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ABSTRACT

Cosmological N-body simulations are the standard tools to study the emergence of the observed
large-scale structure of the Universe. Such simulations usually solve for the gravitational
dynamics of matter within the Newtonian approximation, thus discarding general relativistic
effects such as the coupling between matter and radiation (= photons and neutrinos). In this
Letter, we investigate novel hybrid simulations that incorporate interactions between radiation
and matter to the leading order in General Relativity, whilst evolving the matter dynamics in full
non-linearity according to Newtonian theory. Our hybrid simulations come with a relativistic
space—time and make it possible to investigate structure formation in a unified framework. In
this work, we focus on simulations initialized at z = 99 and show that the extracted matter
power spectrum receives up to 3 per cent corrections on very large scales through radiation.
Our numerical findings compare favourably with linear analytical results from Fidler et al.,
from which we deduce that there cannot be any significant non-linear mode-coupling induced

through linear radiation corrections.
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1 INTRODUCTION

According to the A cold dark matter (CDM) model, we live in a
Universe that is nowadays dominated by a cosmological constant
(A) and CDM, whereas the impact of baryons and radiation (i.e.
photons and neutrinos) is secondary. None the less, at sufficiently
early times, baryons and radiation played yet a major role in the
early gravito-electroweak dynamics and were, for example, respon-
sible for the observed acoustic oscillations in the cosmic microwave
background (CMB; Smoot et al. 1992; Netterfield et al. 2002). Cos-
mological structure formation is mainly the result of gravitational
instability, with initial conditions set in the period of recombination
that is around 380 000 yr after the big bang. Electro-weak inter-
actions freeze out at recombination and baryons are released from
their tight coupling to radiation. Subsequently, this freeze-out in
interactions enables the matter to cluster significantly for the first
time.
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At early times such as recombination, a Newtonian approxima-
tion of structure formation is not appropriate. Instead, the evolution
of the multifluid components (dark matter, baryons, neutrinos and
photons) is governed by the coupled set of Einstein—Boltzmann
equations, i.e. General Relativity (GR). At early times, the lin-
earized Einstein—Boltzmann equations are an excellent description,
but cosmological structure formation for matter becomes fairly
quickly a non-linear problem and unfortunately, solving the cou-
pled set of Einstein—Boltzmann equations in full non-linearity is
not yet feasible. Instead, it is common to solve for the process
of cosmological structure formation using cosmological N-body
simulations (Stadel 2001; Teyssier 2002; Springel 2005). Such sim-
ulations usually demand the Newtonian approximation and evolve
only the matter component. Therefore, these simulations neglect the
evolution of radiation perturbations.

Recently, the first general relativistic cosmological simulations
have been performed, either by using an N-body approach in
the weak-field approximation (Adamek, Durrer & Kunz 2014;
Adamek et al. 2016) or by assuming the fluid approximation for
a pure CDM component in full numerical relativity (Bentivegna &
Bruni 2016; Giblin, Mertens & Starkman 2016; Mertens, Giblin &
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Starkman 2016). While the former also includes (massive) neutri-
nos, generally these simulations do not take into account the evolu-
tion of all multifluid species and furthermore, also rely on the valid-
ity regime of the weak-field and fluid approximation, respectively.
Here we follow a different strategy that comes, of course, with dif-
ferent approximations and assumptions. We present a modification
to the Newtonian N-body code GADGET-2 such that it solves for the
full multispecies to first order in cosmological perturbation theory,
whilst evolving the matter component in full non-linearity. Essen-
tially, to achieve this modification, we use a first-order Einstein—
Boltzmann solver to compute the force exerted on matter through
radiation and update the momentum conservation of the matter in the
simulation accordingly. By pairing the Einstein—Boltzmann solver
with the N-body code, we obtain hybrid simulations with mutual
benefits whilst minimizing the disadvantages from both Newtonian
and relativistic worlds. First and foremost, cosmological N-body
codes in the Newtonian approximation have been tested and im-
proved over a long time period (e.g. Schneider et al. 2016), which
gives us confidence that the non-linear matter is evolved to sufficient
accuracy. Secondly, the N-body output of our relativistic simulations
is in accordance with the first-order cosmological perturbation the-
ory and thus comes with a solid approximation of the underlying
relativistic space—time. This should serve as a solid basis for e.g.
investigating ray tracing.

This Letter is organized as follows. In the following section, we
report the relativistic fluid equations that we aim to solve numeri-
cally by modifying the existing N-body code GADGET-2. We pair the
simulation with the Einstein—Boltzmann solver cLAss and call the
resulting code COsmological SImulations with RAdiation (coSIRA).
Details on the specific implementation can be found in Section 3.
We discuss our numerical results and confront them with theoreti-
cal predictions in Section 4. Finally, we summarize and discuss our
results in Section 5.

2 EQUATIONS OF MOTION IN GR

In a multifluid Universe, the relativistic equations of motion for
CDM in an arbitrary gauge contain general relativistic corrections
at multiple instances. Here we work in the N-body gauge that min-
imizes the appearance of such GR corrections. As was shown in
Fidler et al. (2015), a fully relativistic analysis of the multifluid
dynamics reveals that momentum and mass conservation for CDM
are, to the leading order, given by

anvcdm +H Vedm = VO + V% (]a)

anScclm + V. vy = 0, (1b)

respectively. Here, 7 is the conformal time, H = a/a the conformal
Hubble parameter with a being the cosmic scalefactor, v gy, and Seam
are, respectively, the (peculiar) velocity and the density contrast
of the dark matter component; @ is the cosmological potential
satisfying the Poisson equation

V2® = —4nGa® Z Dadas (1¢)

where p, is the background density of the species labelled with «
and the summation on the right-hand side runs over all the relevant
species in the Universe, i.e. dark matter, baryons, neutrinos and
photons.

COSIRA: hybrid simulations with radiation — 1L69

10? : : :
10"k
: 1
102 oo oo oo e U T %
10‘i-
o 10 F —— z=10000
= 10 H - 1000
0y =490
10—7_ — =43,
1081 —— z=60
10° k| =— z=00
10_10 i i Il ! !
100° 10° 10" 10° 107 10" 10°
k [h/Mpc]

Figure 1. Ratio of |y | compared to the cosmological potential ® in Fourier
space, illustrating the impact of radiation contaminants on the momentum
conservation equation (la) of the dark matter component. On scales k >
10731 Mpc ™!, the relevance of residual radiation is continuously decreasing
in time. Figure taken from Fidler et al. (2015).

The above equations have been derived from GR in the N-body
gauge with corresponding line element

ds® = a’ [—(1 + 2A)dn* — 2v;dx'dy + (8, — 2D;; Hr) dx'dx’]
@

where D;; = 0,0, — 8,-.,-V2 /3, A is a perturbation in the time—time
component of the metric (A is sourced by radiation pressure and
anisotropic stress), v; = 9;v is the scalar part of the total velocity
of all fluid components, where v is the potential of the said scalar
part, and Hr is a perturbation in the trace-free part of the spatial
metric. These linear perturbations are determined by GR and can be
obtained from conventional Einstein—Boltzmann codes. Also, the
relativistic correction

y = Hr + ZHT — 8nGa? Z Polly 3)
[*3
can be obtained from such codes. Here, p,, and I1, are, respectively,
the pressure and anisotropic stress of photons and neutrinos.
Equations (1a)—(1c) are, apart from the additional function y on
the right-hand side in (1a) and the non-CDM source terms in (1c),
identical with the Newtonian fluid equations. The function y is
non-zero when there is a significant amount of radiation, whereas it
is vanishing when radiation becomes negligible. Chronologically,
this is precisely the case during cosmological structure formation.
As can be seen from Fig. 1, at early times (z > 50), the y term
yields corrections of up to 1 percent—20 percent to the momen-
tum conservation of the CDM component, whereas at late times
(z < 50), y becomes negligible on all scales. Furthermore, at earlier
times when there is still significant radiation, the Poisson equa-
tion (1c) is sourced by non-vanishing density perturbations from
all species, whereas at late times, it is effectively sourced only by
matter perturbations. Summing up, equations (la)—(1c) coincide
with the Newtonian fluid equations to the leading order, but only
at late times when y and the non-matter density perturbations are
vanishing. Thus, only in that limit, conventional Newtonian N-body
simulations solve for the dynamics of dark matter in accordance
with GR. In the following section. we will introduce a modification
to N-body simulations that makes it possible to run conventional
simulations at early times, and in accordance with GR. Having im-
plemented the relativistic corrections in the Newtonian simulation
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the respective N-body output satisfies automatically first-order GR
for all fluid species and thus comes with an approximation of the
underlying space—time, here to be interpreted in the N-body gauge.

3 NUMERICAL IMPLEMENTATION

While conventional N-body simulations solve for the gravitational
collapse of CDM in full non-linearity, they do not incorporate rela-
tivistic terms that stem from the presence of other fluid species. Here
we introduce the code COSIRA. COSIRA makes it possible to perform
hybrid simulations that are compatible with GR.

To achieve this, we separate the force term in the momentum
conservation for CDM (see the right-hand side of equation 1a) into
parts that are determined either in the N-body simulation or in the
Einstein—Boltzmann code,

P+ = Psim + Par, (4a)
where

V2(Dsim = _47'[Ga2pcdm8$ims (4b)
V2®or = —41Ga’ peamdar, (40)

where pegmécr = Za#cdm Dby — (A1tGa?)"'V?y and 8y, is the
non-linear CDM density contrast obtained from the N-body simula-
tion. The effective GR perturbations, §gr, are determined by using
a modified version of the Einstein-Boltzmann code cLass (Blas,
Lesgourgues & Tram 2011) and this information is fed to the Pois-
son solver in the N-body simulation at each time step. We note that
in the present approach, for reasons of consistency, the information
is only passed from the Einstein—Boltzmann system to the N-body
code, but not vice versa. This means that we include the linear im-
pact of the relativistic species on the non-linear evolution of CDM,
but not the backreaction of the non-linear clustering of matter on
the metric potentials or the relativistic species.

As evident from Fig. 1, y is rapidly oscillating in k (over most
scales) and therefore also oscillates in time. Since the time-scale of
these oscillations is very short, of the order of 1/, it is not feasible
to track them in an N-body simulation. However, as was shown
in Weinberg (2002) and more recently in Voruz, Lesgourgues &
Tram (2014), CDM dos not couple to these fast modes and thus we
consider only the slowly varying mode of y in our implementation.
To extract this averaged mode of y, we first apply a cut-off of k <3 -
103 hMpc~! below which an average procedure is not required. For
k-scales larger than the cut-off, we resample the transfer function of
y such that it has 40 points per period T = 27t/k. Then we compute
the rolling mean with a window size of 40 points (i.e. exactly one
period). This rather complicated method is needed as, at early times,
the oscillator is driven, implying that the frequency is not constant.

Our hybrid simulations have a box size of L = 16384 Mpc h~!
and a resolution of 1024 particles per dimension. The initial condi-
tions for the CDM component are given in terms of the Zel’dovich
approximation (Zel’dovich 1970; Buchert 1992), and are initialized
with a weighted CDM and baryon power spectrum at zj,; = 99,
which can be obtained from e.g. camB (Lewis, Challinor &
Lasenby 2000). For the cosmological parameters, we use Q, =
0.3133, Q4 =0.6867, 2, = 0.0490, h = 0.6731, ny = 0.9655, A
2.215-107%, 03 = 0.845, and we consider a cosmology with three
massless neutrino species.

In this work, the effective GR perturbations are not represented
by discretized N-body particles but in terms of a fluid description.
These GR perturbations are updated whenever a long-range force is
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Figure 2. Relative difference of the matter power spectrum P(k) showing
the impact of the relativistic perturbations gr when switched on and off; i.e.
P8 = 0)/P(8ar # 0). All results are initialized at zjp; = 99. Shown are
results from our numerical simulations (‘sim’; solid lines) and linear theory
predictions (‘linear’; dotted lines) for the evolved differences of the power
spectra at different redshifts. Linear predictions are obtained by applying
the methods of Fidler et al. (2016).

calculated in GADGET-2, and then added to the CDM long-range per-
turbations in Fourier space. Since there is no small-scale tree part for
the radiation perturbations, they are, unlike the CDM perturbations,
not smoothed with a Gaussian factor. For more details, we refer
to Brandbyge & Hannestad (2009) where similar techniques have
been applied to include linear perturbations in N-body simulations,
however, in a Newtonian set-up with massive neutrinos.

Note also that for reasons of better comparison with theoretical
predictions, we use the same initial matter power spectrum and
set of phases, for both runs with or without the GR perturbations.
Furthermore, to account for the radiation in the background evo-
Iution of the simulations, we added the background component of
the radiation density to the Friedmann equation in GADGET-2 in both
simulations with and without the GR perturbations.

CDM density fields are obtained by assigning N-body particles to
grid points by applying the cloud-in-cell (CIC) algorithm (Hockney
& Eastwood 1981). When plotting pure estimates of the CDM
density (right-hand panel in Fig. 4), we utilize a 512% grid so as to
reduce shot noise. For estimating the matter power spectrum, we
use a 10243 grid and the CIC kernel is deconvolved in Fourier space.

4 RESULTS

Observe that the linear fluid equations (1a)—(1c) can be combined
into a single differential equation for the matter density,

Scdm + H(.scdm - 4”Ga2pcdm8cdm = 47TGa2/_)cdm8GR . (5)

We use the novel semi-analytical methods of Fidler et al. (2016) to
find the linear solution for 8.4y, and its power spectrum and confront
it with the numerical solutions of the present approach. We note
that for §gr = 0, equation (5) is the usual differential equation for
linear density fluctuations. The homogeneous solution of (5) is well
known in the literature, so we will not report it here (see e.g. Rampf,
Villone & Frisch 2015 and references therein).

In Fig. 2, we show the relative matter power spectrum when
excluding/including the GR perturbations, for various redshifts. As
evident, there is a striking agreement between the linear theory
predictions (dotted lines) and our numerical results (solid lines). On
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Figure 3. Shown are the slices of the effective density perturbations dgr
(see equation 4c) at various redshifts, compared against 8.qm at z = 99. The
CDM density does not change visibly at later times. The thickness of the
slices is 512 Mpc /~! and the width is 16384 Mpc h~!. For better visibility,
we have increased the amplitudes of §gr(z) with respect to Scam(z = 99) by
factors of 1099, 15265 and 53 936, respectively, for the redshifts z = 99, 9
and 0.

the scales we simulate, the impact of GR perturbations is negligible
for k > 1072 hMpc~', but yields up to about 3 per cent corrections
on larger scales. We note that at very large scales, close to the
fundamental mode of our simulations, our numerical results depart
from the linear predictions; this is due to sample variance because
of the lack of N-body particles and thus could easily be rectified if
needed.

InFig. 3, we show the slices of the GR perturbations dgr at various
redshifts, compared to S.am at zini = 99. The relative importance
of the radiation and CDM perturbations scales as ,q/2cqm and
at the largest scales simulated at z = 99, the radiation transfer
function is roughly 4/3 times the CDM counterpart. At smaller
scales, the effect of radiation free-streaming is clearly visible and
becomes more pronounced at low redshift. Note that the largest
structures in the box are not directly visible, since the density slices
are dominated by scales around the peak of the power spectrum, k ~
0.01 hMpc~". Since the radiation component has free-streamed out
of these scales at z = 99, the radiation and CDM slices look quite
different at this redshift. The CDM density, by contrast, follows a
nearly scale-invariant growth on the scales shown and thus there
is no visible evolution, which is the reason why we only show the
slice at z = 99.

In Fig. 4, we show two panels, the left one depicts the dif-
ference of the Lagrangian potentials A¢cgm = Peam(dcr 7# 0) —
Peam(8gr = 0) and the right-hand panel the difference of Eulerian
density contrasts, Adcim = Scam(SGr 7 0) — Scam(Sgr = 0). Both
panels are evaluated at final time z = 0. From these panels, one
can recognize that large gradients in A¢.q, cause clusters to move
and the change of the final positions of these clusters manifest as
‘dipoles’ in the Eulerian panel.
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Figure 4. The left-hand panel shows the difference A¢eam =
Pedm(BGR # 0) — dedm(8gr = 0) of snapshots obtained from our hybrid
simulations, where ¢.qm is the potential of the scalar part of the Lagrangian
displacement field (¥ = V¢cqm). The right-hand panel shows the difference
of Eulerian density contrasts, Adcdm = Scdm(SGR 7# 0) — Scdm(dgr = 0).
Both panels are evaluated at final time z = O and show a region of
2048 Mpc h~! side length. Clusters move (in Eulerian coordinates) wher-
ever A¢cdgm exhibits high gradients. The two simulations predict the same
structure in regions of constant A¢¢dm-

In addition to the slight displacement of high-density regions in
the presence of radiation/GR, we have investigated whether there are
effects concerning the relative abundance of different cosmic web
elements. One way to characterize such effects are the so-called
mass filling fractions (MFFs) that measure how much of the overall
mass content is contained in clusters, filaments, sheets and voids.
(The MFF is defined such that the sum of the individual MFFs is
unity.) Of course, the MFFs depend on the definition of such struc-
tures and in this work, we have chosen the Lagrangian classifier
LICH (Leclercq et al. 2016). We find that radiation/GR has at most
a O(107°) relative effect on these numbers, leaving the MFFs ef-
fectively unchanged; in detail, they are MFF(cLusTERS) >~ 0.097,
MFF(FiLamMENTS) >~ 0.414, MFF(sHEETS) =~ 0.389 and MFF(voIps)
2~ 0.100. Thus, radiation/GR induces only a large-scale shift of cos-
mological structures (cf. Fig. 4), but does not change their relative
abundance.

5 SUMMARY AND DISCUSSION

We have performed novel hybrid simulations to investigate cos-
mological structure formation for all fluid species within GR. By
using our developed code cosira, we evolve photon and neutrino
perturbations to first order within cosmological perturbation theory,
whilst solving for the matter perturbations in full non-linearity in
Newtonian gravity.

Relativistic computations within cosira are performed in the
N-body gauge (Fidler et al. 2015), which is a gauge constructed
such that at sufficiently late times, the equations of motion for
CDM coincide exactly with the ones in Newtonian gravity. In that
gauge, also the relativistic spatial volume element coincides at all
times with the one in Newtonian gravity, which makes interpreting
mass densities and velocites in the relativistic simulation a trivial
exercise. We also note that at sufficiently late times, we have for the
line element in the N-body gauge, equation (2), such that A = 0 and
Hr = 3¢, where ¢ is the gauge-invariant comoving curvature per-
turbation (see e.g. Fidler et al. 2016). This should enable straight-
forward post-analyses of the output of our hybrid simulations on a
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fully relativistic space—time, e.g. to investigate weak lensing via ray
tracing techniques on the N-body output.

Our numerical code cosirA delivers extremely stable results, es-
pecially on large scales. This is most clearly seen in Fig. 2 where
we compare our numerical findings against theoretical predictions.
The agreement between N-body simulation and linear theory re-
sults is excellent, except on very large scales, where our numerics
are mostly affected by the particle shot noise. It is because of this
agreement that the non-linear mode coupling induced through the
first-order GR corrections seems to be highly suppressed; however,
further studies with higher precision are required to assess this in
more detail.

In the present case study, we have focused on the regime of cos-
mological structure formation starting from zi,; = 99 until today.
cosIrRA makes it however, possible to initialize relativistic simula-
tions also at earlier times, possibly even as early as recombina-
tion. Furthermore, our findings enable us to perform comparisons
to other relativistic simulations, where different approximations
and assumptions have been applied, see e.g. Adamek et al. (2016),
Bentivegna & Bruni (2016) and Hahn & Paranjape (2016). The
limitation of the present approach is essentially by two effects that
are of second order in cosmological perturbation theory. First, the
radiation source is computed at the linear order using cLass. Higher
order corrections are expected to be very small, especially since the
source is only relevant at early times. Secondly, our approach is
based on the N-body gauge but, so far, this gauge is only defined at
the linear order. Relativistic corrections to the CDM evolution are
expected at second order in the metric potentials and are typically
negligible. These corrections, however, could matter when study-
ing observables that are suppressed at the linear order, such as the
relativistic matter bispectrum (Tram et al. 2016).

Finally, we note that in this Letter, for reasons of better compar-
ison with the theoretical model, we have chosen to initialize our
simulations with the actual matter power spectrum at z;,;, for both
runs when including and excluding radiation. While this procedure
is perfectly justified in the case when radiation is included, it is
rather not when neglecting radiation perturbations. Indeed, in the
latter case, it is a very common practice to initialize N-body sim-
ulations by using today’s matter power spectrum and rescale its
amplitude by the growing mode of linear density fluctuations back
to when the simulation is initialized (e.g. Schneider et al. 2016;
Zennaro et al. 2016). This method, sometimes referred to as ‘back
scaling’, produces a matter power spectrum at z;,; of a designed
universe with vanishing radiation content. Of course, the back scal-
ing method neglects by construction the evolution of radiation (see
Fig. 3). This and many more details should be assessed in forthcom-
ing studies and confronted with the present approach to sufficient
precision.
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