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Abstract  

This thesis introduces a unified framework for design of rule based systems for classification 

tasks, which consists of the operations of rule generation, rule simplification and rule 

representation. This thesis also stresses the importance of combination of different rule 

learning algorithms through ensemble learning approaches. 

For the three operations mentioned above, novel approaches are developed and validated by 

comparing with existing ones for advancing the performance of using this framework. In 

particular, for rule generation, Information Entropy Based Rule Generation is developed and 

validated through comparing with Prism. For rule simplification, Jmid-pruning is developed 

and validated through comparing with J-pruning and Jmax-pruning. For rule representation, 

rule based network is developed and validated through comparing with decision tree and 

linear list. The results show that the novel approaches complement well the existing ones in 

terms of accuracy, efficiency and interpretability. 

On the other hand, this thesis introduces ensemble learning approaches that involve 

collaborations in training or testing stage through combination of learning algorithms or 

models. In particular, the novel framework Collaborative and Competitive Random Decision 

Rules is created and validated through comparing with Random Prisms. This thesis also 

introduces the other novel framework Collaborative Rule Generation which involves 

collaborations in training stage through combination of multiple learning algorithms. This 

framework is validated through comparing with each individual algorithm. In addition, this 

thesis shows that the above two frameworks can be combined as a hybrid ensemble learning 

framework toward advancing overall performance of classification. This hybrid framework 

is validated through comparing with Random Forests. 

Finally, this thesis summarises the research contributions in terms of theoretical significance, 

practical importance, methodological impact and philosophical aspects. In particular, 

theoretical significance includes creation of the framework for design of rule based systems 

and development of novel approaches relating to rule based classification. Practical 

importance shows the usefulness in knowledge discovery and predictive modelling and the 

independency in application domains and platforms. Methodological impact shows the 

advances in generation, simplification and representation of rules. Philosophical aspects 

include the novel understanding of data mining and machine learning in the context of 

human research and learning, and the inspiration from information theory, system theory and 

control theory toward methodological innovations. On the basis of the completed work, this 

thesis provides suggestions regarding further directions toward advancing this research area.  
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Chapter 1 Introduction  

1.1 Background  

Expert systems have been increasingly popular for commercial applications. A rule based 

system is a special type of expert system. The development of rule based systems began in 

the 1960’s but became popular in the 1970’s and 1980’s (Partridge & Hussain, 1994).  A 

rule based system consists of a set of rules, which can serve many purposes such as decision 

support or predictive decision making in real applications. One of the main challenges in this 

area is the construction of such systems which could be based on both expert knowledge and 

data. Thus the design techniques can be divided into two categories: expert based design and 

data based design. The former follows traditional engineering approaches while the later 

follows machine learning approaches. For both types of approaches, the designed rule based 

systems could be used for practical tasks such as classification, regression and association.  

This thesis recommends the use of data based approaches instead of expert based approaches. 

This is because expert based approaches have some limitations which can usually be 

overcome by using data based approaches. For example, expert knowledge is likely to be 

incomplete or inaccurate; some of experts’ viewpoints may be biased; engineers may 

misunderstand requirements or have technical designs with defects. When problems with 

high complexity are solved, both domain experts and engineers are difficult to have all 

possible cases considered or to have perfect technical designs. Once a failure arises with an 

expert system, experts or engineers may have to find and fix the problem through reanalysis 

or redesign. However, the real world has been filled with Big Data. Some previously 

unknown information or knowledge could be discovered from data. Data would potentially 

be used as supporting evidence to reflect some useful and important pattern by using 

modelling techniques. More importantly, the model could be revised automatically in 

accordance with the update of database in real time if a data based modelling technique is 

used. Therefore, data based approaches would be more suitable than expert based 

approaches for design of complex rule based systems. This thesis mainly focuses on 

theoretical and empirical studies of rule based systems for classification in the context of 

machine learning. 

Machine learning is a branch of artificial intelligence and involves two stages: training and 

testing. Training aims to learn something from known properties by using learning 

algorithms and testing aims to make predictions on unknown properties by using the 

knowledge learned in training stage. From this point of view, training and testing are also 

known as learning and prediction respectively. In practice, a machine learning task aims to 

build a model that is further used to make predictions by adopting learning algorithms. This 

task is usually referred to as predictive modelling. Machine learning could be divided into 

two types: supervised learning and unsupervised learning, in accordance with the form of 

learning. Supervised learning means learning with a teacher. This is because all instances 

from a data set are labelled. The aim of this type of learning is to build a model by learning 

from labelled data and then to make predictions on other unlabelled instances with regard to 

the value of a predicted attribute. The predicted value of an attribute could be either discrete 

or continuous. Therefore, supervised learning could be involved in both classification and 

regression tasks for categorical prediction and numerical prediction respectively. In contrast, 

unsupervised learning means learning without a teacher. This is because all instances from a 

data set are unlabelled. The aim of this type of learning is to find previously unknown 
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patterns from data sets. It includes association, which aims to identify correlations between 

attributes, and clustering, which aims to group objects based on similarity measures. On the 

other hand, machine learning algorithms are popularly used in data mining tasks to discover 

some previously unknown pattern. This task is usually referred to as knowledge discovery. 

From this point of view, data mining tasks also involve classification, regression, association 

and clustering. Both classification and regression can be used to reflect the correlation 

between multiple independent variables and a single dependent variable. The difference 

between classification and regression is that the former typically reflects the correlation in 

qualitative aspects whereas the latter reflects in quantitative aspects. Association is used to 

reflect the correlation between multiple independent variables and multiple dependent 

variables in both qualitative and quantitative aspects. Clustering can be used to reflect 

patterns in relation to grouping of objects. 

In data mining and machine learning, automatic induction of classification rules has become 

increasingly popular in commercial applications such as decision support and decision 

making. In this context, the methods of rule generation can be divided into two categories: 

‘divide and conquer’ (Quinlan, 1993) and ‘separate and conquer’ (Michalski R. S., 1969). 

The former is also known as Top-Down Induction of Decision Trees (TDIDT), which 

generates classification rules in the intermediate form of a decision tree such as ID3, C4.5 

and C5.0 (Quinlan, 1993). The latter is also known as covering approach (Fürnkranz, 1999), 

which generates if-then rules directly from training instances such as Prism (Cendrowska, 

1987). A series of experiments have shown that Prism, which acts as a representative of the 

methods that follow ‘separate and conquer’ approach, achieves a similar level of accuracy 

compared with TDIDT in most cases and can even outperform TDIDT in other cases 

especially in noise domain (Bramer, 2000).  

However, a principal problem (Bramer, 2002) that arises with most methods for generation 

of classification rules is the overfitting of training data, the solution of which is likely to 

result in a bias termed as overfitting avoidance bias in (Fürnkranz, 1999; Schaffer, 1993; 

Wolpert, 1993). In some cases, the overfitting problem may result in the generation of a 

large number of complex rules. This may not only increase computational cost but also 

lower the accuracy in predicting further unseen instances. This has led to the development of 

pruning algorithms with respect to the reduction of overfitting. Pruning methods could be 

subdivided into two categories- pre-pruning (Fürnkranz, 1999; Bramer, 2007), which 

truncates rules during rule generation, and post-pruning (Fürnkranz, 1999; Bramer, 2007), 

which generates a whole set of rules and then removes a number of rules and rule terms, by 

using statistical or other tests (Bramer, 2002). A family of pruning algorithms are based on 

J-measure used as information theoretic means of quantifying the information content of a 

rule (Smyth & Goodman, 1991). This is based on the working hypothesis (Bramer, 2002) 

that rules with high information content (value of J-measure) are likely to have a high level 

of predictive accuracy. Two existing J-measure based pruning algorithms are J-pruning 

(Bramer, 2002) and Jmax-pruning (Stahl & Bramer, 2011; Stahl & Bramer, 2012), which 

have been successfully applied to Prism for the reduction of overfitting. 

The main objective in prediction stage of machine learning is to find the first rule that fires 

by searching through a rule set. As efficiency is concerned, a suitable structure is required to 

effectively represent a rule set. The existing rule representations include decision tree and 

linear list. Tree representation is mainly used to represent rule sets generated by ‘divide and 

conquer’ approach in the form of decision trees. It has root and internal nodes representing 
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attributes and leaf nodes representing classifications as well as branches representing 

attribute values. On the other hand, list representation is commonly used to represent rules 

generated by ‘separate and conquer’ approach in the form of ‘if-then’ rules.  

Each classification algorithm would have its own strengths and limitations and possibly 

perform well on some datasets but poorly on the others due to its suitability to particular 

datasets. This has led to the development of ensemble learning concepts for the purpose of 

increasing overall classification accuracy of a classifier by generating multiple base 

classifiers and combining their classification results (Stahl & Bramer, 2013; Stahl & Bramer, 

2011; Stahl F. , Gaber, Liu, Bramer, & Yu, 2011; Stahl F. , et al., 2012). 

The above description is to specify ways to address the common issues that arise in data 

mining and machine learning areas through scaling up algorithms (Brain, 2003; Stahl & 

Bramer, 2013). However, the outcome of machine learning tasks does not only depend on 

the performance of learning algorithms but also on the characteristics of data set such as 

dimensionality and sample size. In other words, the performance of a particular machine 

learning algorithm usually depends on its suitability to the characteristics of a data set. For 

example, some algorithms are unable to directly deal with continuous attributes such as 

Original Prism introduced in (Cendrowska, 1987). For this kind of algorithms, it is required 

to discretise continuous attributes prior to training stage. A popular method of discretization 

of continuous attributes is ChiMerge (Kerber, 1992). The discretization of continuous 

attributes usually helps speed up the process of training greatly. This is because the attribute 

complexity is reduced through discretising the continuous attributes (Brain, 2003). However, 

it is also likely to lead to loss of accuracy. This is because information usually gets lost to 

some extents after a continuous attribute is discretized as mentioned in (Brain, 2003). In 

addition, some algorithms prefer to deal with continuous attributes such as K Nearest 

Neighbour (KNN) (Altman, 1992) and Support Vector Machine (SVM) (Tan, Steinbach, & 

Kumar, 2006; Press, Teukolsky, Vetterling, & Flannery, 2007).  

On the other hand, the performance of an algorithm is also subject to data dimensionality 

and sample size. If they are massively large, it would usually result in huge computational 

costs. It is also likely to generate hypothesis that over-fits training data but under-fits test 

data due to the presence of noise and coincidental pattern that exists in the training data. This 

is due to the following issues. A large training set is likely to have coincidental patterns 

included, which are not scientifically reliable. In this case, a generated model that over-fits 

training data usually performs poor accuracy on test data. In contrast, if the size of a sample 

is too small, it is likely to learn bias from training data as the sample could only have a small 

coverage for the scientific pattern. Therefore, it is necessary to effectively choose 

representative samples for training data. With regard to dimensionality, it is objectively 

possible that not all of the attributes are relevant to making classifications. In this case, some 

attributes need to be removed from the training set by feature selection techniques if the 

attributes are irrelevant. Therefore, it is necessary to examine the relevance of attributes in 

order to effectively reduce data dimensionality. The above descriptions mostly explain why 

an algorithm may perform better on some data sets but worse on others. All of these issues 

mentioned above often arise in machine learning tasks so the issues also need to be taken 

into account by rule based classification algorithms in order to improve classification 

performance. On the basis of above descriptions, it is necessary to have data set pre-

processed prior to training stage. This is usually referred to as scaling down data (Brain, 

2003). This mainly consists of dimensionality reduction and sampling. For dimensionality 
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reduction, some popular existing methods include Principle Component Analysis (PCA) 

(Jolliffe, 2002), Linear Discriminant Analysis (LDA) (Yu & Yang, 2001) and Information 

Gain based methods (Azhagusundari & Thanamani, 2013). Some popular sampling methods 

include simple random sampling (Yates, Moore, & Starnes, 2008), probabilistic sampling 

(Deming, 1975) and cluster sampling (Kerry & Bland, 1998). 

In addition to predictive accuracy, interpretability is also a significant aspect if the machine 

learning approaches are adopted in data mining tasks for the purpose of knowledge 

discovery. As mentioned above, machine learning methods can be used for two main 

purposes. One is to build a predictive model that is used to make predictions. The other one 

is to discover some meaningful and useful knowledge from data. For the latter purpose, the 

knowledge discovered is later used to provide insights for a knowledge domain. For example, 

a decision support system is built in order to provide recommendations to people with regard 

to a decision. People may not trust the recommendations made by the system unless they are 

convinced through seeing the reasons of the decision making. From this point of view, it is 

required to have an expert system which works in a white box manner. This is in order to 

make the expert system transparent so that people can understand the reasons why the output 

is derived from the system.  

As mentioned above, rule based system is a special type of expert systems. This type of 

expert systems works in a white box manner. Higgins justified in (Higgins, 1993) that 

interpretable expert systems need to be able to provide the explanation with regard to the 

reason of an output and that rule based knowledge representation makes expert systems 

more interpretable with the following arguments: 

 A network was conceived in (Uttley, 1959), which needs a number of nodes exponential 

in the number of attributes in order to restore the information on conditional 

probabilities of any combination of inputs. It is argued in (Higgins, 1993) that the 

network restores a large amount of information that is mostly less valuable.  

 Another type of networks known as Bayesian Networks introduced in (Kononenko I. , 

1989) needs a number of nodes which is the same as the number of attributes. However, 

the network only restores the information on joint probabilities based on the assumption 

that each of the input attributes is totally independent of the others. Therefore, it is 

argued in (Higgins, 1993) that this network is unlikely to predict more complex 

relationships between attributes due to the lack of information on correlational 

probabilities between attributes.  
 There are some other methods that fill the gaps that exist in Bayesian Networks by 

deciding to only choose some higher-order conjunctive probabilities, such as the first 

neural networks (Rosenblatt, 1962) and a method based on correlation/dependency 

measure (Ekeberg & Lansner, 1988). However, it is argued in (Higgins, 1993) that these 

methods still need to be based on the assumption that all attributes are independent of 

each other.  

 

On the basis of above arguments, Higgins recommended the use of rule based knowledge 

representation due mainly to the advantage that rules used to interpret relationships between 

attributes can provide explanations with regard to the decision of an expert system (Higgins, 

1993). Therefore, Higgins argues the significance of interpretability, i.e. the need to explain 

the output of an expert system based on the reasoning of that system. From this point of 

view, rule based systems have high interpretability in general. However, in machine learning 

context, due to the presence of massively large data, it is very likely to have a complex 

system built, which makes the knowledge extracted from such a system cumbersome and 
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less readable for people. In this case, it is necessary to represent the system in a way that has 

a high level of interpretability. On the other hand, different people would usually have 

different levels of cognitive capability. In other words, the same message may make 

different meaning to different people due to their different levels of capability of reading and 

understanding. In addition, different people would also have different levels of expertise and 

different preferences with regard to the way of receiving information. All these issues raised 

above make it necessary that knowledge extracted from a rule based system needs to be 

represented in a way that suits people to read and understand. This indicates the necessity of 

proper selection of rule representation techniques. Some representation techniques are 

introduced in Chapters 2 and 3 and discussed with respect to their advantages and 

disadvantages. In addition, Chapter 6 outlines a list of impact factors and evaluation criteria 

for interpretability of rule based systems. 

This thesis mainly introduce adopting the way by scaling up algorithms to address the issues 

that arise with rule generation, rule simplification and ensemble learning with respect to 

improving the result of machine learning tasks. This thesis also introduces the way by proper 

selection of rule representation to address the issues on interpretability of rule based systems. 

However, the thesis does not include sections on scaling down data in depth. This is because 

all data sets used in the experiments are retrieved from popular machine learning repositories 

which are used for researchers to validate their newly developed algorithms. The data sets 

are relatively small and particularly pre-processed by experts in accordance with sampling 

and feature relevance. Therefore, it is not relevant to particularly scale down the data again 

in this PhD thesis. However, this part on scaling down data is further incorporated into the 

research methodology that is introduced in Chapter 3 and the way to achieve that is also 

specified in Chapter 6 as a further direction of this research. 

1.2 Aim and Objectives 

The aim of this research is to create a theoretical framework for design of rule based 

classification systems for the purpose of knowledge discovery and predictive modelling. 

To fulfil the aim, it is necessary to achieve the objectives as follows: 

1. To develop advanced methods and techniques in relation to rule based classification 

including generation, simplification and representation of classification rules. 

2. To create two advanced frameworks of ensemble learning for classification. 

3. To validate the methods and techniques described in objectives 1 and 2. 

Besides, this thesis also includes discussions in philosophical aspects in Chapter 6. This is in 

order to introduce novel understanding of the concepts and methodologies introduced in the 

thesis in relation to data mining and machine learning. The recommendations on evaluation 

and improvement of interpretability are also described in Chapters 5 and 6. 

1.3 Theoretical Preliminaries 

Section 1.1 introduces the background in relation to rule based systems and machine 

learning. However, there are some fundamental concepts that strongly relate to the two 

subjects such as discrete mathematics, statistics, if-then rules, algorithms and logic. This 

section describes these concepts in detail in order to help readers understand those more 

technical sections in Chapter 2 and 3. 
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1.3.1 Discrete Mathematics 

Discrete mathematics is a branch of mathematical theory, which includes three main topics 

namely mathematical logic, set theory and graph theory. In this thesis, the research 

methodology introduced in Chapter 3 is strongly based on Boolean logic that is a theoretical 

application of mathematical logic in computer science. As mentioned in Section 1.1, a rule 

based system consists of a set of rules. In other words, rules are basically stored in a set, 

which is referred to as rule set. In addition, the data used in machine learning tasks is usually 

referred to as dataset. Therefore, set theory is also strongly related to the research 

methodology in this thesis. The development of rule based network, which is introduced in 

Chapter 2 and Chapter 3, is fundamentally based on graph theory. On the basis of the above 

description, this subsection introduces in more detail the three topics as part of discrete 

mathematics with respects to their concepts and connections to the research methodology. 

As introduced in (Simpson, 2013; Ross, 2004), mathematical logic includes the 

propositional connectives namely conjunction, disjunction, negation, implication and 

equivalence. Conjunction is also referred to as AND logic in computer science and denoted 

by F=a ∧ b. The conjunction could be illustrated by the conjunction truth table below: 

Table 1.1 Conjunction Truth Table 1 

a b F 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

Table 1.1 essentially implies that if the output is positive if and only if all the inputs are 

positive in AND logic. In other words, if any one of the inputs is negative, it would result in 

a negative output. In practice, the conjunction is widely used to make judgements especially 

on safety critical judgement. For example, it can be used for security check systems and the 

security status is positive if and only if all parameters relating to the security are positive. In 

this thesis, the conjunction is typically used to judge if a rule is firing and more details about 

it are presented in Section 1.3.3. 

Disjunction is also referred to as OR logic in computer science and denoted by F= a ∨ b. The 

disjunction is illustrated by the disjunction truth table below: 

Table 1.2 Disjunction Truth Table  

a b F 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

Table.1.2 essentially implies that the output would be negative if and only if all of the inputs 

are negative in OR logic. In other words, if any one of the inputs is positive, then it would 

result in a positive output. In practice, it is widely used to make judgements on alarm 
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systems. For example, an alarm system would be activated if any one of the parameters 

appears to be negative. 

Implication is popularly used to make deduction, and denoted by F= a→ b. The implication 

is illustrated by the truth table below: 

Table 1.3 Implication Truth Table  

a b F 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

 

Table 1.3 essentially implies that ‘a’ is defined as an antecedent and ‘b’ as a consequent. In 

this context, it supposes that the consequent would be deterministic if antecedent is satisfied. 

In other words, ‘a’ is seen as the adequate but not necessary condition of ‘b’, which means if 

‘a’ is true then ‘b’ would definitely be true but b may be either true or false otherwise. In 

contrast, if ‘b’ is true, it is not necessarily due to that ‘a’ is true. This can also be proved as 

follows: 

F= a→ b  ¬ a ∨ b 

It can be seen from Table 1.3 and 1.4 that the outputs from the two tables are exactly same. 

Therefore, Table 1.3 indicates that if an antecedent is satisfied then it would be able to 

determine the consequent. Otherwise, the consequent would be non-deterministic. In this 

thesis, the concept of implication is typically used in the form of if-then rules for predicting 

classes. The concept of if-then rules is introduced in Section 1.3.3. 

Table 1.4 Negation Truth Table 4 

a b ¬ a F 

0 0 1 1 

0 1 1 1 

1 0 0 0 

1 1 0 1 

 

Besides, negation and equivalence are actually not applied to the research methodology in 

this thesis. Therefore, they are not introduced in detail here and more details about these two 

concepts are available in (Simpson, 2013; Ross, 2004). 

Set theory is another part of discrete mathematics as mentioned earlier. A set is defined as a 

collection of elements. The elements maybe numbers, points and names etc., which are not 

ordered nor repetitive, i.e. the elements can be stored in any order and are distinct each other.  

As introduced in (Schneider, 2001; Aho, Hopcraft, & Ullman, 1983), an element has a 

membership in a set, which is denoted by ‘e ∈ S’ and pronounced by that element ‘e’ 

belongs to set ‘S’ or denoted by ‘e ∉ S’ and pronounced by that element ‘e’ does not belong 

to set ‘S’. In this thesis, set theory is used in the management of data and rules, which are 



  

19 

  

referred to as a data set and a rule set respectively. A data set is used to store data and each 

element represents a data point. In this thesis, data points are usually referred to as instances. 

A rule set is used to store rules and each element represents a rule. In addition, a set can have 

a number of subsets depending on the number of elements. The maximum number of subsets 

for a set would be 2n, where n is the number of elements in the set. There are also some 

operations between sets such as union, intersection and difference, which are not actually 

applied to the research methodology in this thesis. Therefore, the concepts relating to these 

operations are not introduced here and more details are available in (Schneider, 2001). 

On the other hand, there may be relations existing between sets. A binary relation exists 

when two sets are related. For example, there are two sets denoted as ‘Student’ and ‘Course’ 

respectively. In this context, there would be a mapping from students and courses and each 

mapping is known as an ordered pair. In the University of Portsmouth, each student can 

register on one course only but a course could have many students or no students, which 

means that each element in the set ‘Student’ is only mapped to one element in the set 

‘Course’ but an element in the latter set may be mapped from many elements in the former 

set. Therefore, this is a many-to-one relation. This type of relations are also known as 

functions. In contrast, if the university regulations allow that a student may register on more 

than one course, the relation would become many-to-many and is not considered as a 

function any more. Therefore, a function is generally defined as a many-to-one relation. In 

the above example, the set ‘Student’ is regarded as the domain and the set ‘Course’ as range.  

In this thesis, each rule in a rule set actually acts as a particular function to reflect the 

mapping from an input space (domain) to an output space (range). 

Graph theory is also a part of discrete mathematics as mentioned earlier in this subsection. It 

is popularly used in data structures such as binary search trees and directed or undirected 

graphs. A tree typically consists of a root node and some internal nodes as well as some leaf 

nodes as illustrated in Fig.1.1. In this figure, node A is the root node of the tree; node B and 

C are two internal nodes; and node D, E, F and G are four leaf nodes. A tree could be seen as 

a top-down directed graph. This is because the search strategy applied to trees is in the top-

down approach from the root node to the leaf nodes. The search strategy could be divided 

into two categories: depth first search and breadth first search. In the former strategy, the 

search is going through in the approach: A→B→D→E→C→F→G. In contrast, in the latter 

strategy, the search would be in the approach: A→C→C→D→E→F→G. In this thesis, the 

tree structure is applied to the concept of decision trees to graphically represent a set of rules. 

More details about this are presented in Chapter 2. 

 

 

 

 

                           

  

Fig.1.1 Example of Tree Structure 
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In contrast to trees, there is also a type of horizontally directed graphs in one/two way(s) as 

illustrated in Fig.1.2 and Fig.1.3. For example, a feed-forward neural network is seen as a 

one way directed graph and a feedback neural network as a two way directed graph. 

 

 

 

 

 

Fig.1.2 Example of one way directed graph 

In a directed graph, it could be judged on the reachability between nodes depending on the 

existence of connections. For example, looking at Fig.1.2, it can only be judged that it is 

reachable from node A to node C but unreachable in the opposite way. This is because there 

is only a one way connection from node A to node C. In contrast, there is a two way 

connection between node A and node C through looking at Fig.1.3. Therefore, it can be 

judged that it is reachable between the two nodes, i.e. it is reachable in both ways (A→C and 

C→A). In this thesis, the concept of directed graphs is applied to a special type of rule 

representation known as rule based network for the purpose of predictive simulation. Related 

details are presented in Chapter 2 and 3. 

 

 

 

 

 

 

Fig.1.3 Example of two way directed graph 

In addition, a graph could also be undirected, which means that in a graphical representation 

the connections between nodes would become undirected. This concept is also applied to 

network based rule representation but the difference to application of directed graphs is that 

the purpose is for knowledge representation. More details about this are introduced in 

Chapter 3. 

1.3.2 Probability Theory 

Probability theory is another branch of mathematics, which is a concept involved in all type 

of activities (Murdoch & Barnes, 1973). Probability is seen as a measure of uncertainty for a 

particular event. In general, there are two extreme cases. The first one is that if an event A is 

exact, then the probability of the event, denoted by P (A), is equal to 1. The other case is that 

if the event is impossible, then the corresponding probability would be equal to 0. In reality, 

most events are supposed to be random and their corresponding probabilities would be 
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ranged between 0 and 1. These events typically include independent events and mutually 

exclusive events. 

Independent events generally mean that for two or more events the occurrence of one does 

not affect that of the other(s). However, the events would be mutually exclusive if the 

occurrence of one event results in that the other(s) will exactly not occur. In addition, there 

are also some events that are neither independent nor mutually exclusive. In other words, the 

occurrence of one event may result in the occurrence of the other(s) with a probability. The 

corresponding probability is referred to as conditional probability, which is denoted by P 

(A|B). The P (A|B) is pronounced as that the probability of A given B as a condition. 

According to Bayes’s theorem (Michiel, 2001), P (A) is seen as a prior probability, which 

indicates the pre-degree of certainty for event A, and P (A|B) as a posterior probability, 

which indicates the post-degree of certainty for event A after taking into consideration event 

B. In this thesis, the concept of probability theory introduced above is related to the essence 

of the methods of rule generation introduced in Chapter 2 and 3, namely ID3, Prism and 

Information Entropy Based Rule Generation. In addition, the concept is also related to an 

information theoretic measure called J-measure. 

Probability theory is typically jointly used with statistics. For example, it can well contribute 

to the theory of distribution (Murdoch & Barnes, 1973) with respect to probability 

distribution. As mentioned in the book (Murdoch & Barnes, 1973), a probability distribution 

is often transformed from a frequency distribution. When different events have the same 

probability, the probability distribution is in the case of normal distribution. In the context of 

statistics, normal distribution occurs while all possible outcomes have the same frequency 

resulting from a sampling based investigation. Probability distribution also helps predict the 

expected outcome out of all the possible ones in a random event. This could be achieved by 

weighted majority voting, while the random event is discrete, or by weighted averaging, 

while the event is continuous. In the above context, probability is actually used as the weight 

and the expected outcome is referred to as mathematical expectation. In addition, the 

probability distribution also helps measure the approximate distance between the expected 

outcome and the actual outcome, while the distance among different outcomes is precise 

such as rating from 1 to 5. This could be achieved by calculating the variance or standard 

deviation to reflect the volatility with regard to the possible outcome. In this thesis, 

probability distribution is related to a technique of information theory, which is known as 

entropy and used as a measure of uncertainty in classification. In addition, the concept on 

mathematical expectation is used to measure the expected accuracy by random guess in 

classification and variance/ standard deviation can be used to measure the randomness of an 

algorithm of ensemble learning. 

1.3.3 If-Then Rules 

As mentioned in Section 1.1, a rule based system typically consists of a set of if-then rules. 

Ross (2004) stated that there are many different ways for knowledge representation in the 

area of artificial intelligence but the most popular one would perhaps be in the form of if-

then rules denoted by the expression: IF cause (antecedent) THEN effect (consequent). 

The expression above typically indicates the inference that if a condition (cause, antecedent) 

is known then the outcome (effect, consequent) can be derived (Ross, 2004). It is introduced 

in the tutorial (Gegov, 2013) that both the antecedent and the consequent of a rule could be 

made up by multiple terms (inputs/outputs). In this context, an antecedent with multiple 
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inputs that are linked by ‘and’ connectives is called conjunctive antecedent whereas the 

inputs that are linked by ‘or’ connectives would make up a disjunctive antecedent. The same 

concept is also applied to rule consequent. In addition, it is also introduced in (Gegov, 2013) 

that rules may be conjunctive, if all of the rules are connected by logical conjunction, or 

disjunctive, if the rules are connected by logical disjunction. On the other hand, a rule may 

be inconsistent, which indicates that the antecedent of a rule may be mapped to different 

consequents. In this case, the rule could be expressed in a form with a conjunctive 

antecedent and a disjunctive consequent. 

In this thesis, if-then rules are used to make predictions in classification tasks. In this context, 

each of the rules is referred to as a classification rule, which can have multiple inputs but 

only a single output. In a classification rule, the consequent with a single output represents 

the class predicted and the antecedent with a single/multiple input(s) represents the adequate 

condition to have this class predicted. A rule set that is used to predict class consists of 

disjunctive rules which may be overlapped. This means that different rules may have the 

same instances covered. However, if the overlapped rules have different consequents 

(classification), it would raise a problem referred to as conflict of classification. In this case, 

conflict resolution is required to solve the problem according to some criteria such as 

weighted voting (Bramer, 2007) and fuzzy inference (Ross, 2004). When a rule is 

inconsistent, it would result in a clash problem in classification. This is because the 

prediction of class becomes non-deterministic when this problem arises. More details about 

conflict resolution and clash handling are presented in Chapter 2 and 3. 

Another concept relating to if-then rules is known as a rule base. In general, a rule base 

consists of a number of rules which have common input and output variables. For example, a 

rule base has two inputs: x1 and x2 and one output y as illustrated by Fig.1.4: 

 

 

Fig.1.4 rule base with inputs x1 and x2 and output y 

If x1, x2 and y all belong to {0, 1}, the rule base can have up to four rules as listed below: 

If x1=0 and x2= 0 then y ∈{0, 1} 

If x1=0 and x2= 1 then y ∈{0, 1} 

If x1=1 and x2= 0 then y ∈{0, 1} 

If x1=1 and x2= 1 then y ∈{0, 1} 

In practice, a rule base can be used to effectively and efficiently manage rules with respects 

to their storage and retrieval. For example, if a particular rule is searched for, it could be 

efficiently retrieved by locating at the rule base in which the rule is restored. This is a 

significant difference to a rule set for retrieval purpose. As mentioned earlier in this section, 

a set is used to restore a collection of elements which are not ordered nor grouped properly. 

From this point of view, it is not efficient to look for a particular rule in a rule set. The only 

way to deal with that is to linearly go through the rules one by one in the rule set until the 

target rule is found. In the worst case, it may be required to go through the whole set due to 

that the target rule is restored as the last element of the rule set. Therefore, the use of rule 
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base would improve the efficiency in predicting classes on unseen instances in testing stage. 

More details about the use of rule base are introduced in Chapter 3 and 6. 

1.3.4 Algorithms 

Aho et al (1983) defined that “algorithm is a finite sequence of instructions, each  of which 

has a clear meaning and can be performed with a finite amount of effort in a finite length of 

time”. In general, an algorithm acts as a step by step procedure for problem solving. An 

algorithm may have no inputs but must have at least one output with regard to solving a 

particular problem. In practice, a problem can usually be solved by more than one algorithm. 

In this sense, it is necessary to make comparison between algorithms to find the one which is 

more suitable to a particular problem domain. An algorithm could be evaluated against the 

following aspects:  

 Accuracy, which refers to the correctness in terms of correlation between inputs and 

outputs.  

 Efficiency, which refers to the computational cost required. 

 Robustness, which refers to the tolerance to incorrect inputs. 

 Readability, which refers to the interpretability to people. 

Accuracy would usually be the most important factor in determining whether an algorithm is 

chosen to solve a particular problem. It can be measured by providing the inputs and then 

checking the outputs. 

Efficiency is another important factor to measure if the algorithm is feasible in practice. This 

is because if an algorithm is computationally expensive then the implementation of the 

algorithm may be crashed on a hardware device. Efficiency of an algorithm can usually be 

measured by checking the time complexity of the algorithm in theoretical analysis. In 

practice, it is usually measured by checking the actual runtime on a machine.  

Robustness can usually be measured by providing a number of incorrect inputs and checking 

the extent to which the accuracy with regard to outputs is affected. 

Readability is also important especially when an algorithm is theoretically analysed by 

experts or read by practitioners for application purpose. This problem can usually be solved 

by choosing a suitable representation for the algorithm to make it easier to read. Some 

existing representations include flow chart, UML activity diagram, pseudo code, text and 

programming language. 

This thesis addresses the four aspects in Chapter 2, 3 and 4 in the way of theoretical analysis 

and empirical validation as well as algorithm representation with regard to algorithm 

analysis. 

1.3.5 Logic 

It is stated in the literature (Ross, 2004) that logic is a small part of capability of human 

reasoning, which is used to assist people in making decisions or judgements. Section 1.3.1 

introduces mathematical logic which is also referred to as Boolean logic in computer science. 

As mentioned in Section 1.3.1, in the context of Boolean logic, each variable is only 

assigned a binary truth value: 0 (false) or 1 (true). It indicates that reasoning and judgement 

are made under certainty resulting in deterministic outcomes. From this point of view, this 

type of logic is also referred to as deterministic logic. However, in reality, people usually 
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can only make decisions, judgement and reasoning under uncertainty. Therefore, the other 

two types of logic, namely probabilistic logic and fuzzy logic, are used more popularly, both 

of which can be seen as an extension of deterministic logic. The main difference is that the 

truth value is not binary but continuous between 0 and 1. The truth value implies a 

probability of truth between true and false in probabilistic logic and a degree of that in fuzzy 

logic. The rest of the subsection describes the essence of the three types of logic and their 

difference as well as the association to the concept of rule based systems. 

Deterministic logic deals with any events under certainty. For example, when applying 

deterministic logic for the outcome of an exam, it could be thought that a student will 

exactly pass or fail a unit. In this context, it means the event is exact to happen. 

Probabilistic logic deals with any events under probabilistic uncertainty. For the same 

example about exams, it could be thought that a student has 80% chances to pass, i.e. 20% 

chances to fail, for a unit. In this context, it means the event is highly probable to happen. 

Fuzzy logic deals with any events under non-probabilistic uncertainty. For the same example 

about exams, it could be thought that a student has 80% factors of passing, i.e. 20% factors 

of failing, for a unit with regard to all factors in relation to the exam. In this context, it 

means the event is highly likely to happen. 

A scenario is used to illustrate the above description as follows: students need to attempt the 

questions on four topics in a maths test. They can pass if and only if they pass all of the four 

topics. For each of the topics, they have to get all answers correct to pass. The exam 

questions do not cover all aspects that students are taught but should not be outside the 

domain nor be known to students. Table 1.5 reflects the depth of understanding of a student 

in each of the topics. 

Table 1.5 Depth of understanding for each topic 

Topic 1 Topic 2 Topic 3 Topic 4 

80% 60% 70% 20% 

 

In this scenario, deterministic logic is not applicable because it is never deterministic with 

regard to the outcome of the test. In other words, it is not an exact event that a student will 

pass or not. 

In probabilistic logic, the depth of understanding is supposed to be the probability of the 

student passing. This is because of the assumption that the student would exactly gain full 

marks for which questions the student is able to work out. Therefore, the probability of 

passing would be: p= 0.8×0.6×0.7×0.2=0.0672. 

In fuzzy logic, the depth of understanding is supposed to be the weight of the factors for 

passing. For example, for topic 1, the student has 80% factors for passing but it does not 

imply that the student would have 80% chance to pass. This is because in reality the student 

may feel unwell mentally, physically and psychologically. All of these issues may make it 

possible that the student makes mistakes as a result of that the student fails to gain marks for 

which questions that he/she is able to work out. The fuzzy truth value of passing is 0.2= min 

(0.8, 0.6, 0.7, 0.2). In this context, the most likely outcome for failing would be that the 

student only fails one topic resulting in a failure of maths. The topic 4 would be obviously 

the one which is most likely to fail with the fuzzy truth value 0.8. In all other cases, the 
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fuzzy truth value would be less than 0.8. Therefore, the fuzzy truth value for passing is 

0.2=1-0.8. 

In the context of rule base systems, a deterministic rule based system would have each rule 

either fire or not. If it fires, the consequence would be deterministic. A probabilistic rule 

based system would have a firing probability for each rule. The consequence would be 

probabilistic depending on posterior probability of it given specific antecedents. A fuzzy rule 

based system would have a firing strength for each rule. The consequence would be 

weighted depending on the fuzzy truth value of the most likely outcome. More details about 

the concepts on rule based systems above are presented in Chapter 3. 

1.3.6 Statistical Measures 

In this thesis, some statistical measures are used as heuristics for development of rule 

learning algorithms and evaluation of rule quality. This subsection presents several measures 

namely entropy, J-measure, confidence, lift and leverage. 

Entropy is introduced by Shannon in (Shanno, 1948), which is an information theoretic 

measure of uncertainty. Entropy E can be calculated as illustrated in equation (1): 
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where p is read as probability that an event occurs and i is the index of the corresponding 

event. 

J-measure is introduced in (Smyth & Goodman, 1991), which is an information theoretic 

measure of average information content of a single rule. J-measure is essentially the product 

of two terms as illustrated in equation (2): 
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where the first term P(x) is read as the probability that the rule antecedent (left hand side) 

occurs and considered as a measure of simplicity (Smyth & Goodman, 1992). In addition, 

the second term is read as j-measure, which is first introduced in (Blachman, 1968) but later 

modified in (Smyth & Goodman, 1992) and considered as a measure of goodness of fit of a 

single rule (Smyth & Goodman, 1992). The j-measure is calculated as illustrated in equation 

(3): 
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where P(y) is read as prior probability that the rule consequent (right hand side) occurs and 

P(y |x) is read as posterior probability that the rule consequent occurs given the rule 

antecedent as the condition. 

In addition, j-measure has an upper bound referred to as jmax as indicated in (Smyth & 

Goodman, 1992) and illustrated in equation (4): 
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However, if it is unknown to which class the rule is assigned as its consequent, then the j-

measure needs to be calculated by taking into account all possible classes as illustrated in 

equation (5): 
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In this case, the corresponding jmax is calculated in the way illustrated in equation (6): 
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Confidence is introduced in (Agrawal, Imielinski, & Swami, 1993), which is considered as 

predictive accuracy of a single rule, i.e. to what extent the rule consequent is accurate while 

the rule antecedent is met. The confidence is calculated as illustrated in equation (7): 
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where P(x, y) is read as the joint probability that the antecedent and consequent of a rule 

both occur and P(x) is read as prior probability as same as used in J-measure above. 

Lift is introduced in (Brin, Motwani, Ullman, & Tsur, 1997), which measures to what extent 

the actual frequency of joint occurrence for the two events X and Y is higher than expected 

if X and Y are statistically independent (Hahsler, 2015). The lift is calculated as illustrated in 

equation (8): 
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where P(x, y) is read as the joint probability of x and y as same as mentioned above and P(x) 

and P(y) are read as the coverage of rule antecedent and consequent respectively. 

Leverage is introduced in (Piatetsky-Shapiro, 1991), which measures the difference between 

the actual joint probability of x and y and the expected one (Hahsler, 2015). The leverage is 

calculated as illustrated in equation (9): 

)()(),( yPxPyxPLeverage  (9) 

where P(x, y), P(x) and P(y) are read as same as in equation (8) above. 

More detailed overview of these statistical measures can be found in (Tan, Kumar, & 

Srivastava, 2004; Geng & Hamilton, 2006). In this thesis, entropy is used as a heuristic for 

rule generation and J-measure is used for both rule simplification and evaluation. In addition, 

confidence, lift and leverage are all used for evaluation of rule quality. More details on this 

are described in Chapter 2 and 3. 
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1.4 Chapter Overview 

This thesis consists of six main chapters namely, introduction, literature review, research 

methodology, quantitative validation, qualitative evaluation and conclusion. The rest of the 

thesis is organized as follows: 

Chapter 2 introduces some existing methods and techniques in relation to rule based 

classification including generation, simplification and representation of classification rules 

and identifies their strengths and limitations to show the necessities for the development of 

advanced methods and techniques as mentioned in the research objectives in Chapter 1. 

Chapter 3 introduces a unified theoretical framework for design of rule based classification 

systems as well as advanced methods and techniques which are developed in the PhD thesis 

and can be successfully integrated into the framework. This chapter also introduces two 

advanced frameworks for ensemble learning. Besides, all these methods and techniques are 

discussed critically and comparatively with respects to improvements in performance of 

classification. 

Chapter 4 introduces the ways in which the research methodology is validated and specifies 

the existing methods and techniques with which the proposed ones are compared. This 

chapter also describes the data sets used for validation of proposed methods and techniques 

and justifies the suitability of the chosen data sets. The results are presented and discussed 

comparatively against existing rule based methods and techniques reviewed in Chapter 2. 

Chapter 5 evaluates the completed work against the objectives mentioned in Chapter 1. This 

chapter also critically reflects the strengths and limitations of the completed work towards 

identification of further directions. Contributions in the thesis are also highlighted. 

Chapter 6 describes the contributions in this thesis in detail with respects to theoretical 

significance, practical importance, methodological impact and philosophical aspects. Future 

work is also highlighted towards further improvement of the research methodology with 

references to the evaluation against objectives of this research mentioned in Chapter 5. 
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Chapter 2 Literature Review 

2.1 Introduction 

As mentioned in Chapter 1, the focus of this thesis is on the description of rule based 

classification and ensemble learning as well as the discussion on some existing methods and 

techniques. This chapter describes some existing methods and techniques in relation to rule 

based classification including rule generation, rule simplification and rule representation. 

This chapter also includes the description of ensemble learning concepts and some of 

ensemble rule based methods in this context. 

2.2 Single Rule Based Systems 

As mentioned in Chapter 1, most methods for generation of classification rules may result in 

overfitting of training data, which means that the constructed classifier consists of a large 

number of complex rules and may lower both classification accuracy and computational 

efficiency. This makes it necessary to simplify rules for reduction of overfiting. In addition, 

the same classifier may perform different levels of efficiency in testing stage if the classifier 

is represented in different structures. This makes it relevant to find a suitable representation 

for a particular classifier. Therefore, this section is subdivided into three subsections in order 

to introduce some existing methods or techniques in three different aspects, namely rule 

generation, rule simplification and rule representation. 

2.2.1 Rule Generation Methods 

As mentioned in Chapter 1, rule generation can be done by two approaches. The two 

approaches are usually referred to as ‘divide and conquer’ and ‘separate and conquer’ 

respectively. The former approach can generate a rule set in the form of a decision tree and 

thus is also called Top-Down Induction of Decision Trees (TDIDT). However, it has been 

criticised by Cendrowska (1987) as a major cause of overfitting. Therefore, the latter 

approach is recommended to be used instead and Prism is a representative method developed 

for this motivation. This subsection focuses on the introduction on TDIDT and Prism 

methods. 

Decision trees have been a popular method for generation of classification rules and they are 

based on the fairly simple but powerful TDIDT algorithm (Bramer, 2007). The basic idea of 

this algorithm can be illustrated in Fig.2.1. 

Input: A set of training instances, attribute Ai, where is the index of the attribute A, value 

Vj , where j is the index of the value V 

Output: A decision tree. 

 

if the stopping criterion is satisfied then  

   create a leaf that corresponds to all remaining training instances 

else  

      choose the best (according to some heuristics) attribute Ai 

      label the current node with Ai  

      for each value Vj  of the attribute Ai do 

       label an outgoing edge with value Vj 

       recursively build a subtree by using a corresponding subset of training instances 

      end for 

end if  

Fig.2.1 Decision tree learning algorithm (Kononenko & Kukar, 2007) 
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One popular method of attribute selection for ‘else’ branch illustrated in Fig.2.1 is based on 

average entropy of attribute (Bramer, 2007), which is to select the attribute that can 

minimize the value of entropy for the current subset being separated, thus maximize 

information gain.  

As mentioned in Chapter 1, entropy is a measure of the uncertainty in discriminating 

multiple classifications. It can be calculated in the following way (Bramer, 2007): 

 To calculate the entropy for each attribute-value pair in the way that the entropy of 

training  set is denoted by E and is defined by the formula illustrated in equation (1) (See 

Section 1.3.6) summed over the classes for which pi ≠0 (p denotes the probability of 

class i) if there are k classes. 

 To calculate the weighted average for entropy of resulting subsets.  

For the conditional entropy of an attribute-value pair, pi denotes the posterior probability for 

class i when given the particular attribute-value pair as a condition. On the other hand, for 

initial entropy, the pi denotes the priori probability for class i. The information gain is 

calculated by subtracting the initial entropy from the average entropy of a given attribute. 

ID3 is an example of TDIDT, which bases attribute selection on entropy. The procedure of 

ID3 is illustrated below using a data set that is named contact-lenses (Cendrowska, 1987) 

and retrieved from UCI repository (Lichman, 2013). The details of this data set are 

illustrated in Table 2.1. 

Table 2.1. Contact lenses data  

age prescription astigmatic Tear production rate class 

young myope no reduced no lenses 

young myope no normal soft lenses 

young myope yes reduced no lenses 

young myope yes normal hard lenses 

young hypermetrope no reduced no lenses 

young hypermetrope no normal soft lenses 

young hypermetrope yes reduced no lenses 

young hypermetrope yes normal hard lenses 

pre-presbyopic myope no reduced no lenses 

pre-presbyopic myope no normal soft lenses 

pre-presbyopic myope yes reduced no lenses 

pre-presbyopic myope yes normal hard lenses 

pre-presbyopic hypermetrope no reduced no lenses 

pre-presbyopic hypermetrope no normal soft lenses 

pre-presbyopic hypermetrope yes reduced no lenses 

pre-presbyopic hypermetrope yes normal hard lenses 

presbyopic myope no reduced no lenses 

presbyopic myope no normal soft lenses 

presbyopic myope yes reduced no lenses 

presbyopic myope yes normal hard lenses 

presbyopic hypermetrope no reduced no lenses 

presbyopic hypermetrope no normal soft lenses 

presbyopic hypermetrope yes reduced no lenses 

presbyopic hypermetrope yes normal hard lenses 

 

As mentioned above, ID3 makes attribute selection based on entropy. Therefore, it is 

necessary to create a frequency table for each attribute. 
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Table 2.2. Frequency table for age 

Class label age= young age= pre-presbyopic age= presbyopic 

No lenses 4 4 4 

Soft lenses 2 2 2 

Hard lenses 2 2 2 

Total  8 8 8 

 

Table 2.3. Frequency table for spectacle prescription 

Class label prescription= myope prescription= hypermetrope 

No lenses 6 6 

Soft lenses 3 3 

Hard lenses 3 3 

Total  12 12 

 

Table 2.4. Frequency table for astigmatic 

Class label astigmatic=yes astigmatic=no 

No lenses 6 6 

Soft lenses 6 0 

Hard lenses 0 6 

Total  12 12 

 

For ID3, the average entropy for each of the attributes is in the following: 

 

E (age) = 1/3× (-(1/2) ×log2 (1/2) - (1/4) × log2 (1/4) - (1/4) × log2 (1/4)) + 

                1/3× (-(1/2) ×log2 (1/2) - (1/4) × log2 (1/2) - (1/4) × log2 (1/2)) + 

                1/3× (-(1/2) ×log2 (1/2) - (1/4) × log2 (1/2) - (1/4) × log2 (1/2)) 

             = 3/2 

 

E (prescription) = 1/2× (-(1/2) ×log2 (1/2) - (1/4) × log2 (1/4) - (1/4) × log2 (1/4)) + 

                             1/2× (-(1/2) ×log2 (1/2) - (1/4) × log2 (1/4) - (1/4) × log2 (1/4)) 

                          = 3/2 

 

E (astigmatic) = 1/2× (-(1/2) ×log2 (1/2) - (1/2) ×log2 (1/2)) + 

                          1/2× (-(1/2) ×log2 (1/2) - (1/2) ×log2 (1/2)) 

                        = 1 

 

E (tear production rate) = 1/2× (-(1/2) ×log2 (1/2) - (1/2) ×log2 (1/2)) + 

                                          1/2× (-1 × log2 (1)) 

                                       = ½  

 

As E (tear production rate) is the minimum, the data set illustrated in Table 2.1 is split on the 

attribute tear production rate. This results in two subsets illustrated in Table 2.6 and 2.7. 

 

It can be seen from Table 2.6 that all instances belong to the class no lenses, which indicates 

there is no uncertainty remaining in the subset. Therefore, it results in an incomplete 

decision tree as illustrated in Fig.2.2. 
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Table 2.6 Subset 1 for contact lenses data 

age prescription astigmatic Tear production rate class 

young myope no reduced no lenses 

young myope yes reduced no lenses 

young hypermetrope no reduced no lenses 

young hypermetrope yes reduced no lenses 

pre-presbyopic myope no reduced no lenses 

pre-presbyopic myope yes reduced no lenses 

pre-presbyopic hypermetrope no reduced no lenses 

pre-presbyopic hypermetrope yes reduced no lenses 

presbyopic myope no reduced no lenses 

presbyopic myope yes reduced no lenses 

presbyopic hypermetrope no reduced no lenses 

presbyopic hypermetrope yes reduced no lenses 

 

Table 2.7 Subset 2 for contact lenses data 

age prescription astigmatic Tear production rate class 

young myope no normal soft lenses 

young myope yes normal hard lenses 

young hypermetrope no normal soft lenses 

young hypermetrope yes normal hard lenses 

pre-presbyopic myope no normal soft lenses 

pre-presbyopic myope yes normal hard lenses 

pre-presbyopic hypermetrope no normal soft lenses 

pre-presbyopic hypermetrope yes normal hard lenses 

presbyopic myope no normal soft lenses 

presbyopic myope yes normal hard lenses 

presbyopic hypermetrope no normal soft lenses 

presbyopic hypermetrope yes normal hard lenses 

 

 

Fig.2.2 Incomplete decision tree comprising attribute Tear production rate 

The left branch comprising tear production rate = reduced is terminated by giving a leaf 

node labeled no lenses. The right branch comprising tear production rate = normal is still 

not terminated, which means it is required to select another attribute other than tear 

production rate to be split at the node which is labeled with a question mark. For this, it is 

needed to create a frequency table for each of the rest of the attributes namely age, 

prescription and astigmatic from the subset 2 for the data set illustrated in Table 2. 
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Table 2.8 Frequency table for age at the second iteration 

Class label age= young age= pre-presbyopic age= presbyopic 

No lenses 0 0 0 

Soft lenses 2 2 2 

Hard lenses 2 2 2 

Total  4 4 4 

 

Table 2.9 Frequency table for spectacle prescription at the second iteration 

Class label prescription= myope prescription= hypermetrope 

No lenses 0 0 

Soft lenses 3 3 

Hard lenses 3 3 

Total  6 6 

 

Table 2.10 Frequency table for astigmatic at the second iteration 

Class label astigmatic=yes astigmatic=no 

No lenses 0 0 

Soft lenses 0 6 

Hard lenses 6 0 

Total  6 6 

 

According to Table 3.8- 3.10, the average entropy for each of the attributes is shown below. 

  

E (age) = 1/2× (-(1/2) ×log2 (1/2) - (1/2) ×log2 (1/2)) + 

                          1/2× (-(1/2) ×log2 (1/2) - (1/2) ×log2 (1/2)) 

                        = 1 

 

E (prescription) = 1/2× (-(1/2) ×log2 (1/2) - (1/2) ×log2 (1/2)) + 

                              1/2× (-(1/2) ×log2 (1/2) - (1/2) ×log2 (1/2)) 

                          = 1 

 

E (astigmatic) = 1/2× (-1 × log2 (1)) + 1/2× (-1 × log2 (1)) 

                        = 0 

 

Therefore, the attribute astigmatic is selected to be split at the node that is labeled with a 

question mark in Fig.2.2, which means that the subset 2 for the data set illustrated in Table 

2.7 is split on the astigmatic attribute resulting in two further subsets. 

Table 2.11 Subset 2.1 for contact lenses data 

age prescription astigmatic Tear production rate class 

young myope no normal soft lenses 

young hypermetrope no normal soft lenses 

pre-presbyopic myope no normal soft lenses 

pre-presbyopic hypermetrope no normal soft lenses 

presbyopic myope no normal soft lenses 

presbyopic hypermetrope no normal soft lenses 

 

It is clear that both subsets illustrated above have all instances belong to the same class and 

thus remains no uncertainty. The complete decision tree is generated as illustrated in Fig.2.3. 
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Table 2.12 Subset 2.2 for contact lenses data 

age prescription astigmatic Tear production rate class 

young myope yes normal hard lenses 

young hypermetrope yes normal hard lenses 

pre-presbyopic myope yes normal hard lenses 

pre-presbyopic hypermetrope yes normal hard lenses 

presbyopic myope yes normal hard lenses 

presbyopic hypermetrope yes normal hard lenses 

 

As mentioned above, decision tree representation is a major cause of overfitting. This is due 

to a principal drawback on replicated sub-tree problem that is identified in (Cendrowska, 

1987) and is illustrated in Fig.2.4.  

 

 

Fig.2.3 Complete decision tree 

As summarized by Han and Kamber (2006), decision tree learning is so popular due to the 

following reasons: 

Firstly, the generation of decision trees does not need any prior knowledge in a domain nor 

parameters setting. Therefore, decision tree learning is seen as an appropriate approach for 

knowledge discovery. 

Secondly, the decision tree learning algorithms are able to effectively deal with training data 

in high dimensionality. 

Thirdly, the decision tree representation is interpretable. In other words, knowledge 

extracted from a decision tree is easily communicated to people. 

Fourthly, the training by the induction algorithm is not expensive and the prediction by a 

decision tree classifier is straightforward and efficient. 

Fifthly, the decision tree learning algorithms can generate accurate classifiers in general. 

Finally, the learning algorithm is not domain dependent but data dependent. In this context, 

the decision tree learning algorithm can be used broadly in many different application areas 
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such as medicine, finance and biology. However, the performance in a particular task is 

highly dependent on the suitability to the data used. 

Although decision tree learning has some advantages listed in (Han & Kamber, 2006) and 

described above, it was pointed out in (Cendrowska, 1987; Deng, 2012) that decision tree 

learning is difficult to manipulate for expert systems as it is required to examine the whole 

tree in order to extract rules about a single classification. It has been partially solved by 

converting a tree to a set of individual rules but there are some rules that are not easily fit 

into a tree structure as is the replicated sub-tree problem mentioned above. In a medical 

diagnosis system, this problem may lead to unnecessary surgery (Cendrowska, 1987; Deng, 

2012).  The reasons identified in (Cendrowska, 1987; Deng, 2012) are the following: 

 The decision tree is attribute oriented.  

 Each iteration in the generation process chooses the attribute on which to be split aiming 

at minimizing the average entropy, i.e. measuring the average uncertainty. However, this 

does not necessarily mean that the uncertainty for each rule is reduced. 

 An attribute might be highly relevant to one particular classification but irrelevant to the 

others. Sometimes only one value of an attribute is relevant. 

 

Fig.2.4 Cendrowska’s replicated subtree example  

As the presence of the above problem, Prism method was introduced in the paper 

(Cendrowska, 1987) and primarily aimed at avoiding the replicated sub-tree problem. The 

basic procedure of the underlying Prism algorithm is illustrated in Fig.2.5. 

On the other hand, the original Prism algorithm does not take clashes into account, i.e. a set 

of instances in a subset of a training set that are identical apart from being assigned to 

different classes but cannot be separated further (Stahl & Bramer, 2011; Stahl & Bramer, 

2012). However, the Inducer Software implementation (Bramer, 2005) of Prism can handle 

clashes and the strategy of handling a clash is illustrated in Fig.2.6. 

 

 



  

35 

  

Input: a training set T, a subset T’ ⊆ T, an instance t ∈ T, dimensionality d, an attribute ax (x is the 

index of a), class Ci (i is the index of C), number of classes n 

Output: a rule set RS, a result set of instances T’’ covered by a rule R ∈ RS 

Initialize: 

T’= T, T’’= ∅, i=0; 

for i<n do 

      do generate rules for class Ci  

             while ∃ t: t ∈ T’˄ t ∉ Ci do 

                         x=0; 

                  while x < d do 

                       for each value v of ax do 

                                    Calculate P(Ci| ax= v); 

                       end for 

                        x++; 

                   end while 

                  assign ax= v to R as a rule term, while P(Ci| ax= v) is max; 

                  ∀t: T’’∩{t}, if t comprise ax= v; 

         end while 

          RS= RS ∩ {R}; 

         T’= T’- T’’; 

       while ∀t: t ∈ T’˄ t ∉ Ci 

       i++; 

end for 

Fig.2.5 Prism Algorithm 

Another problem that arises with Prism is tie-breaking, i.e. if there are two or more attribute-

value pairs which have equal highest probability in a subset (see step 3 in Fig.2.5). The 

original Prism algorithm makes an arbitrary choice in step 4 as illustrated in Fig. 1 whereas 

the Inducer Software makes the choice using the highest total target class frequency (Bramer, 

2007). 

If a clash occurs while generating rules for class i:  

1. Determine the majority class for the subset of instances in the clash set.  

2. If this majority class is class i, then compute the induced rule by assigning all instances in 

the clash set to class i. If it is not, discard the whole rule.  

3. If the induced rule is discarded, then all instances that match the target class should be 

deleted from the training set before the start of the next rule induction. If the rule is kept, 

then all instances in the clash set should be deleted from the training data. 

Fig.2.6 Dealing with clashes in Prism (Stahl & Bramer, 2011; Stahl & Bramer, 2012) 

In addition, Bramer pointed out that the original Prism algorithm always deletes instances 

covered by those rules generated so far and then restores the training set to its original size 

after the completion of rule generation for class i and before the start for class i+1. This 

undoubtedly increases the number of iterations resulting in high computational cost (Bramer, 

2000), especially when the training data is very large. For the purpose of increasing the 

computational efficiency, a modified version of Prism, called PrismTCS, was developed by 

Bramer (Bramer, 2000). PrismTCS always chooses the minority class as the target class pre-

assigned to a rule being generated as its consequence. Besides this, it does not reset the 

dataset to its original state and introduces an order to each rule according to its importance 

(Bramer, 2000; Stahl & Bramer, 2011; Stahl & Bramer, 2012). Therefore, PrismTCS is not 

only faster in generating rules compared with the original Prism, but also provides a similar 

level of classification accuracy (Bramer, 2000; Stahl & Bramer, 2011; Stahl & Bramer, 

2012). 
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Bramer described in (Bramer, 2000) a series of experiments to compare Prism against 

decision tree with respect to their performance on a number of datasets. He concluded the 

following (Bramer, 2007): 

 Prism algorithm usually gives classification rules at least as good as those generated 

from TDIDT algorithm but also outperforms TDIDT in terms of noise tolerance. 

 There are generally fewer rules but also fewer terms per rule, which is likely to aid their 

comprehensibility to domain experts and users. This result would seem that Prism 

generally gives consistently better accuracy than TDIDT. 

 The main difference is that Prism generally prefers to leave a test instance unclassified 

rather than to assign it an incorrect classification. 

 The reasons why Prism is more noise-tolerant than TDIDT may be due to the presence 

of fewer terms per rule in most cases. 

 Prism generally has higher computational efficiency than TDIDT, and the efficiency can 

be further improved by parallelisation whereas TDIDT cannot achieve.  

As mentioned earlier, there is a case that only one value of an attribute is relevant to a 

particular classification and that ID3 (a version of TDIDT) does not take into consideration. 

It is pointed out in (Deng, 2012) that the Prism method is attribute-value-oriented and pays 

much attention to the relationship between an attribute-value pair and a particular 

classification, thus generating fewer but more general rules than the TDIDT. 

Although Prism algorithm has obvious advantages, such as noise tolerance, comparing with 

TDIDT as mentioned above, the algorithm also has some disadvantages in the aspects of 

classification conflict, clash handling, underfitting, and computational efficiency.  

The original version of Prism may generate a rule set which results in a classification 

conflict in predicting unseen instances. This can be illustrated by the example below: 

Rule 1: If x=1and y=1 then class= a 

Rule 2: If z=1 then class= b 

What should the classification be for an instance with x=1, y=1 and z=1? One rule gives 

class a, the other one gives class b. It is required to have a method choose only one 

classification to classify the unseen instance (Bramer, 2007). Such a method is known as a 

conflict resolution strategy. Bramer mentioned in the book (Bramer, 2007) that Prism uses 

the ‘take the first rule that fires’ strategy in dealing with the conflict problem and therefore it 

is required to generate the most important rules first. However, the original Prism cannot 

actually introduce an order to a rule according to its importance as each of those rules with a 

different target class is independent of each other. As mentioned above, this version of Prism 

would restore the training set to its original size after the completion of rule generation for 

class i and before the start for class i+1. This indicates that the rule generation for each class 

may be done in parallel so the algorithm cannot directly rank the importance among rules. 

Thus the ‘take the first rule that fires’ strategy may not deal with the classification 

confliction well. The PrismTCS does not restore dataset to its original state unlike original 

Prism and thus can introduce the order to a rule according to its importance. This problem is 

partially resolved but PrismTCS may potentially lead to underfitting of a rule set. PrismTCS 

always chooses the minority class in the current training set as the target class of the rule 

being generated. Since the training set is never restored to its original size as mentioned 
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above, it can be proven that one class could always be selected as the target class until all 

instances of this class have been deleted from the training set. This is because the instances 

of this minority class covered by the current rule generated should be removed prior to 

generating the next rule. This case may result in the case that the majority class in the 

training set may not be necessarily selected as target class to generate a list of rules until the 

termination of the whole generation process. In this case, there is not even a single rule 

having the majority class as its consequence (right hand side of this rule). In some 

implementations, this problem has been partially solved by assigning a default class (usually 

majority class) in predicting unseen instances when there is not a single rule that can cover 

this instance. However, this should be based on the assumption that the training set is 

complete. Otherwise, the rule set could still underfit the training set as the conditions of 

classifying instances to the other classes are probably not strong enough. On the other hand, 

if a clash occurs, both the original Prism and PrismTCS would prefer to discard the whole 

rule rather than to assign the majority class, which is of higher importance, to the rule. As 

mentioned above, Prism may generally generate more general and fewer rules than TDIDT 

algorithms. One reason is potentially due to discarding rules.  In addition, the clash may 

happen in two principal ways as follows: 

1) One of the instances has at least one incorrect record for its attribute values or its 

classification (Bramer, 2007). 

2) The clash set has both (or all) instances correctly recorded but it is impossible to 

discriminate between (or among) them on the basis of the attributes recorded and thus it 

may be required to examine further values of attributes (Bramer, 2007). 

When there is noise present in datasets, Prism is more robust than TDIDT as mentioned 

above. However, if the reason that a clash occurs is not due to noise and the training set 

covers a large amount of data, then it could result in serious underfitting of the rule set by 

discarding rules as it will leave many unseen instances unclassified at prediction stage. The 

fact that Prism would decide to discard the rules in some cases is probably because it uses 

the so-called ‘from effect to cause’ approach. As mentioned above, each rule being 

generated should be pre-assigned a target class and then the conditions should be searched 

for specialising the rule antecedent by adding terms until the adequacy conditions are met. 

Sometimes, it may not necessarily receive adequacy conditions even after all attributes have 

been examined. This indicates that the current rule covers a clash set that contains instances 

of more than one class. If the target class is not the majority class, this indicates the search of 

causes is not successful so the algorithm decides to give up by discarding the incomplete 

rule and deleting all those instances that match the target class in order to avoid the same 

case to happen all over again (Stahl & Bramer, 2011; Stahl & Bramer, 2012). This actually 

not only increases the irrelevant computation cost but also results in underfitting of the rule 

set. 

The above descriptions indicate that the limitations of Prism in the above mentioned aspects 

could result in significant loss of accuracy and unnecessary computational costs. This thus 

motivates the development of another rule generation method which is further introduced in 

Chapter 3. 

2.2.2 Rule Simplification Methods 

As mentioned in Chapter 1, rule simplification can be achieved by using pruning methods. A 

special type of pruning algorithms is based on J-measure (Smyth & Goodman, 1991) as 
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mentioned in Chapter 1. Two existing J-measure based pruning algorithms include J-pruning 

and Jmax-pruning which have been successfully applied on Prism algorithm. This 

subsection focuses on descriptions of the two pruning algorithms above. 

When a rule is being generated, the J-value (value of J-measure) may increase or decrease 

after specialising the rule by adding a new term. Both pruning algorithms (J-pruning and 

Jmax-pruning) expect to find the global maximum of J-value for the rule. Each rule has a 

complexity degree which is the number of terms. The increase of complexity degree may 

lead the J-value of this rule to increase or decrease. The aim of pruning algorithms is to find 

the complexity degree corresponding to the global maximum of J-value as illustrated in 

Fig.2.7 using a fictitious example. 

 

 

 

 

 

 

Fig.2.7 Relationship between complexity degree and J-value (case 1) 

However, the two pruning algorithms mentioned above search the global maximum of J-

value in different strategies: 

 J-pruning:  monitor the change pattern of J-value and stop rule generation once it goes 

down. i.e it will stop rule generation when complexity degree is X1 as illustrated in 

Fig.2.5 because the J-value is going to decrease afterwards. The final rule generated is 

with the complexity degree X1 (having the first X1 rule terms). 

 Jmax-pruning:  monitor and record the highest J-value observed so far until the 

completion of rule’s generation, i.e. it will stop rule generation when the complexity is 

X3 as illustrated in Fig.2.5 and reduce the complexity degree subsequently until the 

degree is X2 by removing those rule terms afterward. The final rule is with the 

complexity degree X2. 

J-pruning is a pre-pruning method because the pruning action is taken during rule generation. 

It was developed by Bramer (2002) and its basic idea is illustrated in Algorithm 1. 

Rule r = new Rule; 

Boolean rule_Incomplete = true; 

Do While (rule_Incomplete){ 

     Term t = generate new term;  

      compute J_value of r if appending t; 

      IF(r.current_J_value > J_value){ 

         do not append t to r; 

         invoke clash handling for r; 

         rule_Incomplete = false; 

 

J-value 

X1 X2 X3 Complexity 

degree 
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      }ELSE{ 

          r.current_J_value = J_value; 

          append t to r;} 

} 

Algorithm 1 J-pruning for Prism algorithms 

J-pruning achieves relatively good results as indicated in (Bramer, 2002). However, Stahl 

and Bramer pointed out in the papers (Stahl & Bramer, 2011; Stahl & Bramer, 2012) that J-

pruning does not exploit the J-measure to its full potential. This is because this method 

immediately stops the generation process as soon as the J-measure goes down after a new 

term is added to the rule as illustrated in Fig.2.7. In fact, it is theoretically possible that the J-

measure may go down and go up again after further terms are added to the rule. This 

indicates that the pruning action may be taken too early. The fact that J-pruning may achieve 

relatively good results could be explained by the assumption that it does not happen very 

often that the J-value goes down and then goes up again. A possible case is that there is only 

one local maximum of J-value as illustrated in Fig.2.8.  It also indicates that J-pruning may 

even result in underfitting due to over-generalised rules. This is because the pruning action 

may be taken too early resulting in too general rules being generated. The above description 

motivated the development of a new pruning method, called Jmax-pruning, which was 

introduced in (Stahl & Bramer, 2011; Stahl & Bramer, 2012), in order to exploit the J-

measure to its full potential. 

As mentioned in (Stahl & Bramer, 2011; Stahl & Bramer, 2012), Jmax-pruning can be seen 

as a hybrid between pre-pruning and post-pruning. With regard to each generated rule, each 

individual rule is actually post-pruned after the completion of the generation for that rule. 

However, with respect to the whole classifier (whole rule set) it is a pre-pruning approach as 

there is no further pruning required after all rules have been induced. 

 

 

 

 

 

Fig.2.8 Relationship between complexity degree and J-value (case 2) 

The basic idea of Jmax-pruning is illustrated in Algorithm 2. 

Rule r = new Rule; 

Boolean rule_Incomplete = true; 

term_index = 0; 

Do While (rule_Incomplete){ 

     Term t = generate new term;  

     term_index++; 

     append t to r; 

     compute J_value of r; 

 
 

Complexity degree 

J-value 
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     IF(J_value > best_J_Value){ 

         best_J_Value = J_Value; 

        best_term_index = term_index; 

     } 

     IF(No more rule terms can be induced){ 

         cut r back to rule best_term_index; 

         invoke clash handling for r; 

         rule_Incomplete = false; 

     } 

}             

Algorithm 2 Jmax-pruning for Prism algorithms 

A series of experiments have shown that Jmax-pruning outperforms J-pruning in some cases 

(Stahl & Bramer, 2011; Stahl & Bramer, 2012) when there are more than one local 

maximum and the first one is not the global maximum as illustrated in Fig.2.5. However, it 

performs the same as J-pruning in other cases (Stahl & Bramer, 2011; Stahl & Bramer, 2012) 

when there is only one local maximum as illustrated in Fig.2.6 or the first one of local 

maxima is also the global maximum. 

However, Jmax-pruning may be computationally more expensive as each rule generated by 

this method is post-pruned. The pruning action could be taken earlier during the rule 

generation and thus speed up the rule generation, especially when Big Data is used for 

training. This could be achieved by making use of the Jmax value as introduced above. 

On the other hand, a special case may need to be taken into account when Prism is used as 

the classifier. This case is referred to as tie-breaking which is the case that there is more than 

one global maximum for the J-value during rule generation as illustrated in Fig.2.9. 

 

 

 

 

 

 

 

As mentioned earlier, Prism prefers to discard a rule rather than assign it to a majority class 

when a clash occurs. Therefore, it would even lead to underfitting of the generated rule set if 

a pruning method attempts to reduce the overfitting by pruning rules but unfortunately 

results in discarding rules. If this case is taken into account, it is worth to determine properly 

which one of the global maximum points to be chosen as the start point of pruning in order 

to avoid over-discarding rules. In other words, according to Fig.2.9, it needs to determine to 

choose either X1 or X2 as the start point for removing all rule terms afterward. 

   J-value 

Complexity degree 
X1 X2

Fig.2.9 Relationship between complexity degree and J-value (case 3) 
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With regards to this issue, Jmax-pruning always chooses to take X1 (the first global 

maximum point) as the start point of pruning and to remove all rule terms generated 

afterward. It may potentially lead to underfitting as it is possible that the rule is being 

discarded after handling a clash if X1 is chosen but is being kept otherwise. In addition, 

another type of tie-breaking may arise with the case as illustrated below: 

Let the current rule's last added rule term be denoted ti, and the previously added rule term 

be denoted ti-1. Then a tie break happens if J-value at ti is less than that at ti-1 and Jmax-value 

at ti equals J-value at ti-1. It is also illustrated by an example (Rule 1) below. 

Rule 1: If x=1 and y=1 and z=1 then class=1; 

After adding first term: 

If x= 1 then class= 1; (J= 0.33, Jmax= 0.55) 

After adding second term: 

If x=1 and y=1 then class=1; (J= 0.21; Jmax=0.33) 

However, the two cases about tie-breaking mentioned above are not very likely to happen in 

practice but they are still worth to be taken into account. This is because serious underfitting 

is likely to result from the two cases in case they really happen. 

On the basis of above descriptions about limitations of J-pruning and Jmax-pruning, it 

motivates the development of a new pruning algorithm to overcome the limitations of J-

pruning and Jmax-pruning with respects to underfitting and computational efficiency. The 

new pruning algorithm is further introduced in Chapter 3. 

2.2.3 Rule Representation Techniques 

One of the biases for rule based methods defined in (Fürnkranz, 1999) is ‘search bias’, 

which refers to the strategy that the hypothesis is searched. The strategy in searching for 

rules that fire usually determines the computational efficiency in testing stage for predicting 

unseen instances. However, the search strategy also strongly depends on the representation 

of a set of rules. Existing rule representation techniques include decision tree and linear list. 

The rest of the subsection focuses the discussion on the limitations of the two existing rule 

representation techniques mentioned above. 

As mentioned in Chapter 1, decision tree is an automatic representation for classification 

rules generated by ‘divide and conquer’ approach. However, the representation is criticized 

and identified as a major cause of overfitting in (Cendrowska, 1987) as illustrated in Fig.2.4. 

It is also pointed in (Cendrowska, 1987; Deng, 2012) that it is required to examine the whole 

tree in order to extract rules about a single classification in the worst case. This drawback on 

representation makes it difficult to manipulate for expert systems and thus seriously lowers 

the computational efficiency in predicting unseen instances. For the purpose of predictive 

modelling, computational efficiency in testing stage is significant especially when the expert 

systems to be constructed are time critical (Gegov, 2007). In addition, decision trees are 

often quite complex and difficult to understand (Fürnkranz, 1999). Even if decision trees are 

simplified by using pruning algorithms, it is still difficult to avoid that the decision trees 

become too cumbersome, complex and inscrutable to provide insight into a domain for 

knowledge usage (Quinlan, 1993; Fürnkranz, 1999). This undoubtedly lowers 
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interpretability of decision trees and is thus a serious drawback for the purpose of knowledge 

discovery. All of the limitations mentioned above motivate the direct use of ‘if-then’ rules 

represented by a linear list structure. However, predicting unseen instances in this 

representation is run in linear search with the time complexity O (n) while the total number 

of rule terms is used as the input size (n). This is because list representation works in linear 

search by going through rule by rule in an outer loop; and by going through term by term for 

each rule in an inner loop. It implies that it may have to go through the whole rule set to find 

the first rule firing in the worst case. This would lead to huge computational costs when the 

representation is used to represent a rule set generated by learning from large training data.  

On the basis of above description about limitations of tree and list representation in terms of 

computational efficiency, it motivates the creation of a new representation of classification 

rules which performs a level of efficiency higher than linear time in time complexity. This 

new representation is further described in Chapter 3. On the other hand, with regards to the 

limitations of the two existing representations in terms of knowledge representation, it also 

motivates the creation of a new rule representation which performs a better interpretability. 

Higgins has introduced a representation called rule based network in (Higgins, 1993) as 

illustrated in Fig.2.10. 

In this network, as explained in (Higgins, 1993), each node in the input layer represents an 

input attribute. Each node in the middle layer represents a rule. The connections between the 

nodes in the input layer and the nodes in the conjunctive layer indicate to which attributes a 

specific rule relates. In the output layer, each node represents a class label. The connections 

between the nodes in the conjunctive layer and the nodes in the output layer reflect the 

mapping relationships between rule antecedents and classifications (consequents). Each of 

the connections is also weighted as denoted by wmk, where m is the index of the rule and k is 

the index of the class. The weight reflects the confidence of the rule for predicting the class 

given the antecedent of the rule. In this way, each class is assigned a weight, which is 

derived from the confidences of the rules having the class as consequents. The final 

classification is predicted by weighted majority voting, which is known as ‘Winner-Take-All 

strategy’ as illustrated in Fig.2.10 (Higgins, 1993). 

 

Fig.2.10 Higgins’s non-deterministic rule based network for classification (Higgins, 1993) 
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The network topology illustrated in Fig.2.10 could be seen as a special type of rule based 

network representation. This is because of the possibility that there are two or more rules 

that fire with different classifications as rule consequences. This issue is known as conflict 

of classification as mentioned in Section 2.2.1 and introduced in (Bramer, 2007). Higgins’s 

network topology actually takes into account this possible issue and deals with it by using 

the ‘Winner-Take-All strategy’. Therefore, the network topology could be seen as a type of 

non-deterministic rule based network with certain inputs but uncertain outputs. However, the 

conflict of classification would never arise with the rule sets that are generated by adopting 

the divide and conquer approach. In this context, if the rule generation is based on 

deterministic logic, both inputs and outputs would be deterministic. As it is, the networked 

topology could be modified to become a deterministic rule based network which is 

introduced in Chapter 3. 

On the other hand, a rule set may have some or all rules non-deterministic in terms of 

relationships between rule antecedents and consequents due to the presence of uncertainty in 

datasets. In this context, the rule set would be used to predict classes based on probabilistic 

or fuzzy logic. Therefore, a unified topology for rule based networks, which could fulfil 

being based on different type of logic such as deterministic, probabilistic and fuzzy logic, is 

created and introduced in Chapter 3. 

2.3 Ensemble Rule Based Systems 

As mentioned in Chapter 1, ensemble learning aims to achieve that multiple classifiers work 

together for making predictions in order to improve the overall predictive accuracy. In this 

context, multiple rule based systems that work together for predictions would act as an 

ensemble rule based systems. This section focuses on introduction of ensemble learning 

concepts and ensemble rule based methods. 

2.3.1 Ensemble Learning Concepts 

As introduced in (Kononenko & Kukar, 2007), ensemble learning can be done in parallel or 

sequentially. In the former way, there are no collaborations among different learning 

algorithms in training stage and only their predictions are combined together for final 

prediction making. In this context, the final prediction is typically made by majority voting 

in classification and by averaging in regression. In the latter way of ensemble learning, the 

first algorithm learns a model from data and then the second algorithm learns to correct the 

former one etc. In other words, the model built by the first algorithm is further corrected by 

the subsequent algorithms. Two commonly used methods are Bagging (Breiman, 1996) and 

Boosting (Freund & Schapire, 1996). The former is a type of parallel ensemble learning 

method and the latter is a type of sequential ensemble learning method. The rest of Section 

2.3 focuses on the description and discussion of the two methods. 

In parallel ensemble learning, a popular approach is to take sampling to a data set in order to 

get a number of samples such as Bagging. A classification algorithm is then used to train a 

classifier on each of these samples. The group of classifiers constructed will make 

predictions on test instances independently and final predictions on the test instances will be 

made based on majority voting. As mentioned in (Breiman, 1996), the term Bagging stands 

for bootstrap aggregating which is a method for sampling of data with replacement. In 

particular, the Bagging method is to take a sample with the size as same as that of the 

original data set and to randomly select an instance from the original data set to be put into 

the sample set. This means that some instances in the original set may appear more than 
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once in the sample set and some other instances may never appear in the sample set. 

According to the principle of statistics, each sample is expected to contain 63.2% of the 

original data instances (Breiman, 1996; Kononenko & Kukar, 2007; Tan, Steinbach, & 

Kumar, 2006). The Bagging method is useful especially when the base classifier is not stable 

with high variance (Kononenko & Kukar, 2007; Tan, Steinbach, & Kumar, 2006). This is 

because the method is robust and does not lead to overfitting as increasing the number of 

generated hypothesis (Kononenko & Kukar, 2007). Some unstable classifiers include neural 

networks, decision trees and some other rule based methods (Kononenko & Kukar, 2007; 

Tan, Steinbach, & Kumar, 2006). 

As mentioned in (Kononenko & Kukar, 2007; Li & Wong, 2004), Boosting stands for 

Adaboost, which generates an ensemble learner in a sequential way. In other words, the 

generation of each single classifier depends on the experience gained from its former 

classifier (Li & Wong, 2004). Each single classifier is assigned a weight depending on its 

accuracy measured by using validation data. The stopping criteria are satisfied while the 

error is equal to 0 or greater than 0.5 as indicated in (Li & Wong, 2004). In testing stage, 

each single classifier makes an independent prediction as similar to Bagging but the final 

prediction is made based on weighted majority voting among these independent predictions. 

In this thesis, empirical investigations on ensemble learning focus on Bagging based 

methods. This is because the Bagging method is highly suitable to increase the robustness of 

rule based classification methods as justified below. However, with regard to Boosting, the 

weighted majority voting is incorporated instead of equal majority voting applied to Bagging 

and introduced in more detail with respect to its use in Section 2.3.2. 

2.3.2 Ensemble Learning Methods 

Random forests is another popular method (Breiman, 2001) that is similar to Bagging but the 

difference is that the attribute selection at each node is random. In this sense, at each node, 

there is a subset of attributes chosen from the training set and the one which can provide the 

best split for the node is finally chosen (Li & Wong, 2004). As mentioned in Section 1, 

random forests has decision tree learning algorithms as the bases. In the training stage, the 

chosen algorithm of decision tree learning is used to generate classifiers independently on 

the samples of the training data. In the testing stage, the classifers make the independent 

predictions that are combined to make the final prediction based on equal voting. As 

concluded in (Kononenko & Kukar, 2007), the random forests algorithm is robust because of 

the reduction of the variance for decision tree learning algorithms. However, the random 

forests algorithm makes it difficult to interpret the combined predictions, especially when 

the number of decision trees generated is more than 100, and thus leads to the 

incomprehensability of the predictions made by the decision trees. The same problem also 

happens to other methods such as Bagging and Boosting. 

Random Prism, an existing ensemble learning method (Stahl & Bramer, 2013; Stahl & 

Bramer, 2011), follows the parallel ensemble learning approach and uses Bagging for 

sampling as illustrated in Fig.2.11. It has been proven in (Stahl & Bramer, 2013; Stahl & 

Bramer, 2011) that Random Prism is a noise-tolerant method alternative to Random Forests. 

However, the Random Prism has two weak points in training and testing stages respectively.  
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Fig.2.11 Random Prism with Bagging (Stahl & Bramer, 2013; Stahl & Bramer, 2011) 

The first weak point is that there is only a single learning algorithm, PrismTCS, involved in 

training stage for Random Prism, which cannot always generate strong hypothesis (roust 

models). In fact, it is highly possible that a single algorithm performs well on some samples 

but poorly on the others. From this point of view, it is motivated to extend the ensemble 

learning framework by including multiple learning algorithms involved in training stage. 

This is in order to achieve that on each data sample the learner created is much stronger.  

On the other hand, Random Prism uses weighted majority voting to determine the final 

prediction on test instances. In other words, each model is assigned a weight, which is equal 

to the overall accuracy checked by validation data as part of the sample. In prediction stage, 

each model is used to predict unseen instances and give an individual classification. The 

ensemble learning system then makes the final classification based on weighted majority 

voting instead of traditional majority voting. For example, there are three base classifiers: A, 

B and C. A makes the classification X with the weight 0.8 and both B and C make 

classification Y with the weights 0.55 and 0.2 respectively so the final classification is X if 

using weighted majority voting (weight for X: 0.8> 0.55+0.2=0.75) but is Y if using 

traditional majority voting (frequency for Y: 2>1). However, for the weighted majority 

voting mentioned above, the strategy in determining the weight is not reliable enough 

especially for unbalanced data sets. This is because it is highly possible that a classifier 

performs better on predicting positive instances but worse on negative instances if it is a two 

class classification task. The similar case can also happen in multi-class classification tasks. 

Therefore, it is more reasonable to use the individual accuracy for a single classification (e.g. 

true positive rate) as the weight.  

The above two weak points are also mentioned with suggestions for further improvements in 

(Stahl & Bramer, 2013; Stahl & Bramer, 2011). Therefore, an advanced framework of 

ensemble learning is created in order to overcome the limitations and further introduced in 

Chapter 3. 



  

46 

  

2.4 Conclusion 

This chapter reviews some existing methods and techniques in rule based classification and 

ensemble learning. Also, the strengths and limitations of the methods and techniques are 

highlighted. These thus motivate the development of more advanced methods and 

techniques which are further introduced in Chapter 3. In particular, a new method for rule 

generation is developed to overcome the limitations of Prism with respects to underfitting, 

clash and computational efficiency. Another method for rule simplification is developed to 

overcome the limitations of J-pruning and Jmax-pruning with respects to underfitting and 

computational efficiency. A new technique for rule representation is developed to overcome 

the limitations of decision tree and linear list with respects to computational complexity and 

knowledge representation. An advanced framework of ensemble learning is created to 

overcome the limitations of Random Prism with respects to use of base classifiers and 

confidence measure. 
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Chapter 3 Research Methodology 

3.1 Introduction 

Chapter 2 reviews two existing rule generation methods namely TDIDT and Prism. A list of 

limitations of the two methods are highlighted and lead to development of a new method for 

rule generation. Chapter 2 also reviews two existing pruning methods namely J-pruning and 

Jmax-pruning and highlights their limitations. Therefore, it is led to develop another pruning 

method. Besides, two existing techniques, decision trees and linear lists for rule 

representation and an existing ensemble learning method called Random Prism are also 

reviewed in Chapter 2. Some typical limitations are pointed out and lead to the development 

of novel methods and techniques. This chapter introduces a unified framework for design of 

rule based classification systems and some novel methods and techniques which are 

developed in the PhD research and can be successfully integrated into the framework. 

3.2 Framework for Designing Rule Based Classification Systems 

As mentioned in Chapter 1, most rule generation methods suffer from overfitting of training 

data. The overfitting can be successfully reduced by simplifying rules using suitable pruning 

methods so that loss of accuracy and efficiency is avoided. This indicates that rule 

simplification is a necessary operation for design of rule based classification systems. On the 

other hand, if a rule set consists of a large number of complex rules, efficiency in predicting 

unseen instances would be seriously affected. However, the efficiency in prediction stage is 

also subject to representation of the rule set in addition to complexity of the rule set, which 

means that the change to rule representation can also successfully improve the efficiency in 

prediction. In addition, for the same rule set, different rule representation also usually leads 

to different levels of interpretability for knowledge extraction. Therefore, the two points of 

view above indicate that rule representation is also a necessary operation for design of rule 

based classification systems. 

On the basis of the above descriptions, a unified framework for design of rule based 

classification systems is created in the PhD research. The framework consists of three 

operations, namely rule generation, rule simplification and rule representation. Three novel 

methods/techniques that are developed in the PhD research and used for the three operations 

respectively are further introduced in the following subsections. 

3.2.1 Information Entropy Based Rule Generation 

Information Entropy Based Rule Generation (IEBRG) is a method of classification rules 

generation following the ‘separate and conquer’ approach. This method manages to avoid 

underfitting and redundant computational efforts. 

This method is attribute-value-oriented like Prism but it uses the ‘from cause to effect’ 

approach. In other words, it does not have a target class pre-assigned to the rule being 

generated. The main difference from Prism is that IEBRG focuses mainly on minimising the 

uncertainty for each rule being generated no matter what the target class is. A popular 

technique used to measure the uncertainty is information entropy introduced in (Shanno, 

1948). The basic idea of IEBRG is illustrated in Fig.3.1. 
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Input: a training set T, a subset T’ ⊆ T, an instance t ∈ T, dimensionality d, an attribute ax (x 

is the index of a), entropy E, number of classes n, class Ci (I is the index of C) 

Output: a rule set RS, a result set of instances T’’ covered by a rule R ∈ RS 

 

Initialize: 

T’= T, T’’= ∅, E=-∑ P(Ci) log2 P(Ci), i=0,1,2….n-1 
While T’≠∅ Do 
      While E ≠ 0 Do 

                       x=0; 

                  While x < d Do 

                       For each value v of ax Do 

                                    Calculate E(C| ax= v); 

                       End For 

                        x++; 

                   End While 

                  assign ax= v to R as a rule term, while E(C| ax= v) is min; 

                  ∀t: T’’∩{t}, if t comprise ax= v; 

   End While 

    RS= RS ∩ {R}; 

    T’= T’- T’’; 

    update E; 

End While 
Fig.3.1 IEBRG Algorithm 

As mentioned in Chapter 2, all versions of Prism need to have a target class pre-assigned to 

the rule being generated. In addition, an attribute might not be relevant to some particular 

classifications and sometimes only one value of an attribute is relevant (Deng, 2012; 

Cendrowska, 1987). Therefore, the Prism method chooses to pay more attention to the 

relationship between an attribute-value pair and a particular class. However, the class to 

which the attribute-value pair is highly relevant is probably unknown, as can be seen from 

the example in Table 3.1 below with reference to the contact lenses dataset illustrated in 

Chapter 2. This dataset shows that P (class= no lenses |tears= reduced) =1 illustrated by the 

frequency table for attribute tears. The best rule generated first would be “if tears= reduced 

then class= no lenses”. 

Table 3.1 Lens 24 dataset example 

Class Label Tears= reduced  Tears= normal 

Class = hard lenses 0 6 

Class = soft lenses 0 6 

Class = no lenses 12 0 

Total  12 12 

 

This indicates that the attribute-value “tears= reduced” is only relevant to class no lenses. 

However, this is actually not known before the rule generation. According to PrismTCS 

strategy, the first rule being generated would select “class = hard lenses” as target class as it 

is the minority class (Frequency=6). Original Prism may select class hard lenses as well 

because it is in a smaller index. As described in (Bramer, 2007), the first rule generated by 

Original Prism is “if astig= yes and tears= normal and age=young then class= hard lenses”. 

It indicates that the computational efficiency is slightly worse than expected and the 

resulting rule is more complex. When Big Data is used for training, the Prism method may 

be even likely to generate an incomplete rule covering a clash set as mentioned in Section 
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2.1 if the target class assigned is not a good fit to some of those attribute-value pairs in the 

current training set. Then the whole rule may be discarded resulting in underfitting and 

redundant computational effort. 

In order to find a better strategy for reducing the computational cost, the IEBRG method is 

developed. In this technique, the first iteration of the rule generation process for the contact 

lenses dataset can make the entropy for the resulting subset reach 0. Thus the first rule 

generation is complete and its rule is represented as “if tears= reduced then class= no lenses”.  

In comparison with the Prism family, this algorithm may reduce significantly the 

computational cost, especially when Big Data is being dealt with. In addition, in contrast to 

Prism, the IEBRG method deals with clashes (introduced later) by assigning a majority class 

in the clash set to the current rule. This has the potential reducing the underfiting of a rule set 

thus reducing the number of unclassified instances although it may increase the number of 

misclassified instances. On the other hand, the IEBRG also has the potential to better avoid 

clashes occurring compared with Prism. 

In practice, there are some typical problems that need to be taken into account and dealt with 

effectively. These include the ways of dealing with clashes and tie-breaking on conditional 

entropy as well as conflict of classification. The rest of the Section 3.3 focuses on 

description in these aspects. 

With regard to clashes, there are two principal ways to deal with this kind of problem as 

mentioned in (Bramer, 2007) as follows: 

1) Majority voting: to assign the most common classification of the instances in the clash 

set to the current rule. 

2) Discarding: to discard the whole rule currently being generated 

In this thesis, ‘majority voting’ is chosen as the strategy of dealing with this problem as the 

objective is mainly to validate this method and to find its potential in improving accuracy 

and computation efficiency as much as possible.  

With regard to tie-breaking on conditional entropy, it is solved by deciding which attribute-

value pair is to be selected to split the current subset when there are two or more attribute-

value pairs that equally well match the selection condition. In the IEBRG method, this 

problem may occur when two or more attribute-value pairs have the equally smallest entropy 

value. The strategy is the same as the one applied to Prism by taking the one with the highest 

total frequency as introduced in (Bramer, 2007). 

As mentioned in Chapter 2, the classification conflict problem may occur to modular 

classification rule generators such as Prism. Similarly, the IEBRG may also face this 

problem. In this thesis, the author chooses the ‘take the first rule that fires’ strategy which is 

already mentioned in Chapter 2 because this method usually generates the most important 

rules first. Consider the example below: 

Rule 1: if x=1 and y=1 then class= 1; 

Rule 2: if x=1 then class=2; 

This seems as if there is a conflict problem but the two rules can be ordered as rule 1 is more 

important. In other words, the second rule can be represented in the following way: 
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Rule 2: if x=1 and y≠1 then class=2; 

This indicates that after the first rule has been generated, all instances covered by the rule 

have been deleted from the training set; then the two conditions ‘x=1’ and ‘y=1’ cannot be 

met simultaneously any more. Thus the first rule is more important than the second one. 

3.2.2 Jmid-pruning Based Rule Simplification 

As mentioned in Chapter 2, neither J-pruning nor Jmax-pruning exploit the J-measure to its 

full potential and they may lead to underfitting. In addition, Jmax-pruning is 

computationally more expensive. Therefore, Jmid-pruning is developed, which avoids 

underfitting and unnecessary rule term inductions while at the same time rules are being 

pruned for reducing overfitting. 

The Jmid-pruning is a modified version of the J-measure based pruning algorithm Jmax-

pruning. It not only monitors and records the highest J-value observed so far but also 

measures the potentially highest J-value that may be achieved eventually by making use of 

the Jmax value as highlighted in Chapter 2 in comparison to Jmax-pruning. The basic 

concept of this algorithm is illustrated in Algorithm 3. 

Rule r = new Rule; 

Boolean rule_Incomplete = true; 

term_index = 0; 

Do While (rule_Incomplete){ 

     Term t = generate new term;  

     term_index++; 

     append t to r; 

     compute J_value of r; 

     IF(J_value > best_J_Value){ 

         best_J_Value = J_Value; 

        best_term_index = term_index; 

        record current_marjority_class; 

     }         

        compute Jmax_value of r; 

       IF(best_J_value> Jmax_value){ 

         do not append t to r; 

         cut r back to rule best_term_index; 

         invoke clash handling for r; 

         rule_Incomplete = false; 

        }  

        ELSE{ 

          append t to r; 

        } 

     IF(No more rule terms can be induced){ 

         cut r back to rule best_term_index; 

         invoke clash handling for r; 
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         rule_Incomplete = false; 

     } 

} 

Algorithm 3 Jmid-pruning for Prism algorithms 

The Jmid-pruning aims to avoid underfitting and unnecessary computational effort 

especially when Big Data is used for training. In fact, J-pruning and Jmax-pruning do not 

actually make use of Jmax value to measure the potential search space of gaining benefits.  

 Let us consider an example from (Bramer, 2002) using the contact lenses dataset. There is a 

rule generated as follows according to (Bramer, 2002): 

If tears= normal and astig=no and age= presbyopic and specRx = myope then class= no 

lenses; 

After adding the four terms subsequently, the corresponding J and Jmax values change in the 

trend as follows according to (Bramer, 2002): 

If tears= normal then class= no lenses; (J=0.210, Jmax=0.531) 

If tears= normal and astig= no then class= no lenses; (J=0.161, Jmax=0.295) 

If tears= normal and astig= no and age= presbyopic then class= no lenses; (J=0.004, 

Jmax=0.059) 

If tears= normal and astig=no and age= presbyopic and specRx = myope then class= no 

lenses; (J=0.028, Jmax=0.028) 

In this example, all of the three algorithms would provide the same simplified rule that is: if 

tears=normal then class= no lenses; this is because the highest J-value has been given after 

adding the first term (tears= normal). However, the computational efficiency would be 

different in the three methods. J-pruning would decide to stop the generation after the second 

term (astig=no) is added as the J-value goes down after the second term (astig=no) is added. 

In contrast, Jmax-pruning would stop when the rule is complete. In other words, the 

generation would be stopped after the fourth (last) term is added and then the terms 

(astig=no, age= presbyopic and specRx= myope) will be removed. In addition, Jmid-pruning 

would decide to stop the generation after the third term is added as the value of Jmax (0.295) 

is still higher than the J-value (0.210) given after the first term (tears=normal) is added 

although its corresponding J-value (0.161) decreases; however, the generation should be 

stopped after the third term (age= presbyopic) is added as both J (0.004) and Jmax (0.059) 

values are lower than the J-value (0.161) computed after the second term (astig=no) is added 

although the J-value could still increase up to 0.059.  

On the basis of the description above, J-pruning would be the most efficient and Jmid-

pruning is more efficient than Jmax-pruning. However, it seems that J-pruning may prune 

rules too early when the training data is in large scalability as mentioned in Chapter 2. For 

example, one of the rules is generated from the Soybean dataset (Lichman, 2013) and shows 

the change trend of J-value and Jmax as follows according to (Stahl & Bramer, 2011; Stahl 

& Bramer, 2012): 

If temp= norm and same-lst-sev-yrs= whole-field and crop-hist= same-lst-two-yrs then 

class=frog-eye-leaf-spot; 
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First term: 

If temp= norm then class=frog-eye-leaf-spot; (J= 0.00113, Jmax=0.02315) 

Second term: 

If temp= norm and same-lst-sev-yrs= whole-field then class=frog-eye-leaf-spot; (J=0.00032, 

Jmax=0.01157) 

Third term: 

If temp= norm and same-lst-sev-yrs= whole-field and crop-hist= same-lst-two-yrs then 

class=frog-eye-leaf-spot; (J=0.00578, Jmax=0.00578) 

In this case, both Jmax-pruning and Jmid-pruning would normally stop the generation when 

the rule is complete and take the complete rule: If temp= norm and same-lst-sev-yrs= whole-

field and crop-hist= same-lst-two-yrs then class=frog-eye-leaf-spot; as the final rule with the 

highest J-value (0.00578). In contrast, J-pruning would stop the generation after the second 

term (same-lst-sev-yrs= whole-field) is added and take the rule: If temp= norm then 

class=frog-eye-leaf-spot; as the final rule with a lower J-value (0.00113 instead of 0.00578). 

The other potential advantage of Jmid-pruning in comparison with Jmax-pruning is that 

Jmid-pruning may successfully get more rules not being discarded eventually, when tie-

breaking on J-value happens as mentioned in Chapter 2. From this point of view, Jmid-

pruning is better in avoiding underfitting of rule sets. 

3.2.3 Network Based Rule Representation 

As mentioned in Chapter 2, both tree and list representations have their individual 

limitations. A networked representation of classification rules is created, which is called rule 

based networks and provides a higher level of computational efficiency than tree and list 

representations for the same rule set in prediction stage.  

The rule based network representation is illustrated in Fig.3.2 below. 

 

Fig.3.2 Rule Based Network version 1 
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In general, this is an n+2 layer network. The first n layers represent n input attributes. In 

each of the layers, each node represents a value of the corresponding attribute. The last 

second layer represents the rule index which is equal to the order of this rule minus one. For 

example, if the rule index is 0, it indicates that this is the first rule in the rule set. The last 

layer in the network represents the class output. There are also connections between different 

layers, which are to be explained further using specific examples. However, in general, the 

connections could be between two layers which are not adjacent each other. For example, 

the nodes in the first layer could have connections with other nodes in the third layer. This is 

very like a travel route which includes a number of cities. In this context, each city is like a 

rule term and each route is like a rule. It is possible that there are cities which are not 

adjacent each other but included in the same travel route. In addition, any two nodes may 

have not only one connection. This is because the same part of conjunction of rule terms 

may be in two or more rules as illustrated by the rules below: 

If a=0 and b=0 and c=0 then class=0; 

If a=0 and b=0 then class=0; 

In the context of travel route as mentioned above, this is like that there could be common 

cities included in different routes.  

On the other hand, rule representation is also significant to fulfil the requirement of the 

interpretability of a rule set as mentioned in Chapter 2. From this point of view, another 

version of rule based network is developed to fulfil the requirement of knowledge discovery 

as illustrated in Fig.3.3. This version is actually modified from Higgins’s network topology 

(Higgins, 1993) as illustrated in Section 2.2.3. 

 

Fig.3.3 Rule Based Network version 2 
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In general, this is a three layer network. In the first layer, each node represents an input 

attribute and this layer is referred to as input layer. In the middle layer, each node represents 

a rule to make the conjunction among inputs and provide outputs for the node in the last 

layer and thus the middle layer is referred to as conjunction layer. The only node in the last 

layer represents the class output and thus this layer is referred to as output layer. In addition, 

the nodes in the input layer usually have connections to other nodes in the conjunction layer. 

Each of the connections represents a condition judgement which is explained further using 

specific examples. However, a node in the input layer may not necessarily have connections 

to other nodes in the conjunction layer. This is due to a special case that an attribute may be 

totally irrelevant to making a classification. In other words, this attribute is not involved in 

any rules in the form of rule terms. From this point of view, this version of rule based 

network representation can help identify the relevance of attributes for feature selection tasks, 

which is discussed further in this section. 

In order to illustrate the two versions of rule based network introduced above in detail, let us 

see a set of rules based on Boolean logic below: 

If x1=0 and x2=0 then class=0; 

If x1=0 and x2=1 then class=0; 

If x1=1 and x2=0 then class=0; 

If x1=1 and x2=1 then class=1; 

The corresponding networked representation is illustrated in Fig.3.4. In this representation, 

x1=1 and x2=1 are supposed to be the two inputs respectively for prediction.  Thus both ‘x1’ 

and ‘x2’ layers get green node labelled 1 and red node labelled 0 because each node in the 

layer x1 represents a value of attribute x1 and so does each node in the layer x2. In addition, 

the two digits labelled to each of the connections between the nodes in the layers x1 and x2 

represent the index of rule and rule term respectively. In other words, the two digits ‘11’ as 

illustrated in Fig.3.4 indicates that it is for the first rule and the first term of the rule. It can 

be seen from the list of rules above that the first term of the first rule is ‘x1=0’. However, the 

input value of x1 is 1 so the connection is coloured red as this condition is not satisfied. In 

contrast, the connections labelled ‘31’ and ‘41’ respectively are both coloured green as the 

condition ‘x1=1’ is satisfied. The same principle is also applied to the connections between 

the nodes in the layers ‘x2’ and ‘Rule Index’. As the two inputs are ‘x1=1 and ‘x2=1’, the 

connections ‘31’, ‘41’ and ‘42’ are coloured green and the node labelled 3 is green in the 

layer ‘Rule Index’ as well as the output is 1 in the layer ‘Class’. 

 

Fig. 3.4 Rule Based Network example (version 1) 
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For Rule Based Networks, the prediction process is run by going through rule terms in 

divide and conquer search (i.e. only going through those terms that fire). The total number of 

terms is used as the input size of data (n) as same as used in linear list representation and 

thus the efficiency is O (log (n)). As can be seen from Fig.10, it only takes three steps (going 

through connections ‘31’, ‘41’ and ‘42’) to find the first rule that fires (the rule index is 3). 

This is because the input value of x1 is 1 and thus the connections ‘11’ and ‘21’ can be 

ignored. In the second layer, it is only concerned with the connection ‘42’ as the input value 

of x2 is 1 and thus the connections ‘12’ and ’32’ can be ignored. In addition, the connection 

‘22’ is ignored as well because the connection ‘21’ is already discarded and thus it is not 

worth to go through  the connection ‘22’ any more. The above descriptions indicate that it is 

not necessary to examine the whole network in order to find the rules that fire and thus the 

efficiency of the rule based network is higher than that of the linear list, the latter of which is 

O (n) as mentioned in Chapter 2. In practice, it would significantly speed up the process of 

predictions when the corresponding rule set is generated by learning from Big Data. 

The networked representation mentioned above is mainly used for machine learning purpose 

with respect to the improvement of efficiency in prediction making. However, in data 

mining tasks, the interpretability of a rule set is significant towards representation of 

knowledge as mentioned in (Stahl & Jordanov, 2012). From this point of view, another type 

of networked representation is developed for this purpose with respect to the improvement 

of knowledge representation. This type of networked representation is based on the 

relationship between attribute and class as illustrated in Fig.3.5 and both input values are 

supposed to be 1 (shown as green). 

 

Fig.3.5 Rule Based Network example (version 2) 

In this diagram, as mentioned earlier, each node in the input layer represents an input 

attribute; each node in the middle layer represents a rule and the layer is referred to as 

conjunction layer due to the fact that each rule actually reflects the mapping between inputs 

and outputs and that the output values strongly depend on the conjunction of input values; 

finally, the node in the output layer represents the class attribute. On the other hand, each of 

the connections between the input layer and the conjunction layer represents a condition 

judgement. If the condition is met, then the connection is coloured by green. Otherwise, it is 

coloured by red. In addition, each of the connections between the conjunction layer and the 
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output layer represents an output value from the corresponding rule. In other words, if all of 

the conditions in a rule are met, then the corresponding node in the conjunction layer 

becomes green. Otherwise, the corresponding node becomes red. The former case would 

result in that a node representing a rule becomes green and that the output value from the 

rule is assigned to the class attribute in the output layer. In the meantime, the connection 

between the node representing the rule and another node representing the class attribute 

becomes green, which means that the class attribute would be assigned the output value from 

the rule. In contrast, the latter case would result in that the node in the conjunction layer 

becomes red and that the output value from the corresponding rule cannot be assigned to the 

class attribute.  

This type of networked rule representation shows the relationships between attributes and 

rules explicitly as shown connections between nodes in the input layer and nodes in the 

conjunction layer. In addition, the networked representation also introduces a ranking for 

both input attributes and rules according to their importance. The importance of an input 

attribute is measured by the weighted average of ranks for those rules that relate to the input 

attribute. For example, the attribute A relates to two rules namely rule 1 and rule 2. If the 

ranks for rule 1 and rule 2 are 4 and 8 respectively, then the average of ranks would be 

6((4+8)/2). In real applications, this characteristic about ranking of attributes may 

significantly contribute to both knowledge discovery and feature selection with respect to 

feature importance. Besides, strength of the representation also lies in the strong 

interpretability on mapping relationships between inputs and outputs, which is significantly 

useful for knowledge discovery. On the basis of above descriptions, the rule based network 

illustrated in Fig.3.5 is thus a practically significant technique in data mining tasks. 

However, as mentioned in Section 2.2.3, a rule set may be used to predict classes based on 

probabilistic or fuzzy logic due to the presence of uncertainty in some or all rules in the rule 

set. This motivates the generalization of the topology for rule based networks. This is in 

order to make the representation of rule based networks fit the computation based on 

different type of logics such as deterministic, probabilistic and fuzzy logic. The unified 

topology of rule based networks is illustrated in Fig 3.6 below. 

 

Fig.3.6 Unified rule based network 
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In this network topology, the modifications are made to the one illustrated in Fig.3.5 by 

adding a new layer called disjunction and assigning a weight to each of the connections 

between nodes. The disjunction layer is similar to the output layer in Higgins’s network 

topology. In this layer, each node represents a class label. However, the final prediction is 

not necessarily made by choosing the most common class which has the highest posteriori 

probability in total. In addition, the topology also allows representing inconsistent rules, 

which means that the same rule antecedent could be mapped to different classes 

(consequents). For example, the first node in the conjunction layer is mapped to both the 

first and the second node in the disjunction layer as illustrated in Fig.3.6. With regard to the 

weights assigned to the connections between nodes, they would represent the truth values if 

the computation is based on deterministic or fuzzy logic. The truth value would be crisp (0 

or 1) for deterministic logic whereas it would be continuous (between 0 and 1) for fuzzy 

logic. If the computation is based on probabilistic logic, the weights would represent the 

probabilities of the corresponding cases. 

In the context of deterministic logic, each of the connections between the nodes in the input 

layer and the nodes in the conjunction layer would be labelled 1 for its weight, i.e. tij= 1, 

where i is index of attribute and j is the index of the rule, if the corresponding condition as 

part of the rule antecedent is met. A rule would have its antecedent satisfied if and only if all 

of the conditions are met. In this case, the rule is firing to indicate its consequent (as the 

class predicted) which is represented by a node in the disjunction layer. If the rule is 

consistent, the corresponding node should have a single connection to another node in the 

disjunction layer. The connection would be labelled 1 as its weight denoted by wjk, where k 

is the index of the class. In this case, if there is only one rule firing or more rules firing 

without conflict of classification, then the output would be deterministic. This is because 

there is only one node in the disjunction layer providing a weight greater than or equal to 1 

for its connection to the node in the output layer. For all other nodes, the weight provided for 

the corresponding connection would be equal to 0. However, as mentioned earlier, a rule 

may be inconsistent, which means that the same rule antecedent may be mapped to different 

classes as its consequent. In this case, the corresponding node would have multiple 

connections to different nodes in the disjunction layer. For each of the connections, the 

weight would be equal to a value between 0 and 1. Nevertheless, the sum of the weights for 

the connections would be equal to 1. With regard to each of the classes, it may be mapped 

from different rule antecedents. Therefore, each class would have a summative weight 

denoted by ck, which is equal to the sum of the weights for the rule antecedents mapped to 

the class. Finally, the node in the output layer makes the weighted majority voting for the 

final prediction. 

In the context of probabilistic logic, the tij would be equal to a value between 0 and 1 as a 

conditional probability. Similar to deterministic logic, a rule is firing if and only if all of the 

conditions are met. However, the rule antecedent would be assigned a firing probability 

computed in the corresponding node in the conjunction layer. The firing probability is 

simply equal to the product of the conditional probabilities for the rule terms (if 

corresponding attributes are independent) and also to the posterior probability of the rule 

consequent given the rule antecedent. If the rule is inconsistent, the sum of posterior 

probabilities for the possible classes (wjk) would also be equal to the firing probability above. 

This is because the rule consequent is the disjunction of the output terms, each of which has 

a different class as the output value. In disjunction layer, each class is assigned a weight 
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which is equal to the sum of its posterior probabilities given different rule antecedents. The 

final prediction is made by weighted majority voting as same as based on deterministic logic. 

In the context of fuzzy logic, in contrast to probabilistic logic, in the conjunction layer, the tij 

would be equal to a value between 0 and 1 as a fuzzy truth value for each corresponding 

condition. Similar to another two types of logic, a rule is firing if and only if all of the 

conditions are met. However, the rule antecedent would be assigned a firing strength 

computed in the corresponding node in the conjunction layer. The firing strength is simply 

computed by choosing the minimum among the fuzzy truth values of the conditions (that are 

assumed independent). The fuzzy truth value for the rule consequent is equal to the firing 

strength. If the rule is inconsistent, the fuzzy truth value (wjk) for having each possible class 

as the consequent would be derived by getting the minimum between the firing strength and 

the original fuzzy truth value assigned to this class for this rule. In the disjunction layer, the 

weight for each class is computed by getting the maximum among the fuzzy truth values (wjk) 

of the rules having the class as the consequents. The final prediction is made by weighted 

majority voting as same as based on above two types of logic. 

3.3 Collaborative and Competitive Random Decision Rules 

As mentioned in Chapter 2, Random Prism is a noise tolerant ensemble learning algorithm 

alternative to Random Forests (Breiman, 2001). However, it has two weak points in training 

and testing stages respectively. This section introduces an advanced ensemble learning 

framework extended from Random Prism with the aim to overcome the two weak points 

which are mentioned above and described in Chapter 2. 

The advanced ensemble learning framework introduced in the PhD thesis is referred to as 

Collaborative and Competitive Random Decision Rules (CCRDR) and illustrated in Fig.3.7, 

which indicates that the ensemble learning framework includes both collaborative learning 

and competitive learning involved.  

 

Fig.3.7 Procedures of Proposed Ensemble Learning 

The first weak point of Random Prism is that there is only a single learning algorithm 

involved in training stage, which cannot always generate robust models as mentioned in 
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Chapter 2. In order to overcome the limitation, the ensemble learning framework is modified 

in the way that the framework can include multiple learning algorithms for training. Due to 

this modification, there is thus competition involved among the classifiers built on the same 

sample of training data. In other words, there are multiple learning algorithms applied to 

each sample of training data, which implies that multiple classifiers are built on each sample. 

In this context, it becomes achievable to find better classifiers to be involved in testing stage 

and worse classifiers to be absent through competition among the classifiers. The 

competition is based upon the weight (confidence) of each of the classifiers by means of 

overall accuracy measured by validation data. In the extended framework, only the classifier 

with the highest weight (confidence) is eligible to be involved in testing stage. The 

modification with regard to the first weak point is also reflected from the second part of the 

name of the method namely ‘Competitive Random Decision Rules’. The name of decision 

rules indicates that any rule based classification methods are eligible for being involved in 

training stage as base algorithms. This modification theoretically contributes to that on each 

sample of data the learners constructed become much stronger. 

The second weak point is about the way of determining the weight of a classifier for 

weighted majority voting as mentioned in Chapter 2. In order to overcome the limitation, the 

use of confusion matrix is recommended in (Stahl & Bramer, 2013; Stahl & Bramer, 2011) 

and also identified by the author of the thesis. However, the individual accuracy for a single 

classification reflected from confusion matrix is not effective in some special cases. In 

contrast, precision for a particular classification would be more reliable in determining the 

weight of a classifier. For example, there are 5 positive instances out of 20 in a test set and a 

classifier correctly predicts the 5 instances as positive but incorrectly predicts other 5 

instances as positive as well. In this case, the recall/true positive rate is 100% as all of the 

five positive instances are correctly classified. However, the precision on positive class is 

only 50%. This is because the classifier predicts 10 instances as positive and only five of 

them are correct. This case indicates the possibility that high recall could result from 

coincidence due to low frequency of a particular classification. Therefore, precision is 

sometimes more reliable in determining the weight of a classifier on a particular prediction 

from this point of view. Overall, both precision and recall would usually be more reliable 

than overall accuracy in determining weight of a classifier especially for unbalanced data 

sets but it is important to determine which one of the two metrics to be used in resolving 

special issues. 

The modifications to Random Prism with regard to its two weak points generally aim to 

improve the robustness of models built in training stage and to more accurately measure the 

confidence of each single model in making each of particular predictions. 

3.4 Collaborative Rule Generation Framework 

The ensemble learning concepts introduced earlier focus on parallel learning, which means 

that the building of each model is totally parallel to the others without collaborations in 

training stage and only their predictions in testing stage are combined for final decision 

making. However, the ensemble learning could also be done with collaborations in training 

stage. In this way, it could potentially help to improve the quality of each model generated in 

training stage. Therefore, the author of this thesis creates another framework of ensemble 

learning to have collaborations among different rule based methods involved in training 

stage. The collaboration strategy is illustrated by Fig.3.8 in the following: 
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The essence of this algorithm above is based on the procedure of ‘separate and conquer’ rule 

generation. In particular, there would be a rule generated in each of the iterations. The 

algorithm introduced above has all chosen rule based methods involved in the iteration to 

generate a single rule; each of the rule based methods may also be assisted by some pruning 

methods depending on the setup of experiments; and then all of the rules are compared with 

respect to their confidences; finally only the rule with the highest confidence is selected and 

added into the rule set. This process is repeated until all of instances have been deleted from 

the training set as specified in the ‘separate and conquer’ approach. This way of rule 

generation would make it achieved that in each of the iterations the rule generated is of as 

higher quality as possible. This is because of the possibility that some of rules are of higher 

quality but the others are of lower quality if there is only one rule based method involved in 

training stage. The main difference to the CCRDR introduced in Section 3.3 is with respect 

to competition between rule based methods. CCRDR involves a competition between rule 

based methods per rule set. In other words, the competition is made after each of chosen 

methods has generated a rule set in order to compare the quality of a whole rule set. In 

contrast, the newly proposed method involves such a competition per rule generated. In 

other words, the competition is made once each of the methods has generated a rule in order 

to compare the quality of a single rule. 
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Fig.3.8 Collaborative rule generation framework 

As mentioned in Chapter 2, Bagging, Boosting and Random Forests all have the 

disadvantage of incomprehensibility of the predictions made by different models. The same 

disadvantage also arises with the CCRDR approach introduced in Section 3.3. This is a 

serious drawback that arises with most existing ensemble learning approaches for data 

mining tasks. As mentioned in Chapter 1, data mining is aimed at knowledge discovery. 

Therefore, it is necessary for the models to allow explicit interpretation of the way in which 
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the prediction is made. The CRG approach would be able to fill the gap to some extent as it 

only generates a single rule set that is used for prediction. In addition, rule based models are 

highly interpretable as mentioned in Section 1; consequently, the CRG approach would fit 

well the purpose of knowledge discovery especially on interpretability. 

With regard to accuracy, Bagging, Boosting and Random Forests all aim to improve it 

through scaling down data. However, there is nothing done by scaling up algorithms for 

improving accuracy. As mentioned in Chapter 1, it is necessary to deal with the issues on 

both algorithms and data sides in order to comprehensively improve the accuracy. The 

CCRDR can fulfil the need to a large extent. As justified in Section 3.3, each algorithm may 

have a different level of suitability to different data sets. On the same data set, different 

algorithms may also demonstrate different levels of performance. From this point of view, 

the CCRDR approach is designed in the way that after the training data is scaled down by 

drawing different samples, a group of learning algorithms are combined to generate a model 

on each of the samples. In this context, the CCRDR approach does not only scale down the 

data but also scale up the algorithms. However, as mentioned in Section 3.3, this approach 

does not involve any collaborations among different algorithms in the training stage. For 

rule based learning algorithms, it is very likely to generate a rule set that has some rules of 

high quality but also others of low quality. In other words, it is difficult to guarantee that 

each single rule generated by a particular algorithm is of high quality. In this sense, the 

CCRDR approach is only able to select the rule sets, each of which is generated on a 

particular sample set and has the highest quality on average compared with the others 

generated on the same sample set. In the testing stage, a rule set usually makes a prediction 

using a single rule that fires. If the single rule is of low quality, it is very likely to make 

incorrect predictions although most of the other rules are of high quality. On the other hand, 

for data mining tasks, each of the rules is used to provide knowledge insight for domain 

experts. Therefore, the reliability of each single rule is particularly significant. On the basis 

of the above description, the CRG approach would be useful and effective to help the 

CCRDR fill the gap relating to the quality of each single rule and thus also complements the 

other three popular methods mentioned in this section. 

3.5 Conclusion 

This chapter introduces novel methods and techniques in relation to rule based classification 

and ensemble learning. These methods and techniques are discussed by comparing them 

against existing methods and techniques reviewed in Chapter 2 in theoretical contexts. This 

chapter also highlights typical advantages of the novel methods and techniques from 

theoretical points of view. All of these descriptions in theoretical contexts are validated 

empirically in experimental studies in Chapter 4 except for rule representation which is 

validated in theoretical analysis. 
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Chapter 4 Quantitative Validation 

4.1 Introduction 

As mentioned in Chapter 3, the novel methods and techniques, namely IEBRG, Jmid-

pruning and rule based network, are developed in order to overcome the limitations of the 

existing methods and techniques reviewed in Chapter 2, namely Prism, J-pruning, Jmax-

pruning, decision tree representation and linear list representation. In addition, two novel 

ensemble learning frameworks, namely Collaborative and Competitive Random Decision 

Rules (CCRDR) and Collaborative Rule Generation (CRG), are created in order to overcome 

the limitations of existing approaches such as Random Forests and Random Prisms. The 

novel approaches are also compared against the existing ones in theoretical contexts in 

Chapter 3. Therefore, this chapter validates the advantages of the novel methods and 

techniques empirically in experimental studies, except for rule based network which is 

validated theoretically. The results are also presented and discussed in Chapter 4. 

4.2 Data Sets 

In order to empirically validate the methods, a number of data sets are chosen for conducting 

experiments. All of the data sets are retrieved from UCI repository (Lichman, 2013), Statlib 

repository (Vlachos, 2005 ) and Kent Ridge Bio-medical repository (Li & Liu, 2003). 

With regard to the validation of IEBRG, the chosen data sets include: vote, weather, contact-

lense, breast-cancer, lung-cancer, nurse, tic-tac-toe, anneal, balance-scale, credit-g, credit-

a, diabetes, heart-statlog, ionosphere, iris, kr-vs-kp, lymph, segment, zoo, wine, car, breast-

w, mushroom, page-blocks, Monks-problems-3, dorothea, ALL-AML, colonTumor, 

DLBCLOutcome, DLBCLTumor, DLBCL-Stanford, LungCancer-Harvard2, lung-Michigan, 

lungcancer-ontario, MLL_Leukemia, NervousSystem, prostate_tumorVSNormal, BCR-ABL, 

E2A-PBX1, Hyperdip50, MLL, T-ALL, TEL-AML1, pos_neg_100.  

With regard to the validation of Jmid-pruning, the chosen data sets include: vote, weather, 

contact-lenses, breast-cancer, car, lung-cancer, iris, segment, ionosphere, cmc, kr-vs-kp, 

ecoli, anneal.ORIG, audiology, optdigits, glass, lymph, yeast, shuttle, analcatdata_asbestos, 

analcatdata_happiness, and breast-cancer. 

With regard to the validation of CCRDR, the chosen data sets include: anneal, balance-scale, 

diabetes, heart-statlog, ionosphere, lymph, car, breast-cancer, tic-tac-toe, breast-w, 

hepatitis, heart-c, lung-cancer, vote, page-blocks. 

With regard to the validation of CRG, the chosen data sets include: anneal, credit-g, 

diabetes, heart-stalog, ionosphere, iris, kr-vs-kp, lymph, segment, zoo, wine, breast-cancer, 

car, breast-w, credit-a, heart-c, heart-h, hepatitis, mushroom, vote. 

For most of the chosen data sets as mentioned above, the dimensionality lies in the range of 

5-100 and the number of instances in the range of 100-10000. In addition, all of the data sets 

are particularly for classification, which means each data set typically fulfils the following 

characteristics: 

 Multiple input attributes and a single output attribute. 

 Input attributes could be discrete or continuous. 

 Output attribute must be discrete. 
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For some of the data sets, there are also missing values present in input attributes or class 

attributes. The strategies in dealing with missing values are further specified in Section 4.3.  

Besides, the more detailed description with respect to the characteristic of the chosen data 

sets are available in (Lichman, 2013; Vlachos, 2005 ; Li & Liu, 2003) and the appendix VII 

of the thesis. 

4.3 Experimental Setup 

The experimental studies are undertaken on the data sets mentioned in Section 4.2 for the 

validation of IEBRG, Jmid-pruning, collaborative and competitive random decision rules 

and collaborative rule generation.  

As mentioned in Section 4.2, some of the chosen data sets contain missing values in input 

attributes or class attributes. This is usually a far larger issue that needs to be dealt with 

effectively as it would result in infinite loops for rule based methods in training stage. There 

are typically two ways of dealing with missing values as follows (Bramer, 2007): 

1) Replace all missing values with the most frequent occurring values for discrete attributes 

or average values for continuous attributes. 

2) Discard all instances with missing values. 

In this experimental study, the first way is adopted because all of the chosen data sets are 

relatively small. It indicates that if the second way is adopted both training and test sets 

would be too small to be representative samples. Under this kind of situation, the model 

generated is likely to introduce biased patterns with low confidence especially if the model 

overfits the training data. However, the first way of dealing with missing values also 

potentially introduces noises to the data sets. Thus such an experimental setup would also 

provide the validation with respect to the noise tolerance of an algorithm in the meantime. 

On the other hand, if missing values are with class attribute, the best approach would be by 

adopting the second way mentioned above. This is because the first way mentioned above is 

likely to introduce noises to the data sets and thus incorrect patterns and predictive 

accuracies would be introduced. This is also mentioned in (Bramer, 2007) that the first way 

is unlikely to prove successful in most cases and thus the second way would be the best 

approach. In practice, the two ways of dealing with missing values can easily be achieved by 

using the implementations in some popular machine learning software such as Weka (Hall, 

et al., 2009), some of which can be located at the Journal of Machine Learning Research 

Repository (Machine Learning Open Source Software, 2000). 

This experimental study is divided into three parts namely, unit testing, integrated testing 

and system testing, following software testing approaches. The following subsections 

describe the setup of each part of the experimental studies in more detail. 

4.3.1 Unit Testing 

This part of experimental study includes validation of IEBRG and Jmid-pruning. For the 

validation of both methods, the accuracy performed by random guess which depends on the 

number of classifications and distribution of these classifications is estimated for comparison 

with the other chosen methods. For example, if the objective function is a two class 

classification problem and the distribution is 50:50, then the accuracy performed by random 

guess would be 50%. Otherwise, the accuracy must be higher than 50% in all other cases. 
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With regard to IEBRG, the validation is against Prism in terms of classification accuracy and 

computational efficiency. With respect to accuracy, the chosen method is cross-validation 

(Bramer, 2007). The reasons are that the chosen data sets are all relatively small in terms of 

the number of instances as mentioned in the Section 4.2 and for most data sets there are no 

supplied test sets provided. In such cases, a single split of a data set into a training set and a 

test set is usually not able to provide convincing results. In other words, the results are likely 

to introduce bias with respect to the performance of a particular algorithm. This is because 

according to the standard rate in the split of a data set there are 70% of the instances used as 

the training set and the rest of them as the test set. This indicates that the test set would be 

quite small after the split of a small data set into a training set and a test set. The results 

obtained under this kind of situation is likely to be either extremely good or extremely poor, 

especially when the test instances are all highly similar to each other. This is a kind of bias 

that arises in testing stage. On the other hand, there is also another kind of bias that arises in 

training stage. This is because a model is likely to cover biased patterns discovered from 

training data if the training set is very small although there is a supplied large test set. On the 

basis of above considerations, cross validation is thus chosen for measuring classification 

accuracy for the chosen data sets. In addition, for each data set, the accuracy achieved by 

random guess is also calculated precisely to compare with that performed by IEBRG and 

Prism. This is because the accuracy must be at least higher than that achieved by random 

guess if the algorithm really works effectively. 

With respect to efficiency, it is mainly measured by using runtime. In addition, there are also 

some other measures, namely number of rules, average number of rule terms, overall 

numbers of generated rule terms and discarded rule terms, used to show the approximate 

correction between actual runtime and computational complexity reflected from the 

measures mentioned above. Runtime is a popular measure particularly used for empirical 

validation. However, runtime is actually subject to many practical factors. For example, it is 

platform dependent, which means that the difference in hardware performance and operating 

systems would lead to different levels of runtime. In addition, the runtime is also subject to 

programming languages. In general, those complier based languages such as C are faster 

than those interpreter based languages such as Java. Even if the chosen programming 

language is the same, the runtime is still affected by the quality of implementations. For 

academic purpose, it is worth to use theoretical measures such as number of rules or rule 

terms to measure approximately the computational efficiency in a unified way. The overall 

number of rule terms actually indicates the approximate number of iterations with respect to 

computational complexity. As mentioned in Chapter 2, Prism prefers to discard a rule if a 

clash occurs. Therefore, the experimental study also takes into account the clash rate. The 

clash rate reflects the effectiveness of computation. This is because the fact that the 

algorithm takes time to generate a rule which is eventually discarded is equivalent to doing 

nothing and thus useless computation. On the basis of above considerations, runtime is thus 

chosen to validate with respect to efficiency in empirical context as well as those measures 

in relation to computational complexity in theoretical context. 

Besides, the experimental studies for the comparison between IEBRG and Prism are also 

undertaken on noise data sets. The noise is artificially introduced to both training and test 

sets in different levels of percentages. This is in order to investigate empirically the 

robustness of an algorithm to noise. In particular, the investigation is to observe the change 
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trend in terms of accuracy and the numbers of rules and rule terms as the increase of the 

percentage of noise in both training and test sets. 

With regard to Jmid-pruning, the validation is against J-pruning and Jmax-pruning in terms 

of classification accuracy and computational efficiency. With respect to accuracy, the chosen 

method is also cross validation as same as used in the validation of IEBRG. The reason is 

the same as described earlier with regard to validation of IEBRG. With respect to efficiency, 

in addition to those measures used in the validation of IEBRG as mentioned earlier, another 

measure is taken into use and referred to as number of backward steps. The number of 

backward steps indicates the number of rule terms which are generated but eventually 

discarded during rule generation. This measure is used to reflect necessity of computation in 

data mining context and effectiveness of learning in machine learning context. If the number 

of backward steps is very large, this means that the algorithm generates large number of rule 

terms which are eventually discarded and thus results in large amount of unnecessary 

computational costs due to ineffective learning. 

4.3.2 Integrated Testing 

This part of experimental study includes the validation of collaborative and competitive 

random decision rules and collaborative rule generation. For both approaches mentioned 

above, the validation involves the combination of different methods for rule generation and 

rule simplification such as Prism, IEBRG and Jmid-pruning. This is in order to show not 

only the performance of the general framework of ensemble learning but also to what extent 

the standard methods for rule generation and simplification contribute towards the 

improvement of overall accuracy of classification. 

With regard to collaborative and competitive random decision rules, the validation is against 

Random Prism in terms of classification accuracy. The validation of accuracy is done by 

splitting a data set into a training set and a test set in the ratio of 80:20. For each data set, the 

experiment is repeated 10 times and the average of the accuracies is taken for comparative 

validation. The reason is that ensemble learning is usually computationally more expensive 

because the size of the data set dealt with by ensemble learning is as same as n times the size 

of the original data set. In other words, a data set should be pre-processed to get n samples, 

each of which has the same size of the original data set. In addition, the proposed ensemble 

learning method includes two or more learning algorithms in general (three learning 

algorithms in this experiment) used for each of the n samples. Therefore, in comparison with 

single learning tasks such as use of IEBRG or Prism, the computational efforts would be as 

same as 3*n times that conducted by a single learning task. In this situation, the 

experimental environment would be quite computationally constrained on a single computer 

if cross validation is used to measure the accuracy. On the other hand, instances in each 

sample are randomly selected with replacement from the original data set. Thus the 

classification results are not deterministic and the experiment is setup in the way mentioned 

above to make the results more convincing. Besides, the accuracy performed by random 

guess is also calculated and compared with that performed by each chosen algorithm. This is 

in order to check whether a chosen algorithm really works on a particular data set as 

mentioned earlier.  

The validation of the CCRDR does not include measure of efficiency. This is because, on 

the basis of above descriptions, the computation conducted using the proposed method is 

theoretically much more complex than Random Prism if it is done on a single computer. 
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From this point of view, the comparison between the two ensemble learning approaches 

would be quite unfair and less implicative for practical applications. However, the efficiency 

can be easily improved in practice by adopting parallel data processing techniques and is 

thus not a critical issue. On the other hand, the CCRDR is a general framework which could 

employ any rule based methods involved in training stage in principle. From this point of 

view, the efficiency is approximately equal to the sum of efficiency for each single 

algorithm if the experiment is run on a single computer. Otherwise, it would be equal to the 

efficiency for the branch with the worst outcome if the experiment is done on a parallel 

computer. In other words, the efficiency does not directly depend on the framework but 

mainly on the performance of each single algorithm employed. In this experimental setup, 

all of the chosen rule based methods are validated individually as mentioned earlier in this 

chapter. Therefore, it is not necessary to undertake the redundant validation again. 

With regard to collaborative rule generation, the validation aims to indicate that the 

combination of different rule based learning algorithms usually improves the overall 

accuracy compared with the use of each single learning algorithm. In particular, on 

algorithms side, two single learning algorithms namely, Prism and IEBRG, are chosen to be 

the base algorithms for the CRG framework. In general, this framework can employ any 

algorithms, which follow the separate and conquer rule learning approach, to be combined 

for the generation of a rule set. In this experimental study, there are only two algorithms 

chosen due to the consideration of computational constraints. The computational complexity 

of this kind of ensemble learning approaches is approximately n times the complexity of a 

single learning algorithm, where n is the number of base learning algoirthms, if no 

parallelisation is adopted. The reason why the Prism algorithm is chosen is due to the 

advantage that this algorithm can typlically overcome some limitations of decision tree 

learning algorithms to a large extent, such as the replicated subtree problem as mentioned in 

Chapter 2. The IEBRG algorithm is also chosen because it complements well the Prism 

algorithm with regard to some of its disadvantages. In fact, the aim of the CRG approach is 

to enable that combined algorithms complement each other. In other words, the 

disadvantages of one algorithm could be overcome by the advantages of another algorithm. 

Therefore, it would be appropriate to choose algorithms that have different advantages and 

disadvantages and that are complementary to each other. 

On the other hand, as mentioned in Section 3, the CRG approach involves measuring the 

quality of each single rule generated. In this context, the approach needs to employ at least 

one of the measures of rule quality to judge which one of the generated rules is of the 

highest quality. In this experimental study, the four measures, namely confidence, J-measure, 

lift and leverage, are chosen due to their significance and popularity in real applications (Tan, 

Kumar, & Srivastava, 2004). 

Under the above setup, for the measure of classification accuracy, the experiments are 

conducted by splitting a data set into a training set and a test set in the ratio of 70:30. For 

each data set, the experiment is done 10 times and the mean of the accuracies are calculated 

for comparative validation. As mentioned earlier, ensemble learning approaches are usually 

computationally more expensive. Therefore, cross validation is not adopted in this study. On 

the other hand, for the measure of rule quality, the whole training set is used to evaluate each 

single rule generated with regard to the quality of this rule for each fold of validation. 
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4.3.3 System Testing 

This part of experimental study involves validating the combination of CCRDR and CRG as 

a hybrid ensemble learning approach. This is in order to show more comprehensive 

improvement of overall classification accuracy through collaborations in both training and 

testing stages. In particular, Bagging is used to scale down data as same as the setup in 

CCRDR. However, on each sample of training data drawn by the Bagging, the CRG 

framework is adopted to have all employed rule learning algorithms (Prism and IEBRG) 

collaborate to generate a single rule set. In addition, J-measure is used as the measure of rule 

quality. In testing stage, the independent predictions by these generated rule sets are 

combined to predict to which class an unseen instance belong. The voting for final 

prediction is based on precision as already proven in integrated testing that precision is more 

effective and confident in measuring the reliability of a classifier in predicting a particular 

class. The experimental setup is the same as that for the CCRDR framework as specified in 

Section 4.3.2. 

4.4 Results and Discussion 

As mentioned in Section 4.3, the validation of IEBRG against Prism is divided into two parts. 

One is in noise free domain and the other one is in noise domain. The results in classification 

accuracy are reflected from Table 4.1 as below. 

Table 4.1 reflects that on all of the data sets both IEBRG and Prism perform better 

accuracies than random classifier which makes prediction by random guess. This indicates 

that both algorithms really work on the chosen data sets. With regard to the comparison 

between IEBRG and Prism, Table 4.1 reflects that IEBRG outperforms Prism in 16 out of 

the 20 cases. For the rest of the cases, IEBRG performs the same as Prism in two cases on 

page-blocks and dorothea data sets and worse on the other two cases on ionosphere and 

mushroom. Although IEBRG sticks out on the two data sets, the accuracy is still close to that 

performed by Prism.  

Table 4.1 Accuracy for IEBRG vs Prism 

Dataset Prism IEBRG Random classifier 

anneal 80% 85% 60% 

balance-scale 37% 65% 43% 

credit-g 62% 67% 58% 

credit-a 59% 77% 50% 

diabetes 64% 72% 54% 

heart-statlog 66% 68% 50% 

ionosphere 89% 83% 54% 

iris 69% 93% 32% 

kr-vs-kp 52% 84% 50% 

lymph 69% 79% 47% 

segment 53% 74% 14% 

zoo 63% 88% 20% 

wine 81% 89% 33% 

car 70% 72% 33% 

breast-w 90% 93% 55% 

mushroom 93% 91% 50% 

page-blocks 92% 92% 80% 

Monks-problems-3 50% 84% 50% 

dorothea 93% 93% 50% 

dexter 78% 83% 50% 
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The results in computational efficiency are reflected from Table 4.2-4.4 in terms of 

computational complexity and runtime. Table 4.5 shows clash rate which helps explain why 

some rules are discarded. 

 

Table 4.2 is used to reflect the complexity of the rule sets generated by IEBRG or Prism on 

the chosen data sets. The complexity of a rule set would be an impact factor for 

computational efficiency in prediction stage. As mentioned in Chapter 2, decision tree 

learning algorithm is criticised due to the generation of a large number of complex rules. It 

indicates that a highly complex rule set usually makes it difficult and computationally 

expensive to extract a classification assigned to an unseen instance in prediction stage. 

Therefore, the complexity of a rule set could be used to pre-measure the approximate level 

of efficiency in testing stage. It can be seen from Table 4.2 that IEBRG generates more 

general and fewer rules than Prism in 13 out of the 20 cases. This indicates that in most 

cases IEBRG not only needs cheaper computation than Prism in generation of a rule set but 

also provides a simpler rule set which makes it cheaper to predict further unseen instances in 

testing stage. In addition, although IEBRG generates more complex rule sets than Prism on 

three data sets, namely balance-scale, car and dorothea, Prism discard a large number of 

rules and thus a large number of rule terms in two out of the three cases on balance-scale 

and car data sets due to the way of dealing with clashes. This still indicates that Prism is 

computationally more expensive than IEBRG in generation of a rule set. This is because 

discarded rules and rule terms also need to conduct computation for their generation 

although they are eventually discarded. The action for discarding rules and rule terms would 

also potentially result in underfitting of training data and thus loss of accuracy as mentioned 

in Chapter 2. This implies another negative phenomenon of Prism. 

Table 4.2 Number of rules and average number of terms for IEBRG vs Prism 

Dataset  Prism IEBRG 

 Count(rules) Ave(terms) Count (rules) Ave(terms) 

anneal 12 4.92 8 1.0 

balance-scale 13 2.54 21 3.05 

credit-g 15 2.07 8 1.0 

credit-a 8 1.0 7 1.0 

diabetes 8 1.125 8 1.0 

heart-statlog 8 1.0 6 1.0 

ionosphere 2 1.0 2 1.0 

iris 5 1.0 4 1.0 

kr-vs-kp 17 1.71 9 1.0 

lymph 6 1.0 6 1.0 

segment 12 1.25 9 1.0 

zoo 7 1.0 5 1.0 

wine 5 1.0 5 1.0 

car 3 1.0 23 3.96 

breast-w 8 1.125 6 1.0 

mushroom 10 1.0 9 1.0 

page-blocks 10 2.7 8 1.0 

Monks-problems-3 9 5.78 7 1.86 

dorothea 5 1.0 7 1.0 

dexter 7 1.0 7 1.0 
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Table 4.3 Numbers of generated terms and discarded terms 

Dataset  Prism IEBRG 

 Generated terms Discarded terms Generated terms Discarded terms 

anneal 59 0 8 0 

balance-scale 33 44 64 0 

credit-g 31 0 8 0 

credit-a 8 0 7 0 

diabetes 9 0 8 0 

heart-statlog 8 0 6 0 

ionosphere 2 0 2 0 

iris 5 0 4 0 

kr-vs-kp 29 0 9 0 

lymph 6 0 6 0 

segment 13 0 9 0 

zoo 7 0 5 0 

wine 5 0 5 0 

car 3 276 91 0 

breast-w 9 0 6 0 

mushroom 10 0 9 0 

page-blocks 27 60 8 0 

Monks-problems-3 52 90 13 0 

dorothea 5 0 7 0 

dexter 7 0 7 0 

 

Table 4.3 is used to reflect the approximate number of iterations conducted during 

generation of a rule set. In particular, the number of generated rule terms plus that of 

discarded terms would be the approximate number of iterations conducted in training stage. 

This is because all discarded rule terms should be generated first and eventually discarded 

due to the discarding of the corresponding rules to which the terms belong. This table 

reflects that in 14 out of 20 cases IEBRG generates less number of rule terms than Prism and 

thus needs less number of iterations to generate a rule set. In three cases on balance-scale, 

car and dorothea respectively, IEBRG generates a larger number of rule terms than Prism 

but there is a far large number of terms discarded by Prism due to the way of dealing with 

clashes as mentioned in Chapter 2. This still indicates that Prism needs a larger number of 

iterations to generate a rule set and is thus computationally more expensive. In addition, 

there are other two cases on page-blocks and Monks-problems-3 respectively that Prism 

discards a far large number of rule terms. On the other hand, Table 4.3 is also used to reflect 

the approximate number of iterations conducted for predicting an unseen instance in testing 

stage while a particular rule representation is determined. In detail, as mentioned in Chapters 

2 and 3, the overall number of terms generated is used as the input size for measuring the 

time complexity using BigO notation. As mentioned above, there are only three cases that 

IEBRG generates a more complex rule set than Prism. This indicates that in most cases 

IEBRG generates a rule set that makes it faster to make a classification on an unseen 

instance in testing stage comparing with Prism if the rule representation is kept same. In 

other words, rule representation is another impact factor for efficiency in prediction stage as 

mentioned in Chapter 2. The comparison among different representations has been 

introduced in Chapter 3 with respect to theoretical validation of rule based networks against 

linear list. 
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Table 4.4 Runtime in milliseconds for IEBRG vs Prism  

Dataset  Prism IEBRG 

anneal 1016 187 

balance-scale 109 78 

credit-g 906 125 

credit-a 398 64 

diabetes 343 94 

heart-statlog 94 15 

ionosphere 579 141 

iris 47 15 

kr-vs-kp 797 578 

lymph 15 16 

segment 4219 2984 

zoo 31 16 

wine 140 31 

car 578 125 

breast-w 47 31 

mushroom 1641 1515 

page-blocks 12985 3188 

Monks-problems-3 125 16 

dorothea 761871 964966 

dexter 65691 31670 

 

Table 4.4 shows empirical comparison between IEBRG and Prism in terms of runtime with 

regard to efficiency in training stage. It can be seen from this table that IEBRG is faster than 

Prism in generation of a rule set in 18 out of the 20 cases. The only case that IEBRG falls a 

bit far behind Prism is on dorothea data set. This is also the only case that IEBRG conducts 

a larger number of iterations than Prism in training stage through looking at Table 4.3. In 

addition, there is another case that IEBRG is marginally slower than Prism on lymph data set. 

This could be explained by the time complexity analysis of the two algorithms as illustrated 

below: 

Time complexity analysis for IEBRG with regards to the time of rule term generation: 

Suppose a data set has i instances and a attributes so the size is i× a as well as v attribute-

value pairs and c classifications 

Step 1: create a frequency table 

Time complexity: i× v+ i× a× c 

Step 2: calculate conditional entropy for attribute value 

Time complexity: v× c 

Step 3: rank the conditional entropy for all attribute values 

Time complexity: v+ a 

Step 4: split the dataset by deleting the instances that don’t comprise the attribute-value pair 

Time complexity: i 
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Therefore, the time complexity is: O (i× v+ i× a× c+ v× c+ v+ a + i), for the generation of 

each rule term while the input size (n) is the total number of rule terms. 

Time complexity analysis for Prism with regards to the time of rule term generation: 

Suppose a data set has i instances and a attributes so the size is m× n as well as v attribute-

value pairs and c classifications 

Step 1: create a frequency table 

Time complexity: i× v+ i× a 

Step 2: calculate posterior probability of a target class given an attribute value as condition 

Time complexity: v 

Step 3: rank the posterior probability for all attribute values 

Time complexity: v+ a 

Step 4: split the dataset by deleting the instances that don’t comprise the attribute-value pair 

Time complexity: i 

Therefore, the time complexity is: O (i× v+ i× a+ v + v+ a + i), for the generation of each 

rule term while the input size (n) is the total number of rule terms. 

The above analysis shows that IEBRG is computationally more complex than Prism with 

regard to the generation of each single rule term on the basis of similar size of training data. 

The time complexity for the entire training stage would approximately be the sum of the 

complexities for the generation of all rule terms respectively, which is referred to as 

summative time complexity. This is why on lympth data set IEBRG generates the same 

numbers of rules and rule terms as Prism but is a bit slower than the latter algorithm in 

runtime.  

The above way of complexity analysis would usually help check the reasons while the 

runtime performed by a particular algorithm looks odd and unexpected. However, this way 

may not be very effective in measuring the computational complexity of an algorithm 

globally by means of analysing the entire procedure. This is because reuse engineering is 

increasingly popular and thus practitioners usually reuse the APIs, which are usually 

invisible, for their implementations. Therefore, this objective situation results in the 

difficulty for more precise analysis of computational complexity. 

The results shown in Tables 4.2 and 4.3 prove the correlation that a large number of 

iterations conducted in training stage usually leads to a slow process of generating a rule set. 

There are also results on other noise free data sets with respects to classification accuracy 

and computational efficiency available to view in Appendix VI. The results also reflect the 

similar phenomenon that IEBRG outperforms Prism in most cases in terms of accuracy and 

efficiency. In addition, the results are also shown in terms of individual accuracy for each 

single classification in Appendix V. 
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Table 4.5 Clash rate for IEBRG vs Prism 

Dataset Prism IEBRG 

anneal 0.0 0.0 

balance-scale 0.5 0.43 

credit-g 0.0 0.0 

credit-a 0.0 0.0 

diabetes 0.0 0.0 

heart-statlog 0.0 0.0 

ionosphere 0.0 0.0 

iris 0.0 0.0 

kr-vs-kp 0.0 0.0 

lymph 0.0 0.0 

segment 0.0 0.0 

zoo 0.0 0.0 

wine 0.0 0.0 

car 0.94 0.39 

breast-w 0.0 0.0 

mushroom 0.0 0.0 

page-blocks 0.375 0.0 

Monks-problems-3 0.67 0.14 

dorothea 0.0 0.0 

dexter 0.0 0.0 

 

Besides, the comparison between the algorithms mentioned above is also done in noise 

domain. The chosen data sets include breast cancer, kr-vs-kp, contact lenses, zoo and lympth. 

The results are available to view in Appendix VI. These figures reflect that except for 

contact lenses data set IEBRG performs higher tolerance to noise than Prism in almost all of 

the cases. There is a phenomenon in some cases that the increase of noise levels does not 

lead to the decrease of accuracy levels. This could be partially explained on the basis of 

pattern consistency. The accuracy is actually dependent on the consistence between the 

pattern learned from the training set and the pattern that exists in the test set. If they are 

highly consistent, then the accuracy would be higher. Otherwise, it would be lower. Noise is 

actually introduced artificially to both training and test data. If the accuracy is higher, that 

means that the pattern learned from the training set is highly consistent with that exists in the 

test set. However, if the same percentage of noise is introduced to training and test sets, the 

patterns between the two data sets could become very inconsistent. This is because the 

training set is obviously larger than the test set in the experimental setup. In other words, the 

pattern in the training set may get a relatively small change but that in the test set may get a 

relatively large change. From this point of view, the accuracy may be obviously worse than 

that achieved in noise free data sets when a little noise is added. However, it may be 

increasing as the increase of noise levels in test sets as the pattern that exists in test sets 

would gradually get more consistent with that learned from training sets. In another case, if a 

large percentage of noise, say 50%, is introduced to the training set but only a small 

percentage, say 10%, to the test set, it may result in that the pattern learned from the training 

set gets a large change but that exists in the test set only gets a small change. Therefore, it 

could have the tendency that the accuracy would increase as the increase of noise levels in 

test sets. 

With regard to the validation of Jmid-pruning against J-pruning and Jmax-pruning, the 

experiment is divided into two parts. The first part is to prove that the accuracy could be lost 
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if the tie-breaking on J-measure, as mentioned in Chapter 2, is not dealt with effectively and 

that Jmid-pruning usually generates fewer rule terms that are eventually discarded and thus 

needs a smaller number of iterations in order to find the global maximum of J-measure. 

Furthermore, the second part of experiment is undertaken to prove empirically that the 

reduction in number of iterations would usually speed up the process of rule generation. 

Therefore, in this part of experiment, each of the chosen data sets matches the characteristic 

that Jmax-pruning and Jmid-pruning generates the same set of rules and thus performs the 

exactly same classification accuracy. This is in order to make fair comparisons on the extent 

to which the computational efficiency is affected due to the increase/decrease of the number 

of backward steps. This setup of experiments also helps with the scientific proof with respect 

to the approximate correlation between number of backward steps and runtime. 

Table 4.6 Accuracy for pruning methods 

Dataset J-pruning Jmax-pruning Jmid-pruning 
Vote  97% 97% 97% 
Weather  83% 83% 83% 
Contact-lenses 80% 85% 85% 
Lense24 67% 75% 75% 
Breast-cancer 55% 58% 58% 
Car  74% 74% 78% 
Lung-cancer 95% 95% 95% 
Iris 67% 77% 82% 
Segment  53.1% 53.3% 53.8 
ionosphere 87% 87% 87% 
 

It can be seen from Table 4.6 that Jmid-pruning leads PrismTCS to perform a similar level 

of classification accuracy in comparison with J-pruning and Jmax-pruning in 7 out of 10 

cases but outperforms the two algorithms in the other cases. With regards to efficiency, 

Table 4.7 shows that PrismTCS with Jmid-pruning generates a rule set with a similar level 

of rule complexity or even fewer but more general rules in comparison with J-pruning and 

Jmax-pruning. However, Table 4.8 shows that Jmid-pruning performs better compared with 

Jmax-pruning in terms of computational efficiency. It can be seen by looking at the number 

of backward steps that Jmid-pruning needs a smaller number of iterations than Jmax-pruning 

to make Prism stop generating rules. Therefore, Jmid-pruning is computationally more 

efficient from theoretical point of view. 

Table 4.7 Number of rules and terms per rule for pruning methods 

Dataset  J-pruning Jmax-pruning Jmid-pruning 

 Count(rules) Ave(terms) Count(rules) Ave(terms) Count(rules) Ave(terms) 

Vote  2 2.5 5 4.2 2 2.5 

Weather 3 1.67 3 1.7 3 1.67 

Contactlenses 3 1.67 3 1.67 3 1.67 

Lense24 4 1.5 4 2.25 4 2.0 

Breast-cancer 8 1.125 7 1.0 7 1.0 

Car 3 1.0 3 1.0 3 1.0 

Lung-cancer 4 1.0 4 1.0 4 1.0 

Iris 5 1.0 5 1.0 5 1.0 

Segment 11 1.09 13 1.69 10 1.0 

ionosphere 2 1.0 2 1.0 2 1.0 
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Table 4.8 Number of discarded rules and backward steps for pruning methods 

Dataset  J-pruning Jmax-pruning Jmid-pruning 

 Discarded 

rules 

Discarded 

rules 

Backward 

steps 

Discarded 

rules 

Backward 

steps 

Vote  4 4 154 4 5 

Weather 1 2 3 1 1 

Contact-lenses 1 1 4 1 2 

Lense24 2 1 5 2 3 

Breast-cancer 1 2 1 2 1 

Car 12 46 207 12 10 

Lung-cancer 0 0 0 0 0 

Iris 0 0 0 0 0 

Segment 5 3 7 4 6 

ionosphere 0 0 0 0 0 

 

Table 4.9 Accuracy for Jmid-pruning vs Jmax-pruning 

Dataset  Jmax-pruning Jmid-pruning Random classifier 

cmc 55% 55% 35% 

vote 97% 97% 52% 

kr-vs-kp 55% 55% 50% 

ecoli 62% 62% 27% 

anneal.ORIG 78% 78% 60% 

audiology 51% 51% 13% 

car 74% 74% 33% 

optdigits 47% 47% 10% 

glass 53% 53% 24% 

lymph 76% 76% 47% 

yeast 55% 55% 21% 

shuttle 92% 92% 65% 

analcatdata_asbestos 73% 73% 43% 

analcatdata_happiness 63% 63% 30% 

breast-cancer 69% 69% 58% 

 

The second part of experimental results is reflected from Table 4.9-4.11 with respects to 

classification accuracy and computational efficiency. Table 4.9 reflects that in all of the 

cases both Jmax-pruning and Jmid-pruning outperforms random classifier which makes 

classification by random guess in terms of classification accuracy. In addition, Jmid-pruning 

performs the same accuracy as Jmax-pruning in all of the cases. The reason is explained 

earlier in the section. These examples are particularly chosen in order to focus on the special 

validation that it is really scientifically possible that Jmid-pruning finds the global maximum 

of J-measure earlier than Jmax-pruning and thus needs a smaller number of backward steps 

in training stage if the two algorithms  make PrismTCS generate the same rule set.  In this 

case, the two algorithms perform the same in accuracy but Jmid-pruning makes PrismTCS 

complete rule generation earlier and is thus more efficient in comparison with Jmax-pruning. 

Through looking at Table 4.10 and 4.11, the results show that Jmid-pruning outperforms 

Jmax-pruning in terms of both the number of backward steps and runtime in all of the cases 

except on lymph data set. The results also reflect the approximate correction between the two 

aspects mentioned above that the reduction in the number of backward steps would speed up 

the process of rule generation in training stage, especially when the difference in the number 
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of backward steps is significant. In addition, on lymph data set, Jmid-pruning takes the same 

number of backward steps as Jmax-pruning but is a little bit behind the latter algorithm in 

runtime. This is because Jmid-pruning needs to take time to calculate the value of Jmax to 

measure the maximum of J-measure, which may be achieved eventually during rule 

generation, whereas Jmax-pruning does not as mentioned in Chapter 3. The above 

description indicates that Jmid-pruning makes it scientifically achievable to help rule based 

classifiers improve efficiency without loss of accuracy and even to improve accuracy when 

tie-breaking on J-measure really arises in practice. 

Table 4.10 Number of backward steps for Jmid-pruning vs Jmax-pruning 

Dataset  Jmax-pruning Jmid-pruning 

cmc 329 307 

vote 50 46 

kr-vs-kp 595 399 

ecoli 44 25 

anneal.ORIG 874 315 

audiology 263 140 

car 117 113 

optdigits 1461 1278 

glass 9 6 

lymph 2 2 

yeast 43 11 

shuttle 131 113 

analcatdata_asbestos 2 1 

analcatdata_happiness 1 0 

breast-cancer 34 25 

 

Table 4.11 Runtime in milliseconds for Jmid-pruning vs Jmax-pruning 

Dataset  Jmax-pruning Jmid-pruning 

cmc 5000 4625 

vote 812 625 

kr-vs-kp 9078 7500 

ecoli 1359 1125 

anneal.ORIG 17595 15891 

audiology 54549 53580 

car 1062 1047 

optdigits 400404 364730 

glass 1829 1562 

lymph 60 63 

yeast 2141 2125 

shuttle 95442 95411 

analcatdata_asbestos 47 46 

analcatdata_happiness 16 15 

breast-cancer 47 31 

 

With regard to rule based network, it is validated theoretically against linear list in term of 

time complexity using BigO notation (Cormen , Leiserson , Rivest , & Stein, 2001). As 

mentioned in Chapter 2, the network representation could achieve that prediction process is 

run in divide and conquer search and the efficiency is O (log (n)), where n is the overall 
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number of rule terms in a rule set. In contrast, list representation could only achieve a linear 

search process for the same purpose and the efficiency is O (n). The above comparison 

indicates that the network representation usually makes it faster to make a classification on 

an unseen instance comparing with list representation for the same rule set. Thus rule 

representation is another impact factor for computational efficiency in testing stage as 

mentioned earlier. In practice, for the purpose of predictive modelling, the network 

representation would contribute as many quicker decisions as possible in prediction stage in 

expert systems. The difference to the listed rule representation in the efficiency would be 

significant especially when Big Data is used to generate a rule set. 

With regard to CCRDR, the validation is divided into two parts of comparison. The first part 

is to prove empirically that combination of multiple learning algorithms would usually 

outperforms a single algorithm as a base algorithm for ensemble learning with respect to 

accuracy. The second part is to prove that use of precision instead of overall accuracy or 

recall as the weight of a classifier would be more reliable in making final predictions. In 

Table 4.12, the CCRDR I represents that the weight of a classifier is determined by the 

overall accuracy of the classifier. In addition, the CCRDR II and III represent that the weight 

is determined by precision for the former and by recall for the latter.  

Table 4.12 Ensemble learning results for CCRDR 

Dataset  Random Prism CCRDR I CCRDR II CCRDR III Random classifier 

anneal  71% 78% 79% 80% 60% 

balance-scale 44% 56% 68% 64% 43% 

diabetes 66% 68% 73% 68% 54% 

heart-statlog 68% 71% 74% 63% 50% 

ionosphere 65% 68% 69% 65% 54% 

lympth 68% 60% 89% 65% 47% 

car 69% 68% 71% 70% 33% 

breast-cancer 70% 72% 74% 73% 58% 

tic-tac-toe 63% 65% 66% 67% 55% 

breast-w 85% 75% 81% 75% 55% 

hepatitis 81% 84% 87% 82% 66% 

heart-c 70% 74% 83% 65% 50% 

lung-cancer 75% 79% 88% 75% 56% 

vote 67% 82% 95% 80% 52% 

page-blocks 90% 90% 90% 89% 80% 

 

The results in Table 4.12 show that all of the chosen methods outperform the random 

classifier in classification accuracy. This indicates that all of the methods really work on the 

chosen data sets. In the comparison between Random Prism and CCRDR I, the results show 

that the latter method outperforms the former one in 12 out of 15 cases. This proves 

empirically that combination of multiple learning algorithms usually helps generate a 

stronger hypothesis in making classifications. This is because the combination of multiple 

algorithms could achieve both collaboration and competition. The competition among these 

classifiers, each of which is built by one of the chosen algorithms, would make it achievable 

that for each sample of training data the learner constructed is much stronger. All of the 

stronger learners then effectively collaborate on making classifications so that the 

predictions would be more accurate.  
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As mentioned earlier, the second part of comparison is to validate that precision would 

usually be a more reliable measure than overall accuracy and recall for the weight of a 

classifier. The results in Table 4.12 indicate that in 13 out of 15 cases CCRDR II 

outperforms CCRDR I and III. This is because in prediction stage each individual classifier 

would first make a classification independently and their predictions are then combined in 

making the final classification. For the final prediction, each individual classifier’s 

prediction would be assigned a weight to server for the final weighted majority voting. The 

weight is actually used to reflect how reliable the individual classification is. The heuristic 

answer would be based on the historical record that how many times the classifier has 

recommended this classification and how correct it is. This could be effectively measured by 

precision. The weakness of overall accuracy is that this measure can only reflect the 

reliability of a classifier on average rather than in making a particular classification as 

mentioned in Chapter 2. Thus overall accuracy cannot satisfy this goal as mentioned above. 

In addition, although recall can effectively reflect the reliability of a classifier in making a 

particular classification, the reliability is affected by the frequency of a particular 

classification and thus cheats the final decision maker, especially when the frequency of the 

classification is quite low as mentioned in Chapter 3. Therefore, the results prove 

empirically that precision would be more reliable in determining the weight of a classifier 

for weighted majority voting. 

The above description with regard to CCRDR validates that combination of multiple 

learning algorithms would be more effective for improving the overall accuracy of 

classification and that precision would be a more reliable measure in determining the weight 

of a classifier to successfully serve for weighted majority voting, especially on unbalanced 

data sets. 

In statistical analysis, there are some popular measures with respect to errors such as mean 

absolute error (MAE) and squared error (SE), which are widely used in regression tasks. 

However, they are not adopted for results analysis in this thesis. This is because this thesis 

focuses on classification tasks and it is required to be able to calculate the distance between 

the predicted class and the actual class for this type of tasks. For two class classification 

tasks, it is always the case that the error is 0 if the prediction is correct and 1 otherwise, 

which means that it is impossible to identify extent to which the prediction is incorrect. For 

multi-class classification tasks, there is usually no way to rank the classes except for the case 

that the class attribute is an ordinary attribute such as ‘very large’, ‘large’, ‘medium’, ‘small’, 

‘very small’. If the classes cannot be ranked, it indicates that there is no way to calculate the 

difference between classes and thus it is unable to identify the extent to which the 

classification is incorrect. On the other hand, classification is an approach of decision 

making. Incorrect decisions are usually not expected in real applications. For example, when 

a student takes a multiple choice for an exam, there could only be one right choice and the 

rest of the choices have different distances to the right one. In this context, it may be highly 

possible that the student only makes a minor mistake and gets a wrong answer which is the 

closest to the right answer. However, the outcome would be that the student cannot gain any 

marks for this question. In general, both minor and major mistakes may result in a failure, 

which is not expected. From this point of view, classification tasks would always aim to 

have as many classes correctly predicted as possible. Therefore, overall accuracy is usually 

seen as the most important measure to reflect the performance of a classification method. 
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Table 4.13 Ensemble learning results for CRG 

Dataset Prism with 

Jmid-pruning 

IEBRG with 

no pruning 

CRG with 

confidence 

CRG with 

J-measure 

CRG with 

lift 

CRG with 

leverage 

anneal 68% 90% 92% 88% 90% 89% 

credit-g 62% 67% 65% 69% 72% 70% 

diabetes 56% 70% 72% 68% 69% 75% 

heartstatlog 64% 66% 75% 74% 77% 76% 

ionosphere 89% 81% 84% 84% 89% 84% 

iris 72% 93% 92% 92% 94% 97% 

kr-vs-kp 61% 83% 93% 92% 92% 93% 

lymph 73% 70% 71% 75% 73% 83% 

segment 51% 68% 73% 81% 77% 78% 

zoo 59% 79% 87% 85% 82% 85% 

wine 83% 91% 89% 92% 91% 92% 

breastcancer 66% 69% 71% 72% 71% 72% 

car 69% 76% 77% 75% 77% 76% 

breast-w 94% 95% 93% 92% 94% 92% 

credit-a 62% 69% 78% 80% 81% 78% 

heart-c 62% 69% 71% 77% 74% 74% 

heart-h 69% 74% 77% 78% 81% 78% 

hepatitis 84% 82% 83% 80% 86% 82% 

mushroom 98% 98% 96% 96% 98% 98% 

vote 92% 90% 95% 94% 95% 94% 

 

Results in Table 4.13 show the comparison among CRG with different measures of rule 

quality, Prism and IEBRG in terms of classification accuracy. This part of validation is with 

regard to the performance of the CRG. 

With regard to classification accuracy, Table 4.13 shows that the CRG approach, which has 

different variants, outperforms both of Prism and IEBRG in 17 out of 20 cases. This 

indicates that the combination of different rule learning algorithms usually improves the 

overall accuracy of classification as expected. In some cases (on heart-statlog, ks-vs-kp, 

segment and credit-a data sets), the CRG approach even outperforms both of the two base 

algorithms to a large extent. This phenomenon can support the argument that two algorithms 

can be complementary to each other, especially on the basis that they have different 

advantages and disadvantages and that they are combined in an effective way. On the other 

hand, the results show that this approach has a bias on the chosen measure of rule quality. It 

can be seen from Table 4.13 on the data sets, anneal, ionosphere, iris, lymph, wine, car, 

breast-w, hepatitis and mushroom, that at least one of the measures of rule quality fails to 

help outperform both of the two base learning algorithms namely, Prism and IEBRG. This 

phenomenon is also due partially to the variance on data side but it is still critical to 

appropriately choose the measure of rule quality to reduce the bias on the algorithms side. 

Overall, the empirical results shown in Tables 4.13 indicate that the CRG approach is useful 

for improving the quality of each single rule generated on average and thus improving the 

overall accuracy. In machine learning tasks, the main concern of a rule based learning 

algorithm is typically about using a rule set as a whole to accurately predict on unseen 

instances. In this context, some rules that are of low quality may be rarely or even never 

used to predict. In this case, although the accuracy may not be seriously affected, the 

improvement for the quality of each single rule is still necessary towards the improvement of 

overall accuracy, especially when a large set of test instances are used. On the other hand, 

the rules generated in data mining tasks aim for knowledge usuage. From this point of view, 
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the main concern would be about the reliability of each single rule when the rule is used to 

provide insights for a knowledge domain. This even makes it necessary to a larger extent to 

improve the quality of each single rule. Besides, for separate and conquer rule learning, the 

generation of each single rule would affects that of all subsequent rules. In other words, the 

quality of each single rule generated would lead to a chained impact on the generation of all 

subsequent rules. Therefore, it is important to ensure that each single rule is generated to 

have a quality as high as possible. On the basis of above description, the CRG approach 

introduced in Chapter 3 is worth to be developed further especially on reduction of bias 

originating from algorithms, such as choice of rule quality measures. 

Table 4.14 Ensemble learning results for hybrid approach 

Dataset Random Forests CCRDR Hybrid 

credit-a 85% 70% 87% 

credit-g 72% 71% 74% 

vote 97% 93% 98% 

hepatitis 85% 84% 92% 

lung-cancer 70% 86% 93% 

lymph 86% 70% 90% 

breast-cancer 65% 78% 81% 

breast-w 97% 85% 91% 

labor 88% 90% 88% 

heart-h 83% 79% 85% 

 

Table 4.14 shows that the hybrid ensemble rule based classification framework outperforms 

random forests and CCRDR in 8 out of 10 cases. On breast-w and labor data sets, the hybrid 

ensemble learning framework performs a bit worse than random forests and CCRDR. 

The results indicate that it is necessary to take both scaling up algorithms and scaling down 

data in order to comprehensively improve classification accuracy like the hybrid ensemble 

rule based classification framework. In this way, accuracy can be improved through 

reduction of both bias and variance. In contrast, random forests only involves scaling down 

data and nothing on scaling up algorithms. Therefore, random forests only enables the 

reduction of variance on data side but is biased on the decision tree learning algorithm 

chosen. CCRDR enables the reduction of both bias and variance. However, on algorithms 

side, the chosen algorithms do not collaborate with each other and thus the reduction of bias 

is not sufficient. This could be explained by the assumption that each algorithm may 

generate a rule set that has some rules of high quality but the others of low quality. In other 

words, it cannot ensure that each single rule is generated to have a high quality and thus may 

result in incorrect classifications by low quality rules. 

On the basis of above discussion, the hybrid ensemble rule based classification framework is 

strongly motivated due to its flexibility in employing rule learning algorithms and rule 

quality measures, as well as its involvement that different rule learning algorithms 

collaborate to complement each other. 

4.5 Conclusion 

This chapter shows empirical results for the validations of IEBRG against Prism, Jmid-

pruning against J-pruning and Jmax-pruning and CCRDR against Random Prism. This 

chapter also shows theoretical results for the validation of rule based networks against linear 

list. The results show that IEBRG outperforms Prism in both accuracy and efficiency in 



  

80 

  

noise free domain and is also equally comparative to Prism in noise tolerance level. With 

regards to Jmid-pruning, the results show Jmid-pruning leads PrismTCS to perform a similar 

level of classification accuracy in comparison with J-pruning and Jmax-pruning in most 

cases but outperforms the two algorithms in other cases. With regards to efficiency, Jmid-

pruning makes PrismTCS generate a rule set with a similar level of rule complexity or even 

fewer but more general rules in comparison with J-pruning and Jmax-pruning. However, 

Jmid-pruning usually performs better compared with Jmax-pruning in terms of 

computational efficiency. It is proven in both theoretical analysis and empirical validation 

that Jmid-pruning makes Prism conduct a smaller number of iterations and faster in 

generating a rule set. Therefore, Jmid-pruning seems likely to be computationally more 

efficient especially when training data is very large. In addition, rule based network is 

proven to be likely to make faster predictions than linear list in testing stage. The validation 

of CCRDR also indicates that it usually helps improve the overall classification accuracy to 

combine multiple learning algorithms with collaborations and competitions and to measure 

the weight of a classifier using precision or recall instead of overall accuracy. The validation 

of CRG also indicates that collaboration and competition involved per each rule generated 

would usually help improve the overall quality of a rule set and thus improve the overall 

accuracy of classification. The hybrid ensemble rule based classification framework, which 

involves the combination of CCRDR and CRG, is also validated empirically by comparing 

its performance with Random Forests and CCRDR. The results indicate that the hybrid 

approach is helpful to improve overall classification accuracy through reduction of both bias 

and variance. The implication of these results is further discussed in qualitative analysis 

against the research objectives in Chapter 5. 
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Chapter 5 Qualitative Evaluation 

5.1 Introduction 

Chapter 4 describes the empirical validation of IEBRG, Jmid-pruning, CCRDR and CRG, 

and theoretical validation of rule based network representation as well as discusses the 

results in quantitative context. The results indicate that these approaches usually outperform 

the existing ones introduced in Chapter 2. This chapter evaluates the completed work against 

the research objectives listed in Chapter 1 in qualitative context and to clarify the extent to 

which the completed work is significant in scientific context. 

5.2 Critical Discussion against Objectives 

This thesis introduces a unified framework for design of rule based classification systems in 

Chapter 3, which includes three operations, namely rule generation, rule simplification and 

rule representation, in order to fulfil the aim of the research as mentioned in Chapter 1. The 

significance of the three operations is justified in theoretical context. The comparative 

validation introduced in Chapter 4 also proves empirically that all of the three operations are 

significant for design of rule based classification systems in both theoretical and practical 

aspects. This is because the results show that effective rule simplification really helps 

improve both predictive accuracy and computational efficiency in training stage and that 

effective rule representation really helps improve computational efficiency in testing stage. 

As mentioned in Chapter 1, there are three objectives that need to be achieved towards the 

fulfilment of the research aim. The rest of this section introduces the extent to which each of 

the three objectives is achieved. 

With regard to objective 1, this thesis introduces novel methods and techniques with respects 

to the three operations mentioned above. The comparative validation proves that the 

development of the novel methods and techniques brings in methodological impact with 

respects to the improvement of both predictive accuracy and computational efficiency. In 

particular, IEBRG is introduced in Chapter 3 with respect to its essence. The motivation of 

its development is also justified in theoretical analysis using specific examples to show the 

advantages of the IEBRG method in comparison with Prism. Empirical results also prove 

that these theoretical advantages usually make IEBRG outperform Prism in the aspects of 

predictive accuracy and computational efficiency. On the other hand, Chapter 3 also 

introduces Jmid-pruning as a novel method of rule simplification with respect to its essence. 

The advantages of the method are theoretically analysed and thus motivate the development 

of the method towards the improvement of accuracy and efficiency in comparison with J-

pruning and Jmax-pruning. The empirical results also prove that these advantages usually 

make Jmid-pruning outperform the other two existing pruning methods. Furthermore, rule 

based network is introduced in Chapter 3 as a novel technique of rule representation. The 

importance of this representation is justified by highlighting its advantages in terms of 

graphical complexity and theoretically validated in terms of time complexity. The theoretical 

justification and validation indicate that rule based network performs a higher level of 

efficiency than decision tree and linear list. Therefore, the above descriptions indicate that 

the first objective of this research is successfully achieved. 

With regard to objective 2, this thesis introduces two advanced frameworks of ensemble 

learning for classification in Chapter 3. The first one of the frameworks is referred to as 

Collaborative and Competitive Random Decision Rules (CCRDR) as mentioned in Chapter 



  

82 

  

3. The motivation of creating the advanced framework is soundly justified by highlighting 

its advantages that are capable of filling the gaps that exist in existing approaches such as 

Random Forests and Random Prisms. The empirical validation also proves the relevance and 

importance of the CCRDR with respect to the compliments made to Random Prism. In other 

words, the advantages of CCRDR, which includes the incorporation of multiple learning 

algorithms and competitive learning and the way of determining the weight of a classifier for 

weighted majority voting, usually make the ensemble learning approach generate hypothesis 

with high robustness and reliability towards the improvement of overall classification 

accuracy. In particular, Chapter 3 introduces the way to combine different learning 

algorithms for construction of strong learners on training data. The empirical results shown 

in Chapter 4 also proves that the combination of multiple learning algorithms usually make 

the constructed leaners stronger in comparison with use of a single algorithm. On the other 

hand, a new way of determining the weight of a single classifier for weighted majority 

voting is introduced in Chapter 3. The empirical results shown in Chapter 4 also proves that 

the new way that precision is used to measure the weight usually improves the reliability of 

a single classifier in making a particular classification in comparison with use of overall 

accuracy or recall which is used or suggested in (Stahl & Bramer, 2013; Stahl & Bramer, 

2011). On the other hand, this thesis also introduces another novel framework of ensemble 

learning on the basis of the former framework. For the latter framework, the motivation is 

also soundly justified by highlighting its advantages in comparison with the collaboration 

strategy applied to CCRDR. The empirical validation also proves that collaboration and 

competition involved per rule generated would achieves a higher quality of model than that 

involved per rule set generated. Therefore, the above descriptions indicate that the second 

objective of this research is successfully achieved. 

With regard to objective 3, this thesis introduces the comparative validation including 

description of data sets, experimental setup and results in Chapter 4. Firstly, all of the chosen 

data sets are described with respect to the characteristics in general in Chapter 4 and in detail 

in Appendix VII. The reason why the data sets are chosen is also justified. Secondly, the 

experimental setup is described in detail and the ways to measure the accuracy and 

efficiency and to make comparisons are also soundly justified in order to make the results 

convincing enough. Thirdly, the results are also discussed in quantitative context. The 

reasons why the novel approaches perform better or worse than the existing ones are also 

explained by highlighting their advantages and disadvantages. As mentioned earlier, the first 

two objectives are successfully achieved, which means the results indicate that the research 

methodology developed in the thesis is scientifically significant. In particular, the research 

methodology shows theoretical significance, practical importance and methodological 

impact in scientific context, which are further specified in Chapter 6. Therefore, the above 

descriptions indicate that the third objective of this research is successfully achieved. 

5.3 Theoretical Analysis of Interpretability 

As described in Chapter 1, the interpretability of rule based systems is significant due to the 

presence of some problems from machine learning methods, size of data, model 

representation and human expertise and preferences. This section discusses how these 

factors have an influence on interpretability and lists several criteria for evaluation on the 

interpretability. 
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5.3.1 Learning Strategy 

As mentioned earlier, different machine learning algorithms usually involve different 

strategies of learning. This would usually result in differences in two aspects namely, 

transparency and model complexity. 

In terms of transparency, a rule based method aims to generate a rule set typically in the 

form of either a decision tree or if-then rules. As mentioned in Chapter 1, rule based 

knowledge representation is able to explain the reason explicitly with regard to providing an 

output and, thus, it is well transparent. This is a significant advantage compared with some 

other popular machine learning methods such as neural networks and k nearest neighbour. 

Neural network learning aims to construct a network topology that consists of a number of 

layers and that has a number of nodes, each of which represents a perceptron. As a neural 

network is working in a black box manner with regard to providing an output, the 

transparency is poor, i.e. people cannot see in an explicit way the reason why the output is 

given. On the basis of the above description, neural networks have been judged poorly 

interpretable in (Stahl & Jordanov, 2012). K nearest neighbour involves lazy learning. In 

other words, the learning algorithm does not aim to learn in depth to gain some pattern from 

data but just to make as many correct predictions as possible. In the training stage, there is 

no actual learning but just some data loaded into computer memory. In this sense, there is no 

model built in the training stage so there is nothing to be visible for people to gain some 

useful patterns.  

In terms of model complexity, as mentioned in Chapter 1, rule based methods can be divided 

into two categories namely, ‘divide and conquer’ and ‘separate and conquer’, due to the 

difference in their strategies of rule generation. As mentioned in (Fürnkranz, 1999), the latter 

approach usually generates fewer and more general rules than the former approach. The 

above phenomenon is due mainly to the strategy of rule learning. As mentioned in Chapter 2, 

the rule set generated by TDIDT needs to have at least one common attribute to be in the 

form of decision trees. The same also applies to each of the subtrees of a decision tree, 

which requires to have at least one common attribute represented as the root of the subtree. 

Due to this requirement, TDIDT is likely to generate a large number of complex rules with 

many redundant terms such as the replicated subtree problem illustrated in Chapter 2 and 

thus results in a model of high complexity. On the other hand, as mentioned above, k nearest 

neighbour does not build a model in the training stage. From this point of view, the model 

complexity is 0 as there is no model built. 

On the basis of the above description relating to transparency and complexity, the strategies 

of learning involved in learning algorithms are an impact factor that affects interpretability. 

5.3.2 Data Size 

As mentioned in Section 5.3.1, different learning algorithms involve different strategies of 

learning and thus generate models with different levels of complexity. In this sense, when 

the same data set is used, different learning algorithms would usually lead to different model 

complexity. However, for the same algorithm, data in different size would also usually result 

in the generation of models with different levels of complexity. The rest of this subsection 

justifies the potential correlation between data size and model complexity using rule based 

methods as examples. 
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As mentioned earlier, rule based methods involve the generation of rule sets. The complexity 

of a rule set is determined by the total number of rule terms, which is dependent upon the 

number of rules and the average number of terms per rule. However, the total number of rule 

terms is also affected by the data size in terms of both dimensionality (number of attributes) 

and sample size (number of instances). For example, a data set has n attributes, each of 

which has t values, and its sample contains m instances and covers all possible values for 

each of the attributes. In this example, the model complexity would be equal to Σ t i, while 

i=0, 1, 2…n, but no greater than m × n in the worst case. This indicates that a rule set 

consists of a default rule, which is also referred to as ‘else’ rule, and t i rules, each of which 

has i terms, for i=0, 1, 2…n respectively. However, each rule usually covers more than one 

instance and the rule set is expected to cover all instances. Therefore, the number of rules 

from a rule set is usually less than the number of instances from a data set. As also justified 

above, each rule would have up to n (the number of attributes) terms due to the requirement 

that each attribute can only appear once comprising one of its possible values in any of the 

rules. 

On the basis of above description, the complexity of a rule set is up to the product of 

dimensionality and sample size of a data set. 

5.3.3 Model Representation 

As mentioned in Chapter 2, different types of machine learning algorithms may generate 

models represented in different forms. For example, the ‘divide and conquer’ approach 

generates a rule set in the form of a decision tree as illustrated in Fig.1 whereas the ‘separate 

and conquer’ approach would generate if-then rules represented in a linear list. In addition, a 

neural network learning algorithm would generate a multi-layer network with a number of 

interconnected nodes, each of which represents a perceptron. As described in Section 5.3.1, 

models generated by rule based learning methods are in white box and thus well transparent 

whereas models constructed by neural network learning methods are in black box and thus 

poorly transparent. As justified in Section 5.3.1, the level of transparency can affect the level 

of interpretability. However, models that demonstrate the same level of transparency may 

also have different levels of interpretability due to their differences in terms of 

representation. The rest of this subsection justifies why and how the nature of model 

representation can affect the level of interpretability of rule based models. 

As argued in Chapter 2, decision trees suffer from the replicated subtree problem and thus 

are often difficult for people to read and understand to gain knowledge. In contrast to 

decision trees, linear lists do not have the constraint that all rules must have common 

attributes and thus reduces the presence of redundant terms in a rule set. However, 

redundancy may still arise with this representation. This is because the same attribute may 

repetitively appear in different rules as illustrated by the example below: 

Rule 1: If x=0 and y=0 Then class= 0;  

Rule 2: If x=0 and y=1 Then class= 1;  

Rule 3: If x=1 and y=0 Then class= 1;  

Rule 2: If x=1 and y=1 Then class= 0; 

 

When a training set is large, there would be a large number of complex rules generated. In 

this case, the presence of redundancy would make the rule set (represented in a linear list) 

become very cumbersome and difficult to interpret for knowledge usage. In other words, a 

large number of complex rules represented in this way is quite like a large number of long 
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paragraphs in an article that would be very difficult for people to read and understand. 

Instead, people prefer to look at diagrams to gain information. In this sense, graphical 

representation of rules would be expected to improve the interpretability of a model. More 

details about the improvement are presented in Chapter 6. 

5.3.4 Level of Expertise and Preferences 

As mentioned in Chapter 1, different people may have different levels of expertise and 

preferences and thus different levels of cognitive capability to understand the knowledge 

extracted from a particular rule based system. The rest of this subsection justifies why and 

how human expertise and characteristics may affect the interpretability of rule based systems. 

In terms of expertise, due to the fact that an expert system is used to act as a domain expert 

to extract knowledge or make predictions, people need to have the relevant expertise in order 

to be able to understand the context. From this point of view, the exactly same model may 

demonstrate different levels of interpretability for different people due to their different 

levels of expertise in this domain. 

In terms of preferences, due to the fact that different people may have different preferences 

with respect to the way of reading, the exactly same model may also demonstrate different 

levels of interpretability for different people due to their different preferences. From this 

point of view, human characteristics is also an impact factor that may affect the 

interpretability of model. 

As mentioned in Section 5.3.3, model representation can affect the interpretability with 

respect to level of redundancy. In other words, the same model can have different levels of 

interpretability depending on its representation. However, due to the difference in expertise 

and preferences, a particular representation may be understandable to some people but not to 

others. For example, some people in nature science/engineering would prefer to read 

diagrams/ mathematical formulas whereas others may dislike them. From this point of view, 

model representation, human expertise and characteristics may jointly determine the 

cognitive capability for people to read and understand the knowledge extracted from a model. 

5.3.5 Criteria for Evaluation of Interpretability 

On the basis of above description in this section, the list of the identified impact factors 

would have the causal relationship to the interpretability as illustrated in Fig 5.1. 

 

Fig.5.1 Causal relationship between impact factors and interpretability 
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Fig.5.1 indicates that the evaluation on interpretability could be based several criteria, 

namely model transparency, model complexity, model redundancy and cognitive capability, 

due to their direct relationships to interpretability. 

In terms of model transparency, as mentioned in Section 5.3.1, the evaluation is based on 

information visualization. In other words, in what percentage the information is visible or 

hidden to people. For example, a neural network learning method generates a model in black 

box, which means that the information in the model is mostly hidden to people and thus 

poorly transparent. In contrast, a rule based learning method generates a model in white box, 

which means the information in the model is totally visible to people and thus well 

transparent. 

In terms of model complexity, the evaluation is subject to the type of learning algorithms to 

some extent. In particular, with regard to rule based methods, the model complexity could be 

measured by checking the total number of rule terms in a rule set, which is referred to as rule 

set complexity. For the rule set given below, the complexity would be 8. 

Rule 1: If x=0 and y=0 Then class= 1;  

Rule 2: If x=0 and y=1 Then class= 0;  

Rule 3: If x=1 and y=0 Then class= 0;  

Rule 2: If x=1 and y=1 Then class= 1; 

In terms of model redundancy, the evaluation could be based on the extent of information 

duplication. In particular, a rule set may be represented in different forms namely, decision 

tree, linear list and rule based network. As mentioned in Section 5.3.3, the first two 

representations both may include duplicated information. For decision tree, the replicated 

subtree problem is a typical example to indicate that redundancy is a principal problem that 

arises with the representation. As can be seen from Fig.2.2 in Chapter 2, there are four 

subtrees identical. For a linear list, as can be seen from the rule set given earlier in this 

section, all of the four rules have two common attributes, namely ‘x’ and ‘y’, which are 

repeated. The authors have developed two types of network topologies in order to reduce the 

redundancy as introduced in Chapter 3. In particular, one is attribute-value-oriented and the 

other one is attribute oriented. More details on the improvements have been described in 

Chapter 3. 

In terms of cognitive capability, the evaluation would be based on empirical analysis 

following machine learning approaches. This is in order to analyse the extent to which the 

model representation is understandable to particular people. In particular, this could be 

designed as a classification task to predict the cognitive capability in qualitative aspects or as 

a regression task to predict in quantitative aspects. Briefly speaking, the analysis could be 

done by collecting the data records on expertise and preferences from previous people who 

have high similarities to the current people and then taking the majority voting (if designed 

as a classification task) or averaging (if designed as a regression task) with respect to the 

cognitive capability. The above task can be done effectively using k nearest neighbour 

algorithm. 

5.4 Research Contributions 

This thesis makes main contributions in scientific aspects. In particular, this thesis 

introduces methods and techniques in rule based classification, namely Information Entropy 

Based Rule Generation, Jmid-pruning and rule based network representation, as well as two 
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ensemble learning frameworks known as Collaborative and Competitive Random Decision 

Rules and Collaborative Rule Generation respectively. With respect to rule based network 

representation, there is also a unified network topology created to generalize the type of 

representation. This is in order to make the network topology fulfil being based on any type 

of logic such as deterministic, probabilistic and fuzzy logic. In addition, the topology is even 

generalized to fit any other type of computational networks such as neural networks, 

Bayesian network and digital circuit as introduced in Chapter 6. The contributions 

mentioned above belong to methodological novelty. This thesis also achieves conceptual 

novelty, which includes the creation of a unified framework for design of rule based systems 

and the division of rule based systems into single rule based systems and ensemble rule 

based systems. Both parts of the conceptual novelty are in the context of system theory, 

which is about the relationship between systems and components or between super-systems 

and sub-systems. This would also be seen as a novel application of system theory. Similarly, 

this thesis also involves some other novel applications. For example, the development of 

Information Entropy Based Rule Generation method involves using information entropy, 

which is a popular technique in information theory. In addition, the development of rule 

based network representation involves using graph theory and the validation of the 

representation using BigO notation.  

On the other hand, this thesis also has some contributions in philosophical aspects. In 

particular, this thesis introduces novel understanding of data mining and machine learning as 

well as the difference between the two subjects from cognitive point of view. This thesis 

also introduces novel understanding of ensemble learning in the context of learning theory 

and ensemble rule based systems in the context of system theory. In addition, novel 

applications of UML class and instance diagrams for modelling of knowledge systems are 

specified and an example that illustrates the research framework of this PhD using the UML 

diagrams is also specified in the appendix I. This thesis also involves novel applications of 

mathematical theory and object oriented programming concepts in rule based systems with 

respects to rules, rule bases and rule sets. Finally, this thesis introduces how the research 

methodology introduced in Chapter 3 strongly relates to three main theories namely 

information theory, system theory and control theory. More details on the contributions 

highlighted above are presented in Chapter 6.  

5.5 Conclusion 

This chapter evaluates the completed work against the research objectives listed in Chapter 1 

in qualitative context. It clarifies the extent to which the objectives are achieved and justifies 

why the research methodology is successfully developed and significant in scientific aspects. 

The contributions of the thesis are also summarised in scientific and philosophical aspects in 

this chapter. The advantages of the research work are further specified in Chapter 6 with 

respects to theoretical significance, practical importance, methodological impact and 

philosophical aspects. However, there is still space for further improvement in the specified 

research area in spite of that the research methodology introduced in the thesis shows 

significant advantages. Therefore, further directions of this research area are also specified 

further in Chapter 6 towards improvement of research methodologies in the area. 
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Chapter 6 Conclusion 

6.1 Theoretical Significance 

The aim of the thesis is to introduce a theoretical unified framework for design of rule based 

classification systems as mentioned in Chapter 1. The framework includes three main 

operations namely, rule generation, rule simplification and rule representation as mentioned 

in Chapter 3. The experimental results shown in Chapter 4 prove that the incorporation of 

rule simplification is relevant and can generally make rule generation more accurate and 

efficient. In addition, the theoretical results on rule representation has shown that different 

structures of a rule set can lead to different levels of efficiency in prediction stage. This 

indicates that it is very necessary to represent a rule set in a suitable structure. 

This thesis also introduces an advanced framework of ensemble learning for design of 

ensemble rule based classification systems in Chapter 3. In this framework, competitive 

learning is incorporated in training stage in order to find better classifiers and ignore worse 

classifiers for prediction stage. From theoretical point of view, this incorporation can 

improve the flexibility of the design framework. This is because different learning 

algorithms may have different levels of fitness to a particular data set due to its 

characteristics. In addition, a new strategy in determining the weight for weighted majority 

voting, which is based on precision for each individual classification, has been introduced in 

the thesis to increase the reliability of a classifier for making a particular classification. This 

is because of the fact that the overall accuracy cannot well represent the capability of a 

classifier in making predictions on instances of a particular classification, especially on 

extremely unbalanced data sets. The empirical results shown in Chapter 4 indicate that the 

two above modifications to the ensemble learning framework can improve the overall 

classification accuracy. 

The thesis also brings in a novel application of graph theory (Biggs, Lloyd, & Wilson, 1986; 

Bondy & Murty, 2008) in Chapter 3 for the development of networked rule representation as 

well as a novel application of BigO notation (Cormen , Leiserson , Rivest , & Stein, 2001) in 

Chapter 4 for the theoretical validation of the representation with respect to computational 

efficiency in prediction stage. Both concepts are widely used in discrete mathematics 

(Johnsonbaugh, 2008) and complexity theory (Gegov, 2007). 

The theoretical framework for designing rule based classification systems introduced in 

Chapter 3 can also be illustrated in the context of system theory in addition to machine 

learning. In other words, in the past research, a rule based system is conceptually referred to 

as a special type of expert system but the design of such systems mainly follows traditional 

engineering approaches rather than machine learning approaches. Although there is a special 

type of classification referred to as rule based classification in machine learning, it is usually 

in the context of rules or rule sets rather than system theory. In this thesis, the conceptual 

connection is made between rule based systems and machine learning as follows. In machine 

learning context, the objective of rule based classification is the induction of rule sets. 

Therefore, a rule based classifier is usually referred to as a rule set. In system theory context, 

the classifier can also be regarded as a rule based classification system. On the other hand, if 

the generation of classification rules is done by an ensemble learning approach, there would 

be multiple classifiers constructed as an ensemble learner. In system theory context, this can 

be seen as design of an ensemble rule based classification system which has each single 
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classifier as a subsystem of its. Therefore, the above descriptions bring new concepts to 

system engineering (Schlager, 1956; Sage, 1992) with respect to methodological differences 

in comparison with existing methodologies (Hall A. D., 1962; Goode & Machol, 1957). 

6.2 Practical Importance 

The theoretical framework introduced in the thesis is generally domain independent in real 

applications because almost all domains usually follow similar approaches in problem 

solving in machine learning context. This is a significant difference to expert based 

approaches, which are generally domain dependent and need to have expert knowledge 

acquired as the main task in the process of designing a rule based system (Aksoy, 2008; Liu 

& White, 1991; Hart, 1989; Mrozek, 1992). The framework can contribute to the 

development of expert systems for the purpose of knowledge discovery and predictive 

modelling such as medical applications as reported in (Quinlan, 1987; Quinlan, 1988; 

Michalski, Mozetic, Hong, & Lavrac, 1986).  

In the aspect of knowledge discovery, rule based systems can be used by domain experts to 

find interesting, useful and previously unknown patterns such as causal relationships. This 

can help the experts further identify new research directions as well as make necessary 

validations on their hypothesis by using real data. In classification, as mentioned in Chapter 

3, one purpose of rule representation is to present the knowledge in different ways in 

accordance with specific commercial requirements. From this point of view, the networked 

representation can effectively reflect the importance of input attributes and provide a ranking 

of the attributes according to their importance. In practice, each input attribute can be seen as 

an impact factor to which a decision outcome is subject. And the ranking of attributes can 

help domain experts identify which ones are more important, less important or irrelevant to 

the decision outcome.  

In the aspect of predictive modelling, rule based systems can be used to help with prediction 

such as recommendation, decision making and stock price prediction. In classification tasks, 

as mentioned in Chapter 3, it can help make categorical predictions in qualitative aspects on 

a single variable such as weather prediction, degree classification and faults classification. In 

this context, each classifier constructed in training stage actually acts as a decision maker to 

make decisions/predictions. If the ensemble learning approach is adopted, it means that 

multiple classifiers constructed in training stage act as a group of decision makers to achieve 

collaborative decision making. In addition, as part of the design framework for rule based 

classification systems, rule simplification can help speed up the process of modelling and 

rule representation can help make quicker decisions/predictions. 

Besides, as mentioned in Chapter 2, ensemble learning could be done in parallel, which 

means that each single machine learner is constructed independently and that only their 

predictions are combined for final decision making. This indicates that the ensemble 

learning could be done by a parallel computer to improve the computational efficiency in 

both training and testing stages. In addition, each company or organization may have 

branches in different cities or countries so the databases for the companies or organizations 

are actually distributed over the world. As the existence of high performance cloud and 

mobile computing technologies, the ensemble learning framework can be easily transplant 

into distributed or mobile computing environments such as multi-agent systems (Wooldridge, 

2002). 
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The rule based systems described in this thesis are based on Boolean logic. In other words, 

this kind of systems is usually referred to as deterministic rule based systems which make 

decisions under certainty in practice. However, rule based systems can also be designed 

based on probabilistic logic or fuzzy logic in real applications for decision making under 

probabilistic or non-probabilistic uncertainty. In this context, the theoretical framework 

introduced in the thesis can also be extended for design of probabilistic and fuzzy rule based 

systems when the two kinds of rule based systems are required in practice. In addition, the 

thesis also focuses on rule based systems for classification such as qualitative diagnostics. 

However, this kind of systems can also be used for regression and association in machine 

learning context so the theoretical framework can also be extended for design of rule based 

regression/ association systems for other practical purposes. 

6.3 Methodological Impact 

This thesis introduces some novel methods and techniques in rule based classification and 

ensemble learning in Chapter 3 namely information entropy based rule generation (IEBRG), 

Jmid-pruning, rule based networks, collaborative and competitive decision rules and 

collaborative rule generation. 

IEBRG is developed by making modifications to Prism algorithm in order to overcome the 

limitations of Prism in the aspects of clashes, underfitting and computational efficiency as 

mentioned in Chapter 3. IEBRG represents the so-called ‘from causes to effects approach’ 

for rule generation which has been proven empirically more effective and efficient than the 

so-called ‘from effects to causes approach’ represented by Prism in Chapter 4. For example, 

in comparison with the latter approach, the former approach can significantly reduce the 

number of discarded rules due to clash handling and thus reduce the unnecessary 

computational costs as well as make the machine learning tasks more effective and efficient. 

In most cases, IEBRG outperforms Prism in both classification accuracy and computational 

efficiency on noise-free data sets but also show equally competitive comparing with Prism 

on noise data set. 

Jmid-pruning is an extension of Jmax-pruning for rule simplification as mentioned in 

Chapter 3. In this context, the major modifications made to Jmax-pruning are with regard to 

improvement of computational efficiency. As mentioned in Chapter 3, for both rules and 

rule terms, if they are discarded after they have been generated, this means that the 

computation is irrelevant in data mining context and that the learning is not effective in 

machine learning context. The empirical results in Chapter 4 show that Jmid-pruning usually 

generates fewer discarded rules or rule terms and thus needs a smaller number of iterations 

for rule generation. The results indicate that Jmid-pruning achieved the improvement in the 

context of both data mining and machine learning. In addition, the Jmid-pruning 

development also involves modifications to Jmax-pruning with regard to improvement of 

classification accuracy for a special case as mentioned in Chapter 3. In the special case, 

Jmid-pruning is developed towards reducing the number of discarded rules and thus 

avoiding underfitting. It is proven empirically in Chapter 4 that Jmid-pruning usually keeps 

more rules and thus avoids loss of accuracy in the special case. It indicates that Jmid-pruning 

also makes rule sets generated more robust. 

Rule based network is a networked representation of rules or rule sets, which means a rule 

based system is represented in a networked structure. In this context, a special type of rule 

based systems can be referred to as rule based networks if the rule based systems are in the 
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form of networks. In addition, in the context of complexity theory, it is proven theoretically 

in Chapter 4 that the networked rule representation is computationally more efficient than 

decision tree and linear list representations in term of time complexity for predicting unseen 

instances. In the context of knowledge representation, rule based network can also provide a 

better interpretability to reflect the relationships between inputs and outputs as well as the 

importance of input attributes as justified in Chapter 3. 

Collaborative and competitive random classification rules is an advanced framework of 

ensemble learning, which involves modifications made to Bagging based approaches such as 

Random Prism as mentioned in Chapter 3. The incorporation of competitive learning can 

bring flexibilities into training stage in order to find as better fitness as possible between 

chosen learning algorithms and data samples. In other words, each algorithm may have 

different levels of fitness to different samples of data. Also, different algorithms may 

perform different levels of accuracy on the same sample. In this context, competitive 

learning is useful to find the best potential candidate on each particular sample. In addition, 

modification in weighted majority voting is relevant to measure more accurately the 

reliability of a classifier in making a particular decision/prediction. The empirical results 

shown in Chapter 4 prove that the above modifications usually improve the overall 

classification accuracy. In addition, the creation of another framework of ensemble learning 

called Collaborative Rule Generation also helps improve the quality of each rule generated 

by learning from training set.  

In comparison with other popular machine learning methods such as neural networks, 

support vector machine and k nearest neighbour, rule based methods have significant 

advantages in terms of model transparency and depth of learning.  

In terms of model transparency, neural network is in black box and thus poorly transparent. 

This would usually make general audiences difficult to understand the principles of making 

predictions. In data mining tasks, general audiences would only know the mappings between 

problems (inputs) and solutions (outputs) but not be aware of the reasons. In data mining 

tasks, it is more important to find the reasons between problems and solutions for knowledge 

discovery. Support vector machine is not in black box but still less transparent to general 

audiences. This is because the model built by using this algorithm is function lines as 

decision boundaries in geometric form or a piecewise function in algebraic form. This type 

of model representation would usually be less interpretable to non-technical audience who 

doesn’t know mathematics well. K nearest neighbour does not aim to build a model but just 

to memorize all data instances in the training stage. Therefore, it is less transparent for what 

it has learned due to the absence of transformation from data to information/knowledge. In 

other words, audience would usually not be interested in pure data but the pattern that is 

hidden inside the data. In contrast to the three methods above, rule based methods are in 

white box as the models built by using this type of methods are in the form of rules. Most 

audiences would easily understand the logical relationships between causes (inputs) and 

effects (outputs). Therefore, such models are highly interpretable so that it could be clearly 

known by general audiences that in what way the predictions are made. This advantage 

would usually make rule based methods more popular than other machine learning methods 

for data mining tasks to extract the knowledge discovered from data. 

In terms of depth of learning, neural network does not involve a sound theory in learning 

strategy. In contrast, it practically starts from random design of the network with regards to 
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the neurons, connections and weights for inputs and then makes corrections to the network 

topology through experience. It indicates that neural network does not have a clear learning 

outcome. Support vector machine involves a sound theory in learning strategy but the 

learning by this method is not in depth. This is because this method does not go through all 

data instances but just take a look at a few instances that are selected as support vectors. K 

nearest neighbour just involves a simple memorized learning in training stage as mentioned 

earlier. Therefore, the depth of learning using this method is quite insufficient. On the basis 

of above descriptions on support vector machine and k nearest neighbour, both methods are 

seen as lazy learning. The type of learning would just aim to identify the way to solve a 

specific problem rather than to pay attention to the essence of the solution in depth. In 

contrast to the three above methods, rule based methods would aim to discover the causal 

relationships between problems and solutions by going through the whole data sets and to 

represent the causal relationships in the form of rules. In this way, the method does not only 

find the way to solve a problem but also gets aware of the essence of the solution in depth. 

Besides, rule based methods are capable of dealing with both discrete and continuous 

attributes. In contrast, neural network and support vector machine are less effective in 

dealing with discrete attributes. K nearest neighbour is capable of dealing with ordinary 

attributes according to the rank of values such as ‘very large’, ‘large’, ‘medium’, ‘small’ and 

‘very small’. However, it is still less effective to deal with other types of discrete attributes 

for this method. Overall, the above description indicates that rule based methods would be 

useful and popular in both data mining and machine learning tasks due to their good 

transparency and depth of learning.  

6.4 Philosophical Aspects 

This thesis mainly focuses on scientific concepts. However, the concepts also have some 

philosophical aspects. 

One of the aspects is about the understanding of data mining and machine learning as well as 

the difference between them from conceptual point of view.  

There are continuously some criticises that a machine is neither able to learn nor to get 

beyond people scientifically. The argument is that machines are invented by people and the 

performance and actions of the machines are totally dependent on the design and 

implementation by engineers and programmers. It is true that machine is controlled by 

program in executing instructions. However, what if the program is about the 

implementation of a learning method? The answer would be obviously that the machine 

executes the program to learn something. On the other hand, if a machine is thought to be 

never superior to people, it would be equivalent to imply in human learning that a student 

would never be superior to his/her teacher. It is not really true especially if the student has 

the strong capability to learn independently without being taught by teachers. Therefore, it 

would also be valid in machine learning if the machine holds a good learning method. On 

the other hand, machine learning needs to be given a definition. This is because there is still 

not a unified definition of machine learning till today.  

Langley (1995) defined that "Machine learning is a science of the artificial. The field's main 

objects of study are artifacts, specifically algorithms that improve their performance with 

experience." 
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Tom Mitchell (1997) defined that "Machine Learning is the study of computer algorithms 

that improve automatically through experience." 

Alpaydin (2004) defined that "Machine learning is programming computers to optimize a 

performance criterion using example data or past experience." 

All of the three definitions would not be sufficient. The first one points out the field and 

objects of the study. The second one mentions the expected outcome of the research in the 

context of computer algorithms. The third one specifies the way to improve the performance 

of computer programs. However, none of them makes a strong relationship to 'learning 

theory'. Generally speaking, machine learning would be inspired by human learning in order 

to simulate the process of learning in computer software. In other words, the name of 

machine learning would tell people that machine is capable of learning. Therefore, the 

definition of machine learning would be in relation to learning methods, learning outcome 

and depth of learning. 

In connection to data mining, there is also some incorrect cognition. Firstly, people think 

that data mining is an application of machine learning. It is not really true. Machine learning 

methods are usually just involved in the key stage for knowledge discovery in data mining 

tasks. In other words, it is required to do data collection and pre-processing prior to 

knowledge discovery in data mining tasks. For knowledge discovery, it does not have to 

adopt machine learning methods. In principle, it could be done by experts manually walking 

through data or other statistical methods without actual learning. However, data mining is 

defined as a branch of artificial intelligence. Therefore, machine learning would be 

obviously one of the most popular approaches. On the other hand, data mining also involves 

some other tasks that are not done by machine learning techniques. For example, data 

mining needs to pre-process data such as feature selection/extraction and sampling by using 

statistical methods. In the past research, these types of methods are misclassified to machine 

learning methods. Strictly speaking, it is not really true because there is no learning done 

when these methods are used. For example, Principle Component Analysis (PCA) is just a 

statistical method to calculate the eigenvalues for a feature set and to make judgement on 

principle components and their rankings according to their corresponding eigenvalues. These 

methods can be defined as tools to support learning methods in machine learning tasks. In 

other words, machine learning also needs methods relating to data pre-processing to improve 

the performance of learning algorithms. On the basis of above description, machine learning 

strongly overlaps with data mining in scientific research. 

In scientific aspects, data mining and machine learning incorporate almost the same 

theoretical concepts and most methods, such as decision trees, Naive Bayes and k nearest 

neighbour, belong to both areas. Therefore, it seems that there is no obvious difference 

between data mining and machine learning from this point of view. However, the two 

subjects actually have very different practical purposes. Data mining is aimed at knowledge 

discovery, which means it is working in white box so that the pattern discovered can be 

visible to people and will be further used for knowledge or information. In contrast, machine 

learning is aimed at predictive modelling, which means it is working in black box and the 

model actually represents the knowledge learned from data but is only used further to help 

make predictions. From this point of view, people are not interested in the model contents 

but only in the model outputs. This is very similar to that students do not pay attention to 

principles of knowledge in depth but just want to know how to apply the knowledge they 



  

94 

  

learned. On the basis of above descriptions, data mining and machine learning thus have 

different significance in validation. In particular, data mining is generally processing large 

volume of data in order to discover as correct pattern as possible. From this point, the 

efficiency in training stage is critical as it can reflect if the chosen algorithm is 

computationally feasible in practice. The efficiency in testing stage is not critical as the 

testing aims to check the reliability of the model for further use as knowledge or information. 

However, machine learning may generally process relatively small data in real applications. 

Therefore, the efficiency is not critical in training stage but is in testing stage. This is 

because training could be done offline and aims to learn knowledge from data but testing 

aims not only to check how accurately a prediction is made by the model but also how 

quickly the prediction is made due to the fact that prediction needs to be not only right but 

also quick. On the other hand, with regard to accuracy, data mining aims to measure the 

extent to which the model can be trusted if it is further used as knowledge. In contrast, 

machine learning aims to measure how accurately the model can make predictions.  

From another point of view, the difference between data mining and machine learning is also 

like the difference between human research and learning. As mentioned above, the purpose 

of data mining is for knowledge discovery. In other words, data mining acts as a researcher 

in order to discover something new which is previously unknown. Therefore, it is like 

research tasks and thus significant for researchers to guarantee the correctness of pattern 

discovered from data. Machine learning is obviously like human learning tasks. In other 

words, machine learning acts as a learner/student to learn something new which is 

previously known. To what extent the learning outcomes are achieved is typically measured 

by assessments such as examination or coursework. From this point of view, it is more 

important to achieve a high level of predictive accuracy on unseen instances in comparison 

with the correctness of the model built. This is because predictive accuracy is like marks 

awarded from assessments whereas model correctness is like the correctness of knowledge 

learned. In fact, it is possible that students do not understand principle of knowledge in depth 

but can correctly answer exam questions to gain marks. Similarly, the model built by a 

machine learning algorithm may have bias and defects but can correctly make predictions. 

For example, some strategies in machine learning, such as conflict resolutions and assigning 

a default classification mentioned in Chapter 2, are like some examination skills in human 

learning. From this point of view, it indicates that not all of machine learning methods could 

be well used in data mining tasks. This is just like that not all of the learning methods could 

be evolved to a research method. In human learning, learning methods could be classified 

according to education levels such as fundamental education, higher education and training 

education. Generally speaking, probably only the learning methods applied in higher 

education are more likely to be evolved to research methods. This is because this type of 

methods could usually better help learners develop the understanding of principles in depth. 

For example, a learning method may help students gain skills for practical applications but 

not develop understanding of principles in depth. This would usually result in the case that 

student can well apply what they learned in depth but cannot make other people understand 

what they learned. It is equivalent to that a model built by using a machine learning method 

has a good predictive accuracy but is poorly interpretable. Therefore, some machine learning 

methods that do not aim to learn in depth would not become good data mining methods. 

The second philosophical aspect is on the understanding of ensemble learning in the context 

of learning theory. As mentioned in Chapter 2, ensemble learning can be done in parallel or 
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sequentially. In the former way, there are no collaborations among different learning 

algorithms in the training stage and only their predictions are combined in the testing stage. 

In academic learning theory, this is like team working, which means students learn 

knowledge independently and only work on group works together using their knowledge. 

Their ways of making collaborations in the works are just like the strategies in making final 

predictions in ensemble learning. In another way of ensemble learning, there are 

collaborations involved in training stage in the way that the first algorithm aims to learn 

models and then the latter one learns to correct the models etc. In academic learning theory, 

this is like group learning with interactions among students in order to improve the learning 

skills and to gain knowledge more effectively. 

The third philosophical aspect is on the understanding of ensemble rule based systems in the 

context of system theory (Stichweh, 2011). As mentioned earlier, an ensemble rule based 

system consists of a group of single rule based systems in general, each of which is a 

subsystem of the ensemble system. In other words, it is a system of systems like a set of sets 

in set theory (Jech, 2003). In addition, an ensemble rule based system can also be a 

subsystem of another ensemble system in theory. In other words, a super ensemble rule 

based system contains a number of clusters, each of which represents a subsystem that 

consists of a group of single rule based systems. 

The fourth philosophical aspect is on the understanding of rule based systems in the context 

of discrete mathematics such as mathematical logic and relations. With respect to 

mathematical logic, rule based systems theory has connections to conjunction, disjunction 

and implication. In machine learning, each rule in a rule set has disjunctive connections to 

the others. In addition, each rule consists of a number of rule terms, each of which typically 

has conjunctive connections to the others. In rule based systems, each rule is typically in the 

form of if-then. In this context, it can represent an implication from the left hand side (if part) 

to the right hand side (then part) for logical reasoning. With respect to relations, rule based 

systems can reflect a functional mapping relationship between input space and output space. 

In other words, the if-then rules in the system must not reflect any one-to-many relationships, 

which means the same inputs must not be mapped to different outputs as same as the 

restriction in functions. In rule based systems, this is usually referred to as consistency. 

The fifth philosophical aspect is on the novel applications of UML class diagrams (Avison 

& Fitzgerald, 2006) for modelling of knowledge frameworks as illustrated in Appendix I. 

The basic idea is very similar to modelling of information systems. In general, a UML class 

diagram supports to represent four types of relationship between different classes, namely 

association, inheritance, aggregation and composition (Avison & Fitzgerald, 2006). In a 

knowledge framework, there are some crossed areas such as the connection between rule 

based systems and machine learning, which can be represented by association to show that 

rule based system relates to machine learning. In addition, as mentioned earlier, the 

framework for design of rule based systems consists of three operations, namely rule 

generation, rule simplification and rule representation. This could be represented using 

aggregation/ composition to indicate that the three operations mentioned above are defined 

as three subclasses of the framework which acts as the superclass. Furthermore, both single 

rule based systems and ensemble rule based systems could be generalised to be referred to as 

rule based systems. In a UML class diagram, this could be represented by inheritance to 

show that the rule based system, which is defined as the superclass, has two subclasses 

named above. On the other hand, UML instance diagrams (Avison & Fitzgerald, 2006) are 
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also useful with regard to modelling of the knowledge framework. For example, Prism and 

IEBRG are the methods of rule generation, which can be represented by two instance 

diagrams to indicate that the two methods are defined as two instances of rule generation. 

Similarly, it is also suitable for rule simplification and representation to show that J-pruning, 

Jmax-pruning and Jmid-pruning are three instances of the former and that decision tree, 

linear list and rule based network are instances of the latter. Therefore, the basic idea of 

modelling information systems by UML class and instance diagrams is also applicable to 

modelling knowledge frameworks from this philosophical point of view. 

The sixth philosophical aspect is on the novel application of mathematical theory and object 

oriented programming concepts. As introduced in Chapter 1, rule base is used to manage 

rules that have common attributes for both inputs and outputs. Rule base can be seen as a 

component of a rule set.  

In connection to functions as part of mathematical theory, a rule base can be seen as an 

abstract function, denoted as f (x1, x2, …., xn),  without a specific expression. In this context, a 

rule can be seen as a specific function with a specific expression and domain constrained for 

its inputs such as the notation below: 

f (x1, x2) = {
 1, 𝑖𝑓x1 = 1 ∧ x2 = 1 
0, 𝑖𝑓𝑥1 = 0 ∨ 𝑥2 = 0

 

In the notation above, there are two rules: if x1=1 and x2=1 then f (x1, x2) = 1; if x1=0 and 

x2=0 then f (x1, x2) = 0. In other words, each of rules in a rule base is corresponding to a 

branch of the function that is corresponded from the rule base. 

In connection to object oriented programming concepts, a rule set can be seen as a subclass 

of abstract rule based systems. This is because a rule based system consists of a set of rules 

as mentioned in Chapter 1. In this context, a rule based system can be defined as a class and 

a rule set as an object of the system in the concept of object oriented programming. As it is 

unknown with respect to what rules a rule set consists of, the class that is defined to 

represent a rule based system would be abstract, which relates to abstraction as a part of 

object oriented techniques. As mentioned above, a rule base can be seen as an abstract 

function. It is actually corresponding to an abstract method in object oriented programming. 

A rule set consists of a number of rule bases which would have different input and output 

attributes. It is corresponding to another object oriented technique known as polymorphism. 

This is because it is achievable that different functions (methods) have the same name but 

different input parameters and types of return values. Therefore, rule bases in a rule set could 

be seen as abstract (functions) methods, which have the same name but different input 

parameters and types of return values, in a class defined for a type of rule based systems to 

which the rule set belongs. In addition, each of rules in a rule base is corresponding to a 

branch of if-then-else statement. 

In practice, when a training set is given, an abstract class is defined for rule based systems 

with a number of rule bases. This is because all of possible rule bases could be derived from 

attributes information of the dataset. Each of the rule bases is defined by an abstract function 

(method). For each abstract function, its input parameters and type of the return value are 

specified according to the input and output attributes related to the corresponding rule base. 

Once a particular rule based learning algorithm is chosen, a subclass of the abstract class, 

which is corresponding to a rule set generated using this algorithm, is created. All abstract 
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functions, each of which represents a rule base, are override and overloaded in the subclass. 

This indicates that each of rule bases is filled by rules if the rules belong to the rule base or 

defined as null if none of the generated rules fits the rule base. In programming, it is 

equivalent to implement a function which is originally abstract by providing a specific 

program statement or leaving the body of the function blank. Once a test instance is given, 

an object of the subclass is specified to call the functions, each of which is corresponding to 

a rule base, in order to make predictions. 

The last philosophical aspect is on the relationship of the research methodology to three 

main theories namely information theory, system theory and control theory. From 

philosophical point of view, the three main theories mentioned above could be understood 

by the following context: 

Information theory generally means passing information from one property to another one. 

In the process of information passing, it actually happens to have interactions between the 

two properties. This could be seen as a relationship to system theory. In other words, the two 

properties are supposed to be two components of a system. However, it is necessary to 

ensure that the information passing is effective and efficient with high quality. This is 

because in the process of information passing there may be noise that is present and 

interferes the transmission. In addition, there may be some information that is confidential to 

any third parties. In this case, the information usually needs to be encrypted on senders’ side 

and then decrypted on receivers’ side. The above description would relate to control theory.  

In many other subject areas, the three main theories are also highly significant. A typical 

example would be in humanities and social science. This world consists of humans, animals, 

plants and all other non-biological individuals/systems. From this point of view, no one is 

living alone in the world. Therefore, everyone needs to have interactions with others. This 

indicates the involvement of system theory to identify the way to interact among 

individuals/groups. However, the way to achieve interactions would typically be through 

information passing. The way of passing information could be in many different forms such 

as oral, written and body languages and some other actions. This brings in control theory in 

order to effectively control the way of information passing. This is because inappropriate 

way may result in serious accidents due to misunderstanding of information or unaccepted 

actions on receivers’ side. Therefore, the three main theories would composite an organized 

entirety in real applications for most types of problem solving. 

In this thesis, the research methodology is introduced along all of the three main theories. In 

particular, the research methodology includes a unified framework for design of single rule 

based systems. This framework is illustrated by a UML class diagram in Appendix I. As 

introduced in Chapter 3, this framework consists of three modules namely rule generation, 

rule simplification and rule representation. This could be seen as an application of system 

theory. In rule generation, a novel method referred to as IEBRG is based on entropy which is 

a technique of information theory. In rule simplification, a novel pruning algorithm called 

Jmid-pruning is based on J-measure which is also an information theoretical technique. On 

the other hand, both rule simplification and rule representation are incorporated into the 

framework in order to control machine learning tasks in training stage and testing stage 

respectively. In particular, rule simplification aims to effectively control the generation of 

rules towards reduction of overfitting and rule complexity as well as efficiency in training 
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stage. Rule representation aims to effectively control the process of prediction towards 

improvement of efficiency in testing stage. 

This thesis also has two frameworks of ensemble learning introduced. As introduced in 

Chapter 2, ensemble learning generally aims to combine different models that are generated 

by a single or multiple algorithm(s) in order to achieve collaborative predictions. As 

introduced in Chapter 3, in the two frameworks, there are both collaborations and 

competitions involved. Multiple algorithms make up an ensemble learning systems and 

multiple generated rule sets composite an ensemble rule based classifier. Therefore, the 

creation of the two frameworks involves the application of system theory. However, 

competitions among classifiers aim to choose the ones of higher quality. The way to measure 

the quality of each classifier is significant and critical and thus control theory needs to be 

involved. In addition, in prediction stage, each individual classifier would provide the final 

prediction maker with a prediction as well as its confidence. It indicates that there is 

information passing between individuals and thus the application of information theory is 

also involved in this environment. A unified framework for control of machine learning 

tasks is proposed as part of future work and introduced along the three main theories in 

Section 6.5. 

6.5 Future Work 

As mentioned in Chapter 3, several theoretical frameworks are introduced in the thesis for 

design of rule based classification systems and ensemble learning. These frameworks can be 

combined for design of ensemble rule based systems. In this context, the combined 

framework will further be transformed into another framework referred to as networked rule 

bases (Gegov, 2010; Gegov, Petrov, & Vatchova, 2010; Gegov, Petrov, Vatchova, & 

Sanders, 2011). A networked rule base consists of a number of single rule bases as 

illustrated in Fig.6.1 below. 

 

Fig.6.1 Rule Based Network (modular rule bases) (Gegov, 2010) 

In this network, each node represents a rule base. The nodes can be connected sequentially 

or in parallel. In particular, each of the variables labelled xm-1, where m represents the 

number of layer in which the node locates, represents an input and y represents the output. In 
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addition, each of these labels labelled zm-2 represents an intermediate variable, which means 

this kind of variables are used as outputs for a former rule base and then again as inputs for a 

latter rule base as illustrated in Fig.6.1. On the other hand, there are two kinds of nodes 

representing rule bases as illustrated in Fig.6.1, one of which is a type of standard rule bases 

and labelled RBm-1. This kind of nodes are used to transform the input(s) to output(s). The 

other type of nodes, in addition to the standard type, represent identities. It can be seen from 

Fig.6.1 that this type of nodes do not make changes between inputs and outputs. This 

indicates that the functionality of an identity is just like an email transmission, which means 

that the inputs are exactly the same as the outputs.  

In practice, a complex problem could be subdivided into a number of smaller sub-problems. 

The sub-problems may need to be solved sequentially in some cases. They can also be 

solved in parallel in other cases. In connection to machine learning context, each sub-

problem could be solved by using a machine learning approach. In other words, the solver to 

each particular sub-problem could be a single machine learner or an ensemble learner of 

which a single rule base can make up.  

On the other hand, a unified rule based network topology is introduced in Chapter 3. 

However, this topology can be generalized to fit any type of networks which are used to do 

computation such as neural networks, Bayesian networks and digital circuits. The topology 

is illustrated in Fig.6.2 below. 

 

Fig.6.2 Generic Computational Network 

In this network, the middle layers represent computation layers, which means that each 

nodes in this kind of layers represents a special type of computation such as conjunction, 

disjunction, weighted majority voting, weighted averaging and logical AND, OR and NOT. 

These operations can also be used in the same network representing a hybrid computational 

network topology. In such a type of network, there can be either a single computation layer 

or multiple computation layers as illustrated in Fig.6.2. This is very similar to the neural 

network topology which could be of either single layer perception or multi-layer perception. 

Similar to the rule based network topology introduced in Chapter 3 as well as neural network, 
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each input is assigned a weight when its corresponding value is used for computation. An 

output from a node in each computation layer is used again as an input with a weight to 

another node in the latter computation layer if applicable. In practice, this network topology 

can potentially fulfil the requirement that multiple types of computation must be combined 

to solve a particular problem. 

So far, ensemble learning concepts introduced in machine learning literatures mostly lie in 

single learning tasks. In other words, all algorithms involved in ensemble learning need to 

achieve the same learning outcomes in different strategies. This is defined as local learning 

by the author in the thesis. In this context, the further direction would be definitely to extend 

the ensemble learning framework to achieve global learning by means of different learning 

outcomes. The different learning outcomes are actually not independent of each other but 

have interconnections. For example, the first learning outcome is a prerequisite for achieving 

the second learning outcome. This direction of extension is towards evolving machine 

learning approaches in a universal vision. To fulfil this objective, the networked rule bases 

can actually provide this kind of environments for discovering and resolving problems in a 

global way. In military process modelling and simulation, each networked rule base can be 

seen as a chain of commands (chained rule bases) with radio transmissions (identities). In a 

large scale raid, there may be more than one chain of commands. From this point of view, 

the networked topology should have more than one networked rule bases parallel to each 

other. All these networked rule bases should finally connect to a single rule base which 

represents the centre of command.  

 

Fig.6.3 Unified Framework for Control of Machine Learning Tasks 

Besides, a unified framework for control of machine learning tasks is proposed as illustrated 

in Fig.6.3. This is in order to effectively control the pre-processing of data and to empirically 

employ learning algorithms and models generated. As mentioned in Chapter 1, it is also 

relevant to scale down data in addition to scaling up algorithms for improvement of 

classification performance. In fact, database is daily updated in real applications, which 

results in the gradual increase of data size and the changes to pattern existing in the database. 

In order to avoid the decrease of computational efficiency, the size of sample needs to be 

determined in an optimal way. As mentioned in (Stahl & Bramer, 2013), the difficulty in 
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sampling is to determine the size of sample. In addition, it is also required to avoid the loss 

of accuracy. From this point of view, the sampling is critical not only in the size of sample 

but also in the representativeness of the sample. Feature selection/extraction is another 

critical task with regard to pre-processing of data. As mentioned in Chapter 1, high 

dimensional data would usually results in high computational costs. In addition, it is also 

very likely to contain irrelevant attributes which result in noise and coincidental pattern. In 

some cases, it is also necessary to effectively detect noise if the noise is introduced 

artificially. For example, noise may be introduced in a dataset due to typing errors or illegal 

modifications from hackers. A potential solution would be using association rules to detect 

that the value of an attribute is incorrect while the attribute-value pair appears in a data 

instance together with other attribute-value pairs. Appropriate employment of learning 

algorithms and models are highly relevant because of the fact that there are many machine 

learning algorithms existing but no effective ways to determine which ones are suitable to 

work on a particular data set. Traditionally, the decision is made by experts based on their 

knowledge and experience. However, it is very difficult to judge the correctness of the 

decision prior to empirical validation. In real applications, it is not realistic to frequently 

change decisions after confirming that the chosen algorithms are not suitable.  

The above description motivates the creation of the framework for control of machine 

learning tasks. In other words, this framework aims to use machine learning techniques to 

control machine learning tasks. In this framework, the employment of both algorithms and 

models follows machine learning approaches. The suitability of an algorithm and the 

reliability of a model are measured by statistical analysis on the basis of historical records. 

In particular, each algorithm in the algorithm base as illustrated in Fig.6.3 is assigned a 

weight which is based on its performance in previous machine learning tasks. The weight of 

an algorithm is very similar to the impact factor of a journal which is based on its overall 

citation rate. In addition, each model generated is also assigned a weight which is based on 

its performance on latest version of validation data in a database. After the two iterations of 

employment, a knowledge base is finalised and deployed for applications as illustrated in 

Fig.6.3. 

This unified framework actually includes three main theories involved namely, information 

theory, system theory and control theory as introduced in Section 6.4. In this framework, 

there are four modules namely, data pre-processing, algorithms employment, training and 

validation, and four bases namely, database, algorithm base, model base and knowledge base. 

The four bases are used to store and manage information in different forms which is in 

relation to information theory. The four modules are created to control machine learning 

tasks with respect to decision making in data sampling, use of algorithms and build and 

validation of models, which relates to control theory. There are also interactions between 

modules such as passing of chosen data, algorithms and models. What is passing between 

modules would be a special form of information, which could be seen as a kind of 

communication and thus relates to information theory. In addition, the interactions between 

modules would be seen as behaviour of coordination between systems, which relates to 

system theory. 

The unified framework illustrated in Fig.6.3 would provide a Marco vision for research in 

data mining and machine learning. This would satisfy with real applications of machine 

learning. This is because in reality machine learning tasks are usually undertaken in complex 

environments unlike in laboratories. In the latter environment, research is usually undertaken 
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in a Micro vision and in a pre-processed environment which ignores or eliminates all other 

impact factors with regard to performance of machine learning tasks. In the future work, the 

research methodology introduced in Chapter 3 together with other existing approaches 

would be integrated into the framework for simulation of the control process. 

As mentioned in Chapter 1, the main focus of the thesis is on rule based systems for 

classification. However, rule based systems can also be used for regression (Freedman, 2005; 

Armstrong, 2012; Okafor , 2005) and association (Dietrich, 1991; Aitken, 1957). Therefore, 

all of the completed and future work mentioned in the thesis can also be extended to 

regression and association subject areas for design of rule based systems in the future. On 

the other hand, the research methodology introduced in Chapter 3 is mainly based on 

deterministic. In the future, the methodology can also be extended to be based on 

probabilistic and fuzzy logic in practical applications. 

Chapter 6 lists some impact factors for interpretability of rule based systems as well as some 

criteria for evaluation of the interpretability. In general, it applies to any types of expert 

systems. Therefore, in order to improve the interpretability of expert systems, it is necessary 

to address the four aspects namely, scaling up algorithms, scaling down data, selection of 

model representation and assessment of cognitive capability, in accordance with the criteria 

for evaluation of the interpretability. 

Scaling up algorithms can improve the transparency in terms of depth of learning. For 

example, rule based methods usually generate models with good transparency because this 

type of learning is in a great depth and on an inductive basis. On the other hand, the 

performance of a learning algorithm would also affect the model complexity as mentioned in 

Chapter 5. In this case, the model complexity could be reduced by scaling up algorithms. In 

the context of rule based models, complexity could be reduced through proper selection of 

rule generation approaches. As mentioned in Chapter 2, the separate and conquer approach 

is usually likely to generate less complex rule sets than the divide and conquer approach. In 

addition, it is also helpful to employ pruning algorithms to simplify rule sets as introduced in 

Chapter 2. In this way, some redundant or irrelevant information is removed and thus the 

interpretability is improved. 

Scaling down data usually results in the reduction of model complexity. This is because 

model complexity is usually affected by the size of data. In other words, if a data set has a 

large number of attributes with various values and instances, the generated model is very 

likely to be complex. As introduced in Chapter 1, the dimensionality issue can be resolved 

by using feature selection techniques, such as entropy (Shanno, 1948) and information gain, 

both of which are based on information theory pre-measuring uncertainty present in the data. 

In other words, the aim is to remove those irrelevant attributes and thus make a model 

simpler. In addition, the issue can also be resolved through feature extraction methods, such 

as Principal Component Analysis (PCA) (Jolliffe, 2002) and Linear Discriminant Analysis 

(LDA) (Yu & Yang, 2001). On the other hand, when a dataset contains a large number of 

instances, it is usually required to take advantage of sampling methods to choose the most 

representative instances. Some popular methods comprise simple random sampling (Yates, 

Moore, & Starnes, 2008), probabilistic sampling (Deming, 1975) and cluster sampling 

(Kerry & Bland, 1998). Besides, it is also necessary to remove attribute values due to the 

presence of irrelevant attribute values. For example, in a rule based method, an attribute-

value pair may be never involved in any rules as a rule term. In this case, the value of this 
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attribute can be judged irrelevant and thus removed. In some cases, it is also necessary to 

merge some values for an attribute in order to reduce the attribute complexity especially 

when the attribute is continuous with a large interval. There are some ways to deal with 

continuous attributes such as ChiMerge (Kerber, 1992) and use of fuzzy linguistic terms 

(Ross, 2004). 

As introduced in Chapters 2 and 3, a change of model representation would usually result in 

the change of model interpretability. As also introduced, rule based models could be 

represented in different forms such as decision tree and linear list. These two representations 

usually have redundancy present. For example, a decision tree may have the replicated 

subtree problem and a linear list may have the same attribute appear in different rules on a 

repetitive basis. This kind of problem could be resolved by converting to a rule based 

network representation as argued in Chapter 3. For other types of machine learning 

algorithms, it is also applicable to change the model representation in order to improve the 

interpretability. For example, mathematical formulas could be transformed into graphs or 

networks to make it easier to read and understand. 

However, due to the difference in levels of expertise and personal preferences from different 

people, the same model representation may show different levels of comprehensibility for 

different people. For example, people who do not have a good background in mathematics 

may not like to read information in mathematical notations. In addition, people in social 

sciences may not understand technical diagrams used in engineering fields. On the basis of 

the above description, cognitive capability needs to be assessed to make the knowledge 

extracted from expert systems more interpretable to people in different domains. This can be 

resolved by using expert knowledge in cognitive psychology and human-machine 

engineering, or by following machine learning approaches to predict the capability as 

mentioned in Chapter 5. 

The above discussion recommends that the four ways, namely, scaling up algorithms, 

scaling down data, selection of model representation and assessment of cognitive capability, 

can be adopted towards potential improvement of interpretability of expert systems in the 

future. 
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Appendix I UML Diagrams 
 

 

Fig.A.1 UML Use Case Diagram for machine learning scenarios 

 

 

Fig.A.2 UML Class Diagram for Research Framework 
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Fig.A.3 UML Instance Diagram for generation, simplification and representation of rules 

 

 

Fig.A.4 UML Sequence Diagram for machine learning systems 
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Appendix II Data Flow Diagram 
 

 

Fig.A.5 Chained relationship between data mining and machine learning 
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Appendix III Glossary 
 

Terms in Machine Learning  Terms in other related areas 

attribute, feature variable, field, column 

instance record, data point, tuple, row 

training, learning modelling, building, construction 

testing, prediction verification, validation, checking 

classifier, learner model, expert system, hypothesis 

inconsistency overlapping 

missing value unknown value 

dimensionality  number of attributes/variables 

data size number of instances/data points 

classification categorical prediction, decision  

regression numerical prediction 

association correlation 

clustering grouping 

noise incorrect record 

classification/regression/association rules if-then rules, decision rules 

classification/regression trees  decision trees 

efficiency in training stage modelling efficiency 

efficiency in testing stage prediction efficiency 

computational complexity time complexity 

rule based classifier rule set 

rule based learner rule based model, rule based system 

rule based ensemble learner ensemble rule based system 

class, label output 

attribute value input/output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

114 

  

Appendix IV Empirical Results on Medical Data 
 

Table A.1 accuracy for IEBRG vs Prism  

Dataset  Prism IEBRG Random Classifier 

ALL-AML 91% 91% 47% 

colonTumor 80% 73% 52% 

DLBCLOutcome 56% 48% 48% 

DLBCLTumor 76% 79% 61% 

DLBCL-Stanford 80% 92% 49% 

LungCancer-Harvard2 80% 99% 50% 

lung-Michigan 94% 94% 80% 

lungcancer-ontario 60% 57% 49% 

MLL_Leukemia 80% 60% 33% 

NervousSystem 42% 50% 53% 

prostate_tumorVSNormal 26% 74% 59% 

BCR-ABL 96% 98% 89% 

E2A-PBX1 100% 98% 84% 

Hyperdip50 93% 96% 68% 

MLL 92% 99% 89% 

T-ALL 100% 100% 77% 

TEL-AML1 95% 88% 63% 

pos_neg_100 61% 73% 50% 

 

Table A.2 number of rules and average number of terms 

Dataset  Prism IEBRG 

 Count(rules) Ave(terms) Count (rules) Ave(terms) 

ALL-AML 2 1.0 2 1.0 

colonTumor 3 1.0 4 1.0 

DLBCLOutcome 4 1.0 3 1.0 

DLBCLTumor 4 1.0 3 1.0 

DLBCL-Stanford 3 1.0 3 1.0 

LungCancer-Harvard2 2 1.0 2 1.0 

lung-Michigan 2 1.0 2 1.0 

lungcancer-ontario 4 1.0 3 1.0 

MLL_Leukemia 4 1.0 3 1.0 

NervousSystem 4 1.0 4 1.0 

prostate_tumorVSNormal 4 1.0 4 1.0 

BCR-ABL 3 1.0 3 1.0 

E2A-PBX1 2 1.0 2 1.0 

Hyperdip50 5 1.0 4 1.0 

MLL 4 1.0 2 1.0 

T-ALL 2 1.0 2 1.0 

TEL-AML1 4 1.0 3 1.0 

pos_neg_100 12 1.0 12 1.0 
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Table A.3 numbers of generated terms and discarded terms 

Dataset  Prism IEBRG 

 Generated terms Dropped terms Generated terms Dropped terms 

ALL-AML 2 0 2 0 

colonTumor 3 0 4 0 

DLBCLOutcome 4 0 3 0 

DLBCLTumor 4 0 3 0 

DLBCL-Stanford 3 0 3 0 

LungCancer-Harvard2 2 0 2 0 

lung-Michigan 2 0 2 0 

lungcancer-ontario 4 0 3 0 

MLL_Leukemia 4 0 3 0 

NervousSystem 4 0 4 0 

prostate_tumorVSNormal 4 0 4 0 

BCR-ABL 3 0 3 0 

E2A-PBX1 2 0 2 0 

Hyperdip50 5 0 4 0 

MLL 4 0 2 0 

T-ALL 2 0 2 0 

TEL-AML1 4 0 3 0 

pos_neg_100 12 0 12 0 

 

Table A.4 runtime in million seconds for IEBRG vs Prism 

Dataset  Prism IEBRG 

ALL-AML 41642 2765 

colonTumor 21313 1469 

DLBCLOutcome 85472 4438 

DLBCLTumor 92316 5203 

DLBCL-Stanford 32970 1750 

LungCancer-Harvard2 49627 19829 

lung-Michigan 56721 5406 

lungcancer-ontario 9797 985 

MLL_Leukemia 89003 9672 

NervousSystem 60377 5516 

prostate_tumorVSNormal 179991 12688 

BCR-ABL 35876 14797 

E2A-PBX1 42611 11970 

Hyperdip50 70237 18064 

MLL 40939 6688 

T-ALL 60799 12891 

TEL-AML1 43643 15532 

pos_neg_100 9282 8422 
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Table A.5 clash rate for IEBRG vs Prism 

Dataset Prism IEBRG 

ALL-AML 0.0 0.0 

colonTumor 0.0 0.0 

DLBCLOutcome 0.0 0.0 

DLBCLTumor 0.0 0.0 

DLBCL-Stanford 0.0 0.0 

LungCancer-Harvard2 0.0 0.0 

lung-Michigan 0.0 0.0 

lungcancer-ontario 0.0 0.0 

MLL_Leukemia 0.0 0.0 

NervousSystem 0.0 0.0 

prostate_tumorVSNormal 0.0 0.0 

BCR-ABL 0.0 0.0 

E2A-PBX1 0.0 0.0 

Hyperdip50 0.0 0.0 

MLL 0.0 0.0 

T-ALL 0.0 0.0 

TEL-AML1 0.0 0.0 

pos_neg_100 0.0 0.0 
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Appendix V Recalls on Rule Generation 
 

Table A.6 Recalls for anneal data 

Class index Prism IEBRG 

0 13% 0% 

1 27% 51% 

2 92% 93% 

3 N.A N.A 

4 97% 97% 

5 88% 100% 

 

Table A.7 Recalls for balance-scale data 

Class index Prism IEBRG 

0 44% 82% 

1 0% 4% 

2 33% 56% 

 

Table A.8 Recalls for credit-a data 

Class index Prism IEBRG 

0 75% 81% 

1 46% 73% 

 

Table A.9 Recalls for credit-g data 

Class index Prism IEBRG 

0 73% 85% 

1 37% 24% 

 

Table A.10 Recalls for iris data 

Class index Prism IEBRG 

0 100% 100% 

1 16% 92% 

2 92% 88% 

 

Table A.11 Recalls for breast-cancer data 

Class index Prism IEBRG 

0 55% 69% 

1 59% 45% 

 

Table A.12 Recalls for breast-w data 

Class index Prism IEBRG 

0 93% 94% 

1 87% 86% 
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Table A.13 Recalls for diabetes data 

Class index Prism IEBRG 

0 74% 83% 

1 44% 50% 

 

Table A.14 Recalls for heart-statlog data 

Class index Prism IEBRG 

0 60% 71% 

1 73% 65% 

 

Table A.15 Recalls for hepatitis data 

Class index Prism IEBRG 

0 47% 50% 

1 80% 87% 

 

Table A.16 Recalls for ionosphere data 

Class index Prism IEBRG 

0 70% 55% 

1 99% 99% 

 

Table A.17 Recalls for kr-vs-kp data 

Class index Prism IEBRG 

0 30% 90% 

1 75% 77% 

 

Table A.18 Recalls for lymph data 

Class index Prism IEBRG 

0 100% 50% 

1 72% 80% 

2 57% 74% 

3 50% 0% 

 

Table A.19 Recalls for mushroom data 

Class index Prism IEBRG 

0 91% 87% 

1 95% 94% 

 

Table A.20 Recalls for segment data 

Class index Prism IEBRG 

0 51% 73% 

1 88% 100% 

2 43% 49% 

3 24% 62% 

4 40% 45% 

5 58% 92% 

6 86% 98% 
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Table A.21 Recalls for zoo data 

Class index Prism IEBRG 

0 95% 100% 

1 95% 95% 

2 20% 0% 

3 8% 100% 

4 25% 100% 

5 25% 13% 

6 0% 100% 

 

Table A.22 Recalls for wine data 

Class index Prism IEBRG 

0 85% 92% 

1 75% 89% 

2 73% 71% 

 

Table A.23 Recalls for car data 

Class index Prism IEBRG 

0 100% 91% 

1 0% 35% 

2 0% 10% 

3 0% 0% 

 

Table A.24 Recalls for page-blocks data 

Class index Prism IEBRG 

0 97% 96% 

1 62% 67% 

2 36% 0% 

3 83% 72% 

4 26% 7% 

 

Table A.25 Recalls for vote data 

Class index Prism IEBRG 

0 99% 91% 

1 54% 83% 

 

Table A.26 Recalls for lung-cancer data 

Class index Prism IEBRG 

0 78% 33% 

1 87% 87% 

 

Table A.27 Recalls for cmc data 

Class index Prism IEBRG 

0 45% 50% 

1 0% 15% 

2 25% 18% 
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Table A.28 Recalls for optdigits data 

Class index Prism IEBRG 

0 18% 65% 

1 20% 25% 

2 11% 18% 

3 20% 9% 

4 45% 53% 

5 13% 18% 

6 51% 25% 

7 31% 45% 

8 12% 20% 

9 15% 9% 

 

Table A.29 Recalls for contact-lenses data 

Class index Prism IEBRG 

0 40% 40% 

1 25% 50% 

2 67% 67% 

 

Table A.30 Recalls for colonTumor data 

Class index Prism IEBRG 

0 59% 50% 

1 88% 83% 

 

Table A.31 Recalls for DLBCLOutcome data 

Class index Prism IEBRG 

0 69% 53% 

1 23% 27% 

 

Table A.32 Recalls for DLBCL-Stanford data 

Class index Prism IEBRG 

0 79% 96% 

1 57% 61% 

 

Table A.33 Recalls for lung-Michigan 

Class index Prism IEBRG 

0 99% 99% 

1 0% 0% 

 

Table A.34 Recalls for lungcancer-ontario 

Class index Prism IEBRG 

0 75% 67% 

1 0% 7% 
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Table A.35 Recalls for centralNervousSystem-outcome data 

Class index Prism IEBRG 

0 52% 29% 

1 36% 62% 

 

Table A.36 Recalls for pos_neg_100 data 

Class index Prism IEBRG 

0 32% 16% 

1 70% 91% 

 

Table A.37 Recalls for prostate_outcome data 

Class index Prism IEBRG 

0 25% 0% 

1 15% 69% 

 

Table A.38 Recalls for weather data 

Class index Prism IEBRG 

0 22% 33% 

1 60% 40% 
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Appendix VI Empirical Results on Noise Tolerance 
 

 

Fig. A.6 Noise tolerance on breast cancer 

 

Fig.A.7 Noise tolerance on kr-vs-kp 
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Fig.A.8 Noise tolerance on contact lenses 

 

Fig.A.9 Noise tolerance on zoo 
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Fig.A.10 Noise tolerance on lympth 
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Appendix VII Characteristics of Data Sets 
 

Name  Attribute Types #Attributes  #Instances #Classes 

anneal  discrete, continuous 38 798 6 

credit-g discrete, continuous 20 1000 2 

diabetes  discrete, continuous 20 768 2 

heart-stalog continuous 13 270 2 

ionosphere continuous 34 351 2 

iris continuous 4 150 3 

kr-vs-kp discrete 36 3196 2 

lymph discrete, continuous 19 148 4 

segment  continuous 19 2310 7 

zoo discrete, continuous 18 101 7 

wine continuous 13 178 3 

breast-cancer discrete 9 286 2 

car discrete 6 1728 4 

breast-w continuous 10 699 2 

credit-a discrete, continuous 15 690 2 

heart-c discrete, continuous 76 920 4 

heart-h discrete, continuous 76 920 4 

hepatitis discrete, continuous 20 155 2 

mushroom discrete 22 8124 2 

vote discrete 16 435 2 

lung-cancer discrete 32 57 3 

labor discrete, continuous 17 57 2 

contact-lenses discrete  4 24 3 

banlance-scale discrete  4 625 3 
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Name  Attribute Types #Attributes  #Instances #Classes 

weather discrete, continuous 5 14 2 

nursery discrete 9 12960 5 

ti-tac-toe discrete 9 958 2 

yeast continuous 8 1484 2 

page blocks continuous 10 5473 5 

opt digits continuous 64 5620 10 

dorothea continuous 100000 1950 2 

elcoli continuous 23 336 2 

glass continuous 10 214 7 

moke problems discrete 7 432 2 

shuttle discrete 10 58000 7 

cmc discrete, continuous 10 1473 3 

ALL-AML continuous 7130 72 2 

colonTumor continuous 2001 62 2 

DLBCLOutcome continuous 7130 58 2 

DLBCLTumor continuous 7130 77 2 

DLBCL-Stanford continuous 4027 47 2 

LungCancer-Harvard2 continuous 12534 32 2 

lung-Michigan continuous 7130 96 2 

lungcancer-ontario continuous 2881 39 2 

MLL_Leukemia continuous 12583 72 3 

NervousSystem continuous 7130 60 2 

prostate_tumorVSNormal continuous 12601 136 2 

BCR-ABL continuous 12559 327 2 

E2A-PBX1 continuous 12559 327 2 

Hyperdip50 continuous 12559 327 2 
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Name  Attribute Types #Attributes  #Instances #Classes 

MLL continuous 12559 327 2 

T-ALL continuous 12559 327 2 

TEL-AML1 continuous 12559 327 2 

pos_neg_100 continuous 928 13375 2 

analcatdata_happiness discrete, continuous 4 60 3 

analcatdata_asbestos discrete, continuous 4 83 3 
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