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Abstract—This paper presents a hybrid fuzzy multi criteria 

decision making model for z-numbers using intuitive vectorial 

centroid. There are two novelty discuss here: 1) development of 

intuitive vectorial centroid defuzzification and; 2) development of 

hybrid fuzzy multi criteria decision making model based on 

consistent fuzzy preference relations and fuzzy technique for 

order performance by similarity to ideal solution for z-numbers. 

The implementation of z-numbers is taken into consideration, 

where it has more authority to describe the knowledge of human 

being and extensively used in the uncertain information 

development to deal with linguistic decision making problems. 

Fuzziness is not sufficient enough when dealing with real 

information and a degree of reliability of the information is very 

critical. It also highlights the combination of z-numbers with 

multi criteria decision making techniques allow the use of fuzzy 

linguistic by considering the need of human intuition in decision 

making problems. The proposed methodology is applied to staff 

recruitment problem. 

 

Keywords—Multi criteria decision making, consistent fuzzy 

preference relations, fuzzy TOPSIS, z-numbers, intuitive vectorial 

centroid, human intuition 

I.  INTRODUCTION 

Multiple criteria decision making (MCDM) approach has 
become a discipline of operations research which has been 
widely explored by experts or practitioners [1]. It is the process 
of making decision in the appearance of multiple criteria or 
objectives. Nowadays, uncertainty affected strongly in the 
world where much of the information on which decisions are 
based is uncertain [2]. Since the problem of selecting the best 
alternatives in decision making problems is subject to 
uncertainty due to imprecision and subjectivity in the decision 
makers’ judgements, fuzzy knowledge represents uncertain 
information in decision making problems due to flexibility of 
using linguistic variables. In decision making situation, making 
choices which depends on numerous factors limited to human 
ability that is very difficult to deal with [3]. The consideration 
of fuzzy aspect in MCDM knowledge is significant in order to 
solve this issue. 

In the literature of fuzzy set, Zadeh [4] introduced fuzzy set 
theory in representing vagueness or imprecision in a 
mathematical approach. In order to do so, the main motivation 

of using fuzzy sets shows its ability in appropriately dealing 
with imprecise numerical quantities and subjective preferences 
of decision makers [5]. Zadeh [6] proposed a notion of z-

numbers, which is an order pair of fuzzy numbers )
~

,
~

( BA . The 

A
~

component plays the role of a fuzzy restriction and represent 

the information about an uncertain variable, while the B
~

 

component is a reliability of A
~

 component and enable to 
represent an idea of certainty or probability [7] [8]. The idea of 
z-numbers is to provide a basis for computation with numbers 
which are not completely reliable and more intelligent to 
describe the knowledge of human being and capable to cater 
the uncertain information. 

 In dealing with fuzzy systems, defuzzification plays a 
significant role in the performance of fuzzy system’s modelling 
[9]. Defuzzification process is guided by the output fuzzy 
subset that one value would be selected as a single crisp value 
as the system output. The centroid defuzzification methods of 
fuzzy numbers have been explored for the last decade. Most of 
centroid method of fuzzy numbers normally are extracted from 
geometric aspects where to construct various order relationship 
from the perspective of membership function to some extent. 
Fuzzy set theory has done every single part of the official 
analysis when dealing with the vagueness and imprecision in 
human decision making. In this paper, the intuitive vectorial 
centroid defuzzification is introduced and presented into the 
literature. This centroid method is an improvement of classical 
vectorial centroid [10]. In this sense, the intuitive vectorial 
centroid defuzzification is relevant in context of human 
intuition that capable to consider all possible fuzzy numbers 
representation properly. This proposed method is incorporated 
into the development of integrated fuzzy MCDM model. The 
computational process of intuitive vectorial centroid is 
illustrated in Section 3. 

The latest trend with respect to MCDM is to combine two 
or more techniques to make up or handle shortcomings 
appropriately in any single particular technique [11]. In much 
of the literature, most of the combination or integrated MCDM 
model combined two techniques in order to tackle the 
evaluation of criteria and the evaluation of alternatives 
respectively [12]–[15]. The evaluation process of criteria and 
alternatives play important role in MCDM techniques 
requirements. To identify the best decision to be made among 
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the various alternatives with several criteria, the methodology 
has to study the preferences among the criteria to make sure the 
weights of criteria are reliable enough to be implemented in the 
selection of alternatives. In this paper, the combination of 
consistent fuzzy preference relations and fuzzy technique for 
order of preference by similarity to ideal solution (TOPSIS) 
using new centroid defuzzification is proposed in dealing with 
imprecise judgements. 

The consistent fuzzy preference relations was proposed by 
[16] for constructing the decision matrices of pairwise 
comparisons based on additive transitivity property. In reality, 
the decision maker is generally unsure of his/ her preferences 
in partnership selection process because information about the 
future partners and their performance is incomplete and 
uncertain. Consistency is crucial for achieving correct solutions 
in decision process. Due to each positive reciprocal matrix is 
described by fuzzy numbers in fuzzy linguistic terms, so to 
satisfy the consistency is very difficult [17]. Beside, 
establishing a fuzzy positive reciprocal matrix requires 

2

)1(  nn
 judgments to be made for a level with n criteria. 

Hence, the number of comparisons increase with the numbers 
of criteria, so inconsistent conditions are likely to occur. To 
solve the consistency problem, the consistent fuzzy preference 
relations technique is adopted in order to construct fuzzy 
decision matrix instead of fuzzy positive reciprocal matrix. The 
utilisation of consistent fuzzy preference relations in this phase 
yields decision matrices for making pairwise comparison 
matrices using additive transitivity. There are only n-1 
comparison judgements are required to ensure consistency on a 
level that contains n criteria.  

According to [18], TOPSIS provides unique way to 

approach problems, intuitive appealing and easy to understand. 

In additional, it also represents the rationale of individual 

choice a scalar value that records both the best and worst 

alternatives concurrently a straightforward computation 

algorithm. Fuzzy TOPSIS is an extended version classical 

TOPSIS with considered fuzzy component as an added value in 

order to deal with human perceptions. The concept of fuzzy 

TOPSIS is the most preferred alternative should have the 

shortest distance from the fuzzy positive ideal solution (FPIS) 

and longest distance from the fuzzy negative ideal solution 

(FNIS) [19]. Fuzzy TOPSIS at present offers a solution for 

decision makers when dealing with real world data that are 

usually multi criteria and involves a complex decision making 

process. Regarding to the level of interaction of with decision 

makers to imprecise data collection, fuzzy TOPSIS provides 

good agility in decision process.  

The MCDM techniques always deal with unbalanced and 

changeable data inputs. Therefore, sensitivity analysis after the 

problem solving that can effectively contribute to making 

accurate decisions by assuming that a set of weights for criteria 

or alternatives then obtained a new round of weights for them, 

so that the efficiency of alternatives has become equal or their 

order has changed [20]. Sensitivity analysis is valuable tool for 

identifying important models parameters, testing the model 

conceptualization, and improving the model structure [21]. It 

clearly indicates that the sensitivity analysis calculates the 

changing in the final score of alternatives when a change is 

occurred in the weights of alternatives. Sensitivity analysis can 

be beneficial for the wide range of purposes including [22]: test 

the robustness of the results of a model or system in the 

presence of uncertainty; increase understanding of the 

relationship between input and output variable in a model or 

system; uncertainty reduction; ease the calibration stage. In this 

paper, sensitivity analysis is applied to validate the proposed 

model 
In real world decision making problems, linguistic variables 

tend to be very complex to handle but makes more sense than 
classical fuzzy numbers [8]. Rather than use classical fuzzy 
numbers, the linguistic scales of the proposed integrated 
consistent fuzzy preference relations and TOPSIS is expressed 
in a more details and flexible way by z-number. The 
membership function of type-1 and type-2 fuzzy sets have no 
information regarding knowledge of human being. This issue 
motivate us to proposed hybrid MCDM model that has 
capability to handle knowledge of human being and uncertain 
information properly using z-numbers. The proposed model is 
constructed without losing the generality of the consistent 
fuzzy preference relations and fuzzy TOPSIS for z-numbers 
(Z-CFPR-TOPSIS). The rest of this paper is organised as 
follows: Section II introduces the concepts of z-numbers, 
intuitive vectorial centroid defuzzification. Section III views 
the methodology of intuitive vectorial centroid method for z-
numbers and the integration consistent fuzzy preference 
relations and fuzzy TOPSIS that incorporated with intuitive 
vectorial centroid method. Section IV discusses a case study in 
MESSRS SAPRUDIN, IDRIS & CO Company to demonstrate 
the feasibility of the hybrid model. Section V summarises the 
conclusion. 

II. PRELIMINARIES 

 In this section, we briefly review some basic concepts and 
definitions that are illustrated as follows. 

A. Z-numbers  

 A z-number is an ordered pair of fuzzy numbers                          

 
 
 
 
 
 
    
 
 
 
 
 
 
   (1) 
 

 

denoted as  BAZ
~

,
~

 . First component, A
~

 is known as 

restriction component whereby it is a real-valued uncertain on 

X  while second component , B
~

 is a measure of reliability for 

A
~

[6] . The illustration for z-number is depicted in Fig. 1 [7].    
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   Fig. 1: Z-number, )
~

,
~

( BAZ   

III. PROPOSED METHODOLOGY  
 

 As noted in the introduction, z-numbers are widely applied 
in many research areas to deal with uncertain information in 
data analysis which consistent with human intuition. Most of 
researchers attempt to eliminate the need of human intuition in 
data analysis processes. Human intuition is strictly can’t be 
eliminated because it can lead us towards uncertain problems.  
This section focuses on the development of hybrid MCDM 
model that incorporated with intuitive vectorial centroid. The 
proposed methodology consist of two stages as illustrated 
below. 

A. Stage one 

The development of intuitive vectorial centroid  defuzzification 

methodology for z-numbers. 

The intuitive vectorial centroid is an extension of the classical 

vectorial centroid methods for fuzzy numbers that proposed by 

[10]. The concept is similar like other centroid methods, to 

find the best centre point of fuzzy number that represent in 

crisp value or single value. Compare to other centroid 

methods, the way to get the value is more intelligent manner, 

easy to compute, more balance, and consider all feasible cases 

of fuzzy number. 
 

Let );,,,(
~

4321 AhaaaaA   as the generalised trapezoidal fuzzy 

number. The method process for intuitive vectorial centroid is 

showed as follows: 

Step 1: Find the centroids of the three parts of ,   and   in 

trapezoid plane representation as shown in Fig 2. 

 
Fig 2: Intuitive vectorial centroid representation 
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Step 2: Connect all vertices centroids points of ,   and   

each other, where it will create another triangular plane inside 

of trapezoid plane. 

Step 3: The centroid index of intuitive vectorial centroid of 

)~,~( yx  with vertices ,   and   can be calculated as  
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Intuitive vectorial centroid can be summarised as 
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where 

       : the centroid coordinate of first triangle plane 

       : the centroid coordinate of rectangle plane 

       : the centroid coordinate of second triangle plane 

      x~ : the centroid point on the horizontal x-axis 

      y~ : the centroid point on the vertical y-axis 

      )~,~( yx : the centroid coordinate of fuzzy number A
~

 

 

Centroid index of intuitive vectorial centroid can be generated 

using Euclidean Distance by [23] as 
 

  22 ~~)
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Assume a z-number,  BAZ
~

,
~

 , which is describe in Fig. 1. 

Let   1,0)(,
~

~  xxuxA
A

 and   1,0)(,
~

~  xxuxB
B

, 

)(~ xu
A

 and )(~ xu
B

 are trapezoidal membership function.   

 

Step 1: Converting the reliability component on x-coordinate 

into crisp number or weight using intuitive vectorial centroid 

method from equation (6). 
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Step 2: Add the weight of reliability component to the 

restriction component. The weighted z-number can be denoted 

as   1,0),()()(,
~

~~~  xxxxxZ
BBB    

 

Theorem 1: 
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which can be denoted by the Fig. 3 [7] 
 

 

 

 

 

 

  

 

 

 

 
    

  

  Fig. 3: Z-number after multiplying the reliability 

 
Step 3: Convert the irregular fuzzy number (weighted 
restriction) to regular fuzzy number that denoted as 

    1,0,)()(,
~

~~~
,

''  xxxxxZ
AZZ

 . In accordance 

with the theorem 3, the conclusion can be made that '~
Z  has the 

same fuzzy expectation with Z
~

 where both are equal with 
fuzzy expectation.  
 
Theorem 2: 

  )()( ~~ ' xExE
AZ

 ,  Xx          (11) 

Subject to:  

   xx
AZ

 ~~ )('  ,  Xx          (12) 

Proof:  

 ,,,
18

)(7)(2
;,,,)( 321

3241
4321'

~ aaa
bbbb

aaaaxE
Z












 
  

 )(; ~4 xEa
A

             (13) 

 
which can be denoted by the Fig. 4 below [7] 
 

 

 

 

 

  

 

 

 

 

     

 

 Fig. 4: The regular fuzzy number transformed from z-number 

 

Theorem 3: 
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B. Stage two 

The development of hybrid fuzzy consistent fuzzy preference 
relations – fuzzy TOPSIS using the intuitive vectorial centroid 
 
The methodology of proposed hybrid fuzzy MCDM model 
consist of four phases as illustrated below in Fig. 5. 

 
 

 
 
 
 
 
 

 
 

 
 

Fig. 5: Hybrid consistent fuzzy preference relations – fuzzy TOPSIS 

framework 

Phase 1: Linguistic Evaluation 

The fuzzy linguistic terms are used to present the important of 
criteria preferences based on z-numbers. These preferences are 

Phase 2: Fuzzy weights evaluation of criteria 
using consistent fuzzy preference relations 

 

Phase 1: Linguistic evaluation 

 

Phase 3: Fuzzy TOPSIS evaluation for 
alternatives selection 

 

Phase 4: Validation process using 
sensitivity analysis 
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computed using consistent fuzzy preferences. For fuzzy 
TOPSIS evaluation, another fuzzy linguistic terms are used to 
represent the evaluating values of the alternatives with respect 
to difference criteria with degree of confidence respectively. 

Phase 2: Fuzzy weights evaluation of criteria using consistent 
fuzzy preference relations 

Step 1: Construct a hierarchy structure. 
The construction of hierarchy model needs judgement matrix 
filled by decision makers about the evaluation of all criteria. 

Step 2: Construct a pair-wise comparison matrices 
Consistent fuzzy preference relations is adopted to evaluate the 
weights of difference criteria for the performance of 
alternatives. The pairwise comparison matrices are constructed 
among all criteria in the dimension of the hierarchy systems 
based on the decision makers’ preferences in phase 1 as 
following matrix A: 
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Step 3: Convert decision makers’ preferences from z-numbers 
into regular fuzzy numbers. 
Conversion process is computed by using equation (13). 
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Step 4: Aggregate the decision makers’ preferences. 
The pairwise comparison matrices of decision makers’ 

preferences are aggregated using equation below: 
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where k is the number of decision makers and i=1,2,…m; 
j=1,2,…n. 

 
Step 5: Defuzzify the fuzzy numbers of aggregation’s result of 
decision makers’ preferences. 
Intuitive vectorial centroid for z-numbers is used for 
conversion process using equation below. 
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Step 6: Compute the criteria values as weightage for 
alternatives’ evaluation using consistent fuzzy preference 
relations. 
In order to avoid misleading solutions in expressing the 
decision makers’ opinions, the study of consistency by means 

of preference relations becomes a very important aspect. In 
decision making problems based on fuzzy preference relations, 
the study of consistency is associated with the study of 
transitivity properties. In this study, the new characterisation of 
consistency property defined by the additive transitivity 
property of fuzzy preference relation is developed.  

Consistent fuzzy preference relations was proposed by [16] for 

constructing the decision matrices of pairwise comparisons 

based on additive transitivity property. Referring to [24], a 

fuzzy preference relation R  on the set of the criteria or 

alternatives A is a fuzzy set stated on the Cartesian product set 

AA  with the membership function  1,0:  AAR . The 

preference relation is denoted by nn  matrix )( ijrR   where  

),( jiRij aar   ,i  nj ,...,1 . The preference ratio, ijr  of 

the alternative ia  to ja  is determined by  
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The preference matrix R  is presumed to be additive 

reciprocal, ,1 jiij pp ,i  nj ,...,1 . Several propositions 

are associated to the consistent additive preference relations as 

follows: 

 

Proposition 1 [25]: Consider a set of criteria or alternatives, 

 nxxX ,...,1 , and associated with a reciprocal 

multiplicative preference relation )( ijaA   for 







 9,

9

1
ija . 

Then, the corresponding reciprocal fuzzy preference relation, 

)( ijpP   with  1,0ijp  associated with A is given by the 

following formulation 
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, then ijn alog  is used, in particular, 

when 
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ija ; ija9log  is considered as in the above 

proposition because ija  is between 
9

1
 and 9. If ija  is between 

7

1
 and 7, then ija7log  is used. 

. 

Proposition 2 [25]: For a reciprocal fuzzy preference relation 

)( ijpP  , the following statements are equivalent 

(1) 
2

3
 kijkij ppp , kji ,,          (22) 



(2) 
2

3
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Proposition 3 [25]: For a reciprocal fuzzy preference relation 

)( ijpP  , the following statements are equivalent 
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Proposition 3 is crucial because it can be used to construct a 

consistent fuzzy preference relations form the set of 1n  

values  12312 ,...,, nppp . A decision matrix with entries that 

are not in the interval ]1,0[ , but in an interval  cc  1, , 

0c , can be obtained by transforming the obtained values 

using a transformation function that preserves reciprocity and 

additive consistency with the function  
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Phase 3: Fuzzy TOPSIS evaluation for alternatives selection 

Step 1: Determine the weights of evaluation criteria. 
The weighting of evaluation criteria are employed from 
consistent fuzzy preference relations process before. 

Step 2: Construct the fuzzy decision matrix for alternatives’ 
evaluation using fuzzy TOPSIS. 
Concept of TOPSIS method originally proposed by [19]. They 
claimed that the alternative should not be chosen based on 
having the shortest distance from the positive ideal reference 
point (PIRT) only, but also have the longest distance from the 
negative ideal reference point (NIRP) in solving the MCDM 
problems. Here, the proposed methodology for fuzzy TOPSIS 
is illustrated differ from others in terms of the usage of 
defuzzification method, normalization process and ranking 
process. 

The fuzzy decision matrix is constructed and the linguistic 
terms from Table 2 is used to evaluate the alternatives with 
respect to criteria. Then, aggregate DMs’ preferences: 
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where ijx~  is the performance rating of alternatives, iA  with 

respect to criterion jC  evaluated by kth experts and  
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Step 3: Fuzzy decision matrix is weighted and normalised. 
Then, defuzzify the standardised generalised fuzzy numbers 
into coordinate form, )~,~( yx . The weighted fuzzy normalised 

decision matrix is denoted by V
~

 as depicted below with 

numerical example:  
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where        

       
jijij wxv ~~~             (28) 

Normalised each generalised trapezoidal fuzzy numbers into 
standardised generalised fuzzy numbers using [26] 
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The weights from consistent fuzzy preference relations are 
adopted here. Defuzzify the standardised generalised fuzzy 
numbers using intuitive vectorial centroid, then translate them 
into the index point proposed by [27] as shown as follows: 
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Use the new point of 
iA

y ~ to compute fuzzy positive-ideal 

solution and fuzzy negative-ideal solution. 
 
Step 4: Determine the fuzzy positive-ideal solution (FPIS) and 
fuzzy negative-ideal solution (FNIS). 

Referring to normalise trapezoidal fuzzy weights, the FPIS, 
A  

represents the compromise solution while FNIS, 
A  represents 

the worst possible solution. The range belong to the closed 

interval [0,1]. The FPIS 
A  (aspiration levels) and FNIS 

A  
(worst levels) as follows. 

  ]1;1,1,1,1[A     ]1;1,1,1,1[ A  

The FPIS, 
A  and FNIS, 

A  can be obtained by centroid 

method for ),(  AA
yx  and ),(  AA

yx . 

Step 5: Calculate the distance of each alternative from FPIS 
and FNIS. 



The distance 


id
~

 and 


id
~

 of each alternative from formulation 

A  and 
A  can be calculated by the area of compensation 

method 
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Step 6: Find the closeness coefficient, 

iCC  and improve 

alternatives for achieving aspiration levels in each criteria. The 
decision rules for five classes are depicted in Table 1. Notice 
that the highest 

iCC  value is used to determine the rank. 
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where,    




 ii

i

dd

d  is satisfaction degree in ith alternative and 





 ii

i

dd

d  is fuzzy gaps degree in ith alternative. 

 
Fuzzy gap should be improvised for reaching aspiration levels 
and get the best mutually beneficial strategy from among a 
fuzzy set of feasible alternatives. 

 
Phase 4: Validation process using sensitivity analysis 

Sensitivity analysis can effectively contributes in making 
accurate decisions by assuming that a set of weights for criteria 
or alternatives then obtained a new round of weights for them, 
so that the efficiency of alternatives has become equal or their 
order has changed. The results of MCDM models are 
importantly needed to validate using sensitivity analysis 
method to analyse the quality and how robustness of MCDM 
model to reach a right decision under different conditions. In 
this paper, sensitivity analysis technique by [20] is utilised. 

IV. CASE STUDY  

A legal company in Malaysia, MESSRS SAPRUDIN, IDRIS 
& CO plans to recruit new staff from the several applicants/ 
candidate in some aspects with the lowest of him/ her to resign. 

There are three decision makers (DMs) DM1, DM2, and DM3 
of a firm to evaluate the candidates and four candidates or 
alternatives x1, x2, x3 and x4. Several criteria are considered to 
evaluate the candidates which are: Emotional steadiness (C1), 
Oration (C2), Personality (C3), Past experience (C4) and, Self-
confidence (C5). These criteria are used based on [28]. This 

study simplify the concept of attributes to ]1,0[
~


A

  for fuzzy 

events. The values of attributes correspond to z-numbers. The 
proposed model is compared with Z-AHP [8] and Z-TOPSIS 
[29] from the literature for comparative study. 

Phase 1: Linguistic evaluation 

The decision makers use the linguistic terms as depicted in 
Table 1 to present the weights using consistent fuzzy 
preference relations evaluation. The linguistic terms in Table 1 
present the important of criteria preferences. In Table 2, the 
decision makers (DMs) use the linguistic terms for fuzzy 
TOPSIS evaluation to represent the evaluating values of the 
alternatives with respect to difference criteria with degree of 
confidence (reliability) respectively as shown in Table 3. 

Phase 2: Fuzzy weights evaluation using consistent fuzzy 
preference relations 
 

Step 1: Construct a hierarchy structure. 
The construction of hierarchy model needs judgement matrix 
filled by DMs about the evaluation of all criteria (Fig. 6). 
 
Step 2: Construct a pair-wise comparison matrices. 

Consistent fuzzy preference relations is adopted to evaluate 

the weights of difference criteria for the performance of 

alternatives. The pair-wise comparison matrices are 

constructed among all criteria in the dimension of the 

hierarchy systems based on the DMs’ preferences in phase 1 

using equation (18) that are depicted in Fig. 7, 8 and 9. 

 

Step 3: Convert the z-number into regular fuzzy number and 

aggregate DMs’ preferences. 

Before aggregate the DMs’ preferences, convert the z-

numbers into regular numbers using equation (13) that are 

depicted in Fig. 9, 10 and 11.  

 

Table 1. Trapezoidal fuzzy numbers preference scale [30] 
Linguistic variables 

Scale of relative important of  

crisp numbers 
Trapezoidal fuzzy numbers 

Reciprocal trapezoidal  

fuzzy number 

Equally important (EI) 

Intermediate value (IV) 

Moderately more important (MMI) 

Intermediate value (IV) 

Strongly more important (SMI) 

Intermediate value (IV) 

Very strong more important (VSMI) 

Intermediate value (IV) 

Extremely more important (EMI) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

(1, 1, 1, 1; 1) 

(1, 3/2, 5/2, 3; 1) 

(2, 5/2, 7/2, 4; 1) 

(3, 7/2, 9/2, 5; 1) 

(4, 9/2, 11/2, 6; 1) 

(5, 11/2, 13/2, 7; 1) 

(6, 13/2, 15/2, 8; 1) 

(7, 15/2, 17/2, 9; 1) 

(8, 17/2, 9, 9; 1) 

(1, 1, 1, 1; 1) 

(1/3, 2/5, 2/3, 1; 1) 

(1/4, 2/9, 2/5, 1/2; 1) 

(1/5, 2/9, 2/7, 1/3; 1) 

(1/6, 2/11, 2/9, 1/4; 1) 

(1/7, 2/13, 2/11, 1/5; 1) 

(1/8, 2/15, 2/13, 1/6; 1) 

(1/9, 2/17, 2/15, 1/7; 1) 

(1/9, 1/9, 2/17, 1/8; 1) 



Table 2. Linguistic terms and their corresponding generalised fuzzy 

numbers [30] 
Linguistic terms Generalised fuzzy numbers 

Absolutely-low (AL) (0.0, 0.0, 0.0, 0.0; 1) 

Very-low (VL) (0.0,0.0, 0.02, 0.07;1) 

Low (L) (0.04, 0.10, 0.18, 0.23; 1) 

Fairly-low (FL) (0.17, 0.22, 0.36, 0.42; 1) 

Medium (M) (0.32, 0.41, 0.58, 0.6; 1) 

Fairly-high (FH) (0.58, 0.63, 0.80, 0.86; 1) 

High (H) (0.72, 0.78, 0.92, 0.97; 1) 

Very-high (VH) (0.93, 0.98, 1.0, 1.0; 1) 

Absolutely-high (AH) (1.0, 1.0, 1.0, 1.0; 1) 

 

Table 3. Reliability linguistic terms and their corresponding z-

numbers [31] 

Linguistic Terms Generalised fuzzy numbers 

Very-low (VL) (0,0,0,0.25;1) 

Low (L) (0,25,0.25,0.5;1) 

Medium (M) (0.25,0.5,0.5,0.75;1) 

High (H) (0.5,0.75,0.75,1;1) 

Very-high (VH) (0.75,1,1,1;1) 

 

 

 
Fig. 6: The hierarchy of staff recruitment problem. 
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Fig. 7. Pairwise comparison matrix of criteria with reliability 

component from DM1 
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Fig. 8. Pairwise comparison matrix of criteria with reliability 

component from DM2 
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Fig. 9. Pairwise comparison matrix of criteria with reliability 

component from DM3. 
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Fig. 10. The fuzzy pairwise comparison matrix of DM1 for criteria evaluation after conversion process 
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Fig. 11. The fuzzy pairwise comparison matrix of DM2 for criteria evaluation after conversion process 
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Fig. 12. The fuzzy pairwise comparison matrix of DM3 for criteria evaluation after conversion process 

 
 
Step 4: Aggregate the decision makers’ preferences. 
The aggregated pairwise comparison matrix for each 

criterion is presented in Fig. 13 as below. 
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Fig. 13. The aggregated fuzzy pairwise comparison matrix for criteria evaluation after conversion process 
 
 
 

Step 5: Defuzzify the fuzzy numbers after transformed for z-

numbers. 

Defuzzify trapezoidal fuzzy weights using intuitive vectorial 

centroid, equation (20) for x-axis. For the evaluation of criteria 

by DMs for this stage, the degree of confidence of the DMs’ 

opinions are agreed as highest degree which is 1. The pair-

wise comparison matrices of DMs’ preferences are aggregated 

as shown example from one of the DM’s evaluation. 

               1;7,5.6,5.5,5
~
A  

 1;1,1,1,75.0
~
B

 
 

The DM’s knowledge can be expressed to z-number as 
 

 )1;1,1,1,75.0)(1;7,5.6,5.5,5(Z
 

 

At first, the reliability component should be converted into 

crisp using equation (7) for x-axis. 
 

 

9722.0
18

)11(7)175.0(2



   

          )9722.0;7,5.6,5.5,5(Z  

 

Add the weight of the reliability to the constraint. Convert the 

weighted z-number to regular fuzzy number according to the 

proposed approach. 
 

)1;79722.0,5.69722.0,5.59722.0,59722.0(
~ ' Z

)1;9021.6,4091.6,4231.5,93.4(
~ ' Z  

 
 

Do the same computation for DMs’ judgement for all criteria. 

Fig. 14 shows the defuzzification results of aggregated matrix 

comparison. 
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Fig. 14. Defuzzification results of aggregated matrix comparison 
 

 

Step 5: Compute the criteria values as weights for alternatives’ 

evaluation using consistent fuzzy preference relations. 

The aggregated matrix comparison of each criterion is 

calculated in Fig. 15. 
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Fig. 15. The consistent fuzzy preference relations matrix for criteria 



By having five criteria, 5n  so only 415)1( n entry 

values 342312 ,,( ppp  and )45p  are required in constructing 

the consistent fuzzy preference relations matrix from Fig. 14 
where:  

   
1202.0)1884.0log1(

2

1
912 p

 

  8599.0)8622.4log1(
2

1
923 p  

  1059.0)1770.0log1(
2

1
934 p  

  6212.0)7033.1log1(
2

1
945 p  

The remains of the entries can be determined by utilizing 
Proposition 2 and 3 by presented as follows: 

8798.01202.011 1221  pp  

5199.08599.01202.0
2

3

2

3
231231  ppp  

7928.06212.01059.0
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2
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 ppppp  

 
Notes: Some of remains entries are not shown for calculation. 
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Fig. 16. The average and weights for criteria 

Then, the average and weights of each criterion are illustrated 

in Fig. 16. Referring to Fig 16, ‘past experience’ criterion has 

highest weights value with 0.2771 (27.71%). Followed by 

‘oration’ 0.2634 (26.34%), ‘self-confidence’ 0.2286 (22.86%), 

‘personality’ 0.1195 (11.95%) and ‘emotional steadiness’ with 

0.1115 (11.15%). Which mean, based on decision makers 

evaluations, ‘past experience, ‘oration’ and ‘self-confidence’ 

criteria play important aspects in recruiting new staff. 

Referring to Table 5, the comparison weights of criteria of 

established and proposed models are presented. Z-AHP [8] 

and Z-TOPSIS [29] give same ranking results for criteria with 

O>PE>S-C>ES>P, but different with proposed model which 

the ranking results of criteria is PE>O>S-C>P>ES. Both Z-

AHP [8] and Z-TOPSIS [29] evaluate criteria simply by 

getting the aggregation results from several decision matrices 

The authors prefer to utilise consistent fuzzy preference 

relations technique order to avoid misleading solution in 

expressing the decision makers’ opinions by means of 

preference relations.  

Phase 3: Ranking evaluation of alternatives using fuzzy 

TOPSIS 

The steps of fuzzy TOPSIS are illustrated as follows [12]: 
 

Step 1: Determine the weights of evaluation criteria. 

The weights of evaluation criteria are employed from 

consistent fuzzy preference relations process before. 
 

Step 2: Construct the fuzzy decision matrix and aggregate 

them. 

The fuzzy decision matrix is constructed and the linguistic 

terms from Table 2 and Table 3 (reliability) are used to 

evaluate the alternatives with respect to criteria. The 

alternatives’ evaluations are presented in Table 4, Fig. 17, 18 

and 19. Then, the aggregated result is computed and presented 

in Fig. 20. 

  
Table 4. Evaluating linguistic terms of the alternatives with reliability 

components given by the decision makers with respect to different 

criteria 

 

 

 

Table 5. Comparison of weights of criteria 

Z-numbers MCDM Model 
Criteria weight values 

Ranking Results 
  (ES)            (O)            (P)           (PE)          (S-C) 

Z-AHP [8] 0.0887 0.3661 0.045 0.3405 0.1602 O>PE>S-C>ES>P 

Z-TOPSIS [29] 0.0631 0.4044 0.009 0.3736 0.1499 O>PE>S-C>ES>P 

Z-CFPR-TOPSIS (Proposed) 0.1115 0.2634 0.1195 0.2771 0.2286 PE>O>S-C>P>ES 
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Fig. 17. The fuzzy pairwise comparison matrix of DM1 for alternatives evaluation after conversion process 
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Fig. 18. The fuzzy pairwise comparison matrix of DM2 for alternatives evaluation after conversion process 
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Fig. 19. The fuzzy pairwise comparison matrix of DM3 for alternatives evaluation after conversion process 
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)1;8015.0,7449.0,5944.0,5188.0()1;9761.0,9590.0,8955.0,8420.0()1;9253.0,8932.0,7948.0,7404.0()1;9761.0,9590.0,8955.0,8420.0(

)1;7036.0,6366.0,4665.0,3847.0()1;9761.0,9590.0,8955.0,8420.0()1;8799.0,8292.0,6859.0,6326.0()1;8889.0,8526.0,7401.0,6889.0(

4321

CS

PE

P

O

ES

Aggregated

xxxx

Fig. 20. The aggregated fuzzy pairwise comparison matrix for alternatives evaluation after conversion process 
 

 

Step 3: Fuzzy decision matrix is weighted and normalised.  

The weights from consistent fuzzy preference relations are 

adopted here. The weighted and normalised fuzzy decision 

matrix are depicted in Fig. 21 and 22. The weighted fuzzy 

decision matrix is denoted by V
~

 as depicted below with 

numerical example:  
 

1115.0)1;8889.0,8526.0,7401.0,6889.0(~
,1, ESxAggregatedv  

)1;0099.0,095.0,0825.0,0768.0(~
,1, ESxAggregatedv  

Convert each generalised trapezoidal fuzzy numbers into 

standardised generalised fuzzy numbers using normalisation 

process by [26] from equation (29). 

Step 4: Defuzzify the standardised generalised fuzzy numbers. 

Defuzzify the standardised generalised trapezoidal fuzzy 

numbers using intuitive vectorial centroid method, then 

translate them into the index point proposed by [27], as 

depicted in Fig. 23 and 24. Use the new point of 
iA

y ~ to 

compute fuzzy positive-ideal solution and fuzzy negative ideal 

solution. Thea average of translated defuzzified pairwise 

comparison matrix for alternatives solution is presented in Fig. 

25. 

 
 

 



























)1;1766.0,162.0,1231.0,1072.0()1;2254.0,2254.0,2209.0,2096.0()1;2026.0,1955.0,174.0,1621.0()1;2018.0,1889.0,1525.0,1405.0(

)1;1147.0,0984.0,0601.0,0464.0()1;2221.0,2064.0,1647.0,1438.0()1;1701.0,1517.0,1073.0,0837.0()1;0939.0,0781.0,0462.0,0287.0(

)1;1143.0,1084.0,0919.0,0848.0()1;1178.0,1178.0,1154.0,1095.0()1;1154.0,1114.0,0991.0,0924.0()1;1178.0,1178.0,1154.0,1059.0(

)1;2026.0,1885.0,1484.0,1367.0()1;2571.0,2526.0,2359.0,2218.0()1;2437.0,2353.0,2093.0,195.0()1;2571.0,2526.0,2359.0,2218.0(

)1;0784.0,071.0,052.0,0429.0()1;1088.0,1069.0,0998.0,0939.0()1;0981.0,0924.0,0765.0,0705.0()1;0991.0,095.0,0825.0,0768.0(
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Fig. 21. The weighted fuzzy pairwise comparison matrix for alternatives evaluation 



 



























)1;6475.0,5836.0,4132.0,3439.0()1;8612.0,8612.0,8415.0,7922.0()76131.0,7305.0,6362.0,5841.0()1;7578.0,7015.0,542.0,4896.0(

)1;3768,305.0,1376.0,0778.0()1;8467.0,778.0,5955.0,5038.0()1;619.0,5388.0,3441.0,241.0()1;2855.0,2162.0,0768.0,0(

)1;3746.0,3488.0,2767.0,2457.0()1;3901.0,3901.0,3798.0,354.0()1;3797.0,3622.0,3085.0,2788.0()1;3901.0,3901.0,3798.0,354.0(

)1;7615.0,6996.0,5243.0,4727.0()1;1,9803.0,9071.0,8454.0()1;9415.0,9045.0,7910.0,7283.0()1;1,9803.0,9071.0,8454(

)1;2178.0,1851.0,1021.0,0622.0()1;3508.0,3425.0,3115.0,2854.0()1;3039.0,2791.0,2092.0,1832.0()1;3083.0,2905.0,2357.0,2107.0(
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Fig. 22. The normalised fuzzy pairwise comparison matrix for alternatives evaluation

 





































3889.0,4978.03889.0,8459.03889.0,6810.03889.0,6222.0

3889.0,2227.03889.0,6842.03889.0,4389.03889.01457.0

3889.0,3122.03889.0,3821.03889.0,3340.03889.0,3821.0

3889.0,6131.03889.0,939.03889.0,8449.03889.0,939.0

3889.0,1428.03889.0,3250.03889.0,2440.03889.0,2623.0
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Fig. 23. The defuzzified pairwise comparison matrix for alternatives evaluation 

 





































4447.0,4978.04867.0,8459.0468.0,6810.04505.0,6222.0

4456.0,2227.04383.0,6842.04324.0,4389.04496.01457.0

4765.0,3122.04932.0,3821.04818.0,3340.04932.0,3821.0

4463.0,6131.04723.0,939.04615.0,8449.04723.0,939.0

4720.0,1428.04883.0,3250.04779.0,2440.04822.0,2623.0
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Fig. 24. The defuzzified pairwise comparison matrix for alternatives evaluation

 

 457.0,3577.04758.06352.04643.0,5086.04695.0,4703.0
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Fig. 25. The average translate defuzzified pairwise comparison matrix for alternatives evaluation 

 

Step 5: Determine the fuzzy positive-ideal solution (FPIS) and 

fuzzy negative-ideal solution (FNIS). 

Referring to normalise trapezoidal fuzzy weights, the FPIS, 
A represents the compromise solution while FNIS, 
A represents the worst possible solution. The range belong to 

the closed interval [0,1]. The FPIS 
A  (aspiration levels) and 

FNIS 
A  (worst levels) as following below. 

 

]1;1,1,1,1[A             ]1;1,1,1,1[ A  

 

 The FPIS, A  and FNIS, A  can be obtained by centroid 

method for ),(  AA
yx  and ),(  AA

yx . 

 

Step 6: Calculate the distance of each alternative from FPIS 

and FNIS. 

The distance 
id

~
 and 

id
~

 of each alternative from formulation 

A  and A  can be calculated by the area of compensation 

method. 
 

    2
~

2
~ )()()~,~( **  

AAAAjiji yyxxvvd
ii

         

 

    2
~

2
~ )()()~,~( **  

AAAAjiji yyxxvvd
ii

           

 

The numerical calculation is shown as follows. 

           22

1 )5.04695.0()14703.0( 

candidated  

5306.01 


candidated      

22

1 )5.04695.0())1(4603.0( 

candidated   

4706.11 


candidaed  

 

Step 7: Find the closeness coefficient, CCi and improve 

alternatives for achieving aspiration levels in each criteria.  

Notice that the highest CCi value is used to determine the rank. 
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Hence, the numerical calculation is shown as   

             

5306.04706.1

4706.1
1




candidate
CC  

7348.0
1


candidate
CC  
 

 

Table 6. Closeness coefficients computation. 
 

Alternative       Closeness Coefficient, CCi 

Candidate 1 0.7348 (Rank 3) 

Candidate 2 0.7538 (Rank 2) 

Candidate 3 0.8173 (Rank 1) 

Candidate 4 0.6785 (Rank 4) 



The closeness coefficient, CCi values present that the candidate 
3  achieves the highest rank with 0.8173 followed by candidate 
2 with 0.7538, candidate 1 with 0.7348 and candidate 4 with 
0.6785 for the last ranked. The results reveal that the candidate 
3 is most suitable for this recruitment because has highest CCi 

value. 

Table 7 depicts the ranking results of all the established and 
proposed models for alternatives. All models present same 
ranking for alternatives/ candidates with Alt3>Alt2>Alt1>Alt4. 
This is showed that the proposed model is consistent with 
established models for z-numbers in terms of ranking results. 

Phase 3: Ranking evaluation of alternatives using fuzzy 
TOPSIS 

In sensitivity analysis evaluation, the focus is to test the effect 
of the criteria weights on the ranking of the results. The tests 
are process by increasing each original criteria weight by 50%, 
100% and 150%. While one criterion is increased, the values of 
the remaining criteria are decreased by certain amount, such 
that the total amount of criteria are equal to one. Referring to 
Table 8, the proposed Z-CFPR-TOPSIS is quite robust and 
stable, since changes in the criteria weights significantly affect 

for several cases in the final ranking order of the alternatives 
candidates. As related before, the consistency of correct 
ranking order based on original rank presents 86.67% level of 
consistency. Even the ranking values are changed, but the 
ranking order are significantly consistent with the original 
ranking. However, when criterion ‘Oration’ are increased by 
100% and 150%, the ranking order are changed to 
Alt3>Alt1>Alt2>Alt4 both of them. In the context of 
sensitivity analysis evaluation, it presents that the proposed 
hybrid fuzzy MCDM model for z-numbers is consistent even 
the weights of criteria are changed. 

Table 9 summarises the sensitivity analysis results for all three 
comparative studies in this research work. Representing both 
established models (Z-AHP and Z-TOPSIS) achieve 66.67% of 
level of consistency while the proposed Z-CFPR-TOPSIS 
achieves 86.67%. This is depicted that the proposed Z-CFPR-
TOPSIS model is more robust and reliable than Z-AHP [8] and 
Z-TOPSIS [29] to deal with uncertain environment in studying 
knowledge of human being. From the consistency results, the 
proposed Z-CFPR-TOPSIS model is recommended to deal 
with bigger case study in real world phenomena in order to 
solve human based decision making problems under fuzzy 
environment. 

 

Table 7. Ranking results of alternatives for hybrid fuzzy MCDM models 

Z-numbers  MCDM Model 
Alternative ranking values 

Ranking Results 
(Alt1)      (Alt2)       (Alt3)       (Alt4) 

Z-AHP [8] 0.2321 0.2584 0.3016 0.2079 Alt3>Alt2>Alt1>Alt4 

Z-TOPSIS [29] 0.5503 0.5562 0.5678 0.5404 Alt3>Alt2>Alt1>Alt4 

Z-CFPR-TOPSIS (Proposed) 0.7348 0.7538 0.8173 0.6785 Alt3>Alt2>Alt1>Alt4 

 

Table 8. Sensitivity analysis results of proposed hybrid fuzzy MCDM model for z-numbers 

Changes of 

criteria (%) 
Alt1 Alt2 Alt3 Alt4 Ranking results 

Consistency 

based on 

original result 

ES' (50%) 0.7580 0.7759 0.8442 0.6945 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (100%) 0.7845 0.8010 0.8750 0.7127 Alt3>Alt2>Alt1>Alt4 Consistent 

ES' (150%) 0.7352 0.7465 0.8064 0.6746 Alt3>Alt2>Alt1>Alt4 Consistent 

O' (50%) 0.6673 0.6732 0.7101 0.6242 Alt3>Alt2>Alt1>Alt4 Consistent 

O' (100%) 0.6362 0.6359 0.6606 0.5991 Alt3>Alt1>Alt2>Alt4 Inconsistent 

O' (150%) 0.6182 0.6145 0.6321 0.5847 Alt3>Alt1>Alt2>Alt4 Inconsistent 

P' (50%) 0.7657 0.7817 0.8481 0.7050 Alt3>Alt2>Alt1>Alt4 Consistent 

P' (100%) 0.7823 0.7941 0.8595 0.7208 Alt3>Alt2>Alt1>Alt4 Consistent 

P' (150%) 0.7301 0.7359 0.7853 0.6823 Alt3>Alt2>Alt1>Alt4 Consistent 

PE' (50%) 0.6405 0.6678 0.7200 0.6097 Alt3>Alt2>Alt1>Alt4 Consistent 

PE' (100%) 0.5893 0.6179 0.6578 0.5761 Alt3>Alt2>Alt1>Alt4 Consistent 

PE' (150%) 0.5608 0.5901 0.6233 0.5574 Alt3>Alt2>Alt1>Alt4 Consistent 

S-C' (50%) 0.6810 0.6957 0.7428 0.6402 Alt3>Alt2>Alt1>Alt4 Consistent 

S-C' (100%) 0.6391 0.6503 0.6853 0.6096 Alt3>Alt2>Alt1>Alt4 Consistent 

S-C' (150%) 0.6151 0.6243 0.6524 0.5920 Alt3>Alt2>Alt1>Alt4 Consistent 

Level of consistency 86.67% 

 



Table 9. Ranking results of alternatives 

Z-numbers MCDM Model Level of Consistency 

Z-AHP [8] 66.67% 

Z-TOPSIS [29] 66.67% 

Z-CFPR-TOPSIS (Proposed) 86.67% 

 

V. CONCLUSION 

 

This study has brought out the idea and concept regarding the 

hybrid fuzzy MCDM model that consist of consistent 

preference relations and fuzzy TOPSIS (Z-CFPR-TOPSIS) 

using intuitive vectorial centroid defuzzification method to 

deal with z-numbers. In dealing with the uncertainty and 

complexity in the information, the reliability of information 

must be taken into consideration efficiently. Z-number is a 

new notion that proposed by Zadeh has more capability in 

describing the uncertain and complex knowledge. The 

consideration of z-numbers in the research work provides  

The development of extension of intuitive vectorial 

centroid provides an efficient computational defuzzification 

procedures for uncertain environment. It presents in simple 

formulae that based on the perspective of analytic geometric 

principles. In developing an intuitionistic defuzzification, a 

novel manner of computing intuitive vectorial centroid method 

has capability in dealing with all possible cases of fuzzy 

numbers. The novel Z-CFPR-TOPSIS model is developed by 

improvising several steps in computing the consistent fuzzy 

preference relations and fuzzy TOPSIS to make sure both 

techniques are perfectly integrated. This proposed model 

capable to interact or cooperate with unlimited criteria in 

dealing with real world decision making problems. 

The proposed Z-CFPR-TOPSIS model provides better 

selection in human based decision making problems where at 

the same capable to deal with uncertainty in human 

judgement.  Due to access information and availability of the 

incomplete and uncertain data, it is hard to make right 

decision. In this sense, it is important to improvise the 

techniques or models form the classical one, adding intuitive 

reasoning and human subjectivity. As consequence, the 

proposed model is developed to design the robust and reliable 

methodology in order to give the most promising alternatives 

with respect to the resources. Therefore, this methodology can 

be further proceeded in order to make some contributions by 

considering complicated case studies drawn for diverse fields 

crossing human based decision making problems.  
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