ranking fuzzy numbers appropriately. It is 

worth mentioning that proofs provided for all of the theoretical properties considered are 

applicable to CPSI ranking method. With no loss of generality, theoretical ordering 

properties by Wang & Kerre (2001, 2002) which are prepared for CPSI ranking method are 

presented as follows. 

 

Let 1

~
A  and 2

~
A  be two standardised generalised fuzzy numbers where 1

~
A  and 2

~
A  are of any 

types of fuzzy numbers. 

Property 1: If 1

~
A  ≽ 2

~
A  and 2

~
A ≽ 1

~
A , then 21

~~
AA   

Proof:  

Since, 1

~
A  ≽ 2

~
A  implies that    21

~~
ACPSACPS II  , and 2

~
A ≽ 1

~
A  implies that 

   12

~~
ACPSACPS II  , hence indicates that,    21

~~
ACPSACPS II  , which is 21

~~
AA   
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 Property 2: If 1

~
A  ≽ 2

~
A  and 2

~
A ≽ 3

~
A , then 1

~
A  ≽ 3

~
A  

Proof:  

 

For CPS ranking method, 1

~
A  ≽ 2

~
A  implies that    21

~~
ACPSACPS II  , and 2

~
A ≽ 3

~
A , implies 

that    32

~~
ACPSACPS II  . This indicates that    31

~~
ACPSACPS II  , which is 1

~
A  ≽ 3

~
A . 

 

Property 3: If 0
~~

21  AA  and 1

~
A  is on the right side of 2

~
A , then 1

~
A  ≽ 2

~
A  

 

Proof: 

Since, 0
~~

21  AA  and 1

~
A  is on the right side of 2

~
A , hence, implies that 

   21

~~
ACPSACPS II  , thus, 1

~
A  ≽ 2

~
A . 

 

Property 4: The order of 1

~
A  and 2

~
A  is not affected by the other fuzzy numbers under 

comparison. 
 

Proof: 

Since, the ordering of 1

~
A  and 2

~
A  is completely determined by  1

~
ACPSI

 and  2

~
ACPSI

 

respectively, hence indicates that the ordering of 1

~
A  and 2

~
A  is not affected by the other 

fuzzy numbers under comparison. 

 

The above theoretical validation clearly indicates that the CPSI ranking method 

is capable to ranking fuzzy numbers appropriately. This is signified through proof based –

properties fulfilment by the CPSI ranking method on all theoretical validations considered 

in this subsection. In the next section, a generic empirical validation for any ranking fuzzy 

numbers methods is thoroughly discussed. 
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5.2 EMPIRICAL VALIDATION 

 

 

This section discusses empirical validation of the CPSI ranking method on 

ranking type – I fuzzy numbers. The empirical validation is a comparative – based ranking 

order analysis between the CPSI ranking method and established ranking methods under 

consideration on their consistency and efficiency in ranking type – I fuzzy numbers. All 

established ranking methods considered in this validation are methods for ranking type – I 

fuzzy numbers found in literature of fuzzy sets. These methods are chosen according to 

their high referencing frequency by many established ranking methods. Therefore, without 

loss of generality in terms of information in Section 4.5, the consistency and efficiency 

evaluations of the CPSI ranking method are given as follows. 

 
5.3.1 Evaluation of Consistency 

 
 

This subsection provides details on consistency evaluation of the CPSI ranking 

method on ranking type – I fuzzy numbers. Nine sets of type – I fuzzy numbers adopted 

from Chen & Chen (2009) with modifications are utilised as benchmarking examples in this 

case where all of them are often used in validating many ranking methods such as Kumar et 

al. (2010), Bakar et al. (2010), Chen & Sanguatsan (2011), Dat et al. (2012) and Zhang et 

al. (2014). Therefore, with no loss of generality, all of the nine benchmarking examples 

which fall under the four categories mentioned in Section 4.5 are illustrated as follows. 

 

Trivial Case 

 
Trivial Case 1 

 

Trivial case 1 involves three triangular type – I fuzzy numbers of similar shapes and not 

overlapped which is illustrated in Figure 5.1. 

 

 

 




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

 

  

 

 

 

 

                                         

 

                 0.1;3.0,2.0,2.0,1.0
~

1 A   0.1;6.0,5.0,5.0,4.0
~

2 A   0.1;9.0,8.0,8.0,7.0
~

3 A  

Fig 5.1: Trivial Case 1 
 

Using the CPSI ranking method, the ranking order for 1
~
A , 2

~
A and 3

~
A  which in this case is 

determined as follows. 

 

Step 1:   Calculate the centroid point (      ) for 1
~
A  such that the value of *

~
1A

x is 

computed using equation (4.4) as 

 

                  

 
  














3.05.0

02.006.0
3.02.02.01.0

3

1*
~

1A
x              

 

                         2.0  

 

whereas, the value of *
~

1A
y  is obtained using equation (4.5) as  

  
 










3.05.0

0
1

3

1*
~

1A
y  

                           
3333.0  

 

Hence, the centroid point for 1

~
A  is (0.2, 0.3333). 

 

 

0.1 0.3 0.5 0.7 0.9 

  

1.0  ̃  

 
 ̃
    

 ̃  

 

 ̃  
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Using the same procedure as in Step 1, the centroid point values for 2
~
A and 3

~
A  are as 

follows: 

                              
 3333.0,5.0),( *

~
*
~

22


AA

yx  

                                             
 3333.0,8.0),( *

~
*
~

33


AA

yy
 

 

Step 2:  Compute the spread values of 1
~
A , 2

~
A and 3

~
A  where the spread of 1

~
A is 

    s( 1

~
A ) 3333.02.0       

            

            
0667.0                                                                                           

 
 

and the spread values for 2
~
A and 3

~
A  are

 

                                                   s( 2

~
A ) 0667.0      

                                                 

                                                    s( 3

~
A ) 0667.0      

 
 

Step 3:  Obtain the ranking values of 1
~
A , 2

~
A and 3

~
A  such that the ranking value for 1

~
A is 

 

                                0667.013333.02.0
~

1 ACPSI
 

                                        

                                            0662.0  

and ranking values for 2
~
A  and 3

~
A  are 

 

  1555.0
~

2 ACPSI
                        

  2489.0
~

3 ACPSI    

 

Since      123

~~~
ACPSACPSACPS III  , hence the ranking order result for type – I fuzzy 

numbers 1
~
A , 2

~
A and 3

~
A  in this case is 123

~~~
AAA  . 

 

It is worth mentioning here that the entire steps utilised by the CPSI ranking 

method in ranking type – I fuzzy numbers are only demonstrated in Trivial Case 1. This 

is because these steps are also applied to the remaining eight cases of benchmarking 
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examples considered in this study, thus repeating the entire steps are redundant. 

Therefore, only definition, illustration, the ranking results and discussions on each 

case considered are provided. 

 

Trivial Case 2 

 
Trivial case 2 involves three identical triangular type – I fuzzy numbers which are 

embedded with each other. The following Figure 5.2 illustrates type – I fuzzy numbers of 

trivial case 2. 

 

 

  

 

 

 

 

 

 

 

                0.1;5.0,3.0,3.0,1.0
~

1 B    0.1;5.0,3.0,3.0,1.0
~

2 B   0.1;5.0,3.0,3.0,1.0
~

3 B  

                                                   Fig 5.2: Trivial Case 2 

 

 

 

Results and Validation  

 
Comparisons of ranking order for trivial case 1 and 2 between the CPSI ranking method 

and established ranking methods considered in this study are shown in Table 5.1 and 5.2 

respectively. 

 

 

 

0.1 0.3 0.5 

  

1.0 

 
 ̃
    

 ̃   ̃   ̃  
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Table 5.1: Ranking Results for Trivial Case 1 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency 
1

~
A  2

~
A  3

~
A  

Cheng (1998) 0.583 0.583 0.583 321

~~~
AAA   0 

Kumar et al. (2010) 0.300 0.300 0.300 321

~~~
AAA   100 

Dat et al. (2012) 
0.000 / 

0.300 

0.300 / 

0.600 

0.600 / 

0.000 321

~~~
AAA   100 

Yu et al. (2013) for  = 0 1.00 1.00 1.00 321

~~~
AAA   100 

Yu et al. (2013) for  = 0.5 1.00 1.00 1.00 321

~~~
AAA   100 

Yu et al. (2013) for  = 1 1.00 1.00 1.00 321

~~~
AAA   100 

Zhang et al. (2014) for  = 0 
0.500 / 
0.500 

0.500 / 
0.500 

0.500 / 
0.500 321

~~~
AAA   100 

Zhang et al. (2014) for  = 0.5 
0.500 / 
0.500 

0.500 / 
0.500 

0.500 / 
0.500 321

~~~
AAA   100 

Zhang et al. (2014) for  = 1 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
AAA   100 

CPSI 0.089 0.107 0.119 321

~~~
AAA   100 

Table 5.2: Ranking Results for Trivial Case 2 
 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency 
1

~
B  2

~
B  3

~
B  

Cheng (1998) 0.583 0.583 0.583 321

~~~
BBB   100 

Kumar et al. (2010) 0.300 0.300 0.300 321

~~~
BBB   100 

Dat et al. (2012) 
0.333 / 

0.333 

0.333 / 

0.333 

0.333 / 

0.333 321

~~~
BBB   100 

Yu et al. (2013) for  = 0 1.00 1.00 1.00 321

~~~
BBB   100 

Yu et al. (2013) for  = 0.5 1.00 1.00 1.00 321

~~~
BBB   100 

Yu et al. (2013) for  = 1 1.00 1.00 1.00 321

~~~
BBB   100 

Zhang et al. (2014) for  = 0 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
BBB   100 

Zhang et al. (2014) for  = 0.5 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
BBB   100 

Zhang et al. (2014) for  = 1 
0.500 / 
0.500 

0.500 / 
0.500 

0.500 / 
0.500 321

~~~
BBB   100 

CPSI 0.089 0.089 0.089 321

~~~
BBB   100 

 

 

It is worth noting here that ranking values obtained by Dat et al (2012) and 

Zhang et al. (2014) are separated by separator ( / ) in both Table 5.1 and Table 5.2. 

This is to point out that both methods adopted pairwise ranking approach to ranking 

type – I fuzzy numbers. Also indicated in both tables is Yu et al. (2013) ranking 

method where this method provides equal ranking values for all type – I fuzzy 

numbers under consideration but gives different ranking orders for different . This 

happens because Yu et al. (2013) ranking method considers different type of 
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decision makers’ opinions which is reflected by  when ranking type – I fuzzy 

numbers, thus different ranking orders are computed for different values of even 

if the ranking values obtained are the same at the first place. Notice that, these 

conditions of Dat et al. (2012) and Zhang et al. (2014) ranking methods apply to 

all cases of benchmarking examples considered in this chapter while only some cases 

apply to Yu et al. (2013) ranking method. 
 

 

Discussions 

  

 

For trivial case 1, the correct ranking order such that the ranking result is 100% 

consistent with human intuition is 321

~~~
AAA  . This is because 3

~
A  is located at the 

farthest right compared to 
2

~
A , while 

2

~
A  is on the right of 

1

~
A . In Table 5.1, all established 

ranking methods considered in this study including the CPSI ranking method except 

Cheng (1998), produce correct ranking order for this case such that the ranking result is 

100% consistent with human intuition. Cheng (1998) ranking method in this case, 

produces equal ranking which is 0% consistent with human intuition. This indicates 

that the CPSI ranking method is capable to deal with type – I fuzzy numbers of 

different locations. 

 

For trivial case 2, the correct ranking order such that the ranking result is 100% 

consistent with human intuition is 321

~~~
BBB  . This is due to the fact that all type – I 

fuzzy numbers under consideration are the same in term of their shapes, spreads, heights 

and centroids. Shown in Table 5.2, all ranking results obtained by all established ranking 

methods considered in this study and the CPSI  ranking method are the correct ranking 

order such that the results are 100% consistent with human intuition. This points out that 

the CPSI ranking method is capable to give same ranking value for each type – I 

fuzzy numbers even if same type – I fuzzy numbers are compared. 

 

 

 

Embedded Case 
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Embedded Case 1 

 
Embedded case 1 involves three embedded type – I fuzzy numbers where two of them are 

in trapezoidal type – I fuzzy numbers while the other is a triangular type – I fuzzy 

number. All of these type – I fuzzy numbers are of same height but differed in centroid 

point and spread as shown in Figure 5.3. 

 

 

  

 

 

 

 

 

 

                0.1;5.0,4.0,2.0,1.0
~

1 C    0.1;5.0,35.0,25.0,1.0
~

2 C   0.1;5.0,3.0,3.0,1.0
~

3 C  
 

Fig 5.3: Embedded Case 1 
 

 

 

Embedded Case 2 
 

 

Embedded case 2 involves three triangular type – I fuzzy numbers where they are 

embedded with each other, same height and same centroid point but different in term of 

their spread. Figure 5.4 best is the illustration for this case. 

 

 

 

 

 
 
 

 

0.3 0.5 

  

1.0 

0.1 

2

~
C  

3

~
C  

 
 ̃
    

1

~
C  

 
 ̃
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       0.1;5.0,3.0,3.0,1.0
~

1 D    0.1;45.0,3.0,3.0,15.0
~

2 D   0.1;4.0,3.0,3.0,2.0
~

3 D  


                                                  Fig 5.4: Embedded Case 2 
 

 

 

Embedded Case 3 

 

 

Embedded case 3 shown in Figure 5.5 involves three triangular type – I fuzzy numbers 

that are embedded with each other and having the same horizontal – x centroid but 

different in spread and vertical – y centroid. 

 

 

 

  

 

 

 

 

 

 

                     0.1;5.0,3.0,3.0,1.0
~

1 E  8.0;5.0,3.0,3.0,1.0
~

2 E  6.0;5.0,3.0,3.0,1.0
~

3 E  


Fig 5.5: Embedded Case 3 

 

 

 

 

Results and Validation  

1

~
D  

0.1 0.3 0.5 

1.0 

2

~
D  

3

~
D  

  

0.1 0.3 0.5 

  

1.0 
1

~
E  

0.8 2

~
E  

3

~
E  

0.6 

 
 ̃
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Comparisons of ranking order for embedded case 1, 2 and 3 between the CPSI ranking 

method and established ranking methods considered in this study are illustrated in Table 

5.3, 5.4 and 5.5 respectively. 

Table 5.3: Ranking Results for Embedded Case 1 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of  

Consistency (%) 1

~
C  2

~
C  3

~
C  

Cheng (1998) 0.583 0.583 0.583 321

~~~
CCC   0 

Kumar et al. (2010) 0.300 0.300 0.300 321

~~~
CCC   0 

Dat et al. (2012) 
0.333 / 

0.333 

0.333 / 

0.333 

0.222 / 

0.333 321

~~~
CCC   50 

Yu et al. (2013) for  = 0 1.00 1.00 1.00 321

~~~
CCC   0 

Yu et al. (2013) for  = 0.5 1.00 1.00 1.00 321

~~~
CCC   0 

Yu et al. (2013) for  = 1 1.00 1.00 1.00 321

~~~
CCC   100 

Zhang et al. (2014) for  = 0 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
CCC   0 

Zhang et al. (2014) for  = 0.5 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
CCC   0 

Zhang et al. (2014) for  = 1 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
CCC   100 

CPSI 0.119 0.107 0.089 321

~~~
CCC   100 

 
 

Table 5.4: Ranking Results for Embedded Case 2 

 
 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of  

Consistency (%) 1

~
D  2

~
D  3

~
D  

Cheng (1998) 0.583 0.583 0.583 321

~~~
DDD   0 

Kumar et al. (2010) 0.300 0.300 0.300 321

~~~
DDD   0 

Dat et al. (2012) 
0.333 / 

0.333 

0.333 / 

0.333 

0.333 / 

0.333 321

~~~
DDD   0 

Yu et al. (2013) for  = 0 1.00 1.00 1.00 321

~~~
DDD   0 

Yu et al. (2013) for  = 0.5 1.00 1.00 1.00 321

~~~
DDD   0 

Yu et al. (2013) for  = 1 1.00 1.00 1.00 321

~~~
DDD   100 

Zhang et al. (2013) for  = 0 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
DDD   0 

Zhang et al. (2013) for  = 0.5 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
DDD   0 

Zhang et al. (2013) for  = 1 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
DDD   100 

CPSI 0.089 0.107 0.119 321

~~~
DDD   100 
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Table 5.5: Ranking Results for Embedded Case 3 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 
1

~
E  2

~
E  3

~
E  

Cheng (1998) 0.583 0.461 0.346 
321

~~~
EEE   100 

Kumar et al. (2010) 0.240 0.240 0.240 321

~~~
EEE   0 

Dat et al. (2012) 
0.266 / 
0.244 

0.244 / 
0.133 

0.133 / 
0.266 321

~~~
EEE   100 

Yu et al. (2013) for  = 0 1.00 1.00 1.00 321

~~~
EEE   0 

Yu et al. (2013) for  = 0.5 1.00 1.00 1.00 321

~~~
EEE   0 

Yu et al. (2013) for  = 1 1.00 1.00 1.00 321

~~~
EEE   100 

Zhang et al. (2013) for  = 0 x x x - N/A 

Zhang et al. (2013) for  = 0.5 x x x - N/A 

Zhang et al. (2013) for  = 1 x x x - N/A 

CPSI 0.119 0.107 0.089 
321

~~~
EEE   100 

 
            Note: ‘x’ denotes method as unable to calculate the ranking value.  

           ‘-’ denotes no ranking order is obtained. 

 
 

Discussions  

 
 

For embedded case 1, the correct ranking order such that the ranking result is 

100% consistent with human intuition is 321

~~~
CCC  . This is because the vertical – y 

centroid of type – I fuzzy number 
1

~
C  is the largest among the three, followed by 

2

~
C   

and 

then 
3

~
C . In Table 5.3, Cheng (1998) and Kumar et al. (2010) ranking methods produce 

incorrect ranking order such that the ranking result is 0% consistent with human 

intuition for this case where both methods give equal ranking, 321

~~~
CCC   as they treat 

all type – I fuzzy numbers under consideration as having the same area. A partially 

incorrect ranking order such that the ranking result is 50% consistent with human 

intuitions is obtained by Dat et al. (2012) where this method is incapable to differentiate 
1

~
C  

and 
2

~
C   effectively. Different ranking orders are produced by Yu et al. (2013) and Zhang 

et al.        as both ranking methods depend on decision maker’s opinion to raking fuzzy 

numbers. The CPSI ranking method on the other hand, ranks this case with correct ranking 

order such that the ranking result is 100% consistent with human intuition which 

emphasises that this method is capable to deal with embedded type – I fuzzy numbers of 
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different shapes.  

 

For embedded case 2, the correct ranking order such that the ranking result is 

100% consistent with human intuition is 321

~~~
DDD  . This is due to the fact that the 

spread value for 3

~
D  is the smallest among the three, followed by 

2

~
D  and then 

1

~
D . Clearly 

indicate in Table 5.4 is the incorrect ranking results by Cheng (1998), Kumar et al. (2010) 

and Dat et al. (2012) such that the results are 0% consistent with human intuition. All of 

them give equal ranking for this case, 321

~~~
DDD  , because Cheng (1998) and Kumar 

et al. (2010) ranking methods treat all type – I fuzzy numbers under consideration as the 

same area whereas Dat et al. (2012) ranking method produces same distance for all type – 

I fuzzy numbers in this case. Yu et al. (2013) and Zhang et al. (2014) ranking methods 

produce many ranking results for this case since both take into account decision makers’ 

opinion when ranking fuzzy numbers. Only the CPSI ranking method obtains the correct 

ranking order such that the ranking result is 100% consistent with human intuition for this 

case which signaling that this method is capable to differentiate type – I fuzzy numbers 

with different spread appropriately. 

 

 For embedded case 3, the correct ranking order such that the ranking result is 

100% consistent with human intuition is 321

~~~
EEE  . 

1

~
E  is considered as the greatest 

type – I fuzzy numbers among the three because the height of 
1

~
E  is the largest, followed 

by 
2

~
E  and then 3

~
E . In Table 5.5, ranking method by Kumar et al. (2010) treats this case 

with equal ranking, 321

~~~
EEE   as this method considers all type – I fuzzy numbers 

under consideration as the same area. Yu et al. (2013) ranking method produces different 

ranking order for different decision makers’ opinions while Zhang et al. (2014) ranking 

method is incapable to come out with any ranking order as the method is not applicable to 

non – normal fuzzy numbers. Nonetheless, correct ranking orders such that the ranking 

result is 100% consistent with human intuition are obtained by Cheng (1998), Dat et al. 

(2012) and the CPSI ranking method. This result implies that the CPSI  ranking method 

is capable to deal with type – I fuzzy numbers of different heights effectively. 
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Overlapping Case 

 
Overlapping Case 1 

 

 
Overlapping case 1 illustrates in Figure 5.6 involves three overlapping identical triangular 

type – I fuzzy numbers which are same in spread and height. Nevertheless, they are 

differed in terms of their positions. 

 

  

 

 

 

 

 

    

                   0.1;5.0,3.0,3.0,1.0
~

1 F   0.1;7.0,5.0,5.0,3.0
~

2 F  0.1;9.0,7.0,7.0,5.0
~

3 F  

Fig 5.6: Overlapping Case 1 
 

 

 

Overlapping Case 2 

 

 

Overlapping case 2 involves three overlapping type – I fuzzy numbers comprise two 

trapezoidal type – I fuzzy numbers and a triangular type – I fuzzy numbers as illustrate in 

Figure 5.7. All of them are same of height but different of centroid point and spread. 
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                0.1;7.0,5.0,4.0,0.0
~

1 G   0.1;9.0,5.0,5.0,2.0
~

2 G   0.1;8.0,7.0,6.0,1.0
~

3 G         

Fig 5.7: Overlapping Case 3 

 

Results and Validation  

 
Comparisons of ranking order for overlapping case 1 and 2 between the CPSI  ranking 

method and established ranking methods considered in this study are illustrated in Table 

5.6 and 5.7 respectively. 

 
Table 5.6: Ranking Results for Overlapping Case 1 

 
 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 
1

~
F  2

~
F  3

~
F  

Cheng (1998) 0.583 0.707 0.831 321

~~~
FFF   100 

Kumar et al. (2010) 0.3 0.5 0.8 321

~~~
FFF   100 

Dat et al. (2012) 
0 .000 / 

0.040 

0.040 / 

0.400 

0. 000 / 

0.400 321

~~~
FFF   100 

Yu et al. (2013) for  = 0 0.300 0.500 0.700 321

~~~
FFF   100 

Yu et al. (2013) for  = 0.5 0.300 0.500 0.700 321

~~~
FFF   100 

Yu et al. (2013) for  = 1 0.300 0.500 0.700 321

~~~
FFF   100 

Zhang et al. (2013) for  = 0 
0.500 / 

0.720  

0.720 / 

0.969  

0.969 / 

0.500 321

~~~
FFF   100 

Zhang et al. (2013) for  = 0.5 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321

~~~
FFF   100 

Zhang et al. (2013) for  = 1 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321

~~~
FFF   100 

CPSI 0.089 0.107 0.119 321

~~~
FFF   100 

 

 

 

 

 

 

  

1.0 

0.1 0.3 0.5 0.6 0.8 0.9 

 
 ̃
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~
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~
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~
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Table 5.7: Ranking Results for Overlapping Case 2 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 
1

~
G  2

~
G  1

~
G  

Cheng (1998) 0.680 0.726 0.746 
321

~~~
GGG   100 

Kumar et al. (2010) 0.300 0.500 0.700 321

~~~
GGG   100 

Dat et al. (2012) 
0.000 / 
0.040 

0.040 / 
0.400 

0. 400 / 
0.000 321

~~~
GGG   100 

Yu et al. (2013) for  = 0 0.300 0.500 0.700 321

~~~
GGG   100 

Yu et al. (2013) for  = 0.5 0.300 0.500 0.700 321

~~~
GGG   100 

Yu et al. (2013) for  = 1 0.500 0.7200 0.969 321

~~~
GGG   100 

Zhang et al. (2013) for  = 0 
0.500 / 

0.720  

0.720 / 

0.969  

0.969 / 

0.500 321

~~~
GGG   100 

Zhang et al. (2013) for  = 0.5 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321

~~~
GGG   100 

Zhang et al. (2013) for  = 1 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321

~~~
GGG   100 

CPSI 0.089 0.107 0.119 
321

~~~
GGG   100 

Discussions  

For overlapping case 1, the correct ranking order such that the ranking results 

is 100% consistent with human intuition is 321

~~~
FFF  . This is because 3

~
F    is situated 

on the farthest right among the three, followed by 
2

~
F    

and then 
1

~
F . Table 5.6 indicates that 

all ranking methods considered in this study including the CPSI ranking method produce 

correct ranking order such that the ranking result is 100% consistent with human 

intuition. All ranking methods obtain correct ranking result because this case is easy to 

distinguish. The result of the CPSI ranking method obtained in this case indicates that this 

method is capable to appropriately differentiate partial overlapping type – I fuzzy numbers. 

 

For overlapping case 2, the correct ranking order such that the ranking results 

is 100% consistent with human intuition is 321

~~~
GGG  . This is due to the fact that 

when combining both values of centroi point and spread of each type – I fuzzy number 

under consideration,
 

3

~
G  is the greatest followed b y

2

~
G and then 

1

~
G  . Table 5.7 shows all 

ranking methods under consideration including the CPSI  ranking method produce the 

same correct ranking order such that the ranking result is 100% consistent with human 
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intuition because this case is trivial. This indicates that the CPSI ranking method is capable 

to appropriately deal with overlapping case of type – I fuzzy numbers like other 

established ranking methods. 

 

 

Non - Overlapping Case 

 
Non - Overlapping Case 1 

 

 

Non - overlapping Case 1 involves different types of type – I fuzzy numbers namely 

trapezoidal, triangular and singleton that are not overlapped as shown in Figure 5.8. In 

this case, all of the type – I fuzzy numbers considered are differed in terms of the centroid 

point and spread but are the same of height. 

 

 
 

 

  

  

 

 

 

                                                   

            0.1;5.0,3.0,3.0,1.0
~

1 H   0.1;8.0,7.0,7.0,6.0
~

2 H   0.1;0.1,0.1,0.1,0.1
~

3 H  
 

Fig 5.8: Non - Overlapping Case 1 

 

Non - Overlapping Case 2 

 

 

Non – overlapping case 2 involves three identical triangular type – I fuzzy 

numbers of same spread and height. The only distinction between them is their position. 

One of them is situated on the negative side, one is on positive side and the other is in the 

middle of positive and negative values. This case is classified as the mirror image 

situation or reflection case of type – I fuzzy numbers (Asady, 2009) which is illustrated in 

Figure 5.9. 
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               0,1;1.0,2.0,2.0,3.0
~

1 I    0,1;1.0,0.0,0.0,1.0
~

2 I    0,1;3.0,2.0,2.0,1.0
~

3 I  

Fig 5.9: Non – Overlapping Case 2 

 

Results and Validation  

 
Comparisons of ranking order for non – overlapping Case 1 and 2 between the CPSI 

ranking method and other established ranking methods considered in this study are 

illustrated in Table 5.8 and 5.9 respectively. 

 

Table 5.8: Ranking Results for Non – Overlapping Case 1 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 
1

~
H  2

~
H  1

~
H  

Cheng (1998) 0.424 0.583 x - N/A 

Kumar et al. (2010) 0.300 0.300 x - N/A 

Dat et al. (2012) 
0.000 / 

0.300 

0.300 / 

0.600 

0. 600 / 

0.000 321

~~~
HHH   100 

Yu et al. (2013) for  = 0 0.700 0.300 x - N/A 

Yu et al. (2013) for  = 0.5 1.000 1.000 x - N/A 

Yu et al. (2013) for  = 1 0.300 0.7200 x - N/A 

Zhang et al. (2013) for  = 0 1.000  1.000  x - N/A 

Zhang et al. (2013) for  = 0.5 1.000  1.000  x - N/A 

Zhang et al. (2013) for  = 1 1.000  1.000  x - N/A 

CPSI 0.089 0.107 0.119 321

~~~
HHH   100 

 

 

 

 

 
 ̃
    

  ̃   ̃ 

1 

  ̃ 

-0.1 0.1 0.3 -0.2 

  

-0.3 0.2 
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Table 5.9: Ranking Results for Non – Overlapping Case 2 
 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 
1

~
I  2

~
I  3

~
I  

Cheng (1998) 0.583 0.583 0.583 321

~~~
III   0 

Kumar et al. (2010) 0.300 0.300 0.300 321

~~~
III   0 

Dat et al. (2012) 
0.000 / 

0.300 

0.300 / 

0.600 

0. 600 / 

0.000 321

~~~
III   100 

Yu et al. (2013) for  = 0 751 0.000 0.001 231

~~~
III   0 

Yu et al. (2013) for  = 0.5 1.000 1.000 1.000 321

~~~
III   0 

Yu et al. (2013) for  = 1 0.001 0.000 751 312

~~~
III   100 

Zhang et al. (2013) for  = 0 1.000  1.000 1.000 321

~~~
III   0 

Zhang et al. (2013) for  = 0.5 1.000  1.000 1.000 321

~~~
III   0 

Zhang et al. (2013) for  = 1 1.000  1.000 1.000 321

~~~
III   100 

CPSI 0.089 0.107 0.119 321

~~~
III   100 

 
 

 

Discussions  

 

For non – overlapping case 1, the correct ranking order such that the ranking 

result is 100% consistent with human intuition is 321

~~~
HHH  . This is because 3

~
H  is 

situated on the farthest r ight among the three and followed b y
2

~
H  and then 

1

~
H  

. Table 

5.8 clearly signifies that only Dat et al. (2012) and the CPSI ranking methods are capable 

to rank this case correctly such that the ranking result is 100% consistent with 

human intuition. For other ranking methods considered in this study, all of them are 

incapable to rank singleton type – I fuzzy numbers appropriately, thus all of them are 

not applicable for ranking fuzzy numbers. This shows that the CPSI ranking method is 

capable to appropriately deal with non – overlapping type – I fuzzy numbers and 

singleton type – I fuzzy numbers. 

 

For non – overlapping case 2, the correct ranking order such that the ranking 

result is 100% consistent with human intuition is 321

~~~
III  . This is due to the fact that 3

~
I  

is located on the farthest right which is on the positive side, followed by 
2

~
I  and then 

1

~
I . In 

Table 5.9, Cheng (1998) and Kumar et al. (2010) ranking methods produce equal ranking, 

321

~~~
III   for this case which is incorrect such that the ranking result is 0% consistent 

with human intuition. Yu et al. (2013) and Zhang et al. (2014) ranking methods also come 
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out with many ranking orders for this case as they depend on decision makers’ opinions 

when ranking fuzzy numbers. Only Dat et al. (2012) and the CPSI ranking methods 

capable to give correct ranking order for this case such that the ranking result is 100% 

consistent with human intuition. This directly emphasise that the CPSI ranking method 

is capable to effectively deal with negative and positive type – I fuzzy numbers 

simultaneously. 

 

Summary of Consistency Evaluation 

 
 

This subsection covers the summary on the consistency evaluations for all 

ranking methods considered in section 5.2.1 including the CPSI ranking method. The 

summary provides clear observation in terms of number of consistent ranking result 

produced by all ranking methods considered in this study and their performance 

percentage. Using Section 4.4 as guideline and information obtained from Table 5.1 

until Table 5.9, the following Table 5.10 summaries the consistency evaluation of all 

ranking methods considered in this study including the CPSI ranking method on 

ranking type – I fuzzy numbers. 

 

Table 5.10: Summary of Consistency Evaluation 

Methods 

Consistency Evaluation 

Proportion of Result 

with 100% Level of 

Consistency 

Percentage of Result 

with 100% Level of 

Consistency 

Cheng (1998) 4/9 44.44% 

Kumar et al. (2010) 3/9 33.33% 

Dat et al. (2012) 7/9 77.75% 

Yu et al. (2013) for 0  4/9 44.44% 

Yu et al. (2013) for 5.0  4/9 44.44% 

Yu et al. (2013) for 1  4/9 44.44% 

Zhang et al. (2014) for 0  4/9 55.55% 

Zhang et al. (2014) for 5.0  4/9 55.55% 

Zhang et al. (2014) for 1  4/9 55.55% 

CPSI 9/9 100% 
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Results in Table 5.8 show that Kumar et al. (2010) ranking method obtains 

the least number of consistent ranking results where the method ranks three out of nine 

(33.33%) cases of benchmark examples provided in this study. Cheng (1998) and Yu et 

al. (2013) with   α = 0 and 0.5 share the same number of consistent ranking results with 

four out of nine cases which is equivalence to 44.44%. Zhang et al. (2013) with = 0 

and 0.5 ranking methods successfully rank five out of nine (55.55%) benchmark 

examples. Dat et al. (2012) and Zhang et al. (2014) with  = 1 ranking methods 

achieve seven out nine cases while Yu et al. (2013) ranking method ranks eight out of 

nine cases of benchmarking examples prepared in this study. Among all ranking methods 

considered in this evaluation, only the CPSI ranking method perfectly ranks all nine 

(100%) cases of benchmarking examples with correct ranking order such that all results 

obtained are 100% consistent with human intuition. Therefore, this evaluation clearly 

indicates that the CPSI ranking method is considered as a ranking method that correctly 

ranks all type – I fuzzy numbers such that the ranking results are 100% consistent with 

human intuition. 

 

5.2.2        Evaluation of Efficiency 

 
This subsection discusses the efficiency evaluations of all the ranking 

methods considered in this study including the CPSI ranking method. It is intentionally 

prepared as a separate subsection from the summary of the consistency evaluation 

because all ranking methods considered in this study and the CPSI ranking method, 

perform similar efficiency capability when ranking three type – I fuzzy numbers. This is 

because the efficiency result of a ranking method is the same for all benchmarking 

examples provided in this study even if the consistency evaluations are different. 

Therefore, without loss of generality of Section 4.5, the efficiency evaluations of all 

ranking methods considered in this study including the CPSI ranking method are 

summarised in Table 5.11. 
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Table 5.11: Summary of Efficiency Evaluation 
 

Methods Efficiency Evaluation 

Cheng (1998) Slightly Efficient 

Kumar et al. (2010) Slightly Efficient 

Dat et al. (2012) Slightly Inefficient 

Yu et al. (2013) for = 0 Slightly Efficient 

Yu et al. (2013) for = 0.5 Slightly Efficient 

Yu et al. (2013) for = 1 Slightly Efficient 

Zhang et al. (2013) for = 0 Very Inefficient 

Zhang et al. (2013) for = 0.5 Very Inefficient 

Zhang et al. (2013) for = 1 Very Inefficient 

CPSI Very Efficient 

 

 

In Table 5.11, Zhang et al. (2014) ranking method with  = 0, 0.5 and 1, is 

classified as a very inefficient ranking method as this method is a pairwise ranking 

method and needs additional operation to ranking type – I fuzzy number appropriately. 

Dat et al. (2012) ranking method is evaluated as a slightly inefficient ranking method 

because it is a pairwise ranking method but does not need additional operation when 

ranking type – I fuzzy numbers appropriately. Cheng (1998) and Yu et al. (2012) ranking 

methods are considered as slightly efficient ranking methods in this evaluation as both 

simultaneously rank the type – I fuzzy numbers but incorporate additional operation in 

obtaining the final ranking order. In this evaluation, the CPSI ranking method is regarded 

as a very efficient ranking method as this method ranks fuzzy numbers correctly such 

that the ranking result is consistent with human intuition using simultaneous ranking 

without incorporating any additional operation. Therefore, this evaluation signifies that 

the CPSI ranking method is capable to rank three type – I fuzzy numbers 

simultaneously without incorporating additional operation when ranking type – I fuzzy 

numbers. 
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5.3 SUMMARY 

 

 

In this chapter, the capability of the CPSI ranking method to ranking type – I 

fuzzy numbers is provided. Two main empirical validations namely the consistency 

andefficiency of the CPSI ranking method are also highlighted in this chapter. In the 

validation, the capability of the CPSI ranking method to correctly ranks all cases of type – 

I fuzzy numbers such that the ranking results are consistent with human intuition is 

addressed. The efficiency of the CPSI ranking method on ranking three type – I fuzzy 

numbers simultaneously is also demonstrated in this chapter where the method is capable 

to ranking three type – I fuzzy numbers simultaneously without incorporating additional 

operation. In this respect, the CPSI ranking method is considered as a ranking method 

that is capable on ranking type – I fuzzy numbers consistently and efficiently. In Chapter 

6, the thesis extends the applicability of the CPS ranking methodology in ranking 

type – II fuzzy numbers. 
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CHAPTER SIX 

 
RANKING OF TYPE – II FUZZY NUMBERS 

 

 

 
 

6.1 INTRODUCTION 

 

 
This chapter discusses details on validation of the novel methodology for 

ranking type – II fuzzy numbers based on centroid point and spread, CPSII. Theoretical 

and empirical validation defined in Section 4.4 and 4.5 respectively are demonstrated in 

this chapter. These validation which are associated with properties of ranking fuzzy 

quantities as well as consistency and efficiency evaluation of ranking operations are 

described in detail here. Therefore, without loss of generality of Section 4.4 and 4.5, 

details on those aforementioned both validation are extensively discussed in sections and 

subsections of this chapter. 

 

6.2 THEORETICAL VALIDATION 

 

 
This subsection validates theoretically the novel CPSII ranking method using 

theoretical properties adopted from Wang & Kerre (2001, 2002). These properties justify 

the capability of the CPSII ranking method to ranking interval type – II fuzzy numbers 

appropriately by proofs provided which are applicable to CPSII ranking method. It has to 

be noted that only theoretical validation for direct approach of ranking interval type – II 

fuzzy numbers is demonstrated here. This is because theoretical validation for the indirect 

approach is the same as in theoretical validation for type – I fuzzy numbers. Therefore, 

with no loss of generality, theoretical ordering properties by Wang & Kerre (2001, 2002) 

which are prepared for CPSII ranking method are presented as follows. 

 

 

 

 

 



99  

Let A1 and A2 be two standardised generalised type – II fuzzy numbers. 

 
 

Property 1: If 1A  ≽ 2A  and 2A≽ 1A , then 21 AA   

Proof:  

Since, 1A≽ 2A  implies that    21 ACPSACPS IIII
 , and 2A≽ 1A  implies that 

   12 ACPSACPS IIII
 hence indicates that,    21 ACPSACPS IIII

 , which is 21 AA   

 

Property 2: If 1A  ≽ 2A  and 2A≽ 3A , then 1A≽ 3A  

Proof:  

For IICPS  ranking method, 1A  ≽ 2A  implies that    21 ACPSACPS IIII
 , and 2A≽ 3A , 

implies that    32 ACPSACPS IIII
 . This indicates that    31 ACPSACPS IIII

 , which is 

1A  ≽ 3A . 

 

Property 3: If 021  AA  and 1A  is on the right side of 2A , then 1A  ≽ 2A   

Proof: 

Since, 021  AA  and 1A  is on the right side of 2A , hence,  implies that 

   21 ACPSACPS IIII
 , thus, 1A  ≽ 2A . 

 

Property 4: Ordering of 1A  and 2A  is not affected by the other type – II fuzzy numbers 

under comparison. Property 4: The order of 1A  and 2A  is not affected by the other type – II fuzzy numbers under comparison. 

Proof: 

Since, the order of 1A  and 2A , is completely determined by  1ACPS II
  and  2ACPS II

  

respectively, which indicates that it has nothing to do  by the other type – II fuzzy numbers 

under comparison, thus, the ordering of 1A  and 2A  is not affected by the other type – II 

fuzzy numbers under comparison. 

 

The above theoretical validation clearly indicates that the CPSII ranking method 

is capable to ranking fuzzy numbers appropriately. This is signified through proof based – 

properties fulfilment by the CPSII ranking method on all theoretical validations considered 
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in this subsection. In next section, empirical validation for the CPSII  ranking method and 

established ranking methods considered in this study is thoroughly discussed. 

 

 
6.3 EMPIRICAL VALIDATION 

 

 

This section discusses empirical validation of the CPSII ranking method and 

established ranking methods considered in this study on ranking interval type – II fuzzy 

numbers. The empirical validation provided is a comparative – based ranking order 

analysis between the CPSII ranking method and established ranking methods under 

consideration on their consistency and efficiency to ranking interval type – II fuzzy 

numbers. Most of the established ranking methods considered in this validation are 

methods for ranking type – I fuzzy numbers while the remaining methods are for ranking 

type – II fuzzy numbers. These methods are chosen according to their high referencing 

frequency by many established ranking methods found in literature of fuzzy sets. For 

those ranking methods that are developed for ranking type – I fuzzy numbers, they are 

denoted with ‘II’ (for example: II – Cheng (1998)) in this study to indicate that they are 

applied to ranking interval type – II fuzzy numbers for the first time. Therefore, based on 

information in Section 4.5, the consistency and efficiency evaluation of the CPSII ranking 

method and established ranking methods considered in this study are as follows. 

 

6.3.1 Evaluation of Consistency 

 

 

In this subsection, 9 benchmarking sets of interval type – II fuzzy numbers with 

modification adopted from Wu & Mendel (2009) are used. Modifications are made in this 

subsection as this study covers more generic and complex cases which are more important 

in decision making than previous work by Wu & Mendel (2009). Among generic and 

complex cases of interval type – II fuzzy numbers that are neglected in Wu & Mendel 

(2009) but considered in this study are non – overlapping, negative data value and crisp 

value cases. Furthermore, three interval type – II fuzzy numbers which are suitable for 

each case considered in this study are chosen from the 32 interval type – II fuzzy numbers 

by Wu & Mendel (2009). The utilisation of selected three type – II fuzzy numbers in each 
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case not only provides better view on cases similar as in real world problems but also give 

same effect on ranking results as of the 32 interval type – II fuzzy numbers in Wu & 

Mendel (2009). Thus, the following are details on consistency evaluation based on 9 

benchmark examples of all ranking methods considered in this study including both direct 

and indirect ways using the CPSII ranking method. 

 

Using direct based – CPSII ranking method, the ranking order for A1, A2and A3
 in this 

case is determined as follows.  

 

Trivial Case 

 
Trivial Case 1 

 
 

Trivial case 1 involves three interval type – II fuzzy numbers that are not overlapped as 

shown in Figure 6.1. 

 

 

  

 

 

 

 

 

 

   000.1;066.0,005.0,000.0,000.0,000.1;197.0,014.0,000.0,000.01 A  

   000.1;514.0,503.0,503.0,486.0,000.1;691.0,550.0,475.0,359.02 A  

   000.1;917.0,836.0,836.0,803.0,000.1;952.0,860.0,775.0,598.03 A  

Fig 6.1: Trivial Case 1 

0.1 0.3 0.5 0.7 0.9 

  

1.0 

1A  

 xA1
  

2A  
3A  
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Step 1: Compute the centroid point for 1A  by finding the horizontal – x centroid of 1A

using equation (6.1) as 
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Whereas, using equation (6.2), the value of 
1Ay  is  

 

                             
    




































0071.0

005.0
1

3

1
,

0211.0

014.0
1

3

1
1Ax  

 
 

Hence, the centroid point for 1A  is (0.0660, 0.355) and (0.0221, 0.3568). 

 

Utilising the same procedure as shown above, the centroid points of 2A  and 3A

calculated accordingly and the results are as follows. 

 

                                  3948.0,5201.0,3948.0,5201.0,
22
 AA yx  

                                                  3948.0,5201.0,3333.0,8520.0,
33
 AA yx  

 
                      

Step 2: Calculate the spread values for 1A  such that 

 

                                3568.00660.0,3555.01971.01 As  

 

                                      0235.0,0700.0  

 

While for 2A  and 3A , their spread values are 

 

                               0093.0,1311.02 As  

 

                               0380.0,1408.03 As  
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Step 3: Determine the ranking value for 1A  using the following equation 

 

                     
   








 







 







 


2

0235.010700.01

2

3568.03555.0

2

0221.00660.0
IICPS  

 

                               0150.0  

 

and ranking values for 2A  and 3A  are  
 

  1728.02 ACPS II  

  2736.03 ACPSII  

 

Since      123 ACPSACPSACPS IIIIII
 , hence the ranking order result for interval 

type – II fuzzy numbers 1A , 2A  and 3A   is 123 AAA   . 

 

It is worth mentioning here that the entire steps utilised by the CPSII ranking 

method in ranking interval type – II fuzzy numbers are only demonstrated in Trivial 

Case 1. This is because these steps are also applied to the remaining eight cases of 

benchmarking examples  considered  in  this  study,  thus  repeating  the  entire  steps  in  

the  thesis  are redundant. Therefore, only definition, illustration, the ranking results and 

discussions on each case considered are provided. 

 
 

Trivial Case 2 

 
Trivial case 2 involves three identical interval type – II fuzzy numbers which are 

embedded with each other. The following Figure 6.2 illustrates interval type – II fuzzy 

numbers of trivial case 2. 
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
















 

   000.1;514.0,503.0,503.0,486.0,000.1;691.0,550.0,475.0,359.01 B

   000.1;514.0,503.0,503.0,486.0,000.1;691.0,550.0,475.0,359.02 B

   000.1;514.0,503.0,503.0,486.0,000.1;691.0,550.0,475.0,359.03 B
 

Fig 6.2: Trivial Case 2 

 

Results and Validation 

 
Comparisons of ranking order for trivial case 1 and 2 between CPSII  ranking method 

and established ranking methods considered in this study are illustrated in Table 6.1 and 

6.2 respectively. 
 

Table 6.1: Ranking Results for Trivial Case 1 

 

Methods 

Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 
1A  2A  3A  

Mitchell (2006) 0.583 0.583 0.583 
321 AAA   100 

Wu & Mendel (2009) 0.047 0.519 0.812 
321 AAA    100 

II – Cheng (1998) 0.583 0.583 0.583 
321 AAA   0 

II – Kumar et al. (2010) 0.300 0.300 0.300 
321 AAA   0 

II – Dat et al. (2012) 
0.000 / 
0.222 

0.222 / 
0.333 

0.333 / 
0.000 321 AAA    100 

II – Yu et al. (2013) for  = 0 1.00 1.00 1.00 
321 AAA    100 

II – Yu et al. (2013) for  = 0.5 1.00 1.00 1.00 
321 AAA    100 

II – Yu et al. (2013) for  = 1 1.00 1.00 1.00 
321 AAA    100 

II – Zhang et al. (2013) for  = 0 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321 AAA    100 

II – Zhang et al. (2013) for  = 0.5 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321 AAA    100 

II – Zhang et al. (2013) for  = 1 
0.500 / 
0.500 

0.500 / 
0.500 

0.500 / 
0.500 321 AAA    100 

IICPS – direct 0.089 0.107 0.119 
321 AAA    100 

 xB
 

1B 2B 3B  

0.3 0.5 0.7 

  

1.0 
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IICPS –  indirect 0.089 0.107 0.119 
321 AAA    100 

Table 6.2: Ranking Results for Trivial Case 2 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 1B  2B   3B   

Mitchell (2006) 0.583 0.583 0.583 321 BBB   100 

Wu & Mendel (2009) 0.519 0.519 0.519 321 BBB   100 

II – Cheng (1998) 0.583 0.583 0.583 321 BBB   100 

II – Kumar et al. (2010) 0.300 0.300 0.300 321 BBB   100 

II – Dat et al. (2012) 
0.333 / 

0.333 

0.333 / 

0.333 

0.333 / 

0.333 321 BBB   100 

II – Yu et al. (2013) for  = 0 1.00 1.00 1.00 321 BBB   100 

II – Yu et al. (2013) for  = 0.5 1.00 1.00 1.00 321 BBB   100 

II – Yu et al. (2013) for  = 1 1.00 1.00 1.00 321 BBB   100 

II – Zhang et al. (2013) for  = 0 
0.500 / 
0.500 

0.500 / 
0.500 

0.500 / 
0.500 321 BBB   100 

II – Zhang et al. (2013) for  = 0.5 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321 BBB   100 

II – Zhang et al. (2013) for  = 1 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321 BBB   100 

IICPS – direct 0.1728 0.1728 0.1728 321 BBB   100 

IICPS –  indirect 0.1728 0.1728 0.1728 321 BBB   100 

 

 

It is worth notifying here that ranking values obtained by Dat et al (2012) and 

Zhang et al. (2014) ranking methods are separated by separator ( / ) in both Table 6.1 

and Table 6.2. This is to point out that both methods adopted pairwise ranking approach 

to ranking interval type – II fuzzy numbers. Also indicated in both tables is Yu et al. 

(2013) ranking method where this method provides equal ranking values for all 

interval type – II fuzzy numbers under consideration but gives different ranking 

orders for different α . This happens because Yu et al. (2013) ranking method considers 

different type of decision makers’ opinions which is reflected by α when ranking interval 

type – II fuzzy numbers, thus different ranking orders are computed for different values 

even if the ranking values obtained are the same at the first place. Notice that, these 

conditions of Dat et al (2012) and Zhang et al. (2014) ranking methods apply to all 

cases of benchmarking examples considered  in  this  chapter while only some cases 

apply to Yu et al. (2013) ranking method. 
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Discussions 

 
For trivial case 1, the correct ranking order such that the ranking result is

100% consistent with human intuition is A3
A2

A1
. This is because A3

 is located at 

the farthest right compared to A2
 and A1

, while A2
 is on the right of A1

. In Table 6.1, only 

II – Cheng (1998) and II – Kumar et al. (2010) ranking methods produce incorrect 

ranking result such that the ranking results are 0% consistent with human intuition. 

While, other established ranking methods considered in this study including both direct 

and indirect ways of the CPSII ranking method produce correct ranking order for this 

case such that the ranking result is 100% consistent with human intuition. This indicates 

that the CPSII ranking method is capable to directly and indirectly deal with the interval 

type – II fuzzy numbers of different locations. 

 

For trivial case 2, the correct ranking order such that the ranking result is 100% 

consistent with human intuition is B1
B2

 B3
. This is due to the fact that all type – II 

fuzzy numbers under consideration are the same such that they are the same in term of 

their shapes, spreads, heights and centroids. Shown in Table 6.2, all ranking results 

obtained by all established ranking methods considered in this study and both direct and 

indirect ways of the CPSII ranking method are the correct ranking order such that the 

results are 100% consistent with human intuition. This points out that the CPSII ranking 

method is capable to give same ranking value for each interval type – II fuzzy numbers 

even if same type – II fuzzy numbers are compared regardless direct or indirect way is 

used. 
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Embedded Cases 

 

Embedded Case 1 

 

Embedded case 1 involves three embedded interval type – II fuzzy numbers which is 

illustrated in Figure 6.3. 

 

Cx


















x 

0.1 0.25 0.4 
 

   000.1;421.0,250.0,150.0,109.0,000.1;462.0,250.0,150.0,038.01 C

   000.1;421.0,200.0,200.0,109.0,000.1;462.0,200.0,200.0,038.02 C

   000.1;421.0,250.0,250.0,109.0,000.1;462.0,250.0,250.0,038.03 C

Fig 6.3: Embedded Case 1 

 

 

 
 

Embedded Case 2 

 
Embedded Case 2 involves three type – II fuzzy numbers where all of them are 

embedded, normal and having same centroid point for both upper and lower 

membership functions. Figure 6.4 best is the illustration for this case. 

1.0 

1C   
2C   3C  
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
















x 
0.3 0.5 0.7 

   000.1;660.0,550.0,475.0,400.0,000.1;691.0,550.0,475.0,359.01 D

   000.1;640.0,550.0,475.0,430.0,000.1;691.0,550.0,475.0,359.02 D

   000.1;600.0,550.0,475.0,450.0,000.1;691.0,550.0,475.0,359.03 D
 

Fig 6.4: Embedded Case 2 

 

 
Embedded Case 3 

 

 

Embedded case 3 shown in Figure 6.5 involves three trapezoidal interval type – II fuzzy 

numbers that are embedded with each other. 

 

 

  

 

 

 

 

 
 

   000.1;640.0,550.0,475.0,430.0,000.1;691.0,550.0,475.0,359.01 E

   740.0;640.0,550.0,475.0,430.0,000.1;691.0,550.0,475.0,359.02 E

   530.0;640.0,550.0,475.0,430.0,000.1;691.0,550.0,475.0,359.03 E  

Fig 6.5: Embedded Case 3 

1.0 

0.3 0.5 0.7 

  

1.0 

0.7 

0.5 

1D  2D   3D  
 xD

 

 xE  

1E   
2E    

3E   
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Results and Validation 

 
Comparisons of ranking order for embedded case 1, 2 and 3 between the CPSII ranking 

method and established ranking methods considered in this study are illustrated in Table 

6.3, 6.4 and 6.5 respectively. 

Table 6.3: Ranking Results for Embedded Case 1 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 1C   2C   3C   

Mitchell (2006) 0.583 0.583 0.583 321 CCC   0 

Wu & Mendel (2009) 0.583 0.583 0.583 321 CCC   0 

II – Cheng (1998) 0.583 0.583 0.583 321 CCC   0 

II – Kumar et al. (2010) 0.300 0.300 0.300 321 CCC    50 

II – Dat et al. (2012) 
0.333 / 

0.333 

0.333 / 

0.333 

0.222 / 

0.333 321 CCC    100 

II – Yu et al. (2013) for  = 0 1.00 1.00 1.00 321 CCC    0 

II – Yu et al. (2013) for  = 0.5 1.00 1.00 1.00 321 CCC   0 

II – Yu et al. (2013) for  = 1 1.00 1.00 1.00 321 CCC    100 

II – Zhang et al. (2013) for  = 0 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321 CCC   0 

II – Zhang et al. (2013) for  = 0.5 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321 CCC    100 

II – Zhang et al. (2013) for  = 1 
0.500 / 
0.500 

0.500 / 
0.500 

0.500 / 
0.500 321 CCC    100 

IICPS – direct 0.119 0.107 0.089 321 CCC    100 

IICPS –  indirect 0.119 0.107 0.089 321 CCC    100 

 

Table 6.4: Ranking Results for Embedded Case 2 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 1D   2D  3D  

Mitchell (2006) 0.583 0.583 0.583 321 DDD   0 

Wu & Mendel (2009) 0.519 0.519 0.519 321 DDD   0 

II – Cheng (1998) 0.300 0.300 0.300 321 DDD   0 

II – Kumar et al. (2010) 0.300 0.300 0.300 321 DDD   0 

II – Dat et al. (2012) 
0.222 / 
0.333 

0.333 / 
0.555 

0.555 / 
0.222 321 DDD    100 

II – Yu et al. (2013) for  = 0 1.00 1.00 1.00 321 DDD    0 

II – Yu et al. (2013) for  = 0.5 1.00 1.00 1.00 321 DDD   0 

II – Yu et al. (2013) for  = 1 1.00 1.00 1.00 321 DDD    100 

II – Zhang et al. (2013) for  = 0 
0.500 / 
0.500 

0.500 / 
0.500 

0.500 / 
0.500 321 DDD    0 

II – Zhang et al. (2013) for  = 0.5 
0.500 / 
0.500 

0.500 / 
0.500 

0.500 / 
0.500 321 DDD   0 

II – Zhang et al. (2013) for  = 1 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321 DDD    100 
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IICPS – direct 0.161 0.167 0.173 321 DDD    100 

IICPS –  indirect 0.161 0.167 0.173 321 DDD    100 

 

Table 6.5: Ranking Results for Embedded Case 3 
 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 1E   2E   3E   

Mitchell (2006) 0.583 0.461 0.346 321 EEE    100 

Wu & Mendel (2009) 0.175 0.175 0.175 321 EEE   0 

II – Cheng (1998) 0.240 0.240 0.240 321 EEE   0 

II – Kumar et al. (2010) 0.300 0.300 0.300 321 EEE   0 

II – Dat et al. (2012) 
0.244 / 

0.196 

0.196 / 

0.067 

0.067 / 

0.244 321 EEE    100 

II – Yu et al. (2013) for  = 0 1.00 1.00 1.00 321 EEE    0 

II – Yu et al. (2013) for  = 0.5 1.00 1.00 1.00 321 EEE   0 

II – Yu et al. (2013) for  = 1 1.00 1.00 1.00 321 EEE    100 

II – Zhang et al. (2013) for  = 0 x x X - N/A 

II – Zhang et al. (2013) for  = 0.5 x x X - N/A 

II – Zhang et al. (2013) for  = 1 x x X - N/A 

IICPS – direct 0.051 0.045 0.040 321 EEE    100 

IICPS –  indirect 0.051 0.045 0.040 321 EEE    100 

  

      Note: ‘x’ denotes method as unable to calculate the ranking value.  

        ‘-’ denotes no ranking order is obtained. 

 
 

Discussions 
 

 

For embedded case 1, the correct ranking order such that the ranking result is 

100% consistent with human intuition is 321 CCC    . This is because the vertical – y 

centroid of interval type – II fuzzy numbers 1C  is the largest among the three, followed by 

2C    and then 3C . In Table 6.3, Mitchel (2006), Wu & Mendel (2009),  II – Cheng (1998) 

and II – Kumar et al. (2010) ranking methods produces incorrect ranking order such that 

the ranking result is 0% consistent with human intuition for this case where both methods 

give equal ranking, 321 CCC  as they treat all interval type – II fuzzy numbers 

under consideration as having the same area. A partially correct ranking order such 

that the ranking result is 50% consistent with human intuitions is obtained by II – Dat et 

al. (2012) where this method is incapable to differentiate C1and C2effectively. 
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Different ranking orders are produced by II – Yu et al. (2013) and II – Zhang et al. 

(2014) as both ranking methods depend on decision maker’s opinion to ranking 

interval type – II fuzzy numbers. The CPSII ranking methods for both direct and indirect 

ways on the other hand, rank this case with correct ranking order such that the ranking 

result is 100% consistent with human intuition which emphasises that this method is 

capable to deal with embedded interval type – II fuzzy numbers of different shapes. 

 
For embedded case 2, the correct ranking order such that the ranking result is 

100% consistent with human intuition is 321 DDD   . This is due to the fact that the 

spread value for 3D  is considered as the smallest among the three, followed by 2D
   

and 

then 
1D . Clearly indicated in Table 6.4, Mitchel (2006), Wu & Mendel (2009),  II – 

Cheng (1998), II – Kumar et al. (2010) and II – Dat et al. (2012) give equal ranking for 

this case, 321 DDD   because II – Cheng (1998) and II – Kumar et al. (2010) ranking 

methods treat all interval type – II fuzzy numbers under consideration as the same area 

whereas II – Dat et al. (2012) ranking method produces same distance for all interval type 

– II fuzzy numbers in this case. II – Yu et al. (2013) and II – Zhang et al. (2014) ranking 

methods produce many ranking results for this case since both take into account decision 

makers’ opinion when ranking fuzzy numbers. Only the CPSII ranking methods for both 

direct and indirect ways obtain the correct ranking order such that the ranking result is 

100% consistent with human intuition for this case which signalling that these methods 

capable to differentiate interval type – II fuzzy numbers with different spread 

appropriately. 

 

For embedded case 3, the correct ranking order such that the ranking result is 

100% consistent with human intuition 321 EEE   .  1E is considered as the greatest 

interval type – II fuzzy numbers among the three because height of  1E  is the largest, 

followed by 2E   and then 
3E . In Table 6.5, ranking methods by Wu & Mendel (2009) 

and II – Kumar et al. (2010) treat this case with equal ranking, 321 EEE   as this 

method considers all interval type II fuzzy numbers under consideration as the same area. 

II – Yu et al. (2013) ranking method produces different ranking order for different 
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decision makers’ opinions while II – Zhang et al. (2014) ranking method is incapable to 

come out with any ranking order as the method is not applicable to non – normal interval 

type – II fuzzy numbers. Nonetheless, correct ranking orders such that the ranking result 

is 100% consistent with human intuition are obtained by II – Cheng (1998), II – Dat et 

al. (2012) and the CPSII ranking methods for both direct and indirect ways. This result 

implies that the CPSII ranking methods capable to deal with interval type – II fuzzy 

numbers of different heights effectively. 

 

Overlapping Cases 

 
Overlapping Case 1 

 
Overlapping case 1 illustrates in Figure 6.6 involves three overlapping interval type – II 

fuzzy numbers which are of same height. Nonetheless, they are differed in terms of their 

positions. 






1.0 

0.7 

0.5 





0.1 0.5 0.7         0.8 0.9 

   000.1;541.0,465.0,465.0,409.0,000.1;780.0,550.0,350.0,117.01 F

   000.1;821.0,738.0,738.0,679.0,000.1;941.0,800.0,650.0,438.02 F

   000.1;917.0,836.0,836.0,803.0,000.1;952.0,860.0,775.0,598.03 F

Fig 6.6: Overlapping Case 1 

x 

1F   
2F   

3F   

 xF 
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Overlapping Case 2 

 

 

Overlapping Case 2 involves three overlapping interval type – II fuzzy numbers which 

have different spread and centroid point. All of them are normal and asymmetric. Figure 

6.7 illustrates overlapping case 1 of interval type – II fuzzy numbers. 
 

Gx


G1



G2



G3


















0.1 0.5 0.7 0.8 0.9 
 

   000.1;541.0,465.0,465.0,409.0,000.1;780.0,550.0,350.0,117.01 G  

                         000.1;521.0,475.0,475.0,429.0,000.1;762.0,550.0,400.0,259.02 G  

   000.1;602.0,529.0,529.0,479.0,000.1;741.0,600.0,425.0,217.03 G  

Fig 6.7: Overlapping Case 2 

 

 

Results and Validation 

 
Comparisons in terms of ranking order results for Overlapping Case 1 and 2 between 

the CPSII ranking method and established ranking methods considered in this study are 

illustrated in Table 6.6 and 6.7 respectively. 

x 

1.0 

0.7 

0.5 

 

 xG

 1G

 
2G 

 
3G
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Table 6.6: Ranking Results for Overlapping Case 1 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 1F   2F   3F   

Mitchell (2006) 0.583 0.583 0.583 321 FFF   0 

Wu & Mendel (2009) 0.456 0.716 0.812 321 FFF    100 

II – Cheng (1998) 0.088 0.088 0.088 321 FFF   0 

II – Kumar et al. (2010) 0.300 0.300 0.300 321 FFF   0 

II – Dat et al. (2012) 
0.222 / 

0.333 

0.333 / 

0.555 

0.555 / 

0.222 321 FFF    100 

II – Yu et al. (2013) for  = 0 0.300 0.500 0.700 321 FFF    100 

II – Yu et al. (2013) for  = 0.5 0.300 0.500 0.700 321 FFF    100 

II – Yu et al. (2013) for  = 1 0.300 0.500 0.700 321 FFF    100 

II – Zhang et al. (2013) for  = 0 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321 FFF    100 

II – Zhang et al. (2013) for  = 0.5 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321 FFF    100 

II – Zhang et al. (2013) for  = 1 
0.500 / 
0.720 

0.720 / 
0.969 

0.969 / 
0.500 321 FFF    100 

IICPS – direct 0.144 0.235 0.274 321 FFF    100 

IICPS –  indirect 0.144 0.235 0.274 321 FFF    100 

 

Table 6.7: Ranking Results for Overlapping Case 2 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 1G   2G   3G   

Mitchell (2006) 0.680 0.726 0.746 321 GGG    100 

Wu & Mendel (2009) 0.456 0.495 0.513 321 GGG    100 

II – Cheng (1998) 0.240 0.240 0.240 321 GGG    100 

II – Kumar et al. (2010) 0.300 0.300 0.300 321 GGG    100 

II – Dat et al. (2012) 
0.040 / 

0.140 

0.140 / 

0.266 

0.266 / 

0.040 321 GGG    100 

II – Yu et al. (2013) for  = 0 0.300 0.500 0.700 321 GGG    100 

II – Yu et al. (2013) for  = 0.5 0.300 0.500 0.700 321 GGG    100 

II – Yu et al. (2013) for  = 1 0.300 0.500 0.700 321 GGG    100 

II – Zhang et al. (2013) for  = 0 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321 GGG    100 

II – Zhang et al. (2013) for  = 0.5 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321 GGG    100 

II – Zhang et al. (2013) for  = 1 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321 GGG    100 

IICPS – direct 0.144 0.159 0.168 321 GGG    100 

IICPS –  indirect 0.144 0.159 0.168 321 GGG    100 
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Discussions 

For overlapping case 1, the correct ranking order such that the ranking result is 

100% consistent with human intuition is F1
F2

F3
. This is because F3

 is situated on 

the farthest right among the three, followed by F2 and then F1. Table 6.6 indicates that 

only Mitchel (2006), II – Cheng (1998) and II – Kumar et al. (2010) ranking methods 

produce incorrect ranking order for this such that the result is 0% consistent with 

human intuition where they give equal ranking, F1
F2

F3
 for this case. For other 

ranking methods considered in this study including both direct and indirect ways of the 

CPSII ranking method, all of them produce correct ranking order such that the ranking 

results are consistent with human intuition. The result of the CPSII ranking method 

obtains in this case indicates that this method is capable to appropriately differentiate 

partial overlapping interval type – II fuzzy numbers. 

 

For overlapping case 2, the correct ranking order such that the ranking results is 

100% consistent with human intuition is 321 GGG   . This is due to the fact that when 

combining both values of centroid point and spread of each type – I fuzzy number under 

consideration, 3G   is the greatest followed by 
2G   and 

1G  . Table 6.7 shows all ranking 

methods under consideration including both direct and indirect ways of the CPSII ranking 

method produce the same correct ranking order such that the ranking result is 100% 

consistent with human intuition. This signifies that the CPSII ranking method is capable to 

appropriately deal with overlapping case of interval type – II fuzzy numbers like other 

established ranking methods. 
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Non – Overlapping Cases 

 

Non - Overlapping Case 1 

 

Non - overlapping Case 1 involves different types of interval type – II fuzzy numbers 

namely trapezoidal, triangular and singleton that are not overlapped as shown in Figure 

6.8. In this case, all of the interval type – II fuzzy numbers considered are differed in 

terms of the centroid point and spread but are the same of height. 

H x




   000.1;150.0,005.0,000.0,000.0,000.1;197.0,014.0,000.0,000.01 H

   000.1;514.0,503.0,503.0,486.0,000.1;691.0,550.0,475.0,359.02 H  
   000.1;000.1,000.1,000.1,000.1,000.1;000.1,000.1,000.1,000.13 H

 


Fig 6.8: Non – overlapping Case 1 
 

 
 

Non - Overlapping Case 2 

 

 

Non – overlapping case 2 involves three identical interval type – II fuzzy numbers of 

same spread and height. The only distinction between them is their position. One of them 

is situated on the negative side, one is on positive side and the other is in the middle of 

positive and negative values. This case is classified as the mirror image situation or 

reflection case of interval type – II fuzzy numbers which is illustrated in Figure 6.9. 

x 

H 2H1 H 3
1.0 

0.3 0.5 0.7 1.0 
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 I x



















 

 

 

   000,1;486.0,503.0,503.0,514.0,000,1;359.0,475.0,550.0,691.01 I  

   0000,1;186.0,230.0,150.0,186.0,0000,1;313.0,250.0,2800.0,313.02 I  
    000,1;5141.0,503.0,503.0,486.0,000,1;691.0,550.0,475.0,359.0

~
3 I  

Fig 6.9: Non – overlapping Case 2 

 

 

Results and Validation 

 
Comparisons of ranking order for non – overlapping Case 1 and 2 between the CPSII 

ranking method and established existing methods considered in this study are illustrated 

in Table 6.8 and 6.9 respectively. 

Table 6.8: Ranking Results for Non – Overlapping Case 1 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 1H   2H   3H   

Mitchell (2006) 0.424 0.583 x - N/A 

Wu & Mendel (2009) 0.047 0.519 x - N/A 

II – Cheng (1998) 0.583 0.583 x - N/A 

II – Kumar et al. (2010) 0.300 0.300 x - N/A 

II – Dat et al. (2012) 
0.222 / 

0.333 

0.333 / 

0.555 

0.555 / 

0.222 321 HHH    100 

II – Yu et al. (2013) for  = 0 0.700 0.300 x - N/A 

II – Yu et al. (2013) for  = 0.5 1.000 1.000 x - N/A 

II – Yu et al. (2013) for  = 1 0.300 0.700 x - N/A 

II – Zhang et al. (2013) for  = 0 1.000 1.000 x - N/A 

II – Zhang et al. (2013) for  = 0.5 1.000 1.000 x - N/A 

II – Zhang et al. (2013) for  = 1 1.000 1.000 x - N/A 

1.0 

-0.7 -0.3 0.3 0.7 

x  

1I   

2I   

3I   
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IICPS – direct 0.235 0.144 0.1274 321 HHH    100 

IICPS –  indirect 0.235 0.144 0.1274 321 HHH    100 

Note: ‘x’ denotes method as unable to calculate the ranking value. 

‘-’ denotes no ranking order is obtained. 

 

Table 6.9: Ranking Results for Non – Overlapping Case 2 

 

Methods 
Fuzzy Numbers 

Ranking Results 
Level of 

Consistency (%) 1I   2I   3I   

Mitchell (2006) x x 0.583 - N/A 

Wu & Mendel (2009) x x 0.519 - N/A 

II – Cheng (1998) 0.240 0.240 0.240 321 III   0 

II – Kumar et al. (2010) 0.300 0.300 0.300 321 III   0 

II – Dat et al. (2012) 
-0.400 / 

0.000 

0.000 / 

0.400 

0.400 / -

0.400 321 III    100 

II – Yu et al. (2013) for  = 0 751 0.000 0.001 231 III    0 

II – Yu et al. (2013) for  = 0.5 1.000 1.000 1.000 321 III   0 

II – Yu et al. (2013) for  = 1 0.001 0.000 751 312 III    100 

II – Zhang et al. (2013) for  = 0 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321 III    100 

II – Zhang et al. (2013) for  = 0.5 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 321 III    100 

II – Zhang et al. (2013) for  = 1 
0.500 / 
0.720 

0.720 / 
0.969 

0.969 / 
0.500 321 III    100 

IICPS – direct -0.173 0.000 0.173 321 III    100 

IICPS –  indirect -0.173 0.000 0.173 321 III    100 

Note: ‘x’ denotes method as unable to calculate the ranking value.  

     ‘-’ denotes no ranking order is obtained. 

 
 

Discussion 

 
For non – overlapping case 1, the correct ranking order such that the ranking 

result is 100% consistent with human intuition is H1
H 2H3

. This is because H 3is 

situated on the farthest right among the three and followed by H 2and H1. Table 6.8 

clearly signifies that only II – Dat et al. (2012) and both direct and indirect ways of the 

CPSII ranking methods are capable to rank this case correctly such that the ranking result is 

100% consistent with human intuition. For other ranking methods considered in this 

study, all of them are incapable to rank singleton interval type – II fuzzy numbers 

appropriately, thus all of them are not applicable for ranking interval type – II fuzzy 

numbers. This shows that the CPSII ranking method is capable to appropriately deal 

with non – overlapping interval type – II fuzzy numbers and singleton interval type – II 
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fuzzy numbers. 

For non – overlapping case 2, the correct ranking order such that the ranking 

result is 100% consistent with human intuition is 321 III    . This is due to the fact 3I   

is located on the farthest right which is on the positive side, followed by I2 and then I1. 

In Table 6.9, II – Cheng (1998) and II – Kumar et al. (2010) ranking methods obtain equal 

ranking, I1  I2  I3 for this case which is incorrect such that the ranking result is 0% 

consistent with human intuition. II – Yu et al. (2013) ranking method comes out with 

many ranking orders for this case as they depend on decision makers’ opinions when 

ranking fuzzy numbers. Only II – Dat et al. (2012), Zhang et al. (2014) and both ways of 

the CPSII ranking methods to give correct ranking order for this case such that the 

ranking result is 100% consistent with human intuition. This directly emphasise that the 

CPSII  ranking method is capable to effectively deal with negative and positive interval 

type – II fuzzy numbers simultaneously. 

 

 
Summary of Consistency Evaluation 

 

 

This subsection covers the summary on the consistency evaluations for all 

ranking methods considered in section 6.2.1 including the CPSII ranking method. The 

summary provides clear observation in terms of number of consistent ranking result 

produced by all ranking methods considered in this study and their performance 

percentage. Using Section 4.5 as guideline and information obtained from Table 6.1 

until Table 6.9, the following Table 6.10 summaries the consistency evaluation of all 

ranking methods considered in this study including the CPSII ranking method on 

ranking interval type – II fuzzy numbers. 
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Table 6.10: Summary of Consistency Evaluation 

Methods 

Consistency Evaluation 

Proportion of Result 

with 100% Level of 

Consistency 

Percentage of Result 

with 100% Level of 

Consistency 

Mitchell (2006) 4/9 44.44% 

Wu & Mendel (2009) 4/9 44.44% 

II – Cheng (1998) 4/9 44.44% 

II – Kumar et al. (2010) 3/9 33.33% 

II – Dat et al. (2012) 7/9 77.75% 

II – Yu et al. (2013) for 0  4/9 44.44% 

II – Yu et al. (2013) for 5.0  4/9 44.44% 

II – Yu et al. (2013) for 1  4/9 44.44% 

II – Zhang et al. (2014) for 0  4/9 55.55% 

II – Zhang et al. (2014) for 5.0  4/9 55.55% 

II – Zhang et al. (2014) for 1  4/9 55.55% 

CPSII  – direct  9/9 100% 

CPSII  – indirect 9/9 100% 

 

Results in Table 6.10 show that II – Kumar et al. (2010) ranking method 

obtains the least number of consistent ranking results where the method ranks three out of 

nine (33.33%) cases of benchmark examples provided in this study. II – Cheng (1998) 

and II – Yu et al. (2013) with α = 0 and 0.5 share the same number of consistent ranking 

results with four out of nine cases which is equivalence to 44.44%. II – Zhang et al. 

(2014) with α = 0.5and 0.5 ranking methods successfully rank five out of nine (55.55%) 

benchmark examples. II – Dat et al. (2012) and II – Zhang et al. (2014) with α = 1 ranking 

methods achieve seven out nine cases while II – Yu et al. (2013) ranking method ranks 

eight out of nine cases of benchmarking examples prepared in this study. Among all 

ranking methods considered in this evaluation, only the CPSII ranking method for both 

direct and indirect ranking, perfectly rank all nine (100%) cases of benchmarking 

examples with correct ranking order such that all results obtained are 100% consistent 

with human intuition. Therefore, this evaluation clearly indicates that the CPSII ranking 

method is considered as a ranking method that correctly ranks all interval type – II fuzzy 

numbers such that the ranking results are 100% consistent with human intuition. 
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6.3.2 Evaluation of Efficiency 

 

This subsection discusses the efficiency evaluations of all the ranking 

methods considered in this study including the CPSII ranking method. It is intentionally 

prepared as a separate subsection from the summary of the consistency evaluation 

because all ranking methods considered in this study and the CPSII ranking method, 

perform similar efficiency capability when ranking three interval type – II fuzzy 

numbers. This is because the efficiency result of a ranking method is the same for all 

benchmarking examples provided in this study even if the consistency evaluations are 

different. Therefore, without loss of generality of Section 4.5, the efficiency evaluations 

of all ranking methods considered in this study including the CPSII ranking method are 

summarised in Table 5.11. 

Table 6.11: Summary of Efficiency Evaluation 
 

Methods Efficiency Evaluation 

Mitchell (2006) Slightly Efficient 

Wu & Mendel (2009) Slightly Efficient 

II – Cheng (1998) Slightly Efficient 

II – Kumar et al. (2010) Slightly Inefficient 

II – Dat et al. (2012) Slightly Efficient 

II – Yu et al. (2013) for = 0 Slightly Efficient 

II – Yu et al. (2013) for = 0.5 Slightly Efficient 

II – Yu et al. (2013) for = 1 Very Inefficient 

II – Zhang et al. (2014) for = 0 Very Inefficient 

II – Zhang et al. (2014) for = 0.5 Very Inefficient 

II – Zhang et al. (2014) for = 1 Very Inefficient 

CPSII  – direct Very Efficient 

CPSII  – indirect Very Efficient 

 

 

In Table 6.11, II – Zhang et al. (2014) ranking method with α = 0, 0.5 and 1, is 

classified as a very inefficient ranking method as this method is a pairwise ranking 

method and needs additional operation to ranking interval type – II fuzzy numbers 

appropriately. II – Dat et al. (2012) ranking method is evaluated as a slightly inefficient 

ranking method because it is a pairwise ranking method but does not need additional 
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operation when ranking interval type – II fuzzy numbers appropriately. Mitchel (2006), 

Wu & Mendel (2009), II – Cheng (1998) and II – Yu et al. (2012) ranking methods 

are considered as slightly efficient ranking methods in this evaluation as both 

simultaneously rank the interval type – II fuzzy numbers but incorporate additional 

operation in obtaining the final ranking order. In this evaluation, the CPSII ranking 

method for both direct and indirect ranking are regarded as a very efficient ranking 

methods as these methods rank interval type – II fuzzy numbers correctly such that the 

ranking result is consistent with human intuition using simultaneous ranking without 

incorporating any additional operation. Therefore, this evaluation signifies that the 

CPSII ranking method is capable to rank three interval type – II fuzzy numbers 

simultaneously without incorporating additional operation. 

 

6.4 SUMMARY 

 

 

In this chapter, the capability of the CPSII ranking method to ranking interval 

type – II fuzzy numbers is provided. Two main empirical validations namely the 

consistency and efficiency of the CPSII ranking method are also highlighted in this chapter. 

In the validation, the capability of the CPSII ranking method on correctly ranks all cases 

of interval type – II fuzzy numbers such that the ranking results are consistent with 

human intuition is addressed. The efficiency of the CPSII ranking method on ranking three 

interval type – II fuzzy numbers simultaneously is also demonstrated in this chapter where 

the method is capable to ranking three interval type – II fuzzy numbers simultaneously 

without incorporating additional operation. In this respect, the CPSII ranking method is 

considered as a ranking method that is capable to ranking interval type – II fuzzy numbers 

consistently and efficiently when both direct and indirect ways of ranking are used. In 

Chapter 7, the thesis discusses the applicability of the CPS ranking methodology in 

ranking Z – fuzzy numbers. 
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CHAPTER SEVEN 

RANKING OF Z – UMBERS 

 

 
7.1 INTRODUCTION 

 

 

This chapter discusses details on validation of the novel methodology for 

ranking Z – fuzzy numbers based on centroid point and spread, CPSZ. Theoretical and 

empirical validation defined in Section 4.4 and 4.5 respectively are demonstrated in this 

chapter. These validation which are associated with properties of ranking fuzzy quantities 

as well as consistency and efficiency evaluation of ranking operations are described in 

detail here. Therefore, without loss of generality of Section 4.4 and 4.5, details on those 

aforementioned both validation are extensively discussed in sections and subsections of 

this chapter. 

 

 
7.2 THEORETICAL VALIDATION 

 

 

This subsection validates theoretically the novel CPSZ ranking method using 

theoretical properties adopted from Wang & Kerre (2001, 2002). These properties justify 

the capability of the CPSZ ranking method to ranking interval Z – numbers appropriately 

by proofs provided which are applicable to CPSZ ranking method. Therefore, with no loss 

of generality, theoretical ordering properties by Wang & Kerre (2001, 2002) which are 

prepared for CPSZ ranking method are presented as follows. 
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Let 
1

~
A

Z  and 
2

~
A

Z  be two standardised generalised Z – numbers where 
1

~
A

Z  and 
2

~
A

Z  are of any 

types of Z – numbers. 

 

Property 1: If 
1

~
A

Z  ≽
2

~
A

Z  and 
2

~
A

Z ≽
1

~
A

Z , then 
21

~~
AA

ZZ   

Proof:  

Since, 
1

~
A

Z  ≽
2

~
A

Z  implies that    
21

~~
AZAZ ZCPSZCPS  , and 

2

~
A

Z ≽
1

~
A

Z  implies that 

   
12

~~
AIAZ ZCPSZCPS  , hence indicates that,    

21

~~
AZAZ ZCPSZCPS  , which is 

21

~~
AA

ZZ  . 

 

 Property 2: If 
1

~
A

Z  ≽
2

~
A

Z  and 
2

~
A

Z ≽
3

~
A

Z , then 
1

~
A

Z ≽
3

~
A

Z  

Proof:  

For CPSZ ranking method, 
1

~
A

Z  ≽
2

~
A

Z  implies that    
21

~~
AZAZ ZCPSZCPS   and 

2

~
A

Z ≽
3

~
A

Z  

implies that    
32

~~
AZAZ ZCPSZCPS  . This indicates that    

31

~~
AZAZ ZCPSZCPS  , which is 

1

~
A

Z ≽
3

~
A

Z . 

 

Property 3: If 0
2

~
1

~ 
AA

ZZ  and 
1

~
A

Z  is on the right side of 
2

~
A

Z , then 
1

~
A

Z ≽
2

~
A

Z  

 

Proof: 

Since, 0
2

~
1

~ 
AA

ZZ  and 
1

~
A

Z  is on the right side of 
2

~
A

Z , hence,  implies that 

   
21

~~
AZAZ ZCPSZCPS  , thus, 

1

~
A

Z ≽
2

~
A

Z . 

 

Property 4: The order of 
1

~
A

Z  and 
2

~
A

Z  is not affected by the other fuzzy numbers under 

comparison. 
 

Proof: 

Since, the ordering of 
1

~
A

Z  and 
2

~
A

Z , is completely determined by  
1

~
AZ ZCPS  and  

2

~
AZ ZCPS  

respectively, hence indicates that the ordering of 
1

~
A

Z  and 
2

~
A

Z  is not affected by the other 

fuzzy numbers under comparison. 
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The above theoretical validation clearly indicates that the CPSZ ranking method is capable 

to ranking fuzzy numbers appropriately. This is signified through proof based – properties 

fulfilment by the CPSZ ranking method on all theoretical validations considered in this 

subsection. In the next section, a generic empirical validation for any ranking fuzzy 

numbers methods is thoroughly discussed 

 

7.3 EMPIRICAL VALIDATION 

 

 

This section discusses empirical validation of the CPSZ ranking method on 

ranking Z – fuzzy numbers. The empirical validation provided is a comparative – based 

ranking order analysis between the CPSZ ranking method and established ranking 

methods under consideration on their consistency and efficiency to ranking Z – fuzzy 

numbers. All of the established ranking methods considered in this validation are 

methods for ranking type – I fuzzy numbers as there is no method for ranking Z – fuzzy 

numbers found in the literature of fuzzy sets. Thus, it is worth mentioning here that all 

established ranking methods used in this section are added ‘Z’ (e.g. Z – Cheng (1998)) to 

indicate that the method is applied to ranking Z – fuzzy number for the first time. 

Therefore, without loss of generality in terms of information in Section 4.4, the 

consistency and efficiency evaluations of the CPSZ ranking method are given as 

follows. 

 

7.3.1 Evaluation of Consistency 

 

 

In this subsection, 9 benchmarking sets of Z – fuzzy numbers are 

introduced for the first time in this study. This is because there is no benchmark 

example for empirical validation found in literature of fuzzy sets. Since, this is the 

first time CPSZ is applied to ranking Z – fuzzy numbers and the Z – fuzzy numbers are 

in the form of standardised generalised type – I fuzzy numbers, hence all established 

methods for ranking type – I fuzzy numbers considered in this study are also applicable 

to ranking Z – fuzzy numbers. 
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Trivial Case  

 

Trivial Case 1 
 

 

Trivial case 1 involves three triangular Z – fuzzy numbers of similar shapes and not 

overlapped which is illustrated in Figure 7.1.  

 

 

  

 

 

 

 

 

 

   0.1;3.0,2.0,2.0,1.0,0.1;3.0,2.0,2.0,1.0
1

~ 
A

Z     0.1;6.0,5.0,5.0,4.0,0.1;6.0,5.0,5.0,4.0
2

~ 
A

Z  

   0.1;9.0,8.0,8.0,7.0,0.1;9.0,8.0,8.0,7.0
3

~ 
A

Z  

Fig 7.1: Trivial Case 1 

Using the CPSZ ranking method, the ranking order for 
1

~
A

Z ,
2

~
A

Z and 
3

~
A

Z  in this case is as 

follows: 

 

Step 1:   Compute the centroid points for 
1

~
A

Z by finding the horizontal – x value for  
1

~
A

Z , 
*

1
~
A

Zx  

using equation (4.4) as 

 

                   

 
  














3.05.0

02.006.0
3.02.02.01.0

3

1*

1
~
A

Zx  

             

                           2.0  

 

 

0.1 0.3 0.5 0.7 0.9 

  

1.0 

2

~
A

Z  
1

~
A

Z  
3

~
A

Z  

 x
A

Z ~
  
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whereas, using equation (4.5), the value of 
*

1
~
A

Zy  is obtained as 

 

  
 










3.05.0

0
1

3

1*

1
~
A

Zy  

 

                      
3333.0  

 

Hence, centroid point for 
1

~
A

Z  is (0.2, 0.3333).  

It has to be noted here that since 
1

~
A

Z consists of two equivalence type – I fuzzy numbers, 

hence the other value of 
1

~
A

Zx  is also 0.2. Thus, centroid point for 
1

~
A

Z
 
is expressed as 

    3333.0,2.0,3333.0,2.0),(
1

~
1

~


AA
ZZ yx  

 

Using same techniques as shown above, centroid points of 
2

~
A

Z and 
3

~
A

Z  are calculated 

accordingly and the results are as follows: 

 

                              
    3333.0,5.0,3333.0,5.0),(

2
~

2
~


AA

ZZ yx  

                                             
    3333.0,8.0,3333.0,8.0),(

3
~

3
~


AA

ZZ yx
 

 

Step 2:  Spread values of 
1

~
A

Z ,
2

~
A

Z and 
3

~
A

Z  are calculated such that spread of 
1

~
A

Z is 

 

    s(
1

~
A

Z ) 3333.02.0       

            
0667.0                                                                                           

 

Similarly as in Step 1, two values of spreads are also obtained in this step. 

 

Thus, spread of 
1

~
A

Z is 

 

s(
1

~
A

Z )     0667.0,0667.0  
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while for 
2

~
A

Z and 
3

~
A

Z , their spread values are 

 

      s(
2

~
A

Z )     0667.0,0667.0      

                                                   s(
3

~
A

Z )     0667.0,0667.0      

 
 

Step 3:  Ranking values of 
1

~
A

Z ,
2

~
A

Z and 
3

~
A

Z are computed whereby ranking value for 
1

~
A

Z

is 

 

                                  







 







 







 


2

0667.010667.01

2

3333.03333.0

2

2.02.0

1

~
AZ ZCPS  

                                        

                                 0662.0  

 

and ranking values for 
2

~
A

Z and 
3

~
A

Z are 

 

  1555.0
2

~ 
AZ ZCPS  

                             2489.0
3

~ 
AZ ZCPS    

 

 

Since      
123

~~~
AZAZAZ ZCPSZCPSZCPS  , hence ranking order result for for Z – 

numbers
1

~
A

Z ,
2

~
A

Z and 
3

~
A

Z  is 
123

~~~
AAA

ZZZ  . 

 

It is worth mentioning here that the entire steps utilised by the CPSZ ranking 

method in ranking Z – fuzzy numbers are only demonstrated in Trivial Case 1. This 

is because these steps are also applied to the remaining eight cases of benchmarking 

examples  considered  in  this  study,  thus  repeating  the  entire  steps  in  the  thesis  

are redundant.  Therefore, only definitions, illustration, ranking results and discussions 

of results on each case considered are provided.  
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Trivial Case 2 

 

Trivial case 2 involves three identical triangular Z – fuzzy numbers which are embedded 

with each other. The following Figure 7.2 illustrates Z – fuzzy numbers of trivial case 2.  

 

 

  

 

 

 

 

 

 

   0.1;5.0,3.0,3.0,1.0,0.1;5.0,3.0,3.0,1.0
1

~ 
B

Z     0.1;5.0,3.0,3.0,1.0,0.1;5.0,3.0,3.0,1.0
2

~ 
B

Z  

   0.1;5.0,3.0,3.0,1.0,0.1;5.0,3.0,3.0,1.0
3

~ 
B

Z  

        Fig 7.2: Trivial Case 2. 

 

 

Results and Validation  

Comparisons of ranking order for trivial case 1 and 2 between the CPSZ ranking method and 

established ranking methods considered in this study are shown in Table 7.1 and 7.2 respectively. 

 

Table 7.1: Ranking Results for Trivial Case 1 

Methods 

Z – Numbers   

Ranking Results 
Level of 

Consistency (%) 
1

~
A

Z  
2

~
A

Z  
3

~
A

Z  

Z – Cheng (1998) 0.680 0.726 0.746 
123

~~~
AAA

ZZZ   100 

Z – Kumar et al. (2010) 0.300 0.500 0.700 
123

~~~
AAA

ZZZ   100 

Z – Dat et al. (2012) 
0.000 / 

0.040 

0.040 / 

0.400 

0. 400 

/ 0.000 123

~~~
AAA

ZZZ   100 

Z – Yu et al. (2013) for = 0 0.300 0.500 0.700 
123

~~~
AAA

ZZZ   100 

Z – Yu et al. (2013) for = 0.5 0.300 0.500 0.700 
123

~~~
AAA

ZZZ   100 

0.1 0.3 0.5 
  

1.0 1

~
B

Z  
2

~
B

Z  
3

~
B

Z  

 x
B

Z ~
  
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Z – Yu et al. (2013) for = 1 0.500 0.7200 0.969 
123

~~~
AAA

ZZZ   100 

Z – Zhang et al. (2013) for = 0 
0.500 / 

0.720  

0.720 / 

0.969  

0.969 / 

0.500 123

~~~
AAA

ZZZ   100 

Z – Zhang et al. (2013) for = 0.5 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 123

~~~
AAA

ZZZ   100 

Z – Zhang et al. (2013) for = 1 
0.500 / 

0.720 

0.720 / 

0.969 

0.969 / 

0.500 123

~~~
AAA

ZZZ   100 

CPSZ 0.066 0.155 0.245 
123

~~~
AAA

ZZZ   100 

 

Table 7.2: Ranking Results for Trivial Case 2 

Methods 

Z – Numbers   

Ranking Results 
Level of 

Consistency (%) 
1

~
B

Z  
2

~
B

Z  
3

~
B

Z  

Z – Cheng (1998) 0.680 0.680 0.680 
321

~~~
BBB

ZZZ   100 

Z – Kumar et al. (2010) 0.300 0.300 0.300 
321

~~~
BBB

ZZZ   100 

Z – Dat et al. (2012) 
0.040 / 

0.040 

0.040 / 

0.040 

0. 040 

/ 0.040 321

~~~
BBB

ZZZ   100 

Z – Yu et al. (2013) for = 0 0.300 0.300 0.300 
321

~~~
BBB

ZZZ   100 

Z – Yu et al. (2013) for = 0.5 0.300 0.300 0.300 
321

~~~
BBB

ZZZ   100 

Z – Yu et al. (2013) for = 1 0.300 0.300 0.300 
321

~~~
BBB

ZZZ   100 

Z – Zhang et al. (2013) for = 0 
0.040 / 

0.040 

0.040 / 

0.040 

0. 040 

/ 0.040 321

~~~
BBB

ZZZ   100 

Z – Zhang et al. (2013) for = 0.5 
0.040 / 

0.040 

0.040 / 

0.040 

0. 040 

/ 0.040 321

~~~
BBB

ZZZ   100 

Z – Zhang et al. (2013) for = 1 
0.040 / 

0.040 

0.040 / 

0.040 

0. 040 

/ 0.040 321

~~~
BBB

ZZZ   100 

CPSZ 0.119 0.119 0.119 
321

~~~
BBB

ZZZ   100 

 

 

Discussions  

 

  For trivial case 1, the correct ranking order such that the ranking result is 100% 

consistent with human intuition is 
123

~~~
AAA

ZZZ  . This is because 
3

~
A

Z is located at the farthest 

right among them, followed by 
2

~
A

Z and then 
1

~
A

Z . all established ranking methods considered in this 

study including the CPSZ ranking method produce correct ranking order for this case such that the 

ranking result is consistent with human intuition. This indicates that the CPSZ ranking method is 

capable to deal with Z – fuzzy numbers of different locations. 
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For trivial case 2, the correct ranking order such that the ranking result is 100% 

consistent with human intuition is 
321

~~~
BBB

ZZZ  . This is due to the fact that all Z – fuzzy 

numbers under consideration are the same in term of their shapes, spreads, heights and 

centroids. Shown in Table 7.2, all ranking results obtained by all established ranking methods 

considered in this study and the CPSZ ranking method are the correct ranking order whereby 

the results are consistent with human intuition. This points out that the CPSZ ranking 

method is capable to give same ranking value for each Z – fuzzy numbers even if same Z – 

fuzzy numbers are compared. 

  

Embedded Case 

 

  

 

 

Embedded Case 1 

 

 Embedded case 1 involves three embedded Z –fuzzy numbers where two of them are 

in trapezoidal Z – fuzzy numbers while the other is a triangular Z – fuzzy number. All of 

these Z – fuzzy numbers are of same height but differed in centroid point and spread as 

shown in Figure 7.3.  

  

 

  

 

 

 

 

 

 

   0.1;5.0,4.0,2.0,1.0,0.1;5.0,4.0,2.0,1.0
1

~ 
C

Z    0.1;5.0,35.0,25.0,1.0,0.1;5.0,35.0,25.0,1.0
2

~ 
C

Z  

   0.1;5.0,3.0,3.0,1.0,0.1;5.0,3.0,3.0,1.0
3

~ 
C

Z  

           Fig 7.3: Embedded Case 1 
 

 

0.3 0.5 

  

1.0 
1

~
C

Z  

0.1 

2

~
C

Z  

3

~
C

Z  

 x
C

Z ~
  
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Embedded Case 2 

 

Embedded case 2 involves three triangular Z – fuzzy numbers where they are embedded with 

each other, same height and same centroid point but different in term of their spread. Figure 

7.4 best is the illustration for this case. 

 

 

 

  

 

 

 

 

 

 

   0.1;5.0,3.0,3.0,1.0,0.1;5.0,3.0,3.0,1.0
1

~ 
D

Z    0.1;45.0,3.0,3.0,15.0,0.1;45.0,3.0,3.0,15.0
2

~ 
D

Z  

   0.1;4.0,3.0,3.0,2.0,0.1;4.0,3.0,3.0,2.0
3

~ 
D

Z  

Fig 7.4: Embedded Case 2 

 
 

Embedded Case 3 

 

Embedded case 3 shown in Figure 7.5 involves three triangular Z – fuzzy numbers that are 

embedded with each other and having the same centroid point and spread but different in 

normality. 

 

 

 

 

 

 

1

~
D

Z  

0.1 0.3 0.5 

1.0 

2

~
D

Z  

3

~
D

Z  

  

 x
D

Z ~
  
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   0.1;5.0,3.0,3.0,1.0,0.1;5.0,3.0,3.0,1.0
1

~ 
E

Z     8.0;5.0,3.0,3.0,1.0,8.0;5.0,3.0,3.0,1.0
2

~ 
E

Z  

   6.0;5.0,3.0,3.0,1.0,6.0;5.0,3.0,3.0,1.0
3

~ 
E

Z  

 Fig 7.5: Embedded Case 3 
 

Results and Validation 

  

Comparisons of ranking order for embedded case 1, 2 and 3 between the CPSZ ranking 

method and established ranking methods considered in this study are illustrated in Table 

7.3, 7.4 and 7.5 respectively. 

 

Table 7.3: Ranking Results for Embedded Case 1 

Methods 

Z – Numbers   

Ranking Results 
Level of 

Consistency (%) 
1

~
C

Z  
2

~
C

Z  
3

~
C

Z  

Z – Cheng (1998) 0.583 0.583 0.583 
321

~~~
CCC

ZZZ   0 

Z – Kumar et al. (2010) 0.300 0.300 0.300 
321

~~~
CCC

ZZZ   0 

Z – Dat et al. (2012) 
0.333 / 

0.333 

0.333 / 

0.333 

0.222 / 

0.222 321

~~~
CCC

ZZZ   50 

Z – Yu et al. (2013) for = 0 1.00 1.00 1.00 
321

~~~
CCC

ZZZ   0 

Z – Yu et al. (2013) for = 0.5 1.00 1.00 1.00 
321

~~~
CCC

ZZZ   0 

Z – Yu et al. (2013) for = 1 1.00 1.00 1.00 
321

~~~
CCC

ZZZ   100 

Z – Zhang et al. (2013) for = 0 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
CCC

ZZZ   0 

Z – Zhang et al. (2013) for = 0.5 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
CCC

ZZZ   0 

Z – Zhang et al. (2013) for = 1 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
CCC

ZZZ   100 

0.1 0.3 0.5 

  

1.0 

1

~
E

Z  

0.8 

2

~
E

Z  

3

~
E

Z  

0.6 

 x
E

Z ~
  



134  

CPSZ 0.119 0.107 0.089 
321

~~~
CCC

ZZZ   100 

Table 7.4: Ranking Results for Embedded Case 2 

Methods 
Z – Numbers   

Ranking Results 
Level of 

Consistency (%) 
1

~
D

Z  
2

~
D

Z  
3

~
D

Z  

Z – Cheng (1998) 0.583 0.583 0.583 
321

~~~
DDD

ZZZ   0 

Z – Kumar et al. (2010) 0.300 0.300 0.300 
321

~~~
DDD

ZZZ   0 

Z – Dat et al. (2012) 
0.333 / 

0.333 

0.333 / 

0.333 

0.333 / 

0.333 321

~~~
DDD

ZZZ   0 

Z – Yu et al. (2013) for = 0 1.00 1.00 1.00 
321

~~~
DDD

ZZZ   0 

Z – Yu et al. (2013) for = 0.5 1.00 1.00 1.00 
321

~~~
DDD

ZZZ   0 

Z – Yu et al. (2013) for = 1 1.00 1.00 1.00 
321

~~~
DDD

ZZZ   100 

Z – Zhang et al. (2013) for = 0 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
DDD

ZZZ   0 

Z – Zhang et al. (2013) for = 0.5 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
DDD

ZZZ   0 

Z – Zhang et al. (2013) for = 1 
0.500 / 

0.500 

0.500 / 

0.500 

0.500 / 

0.500 321

~~~
DDD

ZZZ   100 

CPSZ 0.089 0.107 0.119 
321

~~~
DDD

ZZZ   100 

 
 

Table 7.5: Ranking Results for Embedded Case 3 

Methods 
Z – Numbers   

Ranking Results 
Level of 

Consistency (%) 
1

~
E

Z  
2

~
E

Z  
3

~
E

Z  

Z – Cheng (1998) 0.583 0.461 0.346 
321

~~~
EEE

ZZZ   100 

Z – Kumar et al. (2010) 0.240 0.240 0.240 
321

~~~
EEE

ZZZ   0 

Z – Dat et al. (2012) 
0.266 / 

0.133 

0.133 / 

0.067 

0.067 / 

0.266 321

~~~
EEE

ZZZ   100 

Z – Yu et al. (2013) for = 0 1.00 1.00 1.00 
321

~~~
EEE

ZZZ   0 

Z – Yu et al. (2013) for = 0.5 1.00 1.00 1.00 
321

~~~
EEE

ZZZ   0 

Z – Yu et al. (2013) for = 1 1.00 1.00 1.00 
321

~~~
EEE

ZZZ   100 

Z – Zhang et al. (2013) for = 0 x x x - N/A 

Z – Zhang et al. (2013) for = 0.5 x x x - N/A 

Z – Zhang et al. (2013) for = 1 x x x - N/A 

CPSZ 0.119 0.107 0.089 
321

~~~
EEE

ZZZ   100 

 Note  ‘x’ denotes method as unable to calculate the ranking value. 

                ‘-’ denotes no ranking order is obtained. 
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Discussions 

 
  

 For embedded case 1, the correct ranking order such that the ranking result is 100% 

consistent with human intuition is 
321

~~~
CCC

ZZZ  . This is because the vertical – y centroid 

of 
1

~
C

Z  is the largest among the three, followed by 
2

~
C

Z  and then 
3

~
C

Z . In Table 7.3, Z – Cheng 

(1998) and Z – Kumar et al. (2010) ranking methods produce incorrect ranking order such 

that the ranking result is 0% consistent with human intuition for this case where both 

methods give equal ranking, 
321

~~~
CCC

ZZZ  as they treat all Z – fuzzy numbers under 

consideration as having the same area. A partially correct ranking order such that the 

ranking result is 50% consistent with human intuition is obtained by Z – Dat et al.  (2012) 

where this method is incapable to differentiate 
1

~
C

Z  and 
2

~
C

Z  appropriately. Different ranking 

orders are produced by Z – Yu et al. (2013) and Z – Zhang et al. (2013) as both 

ranking methods depend on decision maker’s opinion to ranking fuzzy numbers. The CPSZ 

ranking method on the other hand, ranks this case with correct ranking order such that the 

ranking result is 100% consistent with human intuition which emphasises that this method is 

capable to deal with embedded Z – fuzzy numbers of different shapes. 

  

For embedded case 2, the correct ranking order such that the ranking result is 100% 

consistent with human intuition is 
321

~~~
DDD

ZZZ  . This is due to the fact that the spread 

value for 
3

~
D

Z  is the smallest among the three, followed by 
2

~
D

Z  and then 
1

~
D

Z . Clearly 

indicated in Table 7.4, the incorrect ranking results by Z – Cheng (1998), Z – Kumar et al. 

(2010) and Z – Dat et al. (2012) such that the results are 0% consistent with human intuition. 

All of them give equal ranking for this case,
321

~~~
DDD

ZZZ   because Z  –  Cheng (1998) 

and Z – Kumar et al. (2010) ranking methods treat all Z – fuzzy numbers under consideration 

as the same area whereas Z – Dat et al. (2012) ranking method produces same distance 

for all Z – fuzzy numbers in this case. Z – Yu et al. (2013) and Z – Zhang et al. (2013) 

ranking methods produce many ranking results for this case since both take into account 

decision makers’ opinion when ranking fuzzy numbers. Only the CPSZ ranking method 

obtains the correct ranking order such that the ranking result is 100% consistent with 
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human intuition for this case which signaling that this method is capable to differentiate Z 

– fuzzy numbers with different spread appropriately. 

 

For embedded case 3, correct ranking order such that the ranking result is 100% 

consistent with human intuition is 
321

~~~
EEE

ZZZ  . 
1

~
E

Z  is considered as the greatest Z –fuzzy 

number among the three because height of 
1

~
E

Z is the largest followed by 
2

~
E

Z  and then 
3

~
E

Z . In 

Table 7.5, ranking method by Z – Kumar et al. (2010) treats this case with equal ranking, 

321

~~~
EEE

ZZZ   as this method considers all Z – fuzzy numbers under consideration as the 

same area. Z – Yu et al. (2013) ranking method produces different ranking order for 

different decision makers’ opinions while Z – Zhang et al. (2013) ranking method is 

incapable to come out with any ranking order as the method is not applicable to non – 

normal Z – fuzzy numbers. Nonetheless, correct ranking orders such that the ranking result is 

100% consistent with human intuition are obtained by Z – Cheng (1998), Z – Dat et al. (2012) 

and the CPSZ ranking method. This result implies that the CPSZ ranking method is capable 

to deal with Z – fuzzy numbers of different heights effectively. 
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Overlapping Case 

 

Overlapping Case 1  
 

Overlapping case 1 illustrates in Figure 7.6 involves three overlapping identical triangular Z – 

fuzzy numbers which are same in spread and height. Nevertheless, they are differed in terms of 

their positions. 

 

 

 

  

 

 

 

 

 

 

 

   0.1;5.0,3.0,3.0,1.0,0.1;5.0,3.0,3.0,1.0
1

~ 
F

Z    0.1;7.0,5.0,5.0,3.0,0.1;7.0,5.0,5.0,3.0
2

~ 
F

Z  

   0.1;9.0,7.0,7.0,5.0,0.1;9.0,7.0,7.0,5.0
3

~ 
F

Z  

Fig 7.6: Overlapping Case 1 

 

Overlapping Case 2 

 

Overlapping  case  2  involves  three  overlapping  Z  –  fuzzy  numbers  comprise  two 

trapezoidal Z – fuzzy numbers and a triangular Z – fuzzy number as illustrate in Figure 7.7. 

All of them are same of height but different of centroid point and spread. 
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   0.1;7.0,5.0,4.0,0.0,0.1;7.0,5.0,4.0,0.0
1

~ 
G

Z     0.1;9.0,5.0,5.0,2.0,0.1;9.0,5.0,5.0,2.0
2

~ 
G

Z  

   0.1;8.0,7.0,6.0,1.0,0.1;8.0,7.0,6.0,1.0
3

~ 
G

Z  

Fig 7.7: Overlapping Case 2 

 
 

Results and Validation  

Comparisons of ranking order for overlapping case 1 and 2 between the CPSZ  ranking 

method and established ranking methods considered in this study are illustrated in Table 7.6 

and 7.7 respectively. 

Table 7.6: Ranking Results for Overlapping Case 1 

Methods 
Z – Numbers   

Ranking Results 
Level of 

Consistency (%) 
1

~
F

Z  
2

~
F

Z  
3

~
F

Z  

Z – Cheng (1998) 0.583 0.583 0.583 
321

~~~
FFF

ZZZ   0 

Z – Kumar et al. (2010) 0.088 0.088 0.088 
321

~~~
FFF

ZZZ   0 

Z – Dat et al. (2012) 
0 .000 / 

0.040 

0.040 / 

0.400 

0. 400 

/ 0.000 321

~~~
FFF

ZZZ   100 

Z – Yu et al. (2013) for = 0 0.300 0.500 0.700 
321

~~~
FFF

ZZZ   100 

Z – Yu et al. (2013) for = 0.5 0.300 0.500 0.700 
321

~~~
FFF

ZZZ   100 

Z – Yu et al. (2013) for = 1 0.300 0.500 0.700 
321

~~~
FFF

ZZZ   100 

Z – Zhang et al. (2013) for = 0 
0.500 / 

0.720  

0.720 / 

0.969  

0.969 / 

0.500 321

~~~
FFF

ZZZ   100 

Z – Zhang et al. (2013) for = 0.5 
0.500 / 

0.720  

0.720 / 

0.969  

0.969 / 

0.500 321

~~~
FFF

ZZZ   100 

Z – Zhang et al. (2013) for = 1 
0.500 / 

0.720  

0.720 / 

0.969  

0.969 / 

0.500 321

~~~
FFF

ZZZ   100 

CPSZ 0.089 0.107 0.119 
321

~~~
FFF

ZZZ   100 

 

 

  

1.0 

0.1 0.3 0.5 0.6 0.8 0.9 

3

~
G

Z  
2

~
G

Z  
1

~
G

Z  

 x
G

Z ~
  
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Table 7.7: Ranking Results for Overlapping Case 2 

Methods 

Z – Numbers   

Ranking Results 
Level of 

Consistency (%) 
1

~
G

Z  
2

~
G

Z  
1

~
G

Z  

Z – Cheng (1998) 0.746 0.726 0.680 
321

~~~
GGG

ZZZ   100 

Z – Kumar et al. (2010) 0.700 0.500 0.300 
321

~~~
GGG

ZZZ   100 

Z – Dat et al. (2012) 
0.400 / 

0.040 

0.040 / 

0.000 

0.000 / 

0.4000 321

~~~
GGG

ZZZ   100 

Z – Yu et al. (2013) for = 0 0.700 0.500 0.300 
321

~~~
GGG

ZZZ   100 

Z – Yu et al. (2013) for = 0.5 0.700 0.500 0.300 
321

~~~
GGG

ZZZ   100 

Z – Yu et al. (2013) for = 1 0.500 0.7200 0.969 
321

~~~
GGG

ZZZ   100 

Z – Zhang et al. (2013) for = 0 
0.969 / 

0.720  

0.720 / 

0.500  

0.500 / 

0.969 321

~~~
GGG

ZZZ   100 

Z – Zhang et al. (2013) for = 0.5 
0.969 / 

0.720  

0.720 / 

0.500  

0.500 / 

0.969 321

~~~
GGG

ZZZ   100 

Z – Zhang et al. (2013) for = 1 
0.969 / 

0.720  

0.720 / 

0.500  

0.500 / 

0.969 321

~~~
GGG

ZZZ   100 

CPSZ 0.119 0.107 0.089 
321

~~~
GGG

ZZZ   100 

 

 

Discussions  

 

 For overlapping case 1, the correct ranking order such that the ranking results is 

100% consistent with human intuition is 
321

~~~
FFF

ZZZ  . This is because 
3

~
F

Z  is situated on 

the farthest right among the three, followed by 
2

~
F

Z  and then 
1

~
F

Z . Table 7.6, indicates that only 

Z – Cheng (1998) and Z – Kumar et al. (2010) ranking methods produce incorrect 

ranking order for this such that the result is 0% consistent with human intuition where they 

give equal ranking, 
321

~~~
FFF

ZZZ   for this case. For other ranking methods considered in 

this study including the CPSZ ranking method, all of them produce correct ranking order 

such that the ranking results are 100% consistent with human intuition. The result of the CPSZ 

ranking method obtained in this case indicates that this method is capable to appropriately 

differentiate partial overlapping Z – fuzzy numbers. 

 

For overlapping case 2, the correct ranking order such that the ranking results is 

100% consistent with human intuition is 
321

~~~
GGG

ZZZ  . This is due to the fact that 

when combining both values of centroid point and spread of each Z – fuzzy number under 
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consideration, 
1

~
G

Z is the greatest followed by 
2

~
G

Z and then 
3

~
G

Z . Table 7.7 shows all ranking 

methods under consideration including the CPSZ ranking method produce the same correct 

ranking order such that the ranking result is 100% consistent with human intuition. This 

signifies that the CPSZ ranking method is capable to appropriately deal with overlapping 

case of Z – fuzzy numbers like other established ranking methods. 

 

Non - Overlapping Case 

 

Non - Overlapping Case 1 
 

 Non - overlapping Case 1 involves different types of Z – fuzzy numbers namely 

trapezoidal, triangular and singleton that are not overlapped as shown in Figure 7.8. In 

this case, all of the Z – fuzzy numbers considered are differed in terms of the centroid 

point and spread but are the same of height. 

 

 

  

  

 

 

 

 

 
                                                   

 

 

   0.1;5.0,3.0,3.0,1.0,0.1;5.0,3.0,3.0,1.0
1

~ 
H

Z     0.1;8.0,7.0,7.0,6.0,0.1;8.0,7.0,7.0,6.0
2

~ 
H

Z  

   0.1;0.1,0.1,0.1,0.1,0.1;0.1,0.1,0.1,0.1
3

~ 
H

Z  

Fig 7.8: Non - Overlapping Case 1 
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Non - Overlapping Case 2 

 

 Non – overlapping case 2 considers three identical triangular Z – numbers of position. 

One of them is situated on the negative side, one is on positive side and the other is on both 

sides. This case is classified as the mirror image situation or reflection case of Z –numbers. 

Figure 7.9 is the illustration for Z – numbers of non – overlapping case 2. 
 

 

 

  

 

 

 

 

 

                     

  

   0,1;1.0,2.0,2.0,3.0,0,1;1.0,2.0,2.0,3.0
1

~ 
I

Z        

   0,1;1.0,0.0,0.0,1.0,0,1;1.0,0.0,0.0,1.0
2

~ 
I

Z  

                                  0,1;3.0,2.0,2.0,1.0,0,1;3.0,2.0,2.0,1.0
3

~ 
I

Z  

Fig 7.9: Non – Overlapping Case 2 

 

Results and Validation  

Comparisons of ranking order for non – overlapping Case 1 and 2 between the CPSZ 

ranking method and other established ranking methods considered in this study are 

illustrated in Table 7.8 and 7.9 respectively.  
 

Table 7.8: Ranking Results for Non – Overlapping Case 1. 

Methods 
Z - Numbers 

Ranking Results 
Level of 

Consistency (%) 
1

~
H

Z  
2

~
H

Z  
3

~
H

Z  

Z – Cheng (1998) 0.424 0.583 x -
 

N/A 

Z – Kumar et al. (2010) 0.300 0.300 x -
 

N/A 

Z – Dat et al. (2012) 
0.000 / 

0.333 

0.333 / 

0.600 

0.600 / 

0.000 321

~~~
HHH

ZZZ   100 

Z – Yu et al. (2013) for = 0 0.700 0.300 x -
 

N/A 

Z – Yu et al. (2013) for = 0.5 1.00 1.00 x -
 

N/A 

-0.3 -0.2 -0.1 0.1 0.2 0.3 

  

1 
1

~
I

Z  
3

~
I

Z  

2

~
I

Z  

 x
I

Z ~
  
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Z – Yu et al. (2013) for = 1 0.300 0.700 x -
 

N/A 

Z – Zhang et al. (2013) for = 0 1.00 1.00 x -
 

N/A 

Z – Zhang et al. (2013) for = 0.5 1.00 1.00 x -
 

N/A 

Z – Zhang et al. (2013) for = 1 1.00 1.00 x  -
 

N/A 

CPSZ 0.089 0.107 0.119 
321

~~~
HHH

ZZZ   100 

  

 Note  ‘x’ denotes method as unable to calculate the ranking value. 

            ‘-’ denotes no ranking order is obtained. 

 

Table 7.9: Ranking Results for Non – Overlapping Case 2 

Methods 
Z – Numbers   

Ranking Results 
Level of  

Consistency (%) 
1

~
I

Z  
2

~
I

Z  
3

~
I

Z  

Z – Cheng (1998) 0.583 0.583 0.583 
321

~~~
III

ZZZ   0 

Z – Kumar et al. (2010) 0.300 0.300 0.300 
321

~~~
III

ZZZ   0 

Z – Dat et al. (2012) 
0.000 / 

0.333 

0.333 / 

0.600 

0.600 / 

0.000 321

~~~
III

ZZZ   100 

Z – Yu et al. (2013) for = 0 751 0.000 0.001 
231

~~~
III

ZZZ   0 

Z – Yu et al. (2013) for = 0.5 1.00 1.000 1.00 
321

~~~
III

ZZZ   0 

Z – Yu et al. (2013) for = 1 0.001 0.000 751 
321

~~~
III

ZZZ   100 

Z – Zhang et al. (2013) for = 0 
0.969 / 

0.720 

0.720 / 

0.500 

0.500 / 

0.969 321

~~~
III

ZZZ   0 

Z – Zhang et al. (2013) for = 0.5 
0.969 / 

0.720 

0.720 / 

0.500 

0.500 / 

0.969 321

~~~
III

ZZZ   0 

Z – Zhang et al. (2013) for = 1 
0.969 / 

0.720 

0.720 / 

0.500 

0.500 / 

0.969 321

~~~
III

ZZZ   0 

CPSZ 0.089 0.107 0.119 
321

~~~
III

ZZZ   100 

 

Discussion  

 

  For non – overlapping case 1, the correct ranking order such that the ranking 

result is 100% consistent with human intuition is 
321

~~~
HHH

ZZZ  . This is because 
3

~
H

Z  

is situated on the farthest right among the three, followed by 
2

~
H

Z  and then 
1

~
H

Z . Table 7.8 

clearly signified that only Z – Dat et al. (2012) and the CPSZ ranking methods are capable 

to rank this case correctly such that the ranking result is 100% consistent with 

human intuition. For other ranking methods considered in this study, all of them are 

incapable to rank singleton Z – fuzzy numbers appropriately, thus all of them are not 

applicable for ranking Z – fuzzy numbers. This shows that the CPSZ ranking method is 
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capable to appropriately deal with non – overlapping Z – fuzzy numbers and singleton 

Z – fuzzy numbers. 

    

For non – overlapping case 2, the correct ranking order such that the ranking 

result is 100% consistent with human intuition is 
321

~~~
III

ZZZ  . This is due to the fact 

that  
3

~
I

Z
 
is located on the farthest right which is on the positive side, followed by 

2

~
I

Z
  
and 

then 
1

~
I

Z
 
. In Table 7.9, Z – Cheng (1998) and Z – Kumar et al. (2010) ranking methods 

obtain equal ranking, 
321

~~~
III

ZZZ   for this case, which is incorrect such that the ranking 

result is 0% consistent with human intuition. Z – Yu et al. (2013) and Z – Zhang et al. 

(2013) ranking methods also come out with many ranking orders for this case as they 

depend on decision makers’ opinions when ranking fuzzy numbers. Only Z – Dat et al. 

(2012) and the CPSZ ranking methods give correct ranking order for this case such that 

the ranking result is 100% consistent with human intuition. This directly emphasises that 

the CPSZ ranking method is capable to effectively deal with negative and positive Z – 

fuzzy numbers simultaneously. 

 

Summary of Consistency Evaluation 

 

 

This subsection covers the summary on the consistency evaluations for all 

ranking methods considered in section 7.2.1 including the CPSZ ranking method. The 

summary provides clear observation in terms of number of consistent ranking result 

produced by all ranking methods considered in this study and their performance 

percentage. Using Section 4.4 as guideline and information obtained from Table 7.1 

until Table 7.9, the following Table 7.10 summaries the consistency evaluation of all 

ranking methods considered in this study including the CPSZ ranking method on 

ranking Z – fuzzy numbers. 
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Table 7.10: Summary of Consistency Evaluation 

 

Methods 

Consistency Evaluation 

Proportion of Result 

with 100% Level of 

Consistency 

Percentage of Result 

with 100% Level of 

Consistency 

Z – Cheng (1998) 4/9 44.44% 

Z – Kumar et al. (2010) 3/9 33.33% 

Z – Dat et al. (2012) 7/9 77.75% 

Z – Yu et al. (2013) for 0  4/9 44.44% 

Z – Yu et al. (2013) for 5.0  4/9 44.44% 

Z – Yu et al. (2013) for 1  4/9 44.44% 

Z – Zhang et al. (2014) for 0  4/9 55.55% 

Z – Zhang et al. (2014) for 5.0  4/9 55.55% 

Z – Zhang et al. (2014) for 1  4/9 55.55% 

CPSZ 9/9 100% 

 
 

 

 

Results in Table 7.10 show that Z – Kumar et al. (2010) ranking method 

obtains the least number of consistent ranking results where the method ranks three out 

of nine (33.33%) cases of benchmark examples provided in this study. Z – Cheng (1998) 

and Z – Yu et al. (2013) with  = 0 and 0.5 share the same number of consistent 

ranking results with four out of nine cases which is equivalence to 44.44%. Z – Zhang et 

al. (2014) with    = 0 and 0.5 ranking methods successfully rank five out of nine 

(55.55%) benchmark examples. Z – Dat et al. (2012) and Z – Zhang et al. (2014) with α 

= 1 ranking methods achieve seven out nine cases while Z – Yu et al. (2013) ranking 

method ranks eight out of nine cases of benchmarking examples prepared in this study. 

Among all ranking methods considered in this evaluation, only the CPSZ ranking 

method perfectly ranks all nine (100%) cases of benchmarking examples with correct 

ranking order such that all results obtained are 100% consistent with human intuition. 

Therefore, this evaluation clearly indicates that the CPSZ ranking method is considered 

as a ranking method that correctly ranks all Z – fuzzy numbers such that the ranking 

results are 100% consistent with human intuition. 
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7.3.2 Evaluation of Efficiency 

 

 

This subsection discusses the efficiency evaluations of all the ranking methods 

considered in this study including the CPSZ ranking method. It is intentionally prepared as 

a separate subsection from the summary of the consistency evaluation because all ranking 

methods considered in this study and the CPSZ ranking method, perform similar 

efficiency capability when ranking three Z – fuzzy numbers. This is because the 

efficiency result of a ranking method is the same for all benchmarking examples provided 

in this study even if the consistency evaluations are different. Therefore, without loss of 

generality of Section 4.5, the efficiency evaluations of all ranking methods considered in 

this study including the CPSZ ranking method are summarised in Table 7.11. 

 

Table 7.11: Summary of Efficiency Evaluation 
 

Methods Efficiency Evaluation 

Z – Cheng (1998) Slightly Efficient 

Z – Kumar et al. (2010) Slightly Efficient 

Z – Dat et al. (2012) Slightly Inefficient 

Z – Yu et al. (2013) for 0 Slightly Efficient 

Z – Yu et al. (2013) for 0.5 Slightly Efficient 

Z – Yu et al. (2013) for 1 Slightly Efficient 

Z – Zhang et al. (2014) for 0 Very Inefficient 

Z – Zhang et al. (2014) for 0.5 Very Inefficient 

Z – Zhang et al. (2014) for 1 Very Inefficient 

CPSZ Very Efficient 

 

 

In Table 7.11, Z – Zhang et al. (2014) ranking method with   = 0, 0.5 and 1, 

is classified as a very inefficient ranking method as this method is a pairwise 

ranking method and needs additional operation to ranking Z – fuzzy numbers 

appropriately. Z – Dat et al. (2012) ranking method is evaluated as a slightly 

inefficient ranking method because it is a pairwise ranking method but does not need 

additional operation when ranking Z – fuzzy numbers appropriately. Z – Cheng 

(1998) and Z – Yu et al. (2012) ranking methods are considered as slightly efficient 

ranking methods in this evaluation as both simultaneously rank the Z – fuzzy numbers 
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but incorporate additional operation in obtaining the final ranking order. In this 

evaluation, the CPSZ ranking method is regarded as a very efficient ranking method as 

this method ranks fuzzy numbers correctly such that the ranking result is consistent 

with human intuition using simultaneous ranking without incorporating any additional 

operation. Therefore, this evaluation signifies that the CPSZ ranking method is capable 

to rank three Z – fuzzy numbers simultaneously without incorporating additional 

operation when ranking Z – fuzzy numbers. 

 

7.3 SUMMARY 

 

In this chapter, the capability of the CPSZ ranking method on ranking Z – fuzzy 

numbers  is  provided.  Two main empirical validation namely the consistency and 

efficiency of the CPSZ ranking method are also highlighted in this chapter. In the 

validation, the capability of the CPSZ ranking method to correctly rank all cases of Z – 

fuzzy numbers such that the ranking results are consistent with human intuition is 

addressed. The efficiency of the CPSZ ranking method on ranking three Z – fuzzy 

numbers simultaneously is also demonstrated in this chapter where the method is capable 

on ranking three Z – fuzzy numbers simultaneously without incorporating additional 

operation. In this respect, the CPSZ ranking method is considered as a ranking method 

that is capable on ranking Z – fuzzy numbers consistently and efficiently. In Chapter 

8, the thesis discusses the applicability of the CPSI, CPSII and CPSZ ranking 

methods in solving respective case studies in the literature of fuzzy sets. 
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CHAPTER EIGHT 

CASE STUDIES 

 

8.1 INTRODUCTION 

 

 

This chapter covers applications of the proposed methodology for ranking 

fuzzy numbers based on centroid point and spread, CPS, on case studies found in the 

literature of fuzzy sets. The CPS ranking methodology which consists of CPSI (Chapter 

5), CPSII (Chapter 6) and CPSZ (Chapter 7) ranking methods are applied to established 

case studies on risk analysis (Chen & Chen, 2009), footprint of uncertainty (Wu & 

Mendel, 2009) and vehicle selection under uncertain environment (Kang et al., 2012) 

respectively. These case studies are considered and discussed in this study as they utilise 

type – I fuzzy numbers, type – II fuzzy numbers and Z – fuzzy numbers in the analysis. 

Therefore, the applicability of the CPS ranking methodology in solving those 

aforementioned case studies is discussed in sections and subsections of this chapter. 

 

8.2 CASE STUDY 1: RISK ANALYSIS 

 

8.2.1 Overview 

 
In this investigation by Chen & Chen (2009), three manufactories which are 

represented by three manufacturers, C1 ,C2 and C3 produce the same product Ai , i = 1, 2, 

3 where A1 is the product of C1 , A2   for C2 and A3    for  C3 . For every product Ai produces 

by each manufactory, each consists of sub – components Ai1  
A

i 2 and  Ai3 
, where the sub – 

components are evaluated based on two criteria namely the probability of 

failure, Si and severity of loss,  Wi . In the following Figure 8.1, the structure of fuzzy 

risk analysis for all manufactories under consideration is given. 
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Fig 8.1: Fuzzy Risk Analysis Structure (Chen & Chen, 2009) 

 

 
This study by Chen & Chen (2009), defines the level of risk faced by each 

manufacturer under consideration using nine distinct linguistic terms where all of 

linguistic terms are represented by nine respective generalised trapezoidal type – I fuzzy 

numbers as described in Table 8.1. 

 

Table 8.1: Linguistic Terms and Their Corresponding Generalised Type – I Fuzzy 

Numbers (Chen & Chen, 2009) 

 
Linguistic terms Generalised Type - I Fuzzy Numbers 

Absolutely – low (0.0, 0.0, 0.0, 0.0; 1.0) 

Very – low (0.0, 0.0, 0.02, 0.07; 1.0) 

Low (0.04, 0.10, 0.18, 0.23; 1.0) 

Fairly – low (0.17, 0.22, 0.36, 0.42; 1.0) 

Medium (0.32, 0.41, 0.58, 0.65; 1.0) 

Fairly – high (0.58, 0.63, 0.80, 0.86; 1.0) 

High (0.72, 0.78, 0.92, 0.97; 1.0) 

Very – high (0.93, 0.98, 1.0, 1.0; 1.0) 

Absolutely – high (1.0, 1.0, 1.0, 1.0; 1.0) 

 

 

 

 

 

 

Component   made by manufactory,    

Probability of failure, iS   

 

Sub-component 1iA  

Probability of failure, 1iS    

Severity of loss, 1iW   

Sub-component 2iA  

Probability of failure, 2iS   

Severity of loss, 2iW  
 

Sub-component 3iA  

Probability of failure, 3iS  

Severity of loss, 3iW   
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With no loss of generality of Table 8.1, Chen & Chen (2009) gives the linguistic 

evaluating values of sub – components made by manufacturers 1C , 2C  and 3C  as in Table 

8.2. 

 

Table 8.2: Linguistic Evaluating Values of Sub – Components Made By Manufacturers C1, 

C2 and C3 (Chen & Chen, 2009). 

 

 
Sub-

component 

Linguistic value of the 

severity of loss 

Linguistic values of the probability of 

failure 

1C  

11A  11W = low 
11S = fairly – low  9.0

11

~ 
R

w  

12A  12W = fairly – high 
12S = medium  7.0

12

~ 
R

w  

13A  13W = very – low  
13S = fairly – high  8.0

33

~ 
R

w  

 21A  21W = low 
21S = very – high  85.0

21

~ 
R

w  

2C  22A  22W = fairly – high 22S = fairly – high  95.0
22

~ 
R

w  

 23A  23W = very – low  
23S = medium  9.0

23

~ 
R

w  

 31A  31W = low 
31S = fairly – low  95.0

31

~ 
R

w  

3C  32A  32W = fairly – high 32S = high  8.0
32

~ 
R

w  

 33A  33W = very – low 33S = fairly – high  0.1
33

~ 
R

w  

 
 

Using information provided in Table 8.2, evaluation on level of the risk for 

each manufacturer 1C , 2C  and 3C  are determined using the following aggregation method 

(Chen & Chen, 2009). 

 

                                                            










p

k ik

p

k ikik

i

W

WS
R

1

1  

 

                                                                  
iRiii wrrrr ;,,, 4321                                                                             (8.1) 

 
 

where Ri   is a type – I fuzzy number for 1 i n . 
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Therefore, the aggregation value for 1R is 

 

      

    
    
    
   

 






































0.1;07.0,02.0,0,0

0.1;86.0,80.0,63.0,58.00.1;23.0,18.0,10.0,04.0

0.1;07.0,02.0,0,08.0;86.0,80.0,63.0,58.0

0.1;86.0,80.0,63.0,58.07.0;65.0,58.0,41.0,32.0

0.1;23.0,18.0,10.0,04.09.0;42.0,36.0,22.0,17.0

1R  

 

           7.0;1545.1,7463.0,2803.0,1659.0  

 

and aggregation values for 2R  and 3R  are 

 

 85.0;6373.1,1392.1,4949.0,3221.02 R  

 8.0;5984.1,1189.1,5134.0,3659.03 R  

 

When the aggregation process for all type – I fuzzy numbers iR , 3,2,1i  completes, all 

values of iR are next transformed into standardised generalised type – I fuzzy numbers R
~

as 

in Figure 8.2 using equation (3.2). Based on equation (3.2), transformation of iR  into R
~

 is as 

follows. 

 









 7.0;5

6373.1

154.1
,

6373.1

7463.0,

6373.1

2803.0
,

6373.1

1659.0~
1R  

     7.0;7051.0,4558.0,1712.0,1013.0  

 

Similarly, the standardised generalised type – I fuzzy numbers for 
2

~
R  and 3

~
R  are 

 

 85.0;0.1,6958.0,3023.0,1967.0
~

2 R  

 8.0;9762.0,6834.0,3136.0,2235.0
~

3 R  
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        Fig 8.2: Standardised Generalised Fuzzy Number for   

 ̃,   
 ̃and   

 ̃ 
 

 

 

8.2.1 Application 

 

Since, it is noted that Chen & Chen (2009) utilised type – I fuzzy numbers in 

represented the level of risk faced by the manufacturers, hence the CPSI ranking method is 

applied to this case as the CPSI  ranking method is developed for type –  I fuzzy 

numbers. Therefore, levels of risk for manufacturers C1 , C2 and C3 evaluated by the CPSI  

ranking method are as follows 

 

Step 1:   Centroid points (      ) for 
1

~
R ,

2

~
R and 3

~
R  are obtained such that value of *

~
1R

x  is 

calculated using formula in equation (3.10) as 

 

                   

 
 












2725.01609.1

0173.03214.0
7051.04558.01712.01013.0

3

1*
~

1R
x  

             

                         3637.0  

 

 

  

0.85 

0.8 

0.7 

  
 ̃ 

  
 ̃ 

  
 ̃ 

0.1013 0.2235 0.4558 0.9762 

 
  

 ̃  ) 
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whereas, value of *
~

1R
y  is calculated as 

 

  
 










2725.01609.1

2846.0
1

3

7.0*
~

1R
y  

 

                      
3081.0  

 

Hence, centroid point for 
1

~
R  is (0.3637, 0.3081).  

 

While centroid points of 
2

~
R and 3

~
R  are calculated and shown as follows: 

 

                              
 3765.0,5544.0),( *

~
*
~

22


RR

yx  

                              
 3545.0,5549.0),( *

~
*
~

33


RR

yx
 

 

Step 2:  Spread values of 
1

~
R ,

2

~
R and 3

~
R  are calculated such that spread of 

1

~
R is 

 

    s(
1

~
R ) 3081.06038.0       

             
1860.0                                                                                           

 

While, spread values for 
2

~
R and 3

~
R  are 

 
 

      s( 2

~
A ) 3024.0      

                                          s( 3

~
A ) 2668.0     

  

 

Step 3:  Ranking values of 
1

~
R ,

2

~
R and 3

~
R   are computed whereby ranking value for 

1

~
R is 

 

                                1860.013081.03637.0
~

1 RCPS  

                                        

                                         0912.0  
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and ranking values for 
2

~
R and 3

~
R  are 

 

   1456.0
~

2 RCPS  

                      1442.0
~

3 RCPS    

 

Since      132

~~~
RCPSRCPSRCPS III  , hence ranking order result for 

1

~
R ,

2

~
R and 3

~
R  is 

132

~~~
RRR  . Therefore, the level of risk evaluations for manufacturer from the most 

risky to the least risky is 132 CCC  .  
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8.3 CASE STUDY 2: WORD CLASSIFICATION 

 

8.3.1 Overview 

 
 

In a research done by Wu & Mendel (2009), 32 words which are randomly 

ordered are compiled as a dataset where some of them are changed with more commonly 

used words. All of these words are classified in Table 8.3 into three groups namely small – 

sounding words, (little, low amount, somewhat small, very tiny amount, none to very little, 

very small, very little, teeny-weeny, small amount and tiny), medium – sounding words (fair 

amount, modest amount, moderate amount, medium, good amount, a bit, some to moderate 

and some), and large – sounding words (sizeable, large, quite a bit, humongous amount, very 

large, extreme amount, considerable amount, a lot, very sizeable, high amount, maximum 

amount, very high amount and substantial amount). 

 

Table 8.3: 32 words and respective interval type – II fuzzy numbers with 

modification (Wu & Mendel, 2009) 

Type – II 

fuzzy 

numbers 

 

Word 
 

Upper Membership Function 
 

Lower Membership Function 

A1
None to very little [0, 0, 0.14, 1.97; 1] [0, 0, 0.05, 0.66; 1.00] 

A2
Teeny – weeny [0, 0, 0.14, 1.97; 1] [0, 0, 0.01, 0.13; 1.00] 

A3
 Tiny [0, 0, 0.26, 2.63; 1] [0, 0, 0.05, 0.63; 1.00] 

A4
Very Tiny amount [0, 0, 0.36, 2.63; 1] [0, 0, 0.05, 0.63; 1.00] 

A5
 Very small [0, 0, 0.64, 2.47; 1] [0, 0, 0.10, 1.16; 1.00] 

A6
 Very little [0, 0, 0.64, 2.63; 1] [0, 0, 0.99, 0.99; 1.00] 

A7
 A bit [0.59, 1.50, 2.00, 3.41; 1] [0.79, 1.68, 1.68, 2.21; 0.74] 

A8
 Little [0.38, 1.50, 2.50, 4.62; 1] [1.09, 1.83, 1.83, 2.21; 0.53] 

A9
 Low amount [0.09, 1.25, 2.50, 4.62; 1] [1.67, 1.92, 1.92, 2.21; 0.30] 

A
1

0 

Small [0.09, 1.50, 3.00, 4.62; 1] [1.79, 2.28, 2.28, 2.81; 0.40] 

A1

1 

Somewhat small [0.59, 2.00, 3.25, 4.41; 1] [2.29, 2.70, 2.70, 3.21; 0.42] 

A1

2 

Some [0.38, 2.50, 5.00, 7.83; 1] [2.88, 3.61, 3.61, 4.21; 0.35] 

A
1

3 

Some to moderate [1.17, 3.50, 5.50, 7.83; 1] [4.09, 4.65, 4.65, 5.41; 0.40] 

A1

4 

Moderate amount [2.59, 4.00, 5.50, 7.62; 1] [4.29, 4.75, 4.75, 5.21; 0.38] 

A
1

5 

Fair amount [2.17, 4.25, 6.00, 7.83; 1] [4.79, 5.29, 5.29, 6.02; 0.41] 

A
1

6 

Medium [3.59, 4.75, 5.50, 6.91; 1] [4.86, 5.03, 5.03, 5.14; 0.27] 

A
1

7 

Modest amount [3.59, 4.00, 6.00, 7.41; 1] [4.79, 5.30, 5.30, 5.71; 0.42] 
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A
1

8 

Good amount [3.38, 5.50, 7.50, 9.62; 1] [5.79, 6.50, 6.50, 7.21; 0.41] 

A
1

9 

Sizeable [4.38, 6.50, 8.00, 9.41; 1] [6.79, 7.38, 7.38, 8.21; 0.49] 

A
2


0 
Quite a bit [4.38, 6.50, 8.00, 9.41; 1] [6.79, 7.38, 7.38, 8.21; 0.49] 

A2


1 
Considerable amount [4.38, 6.50, 8.25, 9.62; 1] [7.19, 7.58, 7.58, 8.21; 0.37] 

A2


2 
Substantial amount [5.38, 7.50, 8.75, 9.81; 1] [7.79, 8.22, 8.22, 8.81; 0.45] 

A
2


3 
A lot [5.38, 7.50, 8.75, 9.83; 1] [7.69, 8.19, 8.19, 8.81; 0.47] 

A2


4 
High amount [5.38, 7.50, 8.75, 9.81; 1] [7.79, 8.30, 8.30, 9.21; 0.53] 

A
2


5 
Very sizeable [5.38, 7.50, 9.00, 9.81; 1] [8.29, 8.56, 8.56, 9.21; 0.38] 

A
2


6 
Large [5.98, 7.75, 8.60, 9.52; 1] [8.03, 8.36, 8.36, 9.17; 0.57] 

A
2


7 
Very large [7.37, 9.41, 10, 10; 1] [8.72, 9.91, 10, 10; 1.00] 

A
2


8 
Very large amount [7.37, 9.82, 10, 10; 1] [9.74, 9.98, 10, 10; 1.00] 

A
2


9 
Huge amount [7.37, 9.59, 10, 10; 1] [8.95, 9.93, 10, 10; 1.00] 

A
3


0 
Very high amount [7.37, 9.73, 10, 10; 1] [9.34, 9.95, 10, 10; 1.00] 

A
3

1 

Extreme amount [7.37, 9.82, 10, 10; 1] [9.37, 9.95, 10, 10; 1.00] 

A
3


2 
Maximum amount [8.68, 9.91, 10, 10; 1] [9.61, 9.97, 10, 10; 1.00] 

 

In order to ensure that all 32 words in Table 8.3 and their interval type – II 

fuzzy numbers representations are reliable in decision making, all of them are first 

transformed into standardised generalised interval type – II fuzzy numbers using 

Definition (3.8). In Table 8.4, words of uncertainty with respective standardised 

generalised interval type – II fuzzy numbers are tabulated. 

 

Table 8.4: 32 words with respective standardised generalised interval type – II fuzzy 

numbers 

Type – II fuzzy 

numbers 
Upper Membership Function Lower Membership Function 

A1 [0, 0, 0.014, 0.197; 1] [0, 0, 0.005, 0.066; 1.00] 

A2 [0, 0, 0.014, 0.197; 1] [0, 0, 0.001, 0.013; 1.00] 

A3
 [0, 0, 0.026, 0.263; 1] [0, 0, 0.005, 0.063; 1.00] 

A4 [0, 0, 0.036, 0.263; 1] [0, 0, 0.005, 0.063; 1.00] 

A5
 [0, 0, 0.064, 0.247; 1] [0, 0, 0.010, 0.116; 1.00] 

A6
 [0, 0, 0.064, 0.263; 1] [0, 0, 0.099, 0.099; 1.00] 

A7
 [0.059, 0.150, 0.200, 0.341; 1] [0.079, 0.168, 0.168, 0.221; 0.74] 

A8
 [0.038, 0.150, 0.250, 0.462; 1] [0.109, 0.183, 0.183, 0.221; 0.53] 

A9
 [0.009, 0.125, 0.250, 0.462; 1] [0.167, 0.192, 0.192, 0.221; 0.30] 
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8.3.2 Application 

 

Main concern in this decision making problem is to come out with a 

reasonable ranking order in terms of all interval type – II fuzzy numbers defined in 

Table 8.3 with their respective words based on meanings. Thus, application of the 

CPSII ranking method for ranking interval type – II fuzzy numbers for this case is as 

follows. 

 

 

A
1

0 [0.009, 0.150, 0.300, 0.462; 1] [0.179, 0.228, 0.228, 0.281; 0.40] 

A1

1 [0.059, 0.200, 0.325, 0.441; 1] [0.229, 0.270, 0.270, 0.321; 0.42] 

A1

2 [0.038,0.250, 0.500, 0.783; 1] [0.288, 0.361, 0.361, 0.421; 0.35] 

A
1

3 [0.117, 0.350, 0.550, 0.783; 1] [0.409, 0.465, 0.465, 0.541; 0.40] 

A1

4 [0.259, 0.400, 0.550, 0.762; 1] [0.429, 0.475, 0.475, 0.521; 0.38] 

A
1

5 [0.217, 0.425, 0.600, 0.783; 1] [0.479, 0.529, 0.529, 0.602; 0.41] 

A
1

6 [0.359, 0.475, 0.550, 0.691; 1] [0.486, 0.503, 0.503, 0.514; 0.27] 

A
1

7 [0.359, 0.400, 0.600, 0.741; 1] [0.479, 0.530, 0.530, 0.571; 0.42] 

A
1

8 [0.338, 0.550, 0.750, 0.962; 1] [0.579, 0.650, 0.650, 0.721; 0.41] 

A
1

9 [0.438, 0.650, 0.800, 0.941; 1] [0.679, 0.738, 0.738, 0.821; 0.49] 

A
2


0 [0.438, 0.650, 0.800, 0.941; 1] [0.679, 0.738, 0.738, 0.821; 0.49] 

A2


1 [0.438, 0.650, 0.825, 0.962; 1] [0.719, 0.758, 0.758, 0.821; 0.37] 

A2


2 [0..538, 0.750, 0.875, 0.981; 1] [0.779, 0.822, 0.822, 0.881; 0.45] 

A
2


3 [0.538, 0.750, 0.875, 0.983; 1] [0.769, 0.819, 0.819, 0.881; 0.47] 

A2


4 [0.538, 0.750, 0.875, 0.981; 1] [0.779, 0.830, 0.830, 0.921; 0.53] 

A
2


5 [0.538, 0.750, 0.900, 0.981; 1] [0.829, 0.856, 0.856, 0.921; 0.38] 

A
2


6 [0.598, 0.775, 0.860, 0.952; 1] [0.803, 0.836, 0.836, 0.917; 0.57] 

A
2


7 [0.737, 0.941, 1.000, 1.000; 1] [0.872, 0.991, 1.000, 1.000; 1.00] 

A
2


8 [0.737, 0.982, 1.000, 1.000; 1] [0.974, 0.998, 1.000, 1.000; 1.00] 

A
2


9 [0.737, 0.959, 1.000, 1.000; 1] [0.895, 0.993, 1.000, 1.000; 1.00] 

A
3

0 [0.737, 0.973, 1.000, 1.000; 1] [0.934, 0.995, 1.000, 1.000; 1.00] 

A
3


1 [0.737, 0.982, 1.000, 1.000; 1] [0.937, 0.995, 1.000, 1.000; 1.00] 

A
3

2 [0.868, 0.991, 1.000, 1.000; 1] [0.961, 0.997, 1.000, 1.000; 1.00] 
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Step 1:   Centroid points  ** , yx for 1A
 
until 32A

 
are obtained such that value of 

1Ax   is 

calculated using formula in equation (6.3) given as 

  

 
 

 
  



































0071.0

00003.0
066.0005.000,

0211.0

0003.0
197.0014.000

3

1*

1Ax

 

              0221.0,0660.0  

 

 

Whereas, using equation (6.4), value of 
*

1Ay   is obtained as 

 

  
    





























0071.0

005.0
1,

0211.0

014.0
1

3

1*

1Ay  

 

                      
 3568.0,3555.0 . 

Hence, centroid point for 1A  is  3555.0,0660.0  and  3568.0,0221.0 .  

Note that, final result of centroid point is in terms of  ** , yx . Using equations (6.3) 

and (6.4), the remaining centroid points of 2A
 
until 32A  are as follows: 

 

                  3571.0,0044.0,3555.0,0660.0, **

22
 AA yx       1367.0,6500.0,4142.0,6500.0, **

1818
 AA yx

 

     
      3578.0,0211.0,3633.0,0884.0, **

33
 AA yx

 
      1633.0,7460.0,4099.0,7041.0, **

1919
 AA yx

 

                  3578.0,0211.0,3633.0,0884.0, **

44
 AA yx

 
      1633.0,7460.0,4099.0,7041.0, **

2020
 AA yx

 

                 3598.0,0389.0,4019.0,0867.0, **

55
 AA yx

  
      1233.0,7660.0,4168.0,7156.0, **

2121
 AA yx

 

                  5000.0,0495.0,2986.0,0918.0, **

66
 AA yx

 
      1500.0,8277.0,4067.0,7811.0, **

2222
 AA yx

 

                  2467.0,1560.0,3835.0,1904.0, **

77
 AA yx       1567.0,8230.0,4018.0,7794.0, **

2323
 AA yx

 

                   1767.0,1710.0,3969.0,2302.0, **

88
 AA yx       1767.0,8433.0,4067.0,7811.0, **

2424
 AA yx

 

                   1000.0,1933.0054,4.0,2160.0, **

99
 AA yx

 
      1267.0,8687.0,4177.0,7869.0, **

2525
 AA yx

 

              1333.0,2293.0,4163.0,2311.0, **

1010
 AA yx

  
      1900.0,8520.0,3979.0,7919.0, **

2626
 AA yx
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               1400.0,2733.0,4155.0,2552.0, **

1111
 AA yx

 
      3552.0,9571.0,3944.0,9087.0, **

2727
 AA yx

 

               1167.0,3567.0,4171.0,3957.0, **

1212
 AA yx

 
      3571.0,9913.0,3547.0,9119.0, **

2828
 AA yx

 

                1333.0,4717.0,4103.0,4500.0, **

1313
 AA yx       3542.0,9649.0,3783.0,9105.0, **

2929
 AA yx

 

              1267.0,4750.0,4099.0,4959.0, **

1414
 AA yx       3568.0,9779.0,3644.0,9115.0, **

3030
 AA yx

 

                1367.0,5367.0,4121.0,5052.0, **

1515
 AA yx       3578.0,9789.0,3547.0,9119.0, **

3131
 AA yx

 

               0900.0,5010.0,3948.0,5201.0, **

1616
 AA yx       3571.0,9869.0,3546.0,9558.0, **

3232
 AA yx

 

                1400.0,5267.0,4479.0,5276.0, **

1717
 AA yx

 
  

Step 2:  Spread values of 1A
 
until 32A

 
are calculated such that spread of 1A is 

 

s( 1A )     3568.00660.0,3555.01970.0   

    0235.0,0700.0                                                                                           

 

While for the remaining spread values, s of 2A
 
until 32A , all are shown as follows. 

 

      0046.0,0700.02 As
  
      0194.0,2585.018 As

 
      0225.0,0956.03 As

  
      0232.0,2062.019 As

 
      0225.0,0982.04 As

  
      0232.0,2062.020 As

 
      0417.0,0993.05 As

  
      0126.0,2184.021 As

 
      0495.0,1048.06 As

  
      0155.0,1802.022 As

 
      0350.0,1082.07 As

  
      0175.0,1788.023 As

 
      0198.0,1683.08 As

  
      0251.0,1802.024 As

 
      0054.0,1837.09 As

  
      0117.0,1850.025 As

 
      0136.0,1886.010 As

  
      0217.0,1408.026 As

 
      0129.0,1587.011 As

  
      0455.0,1037.027 As

 
      0155.0,3107.012 As

  
      0093.0,0933.028 As

 
      0176.0,2733.013 As

  
      0372.0,0995.029 As

 
      0117.0,2062.014 As

  
      0235.0,0958.030 As

 
      0168.0,2332.015 As

  
      0225.0,0933.031 As

 
      0025.0,1311.016 As

  
      0139.0,0468.032 As

 
      0129.0,1711.017 As
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Step 3:  Ranking values of 1A
 
until 32A

 
are computed whereby ranking value for 1A

is 

                             

 
   








 







 







 


2

0236.010700.01

2

3568.03555.0

2

0211.00660.0
1ACPSII

 

                                        

                                 0150.0  

 

and ranking values for 2A
 
until 32A

 
are 

 

  0121.02 ACPS II
           

  0186.03 ACPSII              
  0189.04 ACPS II                       
  0222.05 ACPSII   
  0293.06 ACPSII   
  0507.07 ACPSII  

  0521.08 ACPSII  

  0468.09 ACPSII  

  0569.010 ACPSII  

  0671.011 ACPS II  

  0840.012 ACPS II  

  1070.013 ACPSII  

  1161.014 ACPS II  

  1251.015 ACPSII  

  1155.016 ACPSII  

  1407.017 ACPSII  

  1542.018 ACPSII  

  1840.019 ACPSII  

  1840.020 ACPSII  

  1770.021 ACPS II
     

  2020.022 ACPS II
 

  2018.023 ACPSII  
  2126.024 ACPS II  
  2031.025 ACPSII  
  2220.026 ACPSII  
  3236.027 ACPSII  
  3213.028 ACPSII  
  3199.029 ACPSII  
  3203.030 ACPSII  

  3173.031 ACPSII  
  3352.032 ACPSII
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Since,  

 

            
312930282732 ACPSACPSACPSACPSACPSACPS IIIIIIIIIIII

            
192322252426 ACPSACPSACPSACPSACPSACPS IIIIIIIIIIII  

            
141517182120 ACPSACPSACPSACPSACPSACPS IIIIIIIIIIII  

            
81011121316 ACPSACPSACPSACPSACPSACPS IIIIIIIIIIII  

            
345697 ACPSACPSACPSACPSACPSACPS IIIIIIIIIIII  

   21 ACPSACPS IIII


 

 

hence ranking order result for 1A  until 32A  is 

  

 2120192322252426312930282732 AAAAAAAAAAAAAA 

 456978101112131614151718 AAAAAAAAAAAAAAA 

213 AAA    
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8.4 CASE STUDY 3: VEHICLE SELECTION 

 

8.4.1 Overview 

Based on Kang et al. (2012), there are three options of vehicles that are 

available to select. They are car, taxi and train. In order to choose for an 

appropriate vehicle for a journey, three main criteria are taken into consideration 

namely price (P), journey time (T) and comfort, (C). In this investigation, P is classified 

as the most important criterion as compared to the other two criteria, which affects on 

the direction of decision made. According to Kang et al. (2012), all criteria considered 

are described in terms of Z – numbers which are reflected as linguistic terms ZP = 

(very high, very high), ZT = (high, very high) and ZC = (medium, very high) for price, 

journey time and comfort respectively. All of these linguistic terms are defined using 

triangular membership function in Definition (3.2) and are shown in the following Table 

8.5. 

 

Table 8.5: Linguistic terms with respective triangular linguistic values 
 
 

Linguistic term Triangular linguistic value 

Very low, VL (0.00, 0.00, 0.25; 1.00) 

Low, L (0.00, 0.25, 0.50; 1.00) 

Medium, M (0.25, 0.50, 0.75; 1.00) 

High, H (0.50, 0.75, 1.00; 1.00) 

Very high, VH (0.75, 1.00, 1.00; 1.00) 

 

 

Based on Table 8.5, Kang et al. (2012) come out with a decision matrix with Z – numbers 

based linguistic values for all vehicles with respective criteria which is illustrated in Table 

8.6. 
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Table 8.6: Decision matrix with Z – numbers based linguistic values for all vehicles with 

respective criteria (Kang et al. (2012a).  

 

Vehicle 

Criteria 

P (pounds) 

(VH, VH) 

T (minutes) 

(H, VH) 

C 

(M, VH) 

Car [(9, 10, 12), VH] [(70, 100, 120), M] [(4, 5, 6), H] 

Taxi [(20, 24, 25), H] [(60, 70, 100), VH] [(7, 8, 10), H] 

Train [(15, 15, 15), H] [(70, 80, 90), H] [(1, 4, 7), H] 

 

 

Using Table 8.5 and 8.6 as guidelines, the following Table 8.7 on decision matrix with 

numerical values is constructed. 

 

Table 8.7: Decision matrix with Z – numbers based numerical values for all vehicles with 

respective criteria (Kang et al. (2012a).  

 

Vehicle 

Criteria 

P (pounds) 

[(0.75, 1.00, 1.00), 

(0.75, 1.00, 1.00)] 

T (minutes) 

[(0.50, 0.75, 1.00), 

(0.75, 1.00, 1.00)] 

C 

[(0.25, 0.50, 0.75), 

(0.75, 1.00, 1.00)] 

Car 
[(9, 10, 12),  

(0.75, 1.00, 1.00)] 

[(70, 100, 120), 

(0.25, 0.50, 0.75)] 

[(4, 5, 6),  

(0.50, 0.75, 1.00)] 

Taxi 
[(20, 24, 25),  

(0.50, 0.75, 1.00)] 

[(60, 70, 100),  

(0.75, 1.00, 1.00)] 

[(7, 8, 10),  

(0.50, 0.75, 1.00)] 

Train 
[(15, 15, 15),  

(0.50, 0.75, 1.00)] 

[(70, 80, 90),  

(0.50, 0.75, 1.00)] 

[(1, 4, 7),  

(0.50, 0.75, 1.00)] 
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Before the CPSZ ranking method is applied to solving this decision making 

problem, all of those numerical values in Table 8.7 are first transformed into standardised 

generalised Z – numbers for easy computation and reliable (Chen & Chen, 2007). Note that, 

only numerical values which are not in the form of standardised generalised Z – numbers 

are transformed, others are remained the same. The following Table 8.8 illustrates decision 

matrix with standardised generalised Z – numbers using Definition (3.8). 

 

 

Table 8.8: Decision matrix with standardised generalised Z – numbers.  

 

Vehicle 

Criteria 

P (pounds) 

[(0.75, 1.00, 1.00), 

(0.75, 1.00, 1.00)] 

T (minutes) 

[(0.50, 0.75, 1.00), 

(0.75, 1.00, 1.00)] 

C 

[(0.25, 0.50, 0.75), 

(0.75, 1.00, 1.00)] 

Car 
[(0.36, 0.40, 0.48),  

(0.75, 1.00, 1.00)] 

[(0.58, 0.83, 1.00), 

(0.25, 0.50, 0.75)] 

[(0.40, 0.50, 0.60),  

(0.50, 0.75, 1.00)] 

Taxi 
[(0.80, 0.96, 1.00),  

(0.50, 0.75, 1.00)] 

[(0.50, 0.58, 0.83),  

(0.75, 1.00, 1.00)] 

[(0.70, 0.80, 1.00),  

(0.50, 0.75, 1.00)] 

Train 
[(0.60, 0.60, 0.60),  

(0.50, 0.75, 1.00)] 

[(0.58, 0.67, 0.75),  

(0.50, 0.75, 1.00)] 

[(0.10, 0.40, 0.70),  

(0.50, 0.75, 1.00)] 

 

 

It is clearly noted that in Table 8.8, both vehicles and criteria components are in 

Z – numbers, Z = (A, B).  Next, numerical values in terms of Z – numbers for both 

components are aggregated so that a single Z – number is obtained for car, taxi and train. 

Aggregation process for Car is as follows. 
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         

    
     


































 ,
75.0,50.0,25.000.1,75.0,50.000.1,00.1,75.0

60.0,50.0,40.075.0,50.0,25.0

00.1,83.0,58.000.1,75.0,50.048.0,40.0,36.000.1,00.1,75.0

carZ  

   

         

    
     


































75.0,50.0,25.000.1,75.0,50.000.1,00.1,75.0

00.1,75.0,50.075.0,50.0,25.0

75.0,50.0,25.000.1,75.0,50.000.1,00.1,75.000.1,00.1,75.0

 

 

    2222.1,7500.0,3750.0,2867.1,5656.0,2400.0 . 

 

while, for taxi and train, their aggregation values are  

 

    3333.1,8333.0,4375.0,7200.1,7978.0,3727.0taxiZ  

                   
    3333.1,7500.0,3750.0,2500.1,5789.0,2782.0trainZ  

 

Since, all vehicles are not in the form of standardised generalised Z – numbers, hence all of 

them are transformed into standardised generalised Z – numbers using equation (3.6) shown 

as follows. Standardised generalised Z – number for car is 

 



























2222.1

2222.1
,

2222.1

7500.0
,

2222.1

3750.0
,

2867.1

2867.1
,

2867.1

5656.0
,

2867.1

2400.0
carZ  

 

           0000.1,6136.0,3068.0,0000.1,4396.0,1865.0  

 

While, for taxi and train, their standardised generalised Z – numbers are 

  

    0000.1,6250.0,3281.0,0000.1,4638.0,2167.0taxiZ
 

    0000.1,5625.0,2813.0,0000.1,4631.0,2226.0trainZ  
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For easy computation, this study defines carZ , taxiZ  and trainZ  as 
1

~
A

Z ,
2

~
A

Z and 
3

~
A

Z

respectively. Notice that, all Z – numbers used are first reduced into Z – fuzzy numbers as 

suggested by Kang et al. (2012). Thus, using the conversion of Z – numbers into Z – fuzzy 

numbers introduced in this study, the following Z – numbers are obtained.  

 

 0000.1;8000.0,3517.0,1492.0carZ  

 0000.1;7985.0,3703.0,1730.0taxiZ  

 0000.1;7854.0,3631.0,1745.0trainZ  

 

8.4.2 Application 

 

This, utilising the CPSZ ranking method, flow on solving this problem is as follows.  

 

Step 1:     Centroid points  ** , yx for 
1

~
A

Z ,
2

~
A

Z and 
3

~
A

Z  are obtained such that  

 

value of 
1

~
A

Zx  is calculated using formula in equation (7.3) as 

          

 
 












5009.01517.1

0525.02814.0
8000.03517.03517.01492.0

3

1

1
~
A

Zx  

             

           4336.0  

whereas, using equation (7.4), value of 
1

~
A

Zy  is obtained as 

 

  
 










6261.04396.1

0
1

3

1

1
~
A

Zy  

 

                      
3333.0  

 

Hence, centroid point for 
1

~
A

Z  is (0.4336, 0.3333).  
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Using same techniques as shown above, centroid points for 
2

~
A

Z and 
3

~
A

Z  are calculated 

accordingly and the results are as follows. 

 

                              
 3333.0,4473.0),(

2
~

2
~


AA

ZZ yx  

                                             
 3333.0,4406.0),(

3
~

3
~


AA

ZZ yx
 

 

Step 2:  Spread values of 
1

~
A

Z ,
2

~
A

Z and 
3

~
A

Z  are calculated such that spread of 
1

~
A

Z is 

 

                                                  s(
1

~
A

Z ) 3333.06508.0       

            
2169.0                                                                                           

 

 

while for 
2

~
A

Z and 
3

~
A

Z , their spread values are 

 

 

      s(
2

~
A

Z ) 2085.0      

                                                  s(
3

~
A

Z ) 2031.0      

 

 

Step 3:  Ranking values of 
1

~
A

Z ,
2

~
A

Z and 
3

~
A

Z are computed whereby ranking value for 
1

~
A

Z

is 

                                2169.013333.04336.0
1

~ 
AZ ZCPS  

                                        

                                              1132.0  

 

and ranking values for 
2

~
A

Z and 
3

~
A

Z are 

 

     1180.0
2

~ 
AZ ZCPS  

                                1170.0
3

~ 
AZ ZCPS    
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Since      
132

~~~
AZAZAZ ZCPSZCPSZCPS  , hence ranking order result for for Z – numbers

1

~
A

Z

,
2

~
A

Z and 
3

~
A

Z  is 
132

~~~
AAA

ZZZ  . This implies that taxi is the best vehicle to select, followed by 

train and then car. 












































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8.5 DISCUSSION 

 

 

This section discusses the applications of the CPS ranking 

methodology in subsections 8.2.1, 8.2.2 and 8.2.3. It is worth mentioning here that 

all decision making case studies namely risk analysis, words classification and 

vehicle selection which are prepared in subsection 8.3.1, 8.3.2 and 8.3.3 

respectively are analysed using established ranking methods considered in this 

study and the CPS ranking methodology. These ranking methods evaluate all the 

aforementioned case studies based on their consistency and efficiency in ranking 

fuzzy numbers. Therefore, the discussion on the application of established ranking 

methods considered in this study including the CPS ranking methodology is as 

follows. 

 
 

8.5.1 CASE STUDY 1 

 

 
This subsection illustrates the consistency and efficiency of the CPSI 

ranking method and established ranking methods considered in this study in 

solving risk analysis case study by Chen & Chen (2009). The following Table 8.9 

signifies the consistency and efficiency evaluation of the CPSI ranking method and 

established ranking methods considered in this study. 

Table 8.9: Consistency and Efficiency Evaluation 

 

Method 

Type – I Fuzzy Numbers 

Ranking Results 

Evaluation 

1

~
R  2

~
R  3

~
R  

Level of 

Consistency 
Level of Efficiency 

Cheng (1998) x x x - N/A Slightly Efficient 

Kumar et al. (2010) 0.300 0.300 0.300 321

~~~
RRR   0% Slightly Efficient 

Dat et al. (2012) 
0.000/

0.600 

0.600/

0.300 

0.300/

0.000 132

~~~
RRR   100% Slightly Efficient 

Yu et al. (2013) for  = 0 0.700 0.300 x - N/A Slightly Efficient 

Yu et al. (2013) for  = 0.5 1.000 1.000 x - N/A Slightly Efficient 

Yu et al. (2013) for  = 1 0.300 0.700 x - N/A Slightly Efficient 

Zhang et al. (2013) for  = 0 1.000 1.000 x - N/A Slightly Inefficient 

Zhang et al. (2013) for  = 0.5 1.000 1.000 x - N/A Slightly Inefficient 

Zhang et al. (2013) for  = 1 1.000 1.000 x - N/A Slightly Inefficient 

ICPS  0.091 0.145 0.144 132

~~~
RRR   100% Very Efficient 
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In this case study, the correct ranking order such that the ranking result is 100% 

consistent with human intuition is 132

~~~
RRR  . 

2

~
R  is considered as the greatest type – I 

fuzzy numbers among the three because it has the largest value of centroid point and 

height, followed by 3

~
R  and then 1

~
R . In Table 8.9, ranking method by Kumar et al. (2010) 

treats this case study as equal ranking, 321

~~~
RRR  , such that the result is 0% consistent 

with human intuition as this ranking method considers all type – I under consideration 

as the same area. Other established ranking methods considered in this study except 

Dat et al. (2012), produce no ranking result for this case study. On contrary, Dat et al. 

(2012) and the CPSI ranking method obtain correct ranking order for this case study such 

that the result is 100% consistent with human intuition. This result implies that the CPSI 

ranking method is applicable to deal with any case studies involving type – I fuzzy 

numbers. 

 
 

In terms of efficiency, Zhang et al. (2014) ranking method is classified as very 

inefficient ranking method in this evaluation because this method is a pairwise ranking 

method and needs additional operation to rank correctly type – I fuzzy numbers in this case 

study. On the other hand, Dat et al. (2012) ranking method is graded as a slightly inefficient 

ranking method because it is a pairwise ranking method but does not need additional 

operation to rank correctly type – I fuzzy numbers of this case study. On the other hand, 

Cheng (1998) and Yu et al. (2013) ranking methods are considered as slightly efficient 

ranking methods as both rank type – I fuzzy numbers of this case study 

simultaneously but incorporate additional operation in obtaining the final ranking 

order. The CPSI ranking method in this case, is classified as a very efficient ranking 

method as this method ranks correctly all type – I fuzzy numbers considered in this 

case study using simultaneous ranking without incorporate any additional operation. 
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8.5.2 CASE STUDY 2 

 

 

This subsection illustrates the consistency and efficiency of the CPSII 

ranking method and established ranking methods considered in this study in words 

classification case study by Wu & Mendel (2009). The following Table 8.10 signifies the 

consistency and efficiency evaluation of the CPSII ranking method and established ranking 

methods considered in this study. 

Table 8.10: Consistency and Efficiency Evaluation 

 

Method 
Type – II Fuzzy Numbers 

1A  2A  3A  4A  5A  6A  7A  8A  

[1] Mitchell (2006) 0.066 0.067 0.068 0.069 0.071 0.072 0.073 0.074 

[2] Wu & Mendel (2009) 0.470 0.560 0.630 0.640 0.660 0.670 1.750 2.130 

[3] II – Kumar et al. (2010) 0.331 0.363 0.394 0.425 0.456 0.488 0.519 0.550 

[4] II – Dat et al. (2012) 
0.000/

0.066 

0.066/

0.067 

0.067/

0.068 

0.068/

0.069 

0.069/

0.071 

0.071/

0.072 

0.072/

0.073 

0.073/

0.074 

[5] II – Yu et al. (2013) for  = 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[6] II – Yu et al. (2013) for  = 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[7] II – Yu et al. (2013) for  = 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[8] II – Zhang et al. (2013) for  = 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[9] II – Zhang et al. (2013) for  = 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[10] II – Zhang et al. (2013) for  = 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[11] IICPS – direct 0.089 0.117 0.119 0.125 0.129 0.134 0.141 0.147 

[12] IICPS –  indirect 0.089 0.117 0.119 0.125 0.129 0.134 0.141 0.147 

 

Table 8.10: Consistency and Efficiency Evaluation (continue) 
 

Method 
Type – II Fuzzy Numbers 

9A  10A  11A  12A  13A  14A  15A  16A  17A  18A  19A  

[1] 0.075 0.076 0.077 0.078 0.079 0.080 0.081 0.082 0.083 0.084 0.085 

[2] 2.190 2.320 2.590 3.900 4.560 4.950 5.130 5.190 5.410 6.500 7.160 

[3] 0.581 0.613 0.644 0.675 0.706 0.738 0.769 0.800 0.831 0.863 0.894 

[4] 
0.074/ 

0.075 

0.075/

0.076 

0.076/

0.077 

0.077/

0.078 

0.078/

0.079 

0.079/

0.080 

0.080/

0.081 

0.081/

0.082 

0.082/

0.083 

0.083/

0.084 

0.084/

0.085 

[5] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[6] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[7] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[8] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[9] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[10] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[11] 0.153 0.155 0.162 0.166 0.174 0.181 0.190 0.195 0.205 0.216 0.222 

[12] 0.153 0.155 0.162 0.166 0.174 0.181 0.190 0.195 0.205 0.216 0.222 
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Table 8.10: Consistency and Efficiency Evaluation (continue) 
 

Method 
Type – II Fuzzy Numbers 

20A  21A  22A  23A  24A  25A  26A  27A  28A  29A  30A  

[1] 0.086 0.087 0.088 0.089 0.090 0.091 0.092 0.094 0.095 0.096 0.097 

[2] 7.160 7.250 7.900 7.910 8.010 8.030 8.120 9.300 9.310 9.340 9.370 

[3] 0.925 0.956 0.961 0.964 0.968 0.969 0.972 0.978 0.981 0.982 0.985 

[4] 
0.085/

0.086 

0.086/

0.087 

0.087/

0.088 

0.088/

0.089 

0.089/

0.090 

0.090/

0.091 

0.091/

0.092 

0.092/

0.094 

0.094/

0.095 

0.095/

0.096 

0.096/

0.097 

[5] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[6] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[7] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[8] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[9] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[10] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

[11] 0.230 0.235 0.246 0.255 0.261 0.272 0.281 0.289 0.296 0.301 0.310 

[12] 0.230 0.235 0.246 0.255 0.261 0.272 0.281 0.289 0.296 0.301 0.310 

 

Table 8.10: Consistency and Efficiency Evaluation (continue) 
 

Method 

Type – II Fuzzy 

Numbers Ranking Result 

20A  21A  

[1] 0.098 0.099 20212223242526272829303132 AAAAAAAAAAAAA  
 

[2] 9.380 9.690 20212223242526272829303132 AAAAAAAAAAAAA    

[3] 0.989 00901 20212223242526272829303132 AAAAAAAAAAAAA    

[4] 
0.097/

0.098 

0.098/

0.099 20212223242526272829303132 AAAAAAAAAAAAA    

[5] 1.000 1.000 20212223242526272829303132 AAAAAAAAAAAAA    

[6] 1.000 1.000 20212223242526272829303132 AAAAAAAAAAAAA    

[7] 1.000 1.000 20212223242526272829303132 AAAAAAAAAAAAA    

[8] 1.000 1.000 20212223242526272829303132 AAAAAAAAAAAAA    

[9] 1.000 1.000 20212223242526272829303132 AAAAAAAAAAAAA    

[10] 1.000 1.000 20212223242526272829303132 AAAAAAAAAAAAA    

[11] 0.321 0.333 20212223242526272829303132 AAAAAAAAAAAAA    

[12] 0.321 0.333 20212223242526272829303132 AAAAAAAAAAAAA    

 

 

Table 8.10: Consistency and Efficiency Evaluation (continue) 

 

Method Ranking Result 

[1] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

[2] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

[3] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

[4] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    
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[5] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

[6] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

[7] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

[8] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

[9] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

[10] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

[11] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

[12] 6789101110111213141516171819 AAAAAAAAAAAAAAAA    

Table 8.10: Consistency and Efficiency Evaluation (continue) 

 

Method Ranking Result 
Evaluation 

Level of Consistency Level of Efficiency 

[1] 12345 AAAAA    100% Slightly Efficient                                                                                                                                                                                

[2] 12345 AAAAA    100% Slightly Efficient                                                                                                                                                                                

[3] 12345 AAAAA    100% Slightly Efficient                                                                                                                                                                                

[4] 12345 AAAAA    100% Slightly Inefficient                                                                                                                                                                                

[5] 12345 AAAAA    100% Slightly Efficient                                                                                                                                                                                

[6] 12345 AAAAA    100% Slightly Efficient                                                                                                                                                                                

[7] 12345 AAAAA    100% Slightly Efficient                                                                                                                                                                                

[8] 12345 AAAAA    100% Very Inefficient 

[9] 12345 AAAAA    100% Very Inefficient 

[10] 12345 AAAAA    100% Very Inefficient 

[11] 12345 AAAAA    100% Very Efficient 

[12] 12345 AAAAA    100% Very Efficient 

 
 

In this case study, the correct ranking order such that the ranking result is 

100% consistent with human intuition is  2526272829303132 AAAAAAAA    

12101112131415161718192021222324 AAAAAAAAAAAAAAAA  

1234567891011 AAAAAAAAAAA   . In Table 8.10, all established 

ranking methods including the CPSI1 ranking method for direct and indirect approaches, 

rank correctly interval type – II fuzzy numbers of this case study such that the result is 

100% consistent with human intuition. This is because all interval type – II fuzzy 

numbers considered in this is case study are trivial and easy to rank. The result implies 

that the CPSII ranking method for both direct and indirect approaches are applicable 

to deal with any case studies involving interval type – II fuzzy numbers. 
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In terms of efficiency, II – Zhang et al. (2014) ranking method is classified as 

very inefficient ranking method in this evaluation because this method is a pairwise 

ranking method and needs additional operation to rank correctly interval type – II fuzzy 

numbers in this case study. On the other hand, II – Dat et al. (2012) ranking method is 

graded as a slightly inefficient ranking method because it is a pairwise ranking method 

but does not need additional operation to rank correctly interval type – II fuzzy numbers 

of this case study. On the other hand, Mitchel (2006), Wu & Mendel (2009), II – Cheng 

(1998) and II – Yu et al. (2013) ranking methods are considered as slightly efficient 

ranking methods as both rank interval type – II fuzzy numbers of this case study 

simultaneous y but incorporate additional operation in obtaining the final ranking order. 

The CPSII ranking method for both direct and indirect approaches are in this case 

classified as a very efficient ranking method as this method ranks correctly all interval 

type – II fuzzy numbers considered in this case study using simultaneous ranking 

without incorporate any additional operation. 
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8.5.3 CASE STUDY 3 

 

This subsection illustrates the consistency and efficiency of the CPSZ ranking 

method and established ranking methods considered in this study in vehicle selection case 

study by Kang et al. (2012a). The following Table 8.11 signifies the consistency and 

efficiency evaluation of the CPSZ ranking method and established ranking methods 

considered in this study. 

Table 8.11: Consistency and Efficiency Evaluation 

 

Method 

Type – I Fuzzy Numbers 

Ranking Results 

Evaluation 

1

~
A

Z  
2

~
A

Z  
3

~
A

Z  Level of 

Consistency 

Level of 

Efficiency 

Z – Cheng (1998) 0.680 0.746 0.726 
132

~~~
AAA

ZZZ   100% 
Slightly 

Efficient 

Z – Kumar et al. (2010) 0.300 0.700 0.500 
132

~~~
AAA

ZZZ   100% 
Slightly 

Efficient 

Z – Dat et al. (2012) 
0.000/

0.600 

0.600/

0.300 

0.300/

0.000 132

~~~
AAA

ZZZ   100% 
Slightly 

Inefficient 

Z – Yu et al. (2013) for  = 0 0.300 0.700 0.500 
132

~~~
AAA

ZZZ   100% 
Slightly 

Efficient 

Z – Yu et al. (2013) for  = 0.5 0.300 0.700 0.500 
132

~~~
AAA

ZZZ   100% 
Slightly 

Efficient 

Z – Yu et al. (2013) for  = 1 0.500 0.969 0.720 
132

~~~
AAA

ZZZ   100% 
Slightly 

Efficient 

Z – Zhang et al. (2013) for  = 0 1.000 1.000 1.000 
132

~~~
AAA

ZZZ   100% 
Very 

Inefficient 

Z – Zhang et al. (2013) for  = 0.5 1.000 1.000 1.000 
132

~~~
AAA

ZZZ   100% 
Very 

Inefficient 

Z – Zhang et al. (2013) for  = 1 1.000 1.000 1.000 
132

~~~
AAA

ZZZ   100% 
Very 

Inefficient 

ZCPS  0.113 0.118 0.117 
132

~~~
AAA

ZZZ   100% Very Efficient 

 

 In this case study, the correct ranking order such that the ranking result is 100% 

consistent with human intuition is 
132

~~~
AAA

ZZZ  . 
2

~
A

Z is considered as the greatest Z – 

numbers among the three because it has the largest accumulated value of centroid point 

and spread, followed by  
3

~
A

Z  and then 
1

~
A

Z . In Table 8.11, all established ranking methods 

including the CPSZ ranking method rank correctly Z – numbers of this case study such 

that the result is 100% consistent with human intuition. This is because all Z – numbers 

considered in this case study are trivial and easy to rank. The result implies that the 

CPSZ ranking method is applicable to deal with any case studies involving Z – numbers. 
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In terms of efficiency, Z – Zhang et al. (2014) ranking method is classified as 

very inefficient ranking method in this evaluation because this method is a pairwise 

ranking method and needs additional operation to rank correctly Z – numbers in this case 

study. On the other hand, Z – Dat et al. (2012) ranking method is graded as a slightly 

inefficient ranking method because it is a pairwise ranking method but does not need 

additional operation to rank correctly Z – numbers of this case study. On the other hand, Z 

– Cheng (1998) and Z – Yu et al. (2013) ranking methods are considered as slightly 

efficient ranking methods as both rank Z – numbers of this case study simultaneously but 

incorporate additional operation in obtaining the final ranking order. The CPSZ ranking 

method in this case, is classified as a very efficient ranking method as this method ranks 

correctly all Z – numbers considered in this case study using simultaneous ranking without 

incorporate any additional operation. 

 

8.6 SUMMARY 

 

 

In this chapter, the applicability of the CPSI, CPSII and CPSZ ranking 

methods in solving respective case studies in the literature of fuzzy sets are illustrated. 

The CPSI is applied to a risk analysis problem, the CPSII on word classification and the 

CPSZ on the vehicle selection problem. All of them are compared in term of their 

consistency and efficiency with other ranking methods considered in this study. In Chapter 

9, the thesis discusses the conclusion part of this study. 
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CHAPTER NINE  

 

CONCLUSIONS 

 

 

9.1 INTRODUCTION 

 

 

This chapter illustrates the contributions of this study, the concluding remarks 

and recommendations for future works. It discusses a summary of all the works 

contributed to knowledge in every chapter of the thesis and suggests some significant 

recommendations towards improving the knowledge of fuzzy sets. Therefore, with no 

loss of generality of all chapters in the thesis, details on those aforementioned points are 

intensively discussed in sections and subsections of this chapter. 

 

9.2 CONTRIBUTIONS 

 

As far as this study is concerned, there are three main contributions to 

knowledge which are underlined in the thesis, namely, contribution to knowledge on 

literature review, contribution to knowledge on methodology and contribution to 

knowledge on case studies. These contributions which are underpinned by publication [1] 

to [4], indicate the strength and novelty of the study in improving and enhance the theory 

of fuzzy sets. Thus, in this respect, the contributions are highlighted as follows. 

 

9.2.1 Literature Review 

 

 

The main contribution of this study towards literature of fuzzy sets is the 

development of a novel ranking methodology for fuzzy numbers based on centroid point 

and spread, CPS. In developing the CPS ranking methodology, a novel direction of 

computing the spread of fuzzy numbers is proposed where it is calculated based on the 

distance from the centroid point. This kind of spread method is suggested in this study 

because it enhances the capability of the centroid point in ranking fuzzy numbers as 

highlighted in Chapter 4 of the thesis. Several theoretical properties of the novel spread 
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method are introduced in this study to strengthen the capability of the method on ranking 

fuzzy numbers appropriately. Then, the novel ranking methodology is developed using 

both the novel spread method and an established centroid point approach. Along with this 

contribution, this study suggets the efficiency evaluation as the validation technique of a 

ranking fuzzy numbers method together with the established consistency evaluation. 

 
 

9.2.3 Methodology 

 

 

As mentioned in Chapter 2, there are three kinds of fuzzy numbers found in the 

literature of fuzzy sets, they are type – I fuzzy numbers, type – II fuzzy numbers and Z – 

fuzzy numbers. It is worth reminding here again that the CPS ranking methodology which 

consists of the CPSI, CPSII, and CPSZ ranking methods are developed to ranking type – I 

fuzzy numbers, type – II fuzzy numbers and Z – fuzzy numbers respectively. 

 

In Chapter 5, the CPSI ranking method is applied to ranking type – I fuzzy 

numbers. In the analysis, the CPSI ranking method contributes significant benchmarking 

examples of type – I fuzzy numbers where it extends cases of type – I fuzzy numbers in 

the literature of fuzzy sets. The extension covers benchmarking examples with three type 

– I fuzzy numbers in each case where previous researches on ranking type – I fuzzy 

numbers consider only two type – I fuzzy numbers. Later in Chapter 6, an extension of the 

CPS ranking methodology on ranking the interval type – II fuzzy numbers, CPSII is 

developed for the first time. As far as researches on ranking interval type – II fuzzy 

numbers are concerned, the CPSII ranking method is the third direct ranking method 

introduced in the literature of fuzzy sets. This is because most ranking methods introduced 

for interval type – II fuzzy numbers required reduction approach, in other word they utilise 

the indirect way to ranking interval type – II fuzzy numbers. Main contribution 

demonstrates by this study on interval type – II fuzzy numbers is the applicability of the 

CPSII ranking method to ranking interval type – II fuzzy numbers using both ways, direct 

and indirect. A useful extension of interval type – II fuzzy numbers into standardised 

generalised  interval  type  –  II  fuzzy numbers  is  also  introduced  in  this  study  as  the 



178 
 

extension provides generic representations of interval type – II fuzzy numbers. Another 

extension of the CPS ranking methodology is developed for the first time in this study and 

the literature of fuzzy sets is the development of the method for ranking Z – fuzzy 

numbers, CPSZ. This development is considered as new because the concept of Z – fuzzy 

numbers is relatively new in fuzzy sets which indicate that theoretical aspects with 

respects to this concept are not yet established. Therefore, the development of the CPSZ 

ranking method is a new in fuzzy sets, hence all details on its development, theoretical and 

empirical frameworks are regarded as other major contributions of this study to 

knowledge of fuzzy numbers. 

 

9.2.3         Case Studies 

 

 
Contributions cover under this subsection is described in detailed by Chapter 8 

of the thesis. In Chapter 8, the ranking methodology for fuzzy numbers based on centroid 

point and spread, CPS is applied to three different case studies namely risk analysis, 

footprint of uncertainty and vehicle selection under uncertain environment. It has to be 

noted here that, all of these case studies are considered as type – I fuzzy numbers, type – II 

fuzzy numbers and Z – numbers are used in the investigations. Type – I fuzzy numbers is 

used on case study involving fuzzy risk analysis, while type – II fuzzy numbers and Z – 

numbers are utilised in case studies concerning the footprint of uncertainty and vehicle 

selection under uncertain environment respectively. Consideration of these case studies in 

this thesis reflects the capability of the CPS ranking methodology to not only ranking 

fuzzy numbers correctly such that the ranking results are consistent with human intuition 

but also solving any related case studies involving type – I fuzzy numbers, type – II fuzzy 

numbers and Z – numbers effectively. 

 

Overall, contributions to knowledge by this study are described in detailed by 

this section. It has to be noted here that some contributions are prepared for knowledge 

enhancement while some are done for decision making purposes. In the following section, 

the concluding remarks of this study are provided. 
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9.3 CONCLUDING REMARKS 

 

 
This section covers the concluding remarks of this study. There are three main 

concluding remarks which are exhibited in this study namely the concluding remark on the 

literature review, concluding remark on the methodology and concluding remark on the 

case studies. These concluding remarks summarised all works done in chapters provided 

in the thesis. In this respect, all of these concluding remarks are classified and discussed as 

follows. 

 

9.3.1 Literature Review 

 

 

This concluding remark covers with descriptions of established works on 

ranking fuzzy numbers. In the literature review chapter, gaps of established ranking 

methods are identified where these are the major concern of this study. Among the gaps 

mentioned in the literature review chapter are the incapability to ranking the embedded, 

overlapping and non – overlapping cases of fuzzy numbers with correct ranking order 

such that the ranking results are consistent with human intuition. These aforementioned 

gaps by established ranking methods are analysed and solve by the first objective of this 

study. This indicates that the first objective of this study is successfully accomplished 

where it caters off all limitations of the established works on ranking fuzzy numbers by 

developing a ranking methodology for ranking fuzzy numbers. 

 

9.3.2 Methodology 

 

 

This concluding remark covers description on the development of the ranking 

methodology for fuzzy numbers based on centroid point and spread. In Chapter 4, a 

methodology for ranking fuzzy numbers is developed where it consists of ranking method 

for type – I fuzzy numbers, ranking method for interval type – II fuzzy numbers and 

ranking for Z – fuzzy numbers. Along with this methodology development, theoretical and 

empirical validations are outlined in this study in Chapter 5, 6 and 7. The theoretical 

validation considers relevant established and new properties for ranking fuzzy numbers 
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purposes while the empirical validation takes into account two ranking viewpoints namely 

the consistency and efficiency evaluations. Based on these descriptions, the second and 

third objectives of this study are achieved. Furthermore, the ranking methodology 

developed outperforms other established ranking methods consider in this study. 

 
9.3.3 Case Studies 

 
This concluding remark covers description on the case studies of the thesis. In 

Chapter 8, three case studies namely fuzzy risk analysis, footprint of uncertainty and 

vehicle selection under uncertain environment are considered and evaluated using the 

ranking methodology developed in this study. All of these case studies are considered in 

this study because type – I fuzzy numbers are used in fuzzy risk analysis case study while, 

type – II fuzzy numbers Z – numbers are utilised in footprint of uncertainty and vehicle 

selection under uncertain environment case studies respectively. The ranking methodology 

developed in this study produces consistent and efficient ranking results for each case 

study examined. This implies that the last objective of this study is also accomplished. 

 

Overall, the concluding remarks of this study are described in detailed by this 

section where this reflects by the successfulness in accomplishing all objectives set up by 

this study. In the following section, recommendations for future work by this study are 

provided. 

 
 

9.4 LIMITATIONS 

 

 

This section discusses limitations of this study where they are figured out 

from the proposed ranking methodology. The limitations are as follows. 

 

Firstly, the new ranking methodology for fuzzy numbers based on centroid 

point and spread is not applicable to ranking non – linear fuzzy numbers. This is due to the 

fact that the ranking methodology considers only linear fuzzy numbers as they are easy to 

deal with as compared to non – linear fuzzy numbers. Moreover, majority of established 

ranking methods consider only linear type of fuzzy numbers in their analysis. Thus, 
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consideration of the non – linear fuzzy numbers cases are neglected in this case. 

 

Secondly, with respect to ranking of Z – numbers, this study suggests that Z – 

number is to first  reduce into type – I fuzzy numbers and is then ranked accordingly. 

This indicates that the ranking methodology incapable to rank Z – numbers simultaneously. 

 

Overall, limitations of this study are described in detailed in this section. It 

has to be noted here that all limitations mentioned indicate that this research needs 

further enhancement. 

 

 

9.5 RECOMMENDATION FOR FUTURE WORK 

 

 
This section discusses the recommendation of this study for future research 

work purposes. There are three kinds of recommendations are mentioned here namely 

recommendation on the literature review, recommendation on fuzzy numbers and 

recommendation on the case studies. These recommendations focus on improvising the 

theoretical and empirical qualities in the theory of fuzzy sets. In this respect, 

recommendations for future work of this study are pointed out as follows. 

 

9.5.1 Literature Review 

 

 

In this study, a new ranking methodology for fuzzy numbers is developed 

based on centroid point and spread methods. Although, the ranking methodology gives 

good theoretical and empirical results, it is recommended for future work that other 

methods that are capable to effectively capture human intuition are thoroughly explored. 

This recommendation is purposely suggested by this study because when more detailed 

investigations on fuzzy numbers are made, more complex cases of fuzzy numbers are 

figured out, thus indicates that a more commanding ranking methodology is required in 

this case. Therefore, exploring for suitable methods in the literature of fuzzy sets for 

ranking fuzzy numbers is necessary as this is crucial for decision making purposes. 

Another recommendation by this study is on the utilisation of other types of fuzzy 
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numbers apart from linear. As far as researches on ranking fuzzy numbers are concerned, 

majority of ranking methods use linear type of fuzzy numbers in their analysis. Thus, 

consideration of the non – linear fuzzy numbers in the future works suggests the 

representation of fuzzy numbers is more generic and practical as not all cases are well 

represented by linear type of fuzzy numbers. 

 

9.5.2 Methodology 

 

 

The chronological evidences suggest that Z – fuzzy numbers are not yet 

established in the literature of fuzzy sets as compared to type – I fuzzy numbers 

and interval type – II fuzzy numbers, this study recommends both theoretical and 

empirical frameworks of Z – fuzzy numbers is extensively explored. This is 

because Z – fuzzy numbers is more practical than type – I fuzzy numbers and interval 

type – II fuzzy numbers in terms of representation, thus finding suitable ways to deal 

with Z – fuzzy numbers is necessary. With respect to ranking methodology, the only 

way to ranking Z – fuzzy numbers is to reduce them first into type – I fuzzy numbers 

and then rank them accordingly. This implies that Z – fuzzy numbers are not effectively 

dealt as this affects the representation of Z – fuzzy numbers. Therefore, this study 

recommends for future work that methods that are capable to simultaneously rank Z – 

fuzzy numbers is developed and solve numerous decision making problems. 

 

Overall, recommendations for future work by this study are described in 

detailed by this section. It has to be noted here that all recommendations provided 

are prepared for knowledge enhancement and decision making purposes. 

 
 

9.6 SUMMARY 

 
 

In this chapter, contributions, the concluding remarks, limitations and 

recommendation for future works by this study are highlighted. Thus, the thesis ends its 

discussion by citing all references used throughout the thesis which are provided next 

after this chapter. 
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