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Abstract

Many Feed-in Tariff designs exist. This paper provides a framework to determine the optimal
design choice through an efficient allocation of market price risk. Feed-in Tariffs (FiTs) incen-
tivise the deployment of renewable energy technologies by subsidising remuneration and transfer-
ring market price risk from investors, through policymakers, to a counterparty. This counterparty
is often the electricity consumer. Using Stackelberg game theory, we contextualise the applica-
tion of different FiT policy designs that efficiently divide market price risk between investors and
consumers, conditional on risk preferences and market conditions. Explicit consideration of pol-
icymaker/consumer risk burden has not been incorporated in FiT analyses to date. We present a
simulation-based modelling framework to carry this out. Through an Irish case study, we find that
commonly employed flat-rate FiTs are only optimal when policymaker risk aversion is extremely
low whilst constant premium policies are only optimal when investor risk aversion is extremely
low. When both policymakers and investors are risk averse, an intermediate division of risk is
optimal. We provide evidence to suggest that the contextual application of many FiT structures
is suboptimal, assuming both investors and policymakers are at least moderately risk averse. Ef-
ficient risk allocation in FiT design choice will be of increasing policy importance as renewables
deployment grows.
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1. Introduction

The intermittent nature of many renewable energy sources combine with uncertain market
prices to make renewable energy investment an inherently risky venture. Feed-in Tariffs (FiTs)
guarantee a set payment per unit of electricity generated and thus limit investors’ exposure to low
market prices to a greater extent than alternate mechanisms (Burer and Wustenhagen, 2009; Haas
et al., 2011; IEA and OECD, 2008; Ragwitz et al., 2007; Fagiani et al., 2013). Although theo-
retically less efficient than quantity-based schemes (Ringel, 2006), FiTs have become a preferred
policy mechanism for many jurisdictions as the reduced exposure to market price risk has incen-
tivised greater deployment of renewable technologies (Menanteau et al., 2003; Haas et al., 2011).

FiTs do not eliminate market price risk but rather transfer this risk to a counterparty. This coun-
terparty bears the risk of additional policy cost if wholesale prices are less than the FiT guarantee.
Often, a policymaker incurs this aggregate risk in the first instance, which is then transferred to
electricity consumers through additional charges on consumption (Farrell and Lyons, 2015; Gross
et al., 2010). Different FiT designs apportion this risk in different ways (Couture and Gagnon,
2010; Kim and Lee, 2012), with zero, partial or full transfer of market price risk possible (Farrell
et al., 2017). Although the literature has acknowledged that appropriate risk transfer is central to
successful renewables policy (Klessmann et al., 2013), the optimal division of risk has not been
analysed.

Given both investor and policymaker aversion to market price risk, optimal policy design must
efficiently divide this burden, analogous to the division of risk central to the design of insur-
ance contracts (Raviv, 1979). This paper presents a simulation-based modelling framework to
divide risk in a similar way. To carry this out, a characterisation of both investors’ and policy-
maker’s/consumers’ attitude to market, regulatory and policy risks, and their reactions in different
contexts, is required (Ekins, 2004; Gross et al., 2010). This is an important contribution, as while
many policy designs have been implemented to date, the choice has not been guided towards the
most efficient outcome through an appropriate objective framework. This framework is developed
in this paper and applied to an Irish case study. This gives important policy insight as the impact of
excessive consumer exposure to market price risk is becoming of increasing concern for FiT policy
in many countries such as Ireland (Farrell and Lyons, 2015), Germany (Neuhoff et al., 2013), the
UK (Chawla and Pollitt, 2013) and Italy (Verde and Pazienza, 2013).

Abbreviations: CARA: Constant Absolute Risk Aversion; CE: Certainty Equivalent; CfD: Contract for Differ-
ence; CRRA: Constant Relative Risk Aversion; EMV: Expected Money Value; FiT: Feed-in Tariff; IEA: International
Energy Agency; MW: Megawatt; OECD: Organisation for Economic Cooperation and Development; O & M: Op-
erations & Maintenance; REFIT: Renewable Energy Feed-in Tariff; ROC: Renewables Obligation Certificate; SEM:
Single Electricity Market; VWAP: Volume-Weighted Average Price; CP: Constant Premium; SU: Shared Upside; CF:
Cap & Floor
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This paper is structured as follows. The following section will give a literature review. Section
3 will outline the methodology employed. Section 4 presents the data for a stylised Irish case study
while Section 5 describes the results. Finally, Section 6 offers a discussion and conclusion.

2. Literature Review and Motivation

A considerable gap exists in the literature to provide a suitable policy tool to identify the op-
timal FiT design. Reviewing the literature in this field brings together literature focussing on
investment incentives and consumer policy cost. Much of this analysis is from an investor’s per-
spective and has compared investment incentives created by FiTs with those offered by alternate,
non-FiT support mechanisms (Dong, 2012; Fagiani et al., 2013; Menanteau et al., 2003; Ragwitz
et al., 2007; Ringel, 2006). The literature to date has found that FiTs have led to greater deploy-
ment than alternatives as investor exposure to market price risk is lower (Burer and Wustenhagen,
2009; Butler and Neuhoff, 2008; Kitzing, 2014; Falconett and Nagasaka, 2010). Indeed, exposure
and attitude to risk is a key determinant in the superior effectiveness of FiT regimes. Comparing
FiTs to quantity-based policies, Fagiani et al. (2013), Kitzing et al. (2012) and Kitzing (2014) have
emphasised the importance of incorporating market price risk when deciding on the subsidy type
(in particular, a FiT or quantity-based mechanism). Indeed, Dinica (2006) and Feng et al. (2012)
elaborate on how the relationship between risk and profitability is key to encouraging investment.

While the preceding papers have stated the importance of considering risk for the superior ef-
fectiveness of FiT mechanisms, focussing on risk attitudes and investment incentives in optimal
FiT design has received less attention in the literature. Kim and Lee (2012) have analysed FiT
payout structures to incentivise Solar PV deployment. Kim and Lee (2012) incorporate network
effects and the propensity to adopt household-based solar PV. However, they do not evaluate how
different attiudes to market price risk may affect results. Doherty and O’Malley (2011) also focus
on investors when analysing the efficiency of Ireland’s FiT design. Although they suggest that the
current Irish FiT over-remunerates investors, they do not compare FiT choice amongst efficiently
specified options, nor do they consider consumer and investor attitidues to market price risk. Farrell
et al. (2017) provide a model with which different FiT regimes may be efficiently defined using op-
tion pricing theory. For each design, cost and remuneration are equal in expectation. However, the
balance of certain/uncertain policy cost and investor remuneration varies between policy options.

Although managing investor risk exposure has been found to be of great importance for opti-
mal energy policy, less attention has been given to managing policymaker/consumer risk exposure.
However, a body of literature exists to analyse trends in policymaker/consumer cost. Parkinson and
Djilali (2015) discuss the issue of performance uncertainty of energy technologies with respect to
pollution limitation, and the incorporation of policymaker risk aversion in prudent policy design.
In an Australian context, Riesz et al. (2015) consider the risks of excessive policy cost associated
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with adopting high levels of gas penetration to abate carbon emissions. Leepa and Unfried (2013)
discuss the impacts of overdeployment and how this may result in excessive consumer cost. Low
market prices present a similar risk of excessive consumer cost in relation to FiT policies. Indeed,
a greater penetration of renewables coupled with lower than expected fossil fuel cost has resulted
in greater subsidies in recent years (Bryant, 2013; Chawla and Pollitt, 2013; DW, 2013; Farrell and
Lyons, 2015; Loreck et al., 2012) with potential for this trend to continue (Batlle, 2011; Chawla
and Pollitt, 2013; Devitt and Malaguzzi Valeri, 2011; Fagiani et al., 2013; Klessmann et al., 2013;
Leepa and Unfried, 2013; Loreck et al., 2012). One can see that increasing policy cost is a consis-
tent trend, with uncertainty regarding the extent of future policy cost (Devitt and Malaguzzi Valeri,
2011; Klessmann et al., 2013). Given that the setting of a FiT policy is carried out in a prospective
manner, where future costs are uncertain, the incorporation of consumer burden and attitudes to
risk of excessive policy cost is an important consideration.

Thus, it is important to correctly manage both investor and policymaker exposure to market
price risk when designing renewables policy. Such management involves balancing a trade-off:
removing one degree of market price risk from the investor requires the policymaker to bear an
additional degree of risk. Precisely identifying the most efficient point in this trade-off has not
been carried out by the literature to date.

Farrell et al. (2017) discuss the concept of risk-sharing when choosing between designs using
a bi-level model similar to that considered in this work. In particular, they discuss the Value-
at-Risk (VaR) associated with different policies ex-post any FiT level decisions made. However,
when determining optimal FiT levels, they model both policymakers and investors as risk neutral
players. Thus, in contrast to this paper, they do not explicitly incorporate the risk preferences of
either poilcymakers or investors into their respective decision-making problems. Consequently,
this paper provides a number of important contributions for policymakers when considering the
most appropriate Feed-in Tariff choice:

1. The policymaker’s preferences are less dominant than those of investors when degrees of
risk aversion are of a similar magnitude.

2. Market price risk should be shared except under circumstances of extreme investor/consumer
indifference to risk.

3. Shared upside policies offer very similar levels of utility to cap & floor policies (see Section
3.2 for a detailed description of the FiTs considered in this work). However, when policy-
makers are extremely risk averse and investors are modestly risk averse, the expected cost of
the cap & floor policy is slightly smaller.

4. When policymakers are risk averse and investors have low levels of risk aversion, constant
premium policies offer higher utility when compared shared upside policies. However, in
Expected Money Value (EMV) terms, constant premium policies are always more expensive.
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The efficient division of risk is also common in other contexts. For instance, Raviv (1979)
show that an optimal insurance contract may be designed by first identifying the insured’s optimal
level of coverage as a function of the insurance premium and then identifying the optimal premium
from the insurer’s perspective. Mahul (2001) apply a similar framework to identify how weather-
dependent production may insure against climate risks, whilst Ma and McGuire (1997) model the
design of optimal health insurance contracts. The following section presents a tool with which
policymakers can identify the optimal point in this trade-off when choosing a suitable FiT policy
structure.

3. Methodology

The methodology of this paper consists of three steps. First, we model electricity market prices.
Second, we specify efficient FiT specifications which allow for investor remuneration/policy cost
to be identified. Third, these cost/remuneration calculations are used alongside a model of risk
averse investment to determine an optimal FiT design conditional on risk preferences. These steps
will be outlined in turn in this section. FiTs transfer risk from investors, through policymakers, to
consumers. To aid the discussion that follows, we refer to policymaker burden alone. However, this
may be interpreted as a collective term for the total burden incurred by all consumers. Tables 1 - 4
display the indices, parameters, functions and decision variables of the overall model respectively.

Table 1: Model indices

Monte-Carlo simulation scenarios l

Timesteps t

3.1. Market Prices

The market price received by the renewable investor varies by jurisdiction. For the purpose of
this analysis, we choose an Irish case study and thus consider annual Volume Weighted Average
Prices (VWAP) (Farrell et al., 2017). This is the annual average electricity price weighted by the
volume of electricity generated through renewable sources and is used in certain jurisdictions such
as Ireland to calculate wind remuneration (Doherty and O’Malley, 2011; Farrell et al., 2017).

Fleten et al. (2007) have comprehensively reviewed methodologies to model electricity prices
in the analysis of renewable energy investment (Pindyck, 1999; Pinkdyck, 2001; Schwartz and
Smith, 2000) finding Geometric Brownian Motion (GBM) appropriate. This is because renewable
energy investment is a long-term investment and thus long term price trends are of importance,
even when analysing investments in markets with electricity prices of hourly, daily or monthly
fluctuations. Thus, results are of negligible sensitivity to intra-annual variability (Pindyck, 1999;
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Table 2: Model parameters with baseline values

Parameter Value
Capital Cost (A) e1.76m /MWa

Annual Operations & Maintenance Cost (O) 2% of capital costa

Irish Single Electricity Market (SEM) Installation target (QTARGET) 4,630 MWb

Capacity Factor (u) 0.35a

Availability (v) 0.95a

Maximum Q (Qmax) 16 GWc

Long-run electricity Price Growth (µ̄) 0.0155a

Rate of change parameter for generation function (γ) (6.75× 10−5 )b

Market price parameter (η) 0.01 e

Market price parameter (κ) 0.001d

Electricity Price Volatility (σ) 0.13a

Initial VWAP (S0) 52.41 (e/MW h)a

Discount Rate (r) 0.06
Investors’ pre-existing wealth (wInv

pre) e18.98bne

Policymaker’s pre-existing wealth (wpolicy
pre ) e38.36bne

Investors’ level or risk aversion (α) 0 – 4

Policymaker’s level or risk aversion (β) 0 – 4

Total number of simulations (L) 100,000
Probability associated with each scenario l (PRl) 1

100,000

Total number of yearly timesteps (T ) 20

Source: a calibrated to Doherty and O’Malley (2011); b callibrated to Mc Garrigle et al. (2013);
c SEAI (2011); d calibrated to IWEA (2011); e own calculation.

Pinkdyck, 2001; Schwartz and Smith, 2000). Given this finding, GBM has been employed in many
circumstances for the modelling of long-term electricity price processes of annual timesteps (e.g.
Wickart and Madlener, 2007; Yang and Blyth, 2007; Heydari et al., 2012; Siddiqui and Maribu,
2009; Siddiqui and Fleten, 2010; Zhu, 2012). Following this convention, along with modelling
in the context of an annual timestep for which GBM is considered appropriate (see Farrell et al.
(2017) for further discussion of this), GBM is chosen to model annual electricity prices in this
paper.

The market price for scenario l and timestep t is represented by Sl,t. Values for this parameter
are generated through Monte-Carlo simulations via the following stochastic differential equation
for GBM:

dS = µ(Q)Sdt+ σSdω, (1)
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Table 3: Model functions

Feed-in Tariff price for timestep t and scenario l (e/MW h) P .
l,t

System price for timestep t and scenario l (e/MW h) Sl,t

System price average growth rate (%) µ

Policymaker cost for timestep t and scenario l (e/MW h) F .
l,t

Total policymaker cost for and scenario l (e) Fl

Policymaker utility for scenario l U policy
l

Polciymaker wealth for scenario l (e) W policy
l

Investor utility for scenario l U Inv
l

Investor wealth for scenario l (e) W Inv
l

Investor profit for scenario l (e) ΠInv
l

Total investor costs (e) C

Total investor generation (MW h) G

Table 4: Model varaibles

Policymaker decision variables
Feed-in Tariff price premimum (e/MW h) X

Feed-in Tariff price floor (e/MW h) K

Feed-in Tariff proportion of market upside (e/MW h) θ

Feed-in Tariff price cap (e/MW h) S̄

Investor decision variables
Installed capacity of renewable energya (MW) Q

While Q is a variable of the investors’ problem, the overall
optimisation problem is solved such that Q must equal QTARGET.

where
µ(Q) = µ̄+ ηe−κQ. (2)

The main parameters of this process are µ, which is the drift or average trend of growth, and σ
which is the volatility around the average trend. Following Farrell et al. (2017), Equations (1) and
(2) show that changes in the Q of renewables installed affect the rate of growth (µ) in VWAP. In
this way, any changes in prices due to the level of deployment are endogenous to the assumed price
process and thus the investment decision. VWAPs are modelled this way because the ‘merit order
effect’ of certain renewables with no marginal cost (e.g. wind, wave solar; Sensfuß et al., 2008)
will result in lower rates of market price growth as the quantity Q of installed capacity increases.

The parameter µ̄ represents the rate of growth when a Qmax level of installation is in place,

7



thus including all merit order effects while ηe−κQ models the pattern with which the rate of growth
changes with each additional Q capacity addition. Both η and κ are model parameters, where
µ̄ + η represents the rate of growth when Q is zero, while κ determines the elasticity of the rate
of growth with respect to Q. These parameters are chosen such that merit order effects impact the
rate of growth in a pattern that is consistent with expectations. Increments of the Wiener process
are represented by dω (Hull, 2003). In Section 5, equation (1) is used to generate L = 100, 000

Monte-Carlo simulation scenarios.
VWAP is the only stochastic measure considered in this paper. However, Nahmmacher et al.

(2014), Wogrin et al. (2016), and Wogrin and Gayme (2015) all note that ignoring the temporal
and spatial variability of renewable energy output with regard to demand, in long-term models,
may lead to upwardly biased estimates of renewable energy adoption. The correlation of output
with demand is of importance if it affects the level of remuneration or if operation is determined
by this chronology. However, this effect is negligible in this work as VWAP, and hence renewable
output, are calculated on a yearly basis. Any influence this correlation has on market prices is
captured by the stochastic market price process. This is in contrast to other applications, as outlined
by Nahmmacher et al. (2014), which require an understanding of the short-term chronology and
correlations.

3.2. Feed-in Tariff Prices

Once market prices are specified, we must specify efficient feed-in tariff prices. Illustrated in
Figure 1, we consider three different FiT designs that transfer market price risk in different ways:

1. Constant Premium: investors receive a constant premium price in addition to the full mar-
ket price. Thus, investors are fully exposed to market price risk. This tariff is also known as
a Feed-in Premium.

2. Shared Upside: investors receive a guaranteed price floor with market upside shared be-
tween investors and the policymaker. Hence, market price risk is shared between investors
and the policymaker.

3. Cap & Floor: investors receive the full share of market price. However, lower and upper
bounds are placed on the price received. Consequently, market price risk is again shared
between investors and the policymaker.

Assuming both players are risk neutral, Farrell et al. (2017) show how each of these FiTs may be
efficiently specified using option pricing theory. For the shared upside policy, this specification
results in an inverse relationship between the efficient price floor and the degree of market ‘upside’
offered to investors. When a greater share of market upside is offered to investors, the efficient price
floor falls to take into account of the value of the market upside and hence a greater proportion of
market price risk is transferred from the policymaker to the investors. A similar relationship was
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found between the efficient upper and lower bounds for the cap & floor policy with the efficient
price floor falling as the efficient price cap increases.
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Figure 1: Payment structures: (left) constant premium, (middle) shared upside, (right) cap & floor.

3.2.1. Constant Premium

For a constant premium (CP) tariff, the discounted price received by the investor during time t
under scenario l (P CP

l,t ) is the discounted value of the premium, X , added to the discounted value
of market remuneration (Sl,t):

P CP
l,t = e−rt(X + Sl,t), (3)

where r is the discount rate. The cost for the policymaker, at time t, is constant at

F CP
l,t = e−rtX. (4)

3.2.2. Shared Upside

The value of remuneration under a shared upside (SU) policy comprises two constituent ele-
ments; a minimum price guarantee and a portion of market upside. This FiT structure resembles a
European call option, where the investor has the right, but not the obligation to buy at time t at a
given price (i.e., price floor K). The share of market upside received by the investor is denoted by
θ. The discounted price of P SU

l,t under a shared upside policy at time t under scenario l is:

P SU
l,t = e−rt(K + θ(max(Sl,t −K, 0))), (5)

while the discounted policy cost under a shared upside regime is

F SU
l,t = e−rt(max(0, K − Sl,t)− (1− θ) max(0, Sl,t −K)). (6)
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3.2.3. Cap & Floor

A cap & floor (CF) policy is also like a call option, where investors have the right to buy at a
price floor (K). However, should the price exceed the cap (S̄), remuneration is equal to the cap
and no more. The price P CF

l,t under this policy design is:

P CF
l,t = e−rt(K + max(Sl,t −K), 0)−max(Sl,t − S̄, 0)) (7)

the discounted cost of the FiT at time t is

F CF
l,t = e−rt(max(0, K − Sl,t)−max(0, Sl,t − S̄)). (8)

3.3. Optimisation model formulation

The procedure of modelling renewable energy investment is a Stackelberg leader game. Indus-
try investors decide on aQ level of investment in a given renewable energy technology, conditional
on the FiT price offered by the policymaker. In this Stackelberg game, the leader (policymaker)
chooses their strategy (FiT price) first with followers (investors) implementing their strategy (in-
vestment) conditional on the leader’s choice (Chang et al., 2013; Fudenberg and Tirole, 1991).
Under this framework investors are modelled as a whole and hence as a single player. The policy-
maker anticipates the investors’ strategic response and chooses the FiT price that results in deploy-
ment of the desired quantity of renewable generation. This means that the investors’ optimisation
problem is embedded in the policymaker’s optimisation problem.

It is assumed that a policymaker wishes to incentivise the deployment of QTARGET units, a
target which is set exogenously. Other works, such as Siddiqui et al. (2016) assume that when
modelling investment in renewable energy capcity, the capacity target is a decision variable of
the model. However, setting QTARGET exogenous to the model in this work is motivated by the
European Union’s binding energy targets where each member state must increase the proportion
of electricity they generate from renewable sources before 2020. In the Republic of Ireland, this
target is set at 40% (DCCAE, 2009). Mc Garrigle et al. (2013) estimate that this target will require
the installation of 4630 MW of renewable energy capacity and this is the level that QTARGET is set
at in this paper.

The bi-level game modelled in this work operates over T discrete time periods in a time horizon
[1, T], indexed by t. It builds on the model developed in Farrell et al. (2017), however, the present
work incorporates the risk preferences of the two different types of players into their objective
functions which provides a more realistic modelling framework. As explained previously, both the
policymaker and investors are assumed to be risk neutral in Farrell et al. (2017).

FiTs vary according to the degree of certain and uncertain payments in overall remuneration.
For investors, a greater proportion of certain payments in overall remuneration reduces market
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price risk. This is achieved by offering the investor a higher price floor and thus a lower proportion
of market upside/lower cap. However, offering a policy of greater revenue certainty for investors
requires a greater degree of market price uncertainty to be borne by the policymaker, as a higher
floor exposes the policymaker to a greater cost should market prices be low. A FiT must be chosen
such that the balance of uncertain and certain remuneration incentivises investors to installQTARGET

units whilst allowing policymakers to minimise the welfare loss associated with policy cost and
exposure to market price risk.

There are many methods with which one may model this trade-off between expected cost or
remuneration and exposure to risk, including Conditional Value at Risk (CVaR)-based method-
ologies, mean-variance functional forms and utility functions such as Constant Absolute Risk
Aversion (CARA) and Constant Relative Risk Aversion (CRRA). Effective modelling captures
observed patterns of risk aversion. As Chiu and Wong (2013) discuss, optimal investment deci-
sions are commonly evaluated based on maximizing the expected utility of future wealth (Chiu
and Wong, 2013; Fan et al., 2010, 2012; von Neumann and Morgenstern, 1947). Furthermore,
research suggests that consumers are more averse to FiT costs as they comprise a greater share of
total electricity cost (Batlle, 2011; Leepa and Unfried, 2013; Loreck et al., 2012) and thus policy-
makers may become more averse to FiT cost uncertainties as they comprise a greater proportion of
electricity cost. Taking this into account, a functional form that incorporates cost as a function of
wealth and/or total electricity expenditure may be most appropriate to model policymaker aversion
to market price risk.

Given the outlined requirements, a concave utility function may be most appropriate in captur-
ing the required relationship. The higher the curvature of a concave utility function, the higher the
aversion to risk. Concave utility functions with high levels of curvature give relatively lower utility
on high values of wealth and thus model risk averse behaviour. The Constant Relative Risk Aver-
sion (CRRA) utility function captures this relationship for both investor and policymaker utility;
see equations (9) and (17) respectively. While a Constant Absolute Risk Aversion (CARA) utility
function has a constant degree of risk aversion regardless of the level of the outcome variable being
analysed (e.g. wealth, consumption, cost), a CRRA utility function has a scaling factor (wInv

pre and
wpolicy

pre in equations (10) and (18) respectively) which calibrates the agent’s degree of risk aversion
(Arrow, 1971; Meyer and Meyer, 2005). This allows for the risk aversion as a function of wealth to
be calculated, an outlined requirement for effective calibration in the context of policymaker risk
aversion.

An added benefit of the CRRA framework is transparency with respect to calibration; A CRRA
utility function provides the ability to interpret utility values as a ‘certainty equivalent’, allowing
for calibration to observed levels of risk aversion. Sensitivity to altering the degree of risk aversion
is also easily identified and intuitively presented (see Section 3.5). Given the precedent of usage,
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outlined suitability and transparency of calibration, a CRRA functional form is chosen to model
policymaker risk aversion.

Much of the literature to date has employed a CRRA functional form when analysing invest-
ment in energy markets and large scale investments (Attema et al., 2010; Amde-Manesme et al.,
2015; Chronopoulos et al., 2014; Chunxiang et al., 2016; Cotter and Hanly, 2012; Chiu and Wong,
2013; Wakker, 2008). In an analysis of investment in the energy sector, Willems and Morbee
(2010) found that a correctly calibrated CRRA functional form had similar findings to alternate
specifications. Given this precedent of use and also the flexibility of the CRRA function to con-
sider varying degrees of risk aversion, this functional form is also employed to model investor risk
aversion.

3.3.1. Investors’ problem (lower-level)

Under a CRRA utility function, utility for the investor and policymaker is comprised of a
scaling parameter and profit/cost of deployment. Generally, pre-existing wealth is used for this
scaling parameter. To ensure that our results are calibrated to realistic degree of risk aversion, we
choose the scaling parameter such that it corresponds to both levels of wealth and resulting rates of
risk aversion that are deemed reasonable given the literature. Such flexibility further highlights the
benefit of the CRRA utility function over less flexible forms such as the CARA functional form
and CVaR.

We model investors in a given market together as one entity. Following Baron (1970) we
assume that the aggregated utility function is the summation of the individual utility functions
for each generator. In order to facilitate analysis of the effects of risk aversion on investment
decisions, it must be assumed that all firms in the industry have the same utility function and the
same probability assessments Baron (1970) 1.

The investors’ utility, under scenario l, is modelled using a CRRA utility function of wealth:

U Inv
l (W Inv

l ) =


(

1
1−α

)
(W Inv

l )1−α if α 6= 1,

ln(W Inv
l ) if α = 1,

(9)

where the investors’ wealth under scenario l is

W Inv
l = wInv

pre + Πl(Q), (10)

1The size and type of investing firms may affect risk appetite (GCF, 2014), however empirical research has found
that this effect may be small and statistically insignificant amongst larger firms (Sadorsky, 2012), which comprise the
majority of wind investors in markets such as Ireland. A heterogeneous risk profile may be required for technologies
(e.g. solar, biomass) or markets with a great proportion of small investors and is a potential future extension.
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which is comprised of the pre-existing wealth wInv
pre and profit from investment, Πl(Q). The param-

eter α is the curvature of the investors’ utility function and hence represents how risk averse they
are. The higher the level of α the higher the aversion to risk. When α = 0 the investors’ utility
equals their wealth and hence they are assumed risk neutral. The investors’ profit and hence utility
is uncertain and subject to fluctuations in market prices and thus varies from scenario to scenario.
The amount of uncertainty differs depending on the policy enacted. The investors’ profit is also
dependent on Q, the number of installed units of renewable energy technology. Total industry
profit Πl(Q) for scenario l is defined as follows

Πl(Q) =
T∑
t=1

[P .
l,t(Q)G(Q)]− C(Q), (11)

where P .
l,t takes one of the different forms described in Section 3.2 (i.e., equations (3), (5) or (7) )

depending on the FiT being considered.
For the installation of Q units, C(Q) is the sum of industry-level capital (A) and operating (O)

costs (including any required return to personnel, capital, etc.), discounted according to a discount
rate r:

C(Q) = AQ+
T∑
t=1

e−rtOQ (12)

The total amount electricity generated from renewable sources is modelled in a similar way to
(Farrell et al., 2017) using the following equations:

G(Q) = B(Q)uvh, (13)

where
B(Q) = Qmax(1− e−γQ). (14)

The parameter Qmax is the maximum potential Q while γ is a parameter controlling the rate of
change. The function B(Q) reflects the nameplate capacity or maximum effect of investors. It
models how the rate of increase for renewable energy generation slows as the installed capac-
ity increases, i.e., ∂B

∂Q
= Qmaxγe−γQ is a strictly decreasing function. Consequently, for non-

synchronous generation such as wind, solar and wave, this functionality captures how increased
curtailment follows from increased levels of installation. Other issues such as poorer site and re-
source availability are also captured. As B(Q) is an hourly value, it is multiplied by the total
number of hours in each time period (h), the operational availability net of maintenance and other
such outages (v) and the capacity factor for initial units (u). Hence, G(Q) represents the total
amount of electricity generated from renewable sources during time t.
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The capacity factor is the average power generated, divided by the rated peak power 2. A higher
(lower) capacity factor would lead to a higher (lower) level of remuneration and a lower (higher)
FiT price. Similarly, a higher (lower) capacity factor would lead to a higher (lower) rate of output
per MW installed and thus a lower (higher) MW target.

The investors’ problem, which is the lower-level problem in the overall optimisation, is to
maximise expected utility by choosing a level of installed capacity. Their objective function is

max
Q

U Inv = max
Q

L∑
l=1

PRlU
Inv
l , (15)

where PRl is the probability associated with scenario l. The investors’ decision variable isQ (level
of installed capacity). Their problem is unconstrained3 and, assuming concavity, the investors’
utility function is maximised when

∂U Inv

∂Q
= 0. (16)

3.3.2. Policymaker problem (upper-level)

In a similar manner to above, the policymaker’s utility, under scenario l, is modelled using a
CRRA utility function of wealth:

U policy
l (W policy

l ) =


(

1
1−β

)(
W policy
l

)1−β
if β 6= 1

ln(W policy
l ) if β = 1

(17)

where
W policy
l = wpolicy

pre − Fl(Q), (18)

represents the policymaker’s wealth for scenario l. This wealth is comprised of pre-existing wealth,
wpolicy

pre , less the cost of the FiT design being considered. The parameter β is the curvature of the
policymaker’s utility function and hence represents how risk averse they are. When β = 0 the
policymaker’s utility equals their wealth and hence they are assumed risk neutral.

As with the investors’ profits, the cost Fl(Q) is subject to fluctuations in market prices and thus
varies from scenario to scenario whilst also depending on the amount of units of renewable energy

2The chosen capacity factor is sourced from Doherty and O’Malley (2011) as the expected capacity factor for
Ireland over a long-term horizon. While there may be some difference between a capacity factor for multiple and
single years, this corresponds roughly to the average value for the 2020 capacity factor duration curve reported by
Mc Garrigle et al. (2013) for onshore wind.

3While this suggests that the optimal value for the variable Q may be negative, in practise, constraint (21) in the
overall optimisation problem ensures that the policymaker chooses the FiTs that ensure the optimal value for Q, that
the investors choose, is equal to QTARGET.
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technology installed. This cost is the sum of the difference between the price that the investors
receives P .

l,t and the market price Sl,t:

Fl(Q) =
T∑
t=1

F .
l,tG(Q) =

T∑
t=1

(P .
l,t − Sl,t)G(Q). (19)

where F .
l,t takes one of the different forms described in Section 3.2 (i.e., equations (4), (6) or (8))4

depending on the FiT being considered.
The policymaker’s problem is to choose the FiT that maximises their expected utility whilst

ensuring that the investors’ expected utility is maximised by choosing QTARGET units of renewable
energy technology. The policymaker’s problem is

maxU policy = max
L∑
l=1

PRlU
policy
l , (20)

subject to
Q = QTARGET, (21)

∂U Inv

∂Q
= 0. (22)

The policymaker’s decision variables are the varaibles associated with the three different FiT poli-
cies described in Section 3.2. To obtain the optimal values for these variables, the model is solved
three times; once considering each of the different FiTs separately. The policymaker’s decision
variable is X when the constant premium policy is being considered, i.e., when the FiT and its as-
sociated costs are being determined by equations (3) and (4) respectively. When the shared upside
policy is being considered their decision variables are K and θ as the FiT and its associated costs
are determined by equations (5) and (6). When the cap & floor policy is being considered, their
decision variables are K and S̄ as the FiT and its associated costs are determined by equation (7)
and (8).

The overall optimisation problem for the Stackelberg game is defined by equations (20) - (22).
Equation (22) embeds the investors’ optimality condition, and hence their optimisation problem,
as a constraint in the policymaker’s problem. Along with constraint (21), it ensures that the policy-
maker chooses the FiT levels that allows investors to maximise their expected utility with QTARGET

units installed. Embedding the investor’s optimality condition as a constraint in the policymaker’s
problem ensures that the overall model is a single-level Mathematical Program with Equilibrium
Constraints (MPEC) (Gabriel et al., 2012).

4As described in Section 3.2, both P .
l,t and Sl,t depend on Q.
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If the policymaker’s problem did not include constraint (22) then they would have greater
freedom when choosing optimal FiT levels as this is the only constraint that depends on the FiT
levels. In this case, policymaker’s utility is maximised by choosing X = K = θ = S̄ = 0.
If the optimal FiT attributes were chosen this way, then the investors would not receive enough
remuneration for it to be optimal for them to invest inQTARGET MW of renewable energy (assuming
the baseline parameters of Section 4). Thus, the overall problem would become infeasible as
constraint (21) would be unable to be satisfied. Similarly, if the investors problem was solved as an
independent single-level problem where the investors only received the market price and not any
FiT, then they would again not receive enough remuneration for it to be optimal for them to install
QTARGET MW of renewable energy.

The policymaker’s problem is set up as a maximisation problem to aid computation. As pre-
existing electricity cost is held constant, it is equivalent to minimising the FiT cost. The CRRA
specification allows aversion to FiT cost to be considered relative to total electricity cost.

3.4. Solving the problem

The model is solved using the numerical computing software MATLAB5. In the numerical
examples presented in Section 5 the derivative in equation (22) is approximated using finite differ-
ences as follows:

∂U Inv

∂Q
≈ U Inv(Q)− U Inv(Q−∆Q)

∆Q
= 0, (23)

where ∆Q is small. In order to satisfy constraint (21), equation (23) is always evaluated at Q =

QTARGET. For each FiT policy considered, the market price scenarios (Sl,t) are simulated using
Monte-Carlo simulation via equation (1). Thus, both policymaker and investor wealth, and hence
the expected utilities in equations (20) and (23), are also calculated via Monte-Carlo simulation.

For the constant premium policy, the optimal value for X is obtained by solving equation (23)
for X . For the shared upside policy, equation (23) is solved for K assuming θ is fixed. This
is done is 101 times; once for each value of θ in the set {0, 0.01, 0.02, .., 1}. For each value of
θ a corresponding value of K is obtained from equation (23). The (K, θ) pair that maximises
policymaker utility is chosen as optimal. For the cap & floor policy, equation (23) is solved for S̄
assuming K is fixed. This is done for each value of K in the set φ = {Kθ=1, Kθ=1 + 0.01, Kθ=1 +

0.02, .., Kθ=0}, where Kθ=1 and Kθ=0 are the values for K obtained when equation (23) is solved
with θ fixed at θ = 1 and θ = 0, respectively. Having θ = 1 in the shared upside policy is the
same as having S̄ =∞ in the cap & floor policy. Hence, Kθ=1 is the K associated with the largest
possible value for S̄. Similarly, having θ = 0 in the shared upside policy is the same as having
S̄ = K in the cap & floor policy. Therefore, Kθ=0 is the K associated with the smallest possible

5https://uk.mathworks.com/products/matlab/
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value for S̄. Consequently, the set φ represents each possible value for K (to the nearest cent)
under the cap & floor policy. For each of these values, a corresponding value of S̄ is obtained
from equation (23) and, as above, the (K, S̄) pair that maximises policymaker utility is chosen as
optimal. Each time equation (23) is solved for a model variable, MATLAB’s fsolve function is
utilized.

For the results described in Section 5, the Central Processing Unit (CPU) time required to solve
the problem, for all α and β combinations in total, for the constant premium, shared upside and
cap & floor policies is approximately 118, 8,698 and 44,373 seconds respectively. These figures
were obtained using a 3.3GHz i5-4590 quad-core processor with 8GB of RAM.

3.5. Interpreting utility

Utility measures the risk-adjusted welfare value of expected cash amounts. For this work, the
derived utility values for the investors and the policymaker are obtained using equations (9) and
(17) respectively. Certainty Equivalent (CE) is the certain amount of remuneration/policy cost that
yields the same utility as an uncertain alternative (Hardaker et al., 2004) and is calculated as the
inverse of the derived utility value. The investors’ CE is

CEInv =

(1− α)(U Inv)
1

1−α − wInv
pre if α 6= 1,

eU
Inv − wInv

pre if α = 1,
(24)

while the policymaker’s CE is

CEpolicy =

(1− β)(U Inv)
1

1−β − wpolicy
pre if β 6= 1,

eU
Inv − wpolicy

pre if β = 1,
(25)

When α = 0 and β = 0, CE is equivalent to investors’ expected profit and policymaker’s expected
cost respectively. The expected value of uncertain remuneration may be higher than its CE, re-
flecting aversion to risk (Hardaker et al., 2004; Pratt, 1964). In this way, the CE of a return falls as
remuneration becomes more uncertain. Similarly, the CE of a cost increases with uncertainty.

4. Data

In this section, the data for the analysis is presented. While the analysis may be carried out
for any renewable technology and profile of risk aversion, wind turbine deployment in Ireland is
chosen for this work. A stylised case study following Farrell et al. (2017) is considered, with
parameters outlined in Table 2. Ireland has a renewable energy penetration target of 40% by 2020.
Mc Garrigle et al. (2013) state that this corresponds to 4630MW under a scenario of 75% system
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non-sychronous penetration and a low level of offshore wind. We therefore chose 4630MW as our
QTARGET parameter. We assume that the cost parameters of Table 2 include any ordinary profits
and additional remuneration required to cover non-market price-related risks. This allows us to
focus on any additional remuneration required to compensate for additional exposure to uncertain
market prices due to FiT design.

It is assumed that all investment occurs at first time period6. It is also assumed that a wind
turbine is operational for T = 20 years, with FiT remuneration available during all 20 years of
operation. In reality, there is a possibility that FiT policies may be terminated retroactively before
expiry of the 20-year period. However, Boomsma and Linnerud (2015) and Del Rio and Mir-
Artigues (2012) highlight that this undermines the effectiveness of a FiT regime and should be
avoided. The literature therefore recommends that for a FiT to be effective this commitment must
be binding for the entire duration.

The discount rate represents the risk-free rate of return and is calibrated to rates commonly
employed in Irish case studies (Farrell et al., 2017; Doherty and O’Malley, 2011). Market price
parameters η and κ are chosen such that the difference in the market prices in 2020, when no wind
is in place and when 4630MW of wind capacity (QTARGET) is in place, is the same difference as
that observed by IWEA (2011) for a comparable level of wind deployment. The rates of market
price growth and volatility are calibrated to correspond to simulations carried out by Doherty and
O’Malley (2011) who used a Generalised Extreme Value (GEV) distribution to simulate market
price distributions. Doherty and O’Malley (2011) used an implied rate of volatility for a 20-year
time period and hence the volatility rate used in this paper is also implied. We follow the precedent
in the majority of the literature and use Geometric Brownian Motion (see Section 3.1). The GEV
distribution simulates a greater prevalence of upside volatility, resulting in a greater number of high
market prices, compared to the GBM approach taken in this paper. Therefore, simulations carried
out using the GBM approach are likely to yield lower expected market returns and therefore require
slightly higher efficient FiT prices than if a GEV distribution were employed.

As outlined in Section 3.2, the policymaker’s wealth (W policy
l ) is calculated as the policymaker’s

pre-existing wealth, wpolicy
pre , less the cost of the FiT policy, Fl(Q). The parameter wpolicy

pre is chosen
such that it represents the discounted value of electricity generated during 20-year time horizon
(SEMO, 2015).

To further ensure that this represents a realistic parameter, the observed degrees of risk aversion
are compared to those expected by the literature. Hirst (2002) estimate that removing consumers’
exposure to wholesale market price risk by providing a fixed electricity price adds 5-10% onto

6The dynamics of investment within a investment window is outside the scope of this paper and therefore invest-
ment in a single time period is assumed for tractability. Please see Boomsma and Linnerud (2015) for a discussion of
this.
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electricity cost. Zhang and Wang (2009) analyse a number of such contracts, and find that contract
prices may range anywhere from 0.38% to 23% of the electricity price, depending on the portion of
uncertainty removed. For fixed price tariffs with a high fixed price, they find that hedge contracts
may range from 0.38-4.12%. This literature focuses on limiting exposure to all market price risk,
not just the FiT cost portion. Given that FiT costs comprise a smaller proportion of electricity cost
than the total electricity cost that is analysed in these papers, we take this lower range as being
a more representative range of hedge values considered. Calibrating our model to this level of
risk aversion requires a wpolicy

pre parameter of e38.36bn, which corresponds to expected value of
electricity throughout the investment period and also approximates the total discounted value of
electricity generated in the Irish Single Electricity Market7. We thus choose e38.36bn for our
baseline analysis but test senstivity to alternate ranges in Section 5.3.1.

Similarly, the investors’ pre-existing wealth (wInv
pre) is chosen such that investors’ risk aversion is

of a range considered realistic. As above, we calibrate this to a level of wealth for a representative
investor, with further checks to ensure that the level of modelled risk aversion is within reasonable
bounds. The majority of wind installations in Ireland are carried out by large utility companies,
with wInv

pre chosen such that it is representative of the wealth of such a company8.
To ensure such a wealth figure returns reasonable results, we also calibrate this to levels of

anticipated risk aversion. Hern et al. (2013) survey wind investors in the UK and find that switching
from a Renewable Obligation Certificate (ROC) scheme to a FiT through Contracts for Difference
(CfD), in essence a switch from incurring market price risk to incurring no market price risk,
results in a 20% reduction in the expected rate of profitability for onshore wind. This gives a rough
benchmark as to the premium required for incurring market price risk in wind investment. The
findings of Hern et al. (2013) provide a useful calibration point, with a wInv

pre value of e18.98bn
resulting. This also approximates expected levels of investor wealth.

Risk aversion parameters generally range from 0 (risk neutral) to 4 (extremely risk averse) for
CRRA utility functions (Anderson and Dillon, 1992). Arrow (1965) assumes that risk aversion
‘hovers about 1’. This is further evidence of an appropriate specification of risk aversion param-
eters as a change from a policy of constant premium to fixed price requires a c.20% premium on
investment when the risk aversion parameter is 1. Alternate levels of risk aversion are catered for
by a wide range of risk aversion parameters. We also carry out a sensitivity analysis with respect
to the wInv

pre parameter to capture further degrees of risk aversion. Section 5.1 discusses the impli-

7The total discounted value of electricity generated in the Irish Single Electricity Market came to e2.9bn in 2011
(SEMO, 2015). Accounting for the rate of growth in electricity prices assumed by (Farrell et al., 2017) and discounting
according to a 6% discount rate, this results in a total discounted value of c.e37bn.

8One such company is SSE who report an annual profit of £1.564bn in 2014/2015 (SSE, 2015). Extrapolating this
over 20 years, assuming an average exchange rate of £1 = e1.2 and discounting according to a 6% discount rate, this
returns a value of e21.22bn.
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cations of different risk aversion parameters to aid interpretation in the context of alternate risk
aversion assumptions.

5. Results

5.1. Risk Aversion

Before we solve the overall optimisation problem, we first present quantified representations
of risk aversion to aid interpretation of policy choice results. Table 5 shows the CE of 20-year
discounted policy cost under different levels of risk aversion (β) for a shared upside policy with
a fixed θ = 1. When β = 0, the CE is the same as the expected value of remuneration, i.e., the
policymaker’s expected cost. One can see that as the risk aversion parameter β grows, the CE
grows also as the policymaker is willing to incur a greater certain policy cost in order to forego a
given level of cost uncertainty. When a β parameter of 1 is in place, the policymaker is willing to
take a certain cost that is 1.36% higher to forego the possibility of incurring extremely high policy
cost. One can see that this threshold increases as the policymaker’s level of risk aversion grows,
with a β value of 4 implying that a policymaker is indifferent between incurring the uncertain
policy cost and a certain payment that is 5.527% greater than the expected value (i.e. β = 0).

Table 5: Certainty equivalent of 20-year discounted policy cost by level of risk aversion (β)

β 0 1 2 3 4

Certainty Equivalent (e) 3.252bn 3.296bn 3.341bn 3.386bn 3.432bn
Increase relative to β = 0 0 1.367% 2.745% 4.132% 5.527%

To understand investor risk aversion, Figure 2 compares the change in Expected Money Value
(EMV) required by an investor under different α risk aversion parameters as a result of switching
from a fixed price policy (θ = 0) to varying degrees of shared upside and a constant premium. One
can see that when α = 1, EMV must be c.20% greater for investment under a constant premium.
This corresponds to the added remuneration quoted by Hern et al. (2013) and thus provides a
suitable benchmark rate of investor risk aversion. One can see that the risk-sharing properties of
the shared upside policies result in a much lower additional level of remuneration than the constant
premium regime. However, EMV is still c.5-10% greater than when θ = 0. These rates of risk
aversion are given greatest attention in this analysis. Section 5.3.1 presents results relative to
alternate ranges of risk aversion.

5.2. Optimal policy choice

We identify optimal levels of market price risk division both within and between policy types.
This is first carried out for the discussed baseline parameters, followed by a sensitivity analysis
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Figure 2: Quantification of Investor Risk Aversion

with respect to the calibrated degree of risk aversion. Quantifying such sensitivity gives insight into
what FiT policy designs may be optimal when parameters differ from our baseline assumptions.
The results of Table 5 and Figure 2 may be used to aid interpretation of risk aversion parameters
in the baseline discussion that follows.

5.2.1. Optimal Constant Premium Policy

In this section the optimisation problem (equations (20) - (22)) is solved assuming the constant
premium policy is the FiT, i.e., the FiT and its associated costs are determined by equations (3)
and (4) respectively. The problem is solved 17 times, each time with a different level of investor
risk aversion (α) from the set {0, 0.25, .., 4}. Optimal constant premium policies are insensitive to
the degree of policymaker risk aversion as the policymaker does not incur any market price risk.
Differences in FiT prices offered are thus entirely determined by the risk premium required by
investors. Figure 3 shows that the pattern of optimality follows an increasing and concave trend.
For each additional degree of investor risk aversion, a considerable increase in remuneration is
required. For the baseline parameters, the required premium grows from e23.1/MWh when α = 0,
to to e25.5/MWh when α = 1. This rises to e30.8/MWh when α rises to 4. This is due to the fact
that investors must bear all market price risk under a constant premium regime.
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Figure 3: Optimal constant premium X values (e/MWh) required in addition to the prevailing market price for each
value of α.

5.2.2. Optimal shared upside policy

In this section, the optimisation problem for the Stackelberg game (equations (20) - (22)) is
solved with 17 different investor risk aversion levels (α = 0, 0.25, .., 4) and 17 different policy-
maker risk aversion levels (β = 0, 0.25, .., 4) with the problem being solved 17 × 17=289 times
in total. The Feed-in Tariff assumed is the shared upside policy, i.e., the FiT and its associated
costs are being determined by equations (5) and (6) respectively. Figures 4(a) and 4(b) show the
optimal price floor (K) and corresponding share of market upside (θ) respectively for each α and
β combination. We find an inverse relationship where a larger share of market upside (θ) results in
a smaller price floor (K).

These figures shows that the optimal division of market price risk is primarily a function of
the relative balance of risk aversion. If investors have very low level of risk aversion, (α ≤ 0.25)
and policymakers are extremely risk averse, it is optimal for investors to bear the greatest share of
market price risk through a price floor regime. Similarly, if policymakers have a low level of risk
aversion (β ≤ 0.25), a fixed price regime (θ = 0) is optimal. Figure 4(a) shows that intermediate
policies (0 < θ < 1) are optimal when both investors and policymakers have similar degrees of
risk aversion. We see that should investors and policymakers have an equal degree of risk aversion,
a lower θ value is optimal, indicating that investors are more dominant. Indeed, it is only when
investors have an extremely low level of risk aversion (α ≤ 1) that a price floor policy (θ = 0)
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Figure 4: Optimal shared upside specifications for each α/β combination. Figures 4(a) and (b) display optimal θ
(share of market upside going to investor) and K (price floor), respectively. Figure 4(c) and (d) show the Certainty
Equivalent of investor profit and policy cost respectively.
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is optimal. For this to occur, the magnitude of policymaker risk aversion must be in the region of
three times greater than investors’ risk aversion.

Figures 4(c) and 4(d) show investors’ and policymaker’s CE respectively which give insight
into the additional remuneration required for the risk borne by each party under each α/β combi-
nation. Interestingly, we see different patterns for investor and policymaker risk.

In Figure 4(c) we see that additional investor remuneration to account for price risk is greatest
when policymaker risk aversion is high (about 4) and investor risk aversion is about 1. In such
circumstances, the policymaker’s preferences dominate those of the investor, and a θ close to 1
prevails. This requires investors to incur almost all market price risk. As this θ is higher than the θ
obtained in situations where α is high, investors require a greater degree of additional remuneration
to bear the additional risk.

Figure 4 (d) shows, as expected, that as the policymaker’s risk aversion grows, the policymaker
becomes more willing to incur a greater certain policy cost in order to forego a given level of
cost uncertainty. It also shows that as investors’ risk aversion grows, the policymaker becomes
more willing to incur a greater certain policy cost in order to forego exposure to market price risk.
This is because, when investors’ risk aversion grows, the policymaker must accept more exposure
to market price risk to ensure investors’ meet the renewable energy target. This is despite the
policymaker’s own high level of risk aversion.

5.2.3. Optimal cap & floor policy

In this section the optimisation problem is solved assuming the cap & floor policy is the FiT,
i.e., the FiT and its associated costs are being determined by equations (7) and (8) respectively.
Figure 5(a) and Figure 5(b) show efficient cap (S̄) and floor (K) policies respectively, analogous
to the results of Figures 4(a) and (b). To aid interpretation of the degree of market price variabil-
ity that each party is exposed to under each policy, the difference between the cap and floor for
α/β combination is displayed in Figure 5(d). Analysing these results indicates that the pattern of
optimality for cap and floor policies follows a similar trend to that of the shared upside policy.

However, one difference may be observed. For each α/β combination that involves investors
receiving market upside (i.e., θ > 0 or S̄ > K), cap & floor policies require a slightly lower
efficient price floor. This is due to differences in the pattern of risk sharing between policies and
the attitudes of each party to such differences. A shared upside policy offers a portion of all market
prices in excess of an efficient floor, whilst a cap & floor policy offers market prices, in their
entirety, in excess of the floor and as far as a certain threshold (cap). Each market price has a
probability of occurrence, with lower prices having a greater probability than higher prices. As a
result of these differences, cap & floor policies have a greater emphasis on prices that are more
likely to occur. This improves the EMV of remuneration for a cap & floor regime relative to a
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Figure 5: Optimal cap & floor specifications for each α\β combination. Figures 5(a) and 5(b) respectively display
optimal S̄ (price cap) and K (price floor). The S̄ value of ‘200’ in Figure 5(a) denotes all values ≥ 200. Figure 5(c)
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shared upside regime and the required efficient price floor is slightly lower.
These effects are most evident when one examines Figure 5(c) where the investors’ CE follows

a similar trend to the shared upside policy, but is of a modestly lesser amount. This difference
reflects the investors’ aversion to greater reliance on market remuneration that is more uncertain.
The slightly lower price floor for a cap & floor regime reflects the small difference in market price
risk that must be borne relative to a shared upside policy.

The purpose of this model is to compare efficiently specified FiTs and does not capture FiT
misspecification. However, Farrell et al. (2017) illustrate a further benefit of cap & floor regimes
in this regard. Greater protection against FiT misspecification may be offered by a cap and floor
regime, where policymakers are protected against offering over-remuneration should market prices
exceed the cap to a degree that is greater than expected. This characteristic may affect the choice
between policy options, alongside the differences outlined when FiTs are efficiently specified.

5.2.4. Comparing Policies

As discussed, the EMV and CE of investor remuneration vary to reflect the additional re-
muneration required to account for different levels of risk aversion. Similarly, the utility of the
policymaker will vary according to the EMV outlay required. As expected policy cost and utility
of policy cost (i.e., incorporating risk exposure) are both of concern for policy decisions, policy
choice will be discussed in terms of both EMV and the utility equivalent.

Using the results from Sections 5.2.2 and 5.2.3, Figure 6(a) displays the difference in expected
policy cost between shared upside and cap & floor policies for different α and β combinations. It
shows that for most combinations, there is no difference in EMV between the two policies. How-
ever, when the policymaker risk aversion parameter is 2 or greater, there are modest differences in
expected policy cost between the two policies. As Section 5.2.3 discussed, when investors receive
some market upside, the price floor K is lower for a cap & floor policy as investors receive all
upside immediately in excess of the guaranteed minimum. This effect is exaggerated when the ef-
ficient price floor is lower due to a high degree of market upside being offered to investors. In such
circumstances, a marginal reduction in the price floor has a greater impact on expected policy cost,
as the foregone market remuneration has a higher probability of occurring. As such, the reduced
cost of a cap & floor policy, relative to a shared upside policy, is greater when a greater share of
market upside is offered to investors. However, this only prevails when α > 0 as the pattern of
market price risk, and thus the difference in resulting utility, only occurs when investors are risk
averse. When investors are risk neutral, they are indifferent to the pattern of remuneration and thus
any difference in policy cost is negligible.

Using the results from Sections 5.2.3 and 5.2.1, the difference in expected policy cost between
the cap & floor and constant premium policies is displayed in Figure 6(b). Constant premium
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Figure 6: Difference in EMV policy cost for each α/β combination.

policies have a similar cost (c.1.27% more expensive) to cap & floor policies when the investors are
risk neutral (α = 0). This differences rises to 32% when investors have a risk aversion parameter
of α = 4. Although a higher β yields a lower cap & floor policy cost and thus widens the gap
to the constant premium cost, this is not apparent in Figure 6 (b) as this difference is greatly
overshadowed by the differences between investor risk aversion parameters.

For shared upside and cap & floor policies, policymaker utility is very similar, with an absolute
difference of 0.00-0.07% observed in the numerical simulations. As such, the discussed differences
in expected cost may be more important when deciding between a cap & floor or shared upside
regimes. Utility-based analyses are more appropriate for determining an efficient within-policy
cap & floor or shared upside specification.

However, the utility derived from a constant premium policy differs greatly to that for a shared
upside or cap & floor policy. Policymaker utility under a shared upside or cap & floor policy may
be up to 7% more than for a constant premium policy. Using the results from Sections 5.2.2 -
5.2.1, Figure 7 compares policymaker’s utility under cap & floor/shared upside policy with the
utility under a constant premium policy. It displays the Feed-in Tariff policy with the highest
policymaker utility for each α/β combination. We see that a constant premium policy results in
a greater level of utility for the policymaker when α ≤ 0.5 and β ≥ 0.75. As expected levels
of risk aversion hover about 1, this would suggest that investors must be indifferent to risk for a
constant premium policy to be optimal. This is an important finding in relation to the common use
of constant premium policies in many jurisdictions. This results suggests that for such policies to
be optimal, policymakers must be more than four times as risk averse as investors.
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Figure 7: Policymaker preference: the policy choice which yields the greatest utility for the policymaker for different
combinations of α and β . The difference in utility between cap & floor and shared upside policies is ≤ 0.07% and
thus these are assumed to be equal. Blue represents when cap & floor/shared upside policies are optimal while yellow
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5.2.5. Summary of baseline results

This section has shown that intermediate divisions of market price risk are optimal when in-
vestor and policymaker risk aversion is of a similar magnitude. On utility grounds, both shared
upside and cap & floor regimes return similar values for our baseline parameters. However, cap &
floor policies have a lower EMV cost when policymakers are highly risk averse and high levels of
market upside are offered to investors. Constant premium policies are considerably more expen-
sive than both shared upside and cap & floor policies in EMV terms. However, a constant premium
policy may be preferred on utility grounds when investor’s risk aversion is≤ 0.5 and policymakers
have risk aversion parameters in the region of 0.75 or greater.

5.3. Sensitivity analysis

Different levels of calibrated risk aversion (pre-existing wealth levels) may result in different
degrees of optimal market price risk apportionment. If FiT policy comprises a greater share of
total electricity cost, policymakers may be more sensitive to bearing market price risk. Similarly,
investor sensitivity may increase if they have a less diversified portfolio of investments and thus
require a higher EMV in order to incentivise investment. This section informs policy as to optimal
FiT choice under different levels of calibrated risk aversion. We model greater risk sensitivity
by halving the policymaker’s baseline pre-existing wealth parameter (wpolicy

pre ) and model lesser
sensitivity by doubling it. ‘Low sensitivity’ results are calculated where the calibration parameter
is double the baseline level while ‘High sensitivity’ results are calculated where the calibration
parameter is half the baseline level.

5.3.1. Changes in the calibrated rate of policymaker risk aversion

Figure 8 shows the optimal between-tariff FiT policy choice, in terms of highest utility. Under
each level of pre-existing wealth for the policymaker, constant premium policies are only optimal
when policymaker risk aversion is greater than investor risk aversion. Figure 8 shows that when
policymakers are less sensitive to risk, perhaps when renewables comprise a small proportion of
total electricity cost, constant premium policies are only optimal when investors are risk neutral.
When policymakers are highly sensitive, we find that constant premium policies are optimal when
investor risk aversion is around half that of policymaker risk aversion. As such, constant premium
policies are of increasing importance as the burden of renewables policy increases. However, even
with a doubling of the level of underlying sensitivity, constant premium policies are only optimal
when policymaker risk aversion is much greater than investor risk aversion.

Figure 9 displays the optimal division of market price risk (i.e., values of θ) when the shared
upside policy is chosen. For brevity of presentation, within tariff-choice is presented in the context
of a shared upside policy only. Inferences as to the equivalent cap and floor policy may be identified
with reference to the relationships illustrated by Figures 4 and 5. When policymaker sensitivity
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Figure 8: Between-tariff optimality for different sensitives of policymaker pre-existing wealth. Difference in utility
between cap & floor and shared upside policies is ≤ 0.03% and thus these are assumed to be equal. Blue represents
when cap & floor/shared upside policies are optimal while yellow represents when the constant premium policy is
optimal.
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Figure 9: Within-tariff division of market price risk using the shared upside regime (i.e., values of θ (%)) for different
sensitives of policymaker pre-existing wealth.
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is low, a flat rate FiT (θ = 0) or low share of market upside for investors is generally optimal,
hence, market price risk is transferred from the investors to the policymaker. When policymakers
are highly sensitive to market price risk, a higher θ value and thus lower K guarantee is required
for efficient division of market price risk. This transfers market price risk from the policymaker
to the investors. Such changes in sensitivity may occur due to an increasing renewables subsidy
burden as deployment progresses. For prudent forward-looking policymakers, this finding shows
that flexibility is required in legislative frameworks, such that divisions of market price risk may
be augmented to accommodate this evolving optimality.

A further sensitivity analysis examining the investors’ sensitivity to calibrated levels of risk
aversion is also presented in Appendix A. This sensitivity analysis provides similar results to this
section: as investors become less sensitive to market price risk, the scope for constant premium
FiTs increases while higher values of θ, and thus lower values of K, are optimal for the efficient
division of market price risk. Further sensitivity analyses were also performed by varying the
rate of growth and volatility parameters in the Geometric Brownian Motion market price process.
These results did not significantly impact the conclusions of the work which will now be discussed.

6. Discussion and Conclusion

Feed-in Tariffs are a favoured renewable energy support scheme due to their ability to mitigate
market price risk for potential investors. This risk is transfered through a policymaker to a coun-
terparty, often the consumer. Different FiT designs transfer this risk in different ways. This paper
has contextualised the optimal use of each FiT design with respect to investor and policymaker
exposure to market price risk.

Optimal FiTs are identified by setting up renewable energy investment as a strategic leader
game. Investors install a given quantity in order to maximise utility, with policymakers anticipating
this response and specifying a FiT price to meet policy targets. Risk aversion is modelled using a
Constant Relative Risk Aversion (CRRA) utility specification, calibrated to degrees of risk aversion
observed in the literature while the model is solved using Monte-Carlo simulations of market
prices. Alternative levels of risk aversion are captured through a wide spectrum of risk aversion
parameters and sensitivity analyses. We characterise the spectrum of market price risk division for
three classes of FiT. We analyse constant premium, shared upside and cap & floor policies alone
and together.

For a stylised case study of the Irish electricity market, this paper provides a number of impor-
tant contributions for policymakers when considering the most appropriate Feed-in Tariff choice:

1. We find that investor preferences are more influential than those of the policymaker when
degrees of risk aversion are of a similar magnitude.
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2. Under our baseline assumptions, market price risk should be shared except under circum-
stances of extreme investor/consumer indifference to risk. This suggests that commonly
employed fixed price and constant premium policies are sub-optimal unless investors or
consumers are risk neutral.

3. We find that cap & floor policies offer very similar levels of utility to shared upside poli-
cies. However, when policymakers are extremely risk averse and investors are modestly risk
averse, the expected cost of the shared upside policy is slightly greater. This is because the
different pattern of risk sharing requires a slightly lower minimum price guarantee under a
cap & floor regime.

4. In Expected Money Value (EMV) terms, constant premium policies are always more expen-
sive than those that share market upside, but offer higher utility when policymakers are risk
averse and investors have low levels of risk aversion.

Efficient division of market price risk is of increasing importance as renewables deployment
grows and costs becomes a larger share of total electricity cost. For many risk aversion scenarios,
the optimal division of market price risk transitions through a wide spectrum of possible levels
as such sensitivity changes. This has implications for both current and future policymaking. For
current policymaking, it suggests that an intermediate division of market price risk is most appro-
priate in the majority of circumstances. This casts doubt on the efficiency of commonly-employed
constant premium or flat-price FiTs. Second, the findings of this paper suggest that consideration
of optimal market price risk is of increasing importance as renewables deployment grows. Current
policy should anticipate such a potential requirement and put in place flexible legislative measures
to accommodate changes in market price risk division in future FiTs contracts, if required.

Renewables deployment has continued at great pace in many jurisdictions, with FiTs the pre-
dominant support measure and growing in influence. Cited as a hedge against fossil fuel market
price fluctuations, the relative benefit of renewables has been under increasing strain with the
international proliferation of low-cost unconventional gas and depressing effect this has had on
electricity prices. Not only has this potentially reduced the hedge value of renewables, the poten-
tial risk of high subsidy cost has become a greater concern in many jurisdictions. Such concerns
may grow with increasing renewables penetration. This paper presents a means for policymakers
to consider environmental policy in the context of such risks. Through the simulation modelling
framework presented, we provide an economic rationale for optimal FiT specification with which
a policymaker may make a more informed decision as to both the level and format of a chosen FiT.
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Appendix A. Changes in the calibrated rate of investor risk aversion
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Figure A.10: Values for Optimal Constant Premium X (e/MWh) for different levels of investor risk sensitivity

This appendix follows from the analysis detailed in Section 5.3.1 and provides a sensitivity
analysis for investors calibrated level of risk aversion. Unlike changes in policymaker risk sen-
sitivity, optimal constant premium policies will change with changes in investor risk sensitivity.
Figure A.10 shows that a greater constant premium (X) is required as investor risk sensitivity
grows, with this difference greater for higher levels of risk aversion.

Analysing between-policy FiT choice, Figure A.11 shows that as investors become more sen-
sitive to market price risk, the scope for a constant premium FiT diminishes. This is in contrast to
a changes in policymaker risk sensitivity. As renewables deployment matures, FiT costs are likely
to comprise both a greater proportion of a policymaker’s electricity budget and a lesser proportion
of investors’ budgets, as larger, less specialised developers who are more diversified may enter the
industry. As such, investor risk aversion falls whilst policymaker risk aversion rises, suggesting
that the scope for premium policies may grow as both sensitivity analyses would suggest. Indeed,
if both investor sensitivity falls and policymaker sensitivity grows, the magnitude of this growth
may of an even greater extent than that described.
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Figure A.11: Between-tariff optimality for different sensitives of investor risk aversion. Difference in utility between
cap & floor and shared upside policies is ≤ 0.03% and thus these are assumed to be equal. Blue represents when cap
& floor/shared upside policies are optimal while yellow represents when the constant premium policy is optimal.
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Figure A.12: Within-tariff division of market price risk using the shared upside regime (i.e., values of θ (%)) for
different sensitives of investor risk aversion.

34



Figure A.12 displays the optimal division of market price risk (i.e., values of θ) when the shared
upside policy is the chosen policy. When investor sensitivity is high, a flat rate FiT or low share
of market upside for investors is generally optimal and market price risk is transferred from the
investors to the policymaker. As investors become less sensitive to market price risk, a higher
θ and thus lower K guarantee is sufficient for efficient division of market price risk and hence,
market price risk is transferred in the opposite direction.
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