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Abstract: In order to improve the recognition rate of hand gestures a new interactive image 

segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph 

cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in 

this article. The Gaussian Mixture Model was employed for image modelling and the iteration of 

Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a 

Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut 

theorem to find the optimal segmentation. The segmentation result of our method is tested on an 

image dataset and compared with other methods by estimating the region accuracy and boundary 

accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our 

experimental platform, and the sparse representation algorithm is used, proving that the 

segmentation of hand gesture images helps to improve the recognition accuracy. 

Keywords: image segmentation; Gibbs Energy; min-cut/max-flow algorithm; sparse representation 

 

1. Introduction 

Hand gesture recognition, utilized in visual input of controlling computers, is one of the most 

important aspects in human-computer interaction [1]. Compared with the traditional input methods, 

such as mice, keyboards and data gloves [2,3], the use of hand gestures to control computers will 

greatly reduce the user’s learning curve and further expand the application scenario. To achieve hand 

gesture control [4], many research achievements have been conducted by the pioneers in the field. 

Sophisticated data gloves can capture every single movement of finger joints by highly sensitive 

sensors [5,6] and store the hand gesture data. The hand gesture recognition process based on 

computer vision is illustrated in Figure 1. However, some essential problems have yet to be solved. 

Firstly, the vision-driven hand gesture recognition method is highly dependent on the sensibility of 

image sensors, therefore the relatively poor image quality hinders its development. Secondly, the 

image processing algorithms are not robust as they supposed to be, some of which cannot meet the 

demand to finish the segmentation correctly, while others fulfill the accuracy demands, but require 

too many human interactions [7], which are not efficient in real applications. 

To address the above problems, with the cutting edge technologies, the image sensor industry 

has mushroomed recently. On the one hand, new kinds of image sensors, like the Microsoft Kinect 2.0, 

or Asus Xtion, have come into the commercial market [8], and the innovative infrared camera [9] 

makes it possible obtain depth information from image sensors. On the other hand, innovations in 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/77049799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Sensors 2017, 17, 253 2 of 16 

 

image processing algorithms have made them capable of segmenting accurate hand gestures, 

promoting in turn the accuracy of classifiers to ascribe gestures into different patterns. 

Hand gesture Capturing

Image 

segmentation

Feature 

extraction Classification

 
Figure 1. Process of hand gesture recognition. 

The image segmentation is an important stage in the whole hand gesture recognition process, 

and several well-known segmentation methods have been proposed to meet different image 

segmentation demands. For example, in the graph cut method [10], proposed by Boykov and Jolly, 

the main idea was to divide one image into “object” and “background”. A gray scale histogram was 

established to describe the distribution of gray scale, and then a cut was drawn to divide the object 

and background. Max-flow/min cut algorithm was applied to minimize the energy function of one 

cut, and the segmentation was achieved by this minimized cut. These algorithms not only focus on 

the whole image, but also take every morphological detail into account. Random walker [11,12] is 

another supervised image segmentation method, where the image is viewed as an electric circuit. The 

edges are replaced by passive linear resistors, and the weight of each edge equals the electrical 

conductance. It proved to perform better segmentation compared with the graph cut method. 

Gulshan et al. [13] proposed an interactive image segmentation method, which regarded shape as a 

powerful cue for object recognition, making the problem well posed. The use of geodesic-star 

convexity made it have a much lower error rate compared with Euclidean star-convexity. 

In the process of hand gesture recognition [13], the feature extraction is also very important. The 

image feature methods such as HOG [14], Hu invariant [15] and Haar [16] are used. In this paper, as 

for classifier and template matching algorithms, the sparse representation will be applied, since it 

requires much less sample for training. With the intention of recognising five different hand gestures, 

according to the dataset of hand gesture images, a dictionary will also be built. Then the K-SVD [17] 

algorithm is adapted for sample training, and the algorithm will be evaluate and compared with 

other methods. 

2. Modelling of Hand Gesture Images 

In order to optimize the segmentation, the human visual system was carefully studied. Our eyes 

usually got a fuzzy picture of the whole scene at first, and then the saccadic eye movements [18] help 

us to obtain the details of regions of interest. With the inspiration of the human visual system, we 

used the Gaussian Mixture Model (GMM) [19] to get an overall view the color distributions of the 

image. Since the color images are mainly represented in digital formats, with tens of thousands of 

pixels in one image made up of red, green and blue sub-pixels, as shown in Figure 2, an M × N × 3 

array was applied to store the color information in one image, where M is the horizontal resolution 

and N is the vertical. 



Sensors 2017, 17, 253 3 of 16 

 

 

Figure 2. The RGB format hand gesture image. 

2.1. Single Gaussian Model 

The single Gaussian distribution, also known as the normal distribution [20], was proposed by 

the French scientist Moivre in 1733. The probability density function of a single Gaussian distribution 

is given by the formula:  

2
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where μ is the mathematical expectation or the mean, σ is the covariance of Gaussian distribution, 

and exp denotes the exponential function. For convenience, the single Gaussian distribution is 

usually denoted as: 

2
~ ( , )X N    (2) 

The single Gaussian distribution formula is capable of dealing with gray scale pictures, because 

the variable x has only one dimension. One color image is an M × N × 3 array, so any element xi in 

dataset  1 2
, , ,

n
 X x x x  should be at least 3-dimensional. To address this problem, the concept 

of the multi-dimensional Gaussian distribution is introduced. The definition of d dimensional 

Gaussian distribution is: 

1
1 ( ) ( )

( ; , ) exp
2(2 )

T

d
N




  

  


 
 
 

x x
x

 
   (3) 

where μ is a d dimensional vector, and as for the RGB model, each component of μ represents the 

average red, green and blue color density value.   is the covariance matrix and 
1  is its inverse 

matrix. (x  μ)T is the transposed matrix of (x  μ). To simplify Equation (3) above, θ is introduced to 

represent the parameters μ and  , then the probability density function of the d dimensional 

Gaussian distribution can be written as: 

( ) ( ; )p N x x .  (4) 

According to the law of large numbers, every pixel is one sample of the real scene. When the 

resolution is high enough, the average color density could be estimated. 

2.2. Gaussian Mixture Model of RGB Image 

In reality, the color distributions of the gesture image in Figure 2 can be represented by three 

histograms [21], shown in Figure 3. With independent red, green and blue distributions shown in 

Figure 3, we can notice that the gesture image cannot be exactly described by one single Gaussian 
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model. But there are about five peaks in each histogram, so five single Gaussian models should be 

applied in gesture image modelling. 

GMM is introduced to approximate the continuous probability distribution by increasing the 

number of single Gaussian models. The probability density function of GMM with k mixed Gaussian 

models becomes: 

1
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p p 


x x  (5) 
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where  1,2, ,i k  shows which single Gaussian model the component belongs to. 
i

  is the 

mixing coefficients of k mixed component [22] or the prior probability of x belonging to the i-th single 

Gaussian model, and 
1

1
k

i
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p x  is the probability density function of the i-th single 

Gaussian model, parameterized by 
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  and 
i

  in ( ; , )
i i i
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(a) (b) (c) 

Figure 3. Color distributions of the gesture image. (a) Red distribution; (b) green distribution; (c) blue 

distribution. 

As mentioned above, one RGB hand gesture image could be described in the dataset

 1 2
, , ,

n
 X x x x , and if we regard X as a sample, its probability density is: 

1

( ; ) ( ; ) ( ; ),
n

j j

j

p p L x


      X x X X , (7) 

where ( ; )L X  is called likelihood function of parameters given the sample X. Then we hope to find 

a set of parameter   to finish modelling. According to maximum likelihood method [24], our next 

task is to find ̂  where: 

ˆ arg max ( ; )L


   X .  (8) 

The function ( ; )L  X  and ( ; )L X  have the same equation form, but considering now we are 

going to use X to estimate  , the   becomes variables and X are the fixed parameters, it is denoted 

in the second form. The value of ( ; )p X  is usually too small to be calculated by computer, so we are 

going to replace it with the log-likelihood function [25]: 
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2.3. Expectation Maximum Algorithm 

After establishing the Gaussian mixture model of a RGB hand gesture image, there are still 

several parameters that need to be estimated. The expectation maximum (EM) algorithm [26] is 

introduced for the subsequent calculations. The EM algorithm is a method of acquiring the 

parameters set   in the maximum likelihood method. There are two steps in this algorithm, called 

the E-step and M-step, respectively. To start the E-step we will introduce another probability Qi(xj). 

It is a posterior probability of i, in another words, the posterior probability of each xj belonging to 

the i-th single Gaussian model, from the dataset X. 
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where the definition of ( )
i j

Q x  is given according to Bayes’ theorem, and 
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use Equation (11) to modify the log-likelihood function in (10): 
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From (12) to (13), the Jensen’s inequality have been applied, since 
2
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Maximizing Equation (13) guarantees that ln( ( ; ))L  X  is maximized. The iteration of an EM 

algorithm estimating the new parameters in terms of the old parameters is given as follows: 

 Initialization: Initialize 0i
  with random numbers [27], and the unit matrices are used as 

covariance matrices 0i  to start the first iteration. The mixed coefficients or prior probability is 

assumed as 0

1
i

k
  . 

 E-step: Compute the posterior probability of i  using current parameters: 
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 M-step: Renew the parameters: 
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For most hand gesture images, the number of iterations is usually defined as a certain number. 

In order to improve the segmentation quality and to take account of the efficiency, the number of 

iterations should be 8 [28]. 

3. Interactive Image Segmentation 

The modelling method discussed previously provides a universal way of dealing with hand 

gesture images. To segment the digital images, a mask is introduced as shown in Figure 4, which is a 

binary bitmap denoted as α. By introducing it, we changed the segmentation problem into a pixels 

labelling problem. As αj  {1,0}, the value 0 is taken for labelling background pixels and 1 for 

foreground pixels. 

Original image Mask
 

Figure 4. The mask. 

To deal with the GMM tractably, we introduce two independent k-component GMMs, one for 

the foreground modelling and one for the background modelling. Each pixel xj, either from the 

background or the foreground model, is marked as αj = 1 or 0. The parameters of each component 

become: θi = {i(αj), μi(αj), Σi(αj); αj = 0,1, i = 1,…,k}. 

3.1. Gibbs Random Field 

The overall color modelling completes the first step in our human visual system, to take every detail 

of the image into account, Gibbs random field (GRF) [29] is introduced. GRF is defined as: 

1 1
( ) exp( ( ))

( )
P E

Z T T
  A a  ,  (19) 
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Here, ( )P A a  gives the probability of the system A being in the state a. T is a constant 

parameter, whose unit is temperature in physics, and usually its value is 1. ( )Z T  is the partition 

function, and: 

1
( ) exp( ( ))

a A

Z T E
T

  a , (20) 

where, ( )E   is interpreted as the energy function of the state a, to apply GRF in image segmentation, 

the Gibbs Energy [30] can be defined as follows: 

( , , ) ( , , , ) ( , , , ) ( , )( ) E E i U i VE          X X X X  (21) 

The term ( , , , )U i  X , also called regional term, is defined taking account of GMM. It indicates 

the penalty of 
j

x  being classified in the background or foreground: 
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and ( , )V  X , which is the boundary term, which is defined to describe the smoothness between 

pixel 
u

x  and its neighbour pixels 
v

x  in the pixel set N: 
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where the constant γ was obtained as 50 by optimizing the efficiency over training. [ ]
u v

   is an 

indicator function taking values 0 or 1, by judging the formula inside. β is a constant, which represents 

the contrast of the pixel set N, to adjust the exponential term. ( )E x  in the equation below is the 

expectation: 

,
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x x N
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3.2. Automatical Seed Selection 

Until now all the constants have been defined. To begin with, all the pixels in the picture are 

automatically marked as undefined and labeled U [31]. B is the background seed pixel set and O is 

the foreground seed set. After the training over training set X, the set O is obtained as the 

segmentation result and O U . Three pixel sets are shown in Figure 5. 

 

Figure 5. The relationships between three pixel sets.  
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To achieve the segmentation automatically, we propose an initial seeds selection method in hand 

gesture images. Considering that the human skin color has an elliptical distribution in YCbCr color 

space [32], the image is transformed from RGB color space to YCbCr, using the equation below: 

16 65.738 129.057 25.06
1

128 37.945 74.494 112.43
256

128 112.439 94.154 18.28

Y r

Cb g

Cr b

     

 

       
       
       
              

, (26) 

where, Y indicates the luminance. By setting (0,80)Y  , the interference of highlights would be 

overcome. Then the Cb, Cr values of human skin color are located by the elliptical equations given 

below: 

2 2

2 2

( 1.6) ( 2.41)
1

26.39 14.03

cos(2.53) sin(2.53) 109.38

sin(2.53) cos(2.53) 152.02

x y

x Cb

y Cr

 
 


 

 





     
          

, (27) 

where, x and y are the intermediate variables. All the pixels satisfying the equations above will be 

marked as the foreground seeds, which belong to set O. We also define the pixels on the image edges 

as background seeds, which belong to set B, because the gestures are usually located far away from 

the edges of the images. The result of seeds selection are displayed in Figure 6 below. 

Original image Seed map

O

B

 

Figure 6. The result of automatic seed selection. 

3.3. Min-Cut/Max-Flow Algorithm 

According to the Gibbs random field, the image segmentation or pixel labelling problem equals 

minimizing the Gibbs energy function: 

{ ; }
min [min ( , , , )]

j i U i
E i


 


X  (28) 

The min-cut/max-flow algorithm [33] is proposed to finish the segmentation more accurately. 

The idea of this algorithm is to regard one image as a net with nodes, and each node take the place 

of a corresponding pixel. Apart from that, two extra nodes, S and T, are introduced, which represent 

“source” and “sink”, respectively. Node S is linked to pixels belonging to O, while T linked pixels in 

B. as shown in Figure 7. 
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(a) Original image (b) Nodes and net map (c) Segmentation
 

Figure 7. Nodes and net model. 

There are three kinds of links in the neighbourhood N, from pixel to pixel, from pixel to S and 

from pixel to T, denoted as 𝒙𝑢𝒙𝒗̅̅ ̅̅ ̅̅ ̅, 𝒙𝑢S̅̅ ̅̅ ̅, 𝒙𝑢T̅̅ ̅̅ ̅. Each link is assumed with a certain weight or a cost [34] 

while it being cut down, which detailed in Table 1. 

Table 1. The weight of each link. 

Link Type Weight Precondition 
𝒙𝑢𝒙𝒗̅̅ ̅̅ ̅̅ ̅̅  exp(−𝛽‖𝒙𝑢 − 𝒙𝑣‖

2)  𝒙𝑢, 𝒙𝑣 ∈ 𝑵 

𝒙𝑢S̅̅ ̅̅ ̅ 

( 0, , , )U i  X  Ux u  

K Ox u  

0 Bx u  

𝒙𝑢T̅̅ ̅̅ ̅̅  

( 1, , , )U i  X  Ux u  

0 Ox u  

K Bx u  

where 





Nxx
Xx

xx
vu

u

vuK
,

2
)exp(max1   

According to the max-flow/min-cut theorem, an optimal segmentation is defined by the 

minimum cut C as seen in Figure 7c. C is known as a set of 
u v

x x  links, so that: 





NxUx

xx ),(),,,( CViCUC   
(29) 









 

 BxOx

xxX ),,,0(),,,1(),,,(  iUiUiCE

 

(30) 

Then the Gibbs energy could be minimized by using the min-cut defined above. The whole 

process of this segmentation is as follows: firstly, assign the GMM components i to each 
j
x U

according to the human select of the U region. Secondly, the parameters set   is learned from the 

whole pixel set X. Thirdly, use the min-cut to minimize the Gibbs energy of the whole image. Then 

jump to the first step to start another round, and after eight times, the optimal segmentation will be 

achieved. 
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4. Experimental Comparison 

To evaluate interactive segmentation quantitatively, an image dataset proposed by Gulshan [13], 

which contains 49 images from GrabCut dataset [35], 99 images from PASCAL VOC’09 segmentation 

challenge [36] and 3 images from the alpha-matting dataset [37] is chosen. Those images cover all 

kinds of shapes, textures and backgrounds. The corresponding ground true images together with the 

initial seeds were also included in this dataset. The initial seed maps were made up of 4 manually 

generated brush-strokes all in 8 pixels wide, and one for foreground and 3 for background as shown 

in Figure 8. 

One image from dataset Ground true image Initial seeds

Background seeds

Foreground seeds

 

Figure 8. The evaluation samples from dataset. 

To simulate the human interactions, after the first segmentation with initial seed map, one more 

seed would be generated in the largest connected segmentation error area (LEA) automatically. As 

shown in Figure 9a, the blue area is the segmentation result of the algorithm, while the white one is 

the ground true segmentation and the LEA is marked in yellow. From Figure 9b, the seed is a round 

dot (8 pixels in diameter), generated according to the LEA. Then we update the segmentation with 

all the seeds. After that, this step is repeated 20 times, and a sequence of segmentations will be 

obtained.  

(a) The largest connected 

segmentation error area
(b) One generated seed on 

seed map  

Figure 9. Evaluation on the dataset. 

To evaluate the quality of segmentation results, we used two different methods in evaluating 

the region accuracy (RA) and boundary accuracy (BA). Each evaluation will be conducted to a single 

segmentation, and all the images in Gushan’s dataset will be tested to verify that our proposed 

method is suitable for interactive image segmentation. 

4.1. Region Accuracy 

The RA of segmentation results is evaluated by a weighted Fβmeasure [38]. Compared with 

normal Fβmeasure, the two terms Precision and Recall become: 

ww

w
w

FPTP

TP
Precision


  (31) 
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where, TP denotes the overlap of ground true and segmented foreground pixels. FP is the wrongly 

segmented pixels compared with ground true images and NP represent the wrongly segmented 

background pixels.  

The 𝐹𝛽
𝑤 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is defined as follows: 

ww

ww
w

RecallPrecision

RecallPrecision
FRA






2

2)1(



 (33) 

where, β signifies the effectiveness of detection with respect to a user who attaches β times as much 

importance to Recallw as to Precisionw, normally β = 1. Then, we apply 𝐹1
𝑤 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 to calculate the 

RA of different segmentation results. The higher RA is, the better the segmentation achieved is. 

4.2. Boundary Accuracy 

The BA [39] is defined according to the Hausdorff distance. The boundary pixels of ground true 

image and segmented image are defined as BGT and BSEG as shown in Figure 10.  

 

Figure 10. Boundary extraction. 

The formula is as follows: 

 




g ss g

GTSEG

sgdistgsdist

BNBN
BA

)),((min)),((min

)()( , 
(34) 

where, g  BGT and s  BSEG, dist() denotes the Euclidean distance, N() is the pixel number in the set. 

The value of BA shows the segmentation accuracy of boundaries. 

4.3. Results Analysis 

We segmented the images from the dataset by graph cut and random walker as shown in  

Figure 11. The segmentation test of our method has been made on Gulshan’s dataset as well as our 

hand gesture images, and some of the results using our method on hand gesture image segmentation 

are shown here in Figure 12. 
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Figure 11. The evaluation on different algorithms. 

 

Figure 12. Segmentation results of our method on hand images. 

For a more rigorous test, we tested 151 images from Gulshan’s dataset and used the human 

interaction simulator to perform the interactions, which generated the seeds 20 times to further refine 

the segmentation results. The result of each simulation step has been tested on the experiment platform. 

The RA and BA scores are the mean values of 151 segmentations, shown in Figures 13 and 14. 

 

Figure 13. Region accuracy comparison. 
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Figure 14. Boundary accuracy comparison. 

From the figures above, the segmentation quality shows an increase with simulated human 

interactions. When the seed number becomes high, a satisfactory segmentation will be achieved. Our 

method obtains the best segmentation quality with few human interactions. Since the seeds are 

generated once automatically in human hand image segmentation, our method is suitable for human 

image segmentation. 

5. Hand Gesture Recognition 

We defined five hand gestures: hand closed (HC), hand open (HO), wrist extension (WE), wrist 

flexion (WF), and fine pitch (FP), as shown in Figure 15. 

Hand close Hand open Wrist extension Wrist flexion Fine pitch
 

Figure 15. Five hand gestures for recognition. 

One hundred images of each hand gesture were captured and segmented by the proposed 

method. We used the recognition framework in Figure 16. Each gesture takes 50 images for training 

and 50 for testing. To achieve a better classification, we extract HOG along with Hu invariant 

moments at the same weights. The K-SVD dictionary training method [40] is used to choose atoms 

representing [41] all features and reduce the computation costs. 
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Extract HOG and Hu 

feature

Build the dictionary

K-SVD algorithm

Testing set

Extract HOG and Hu 

feature

Solve sparsity 

coefficient

Calculate residues

Recognition
Solve sparsity 

coefficient

Training process Testing process

 

Figure 16. Hand gesture recognition framework. 

We tested the recognition rates on both unsegmented hand images and segmented hand images. 

The recognition rates on unsegmented hand images are shown in Table 2, and the recognition rates 

on segmented hand images are shown in Table 3. 

Table 2. Recognition rates on unsegmented hand images. 

Gestures Recognition Rates 

Hand close 86.7% 

Hand open 73.3% 

Wrist extension 100% 

Wrist flexion 100% 

Fine pitch 66.7% 

Over all rate 85.3% 

Table 3. Recognition rates on segmented hand images. 

Gestures Recognition Rates 

Hand close 93.3% 

Hand open 100% 

Wrist extension 100% 

Wrist flexion 100% 

Fine pitch 100% 

Over all rate 98.7% 

By segmenting the images before feature extraction, the recognition rates on those five hand 

gestures are increased compared with unsegmented images, according to the results in the tables 

above.  

6. Conclusions and Future Work 

In conclusion, the interactive hand gesture image segmentation method can perfectly meet the 

segmentation demands of hand gesture images with no human interactions. The mechanism behind 

this method is carefully explored and deduced with the assistance of modern mathematical theories. 

Comparing the segmentation results of hand gestures with other popular image segmentation 

methods, our method can obtain a better segmentation accuracy and a higher quality, when there are 

limited seeds. Automatic seeds selection also helps to reduce human interactions. The segmentation 
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work in turn improves the recognition rate. In future work, we could adapt this method to higher 

resolution pictures, which requires simplifying the calculation process. In seed selection, the 

automatic selection method could be improved to overcome various interferes, such as highlights, 

shadows and image distortion. Other future work will focus on improving the recognition rate by 

integrating the segmentation algorithm with more advanced recognition methods.  
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