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Abstract 16 

Evaluation of spatial and temporal variability in surface recession of lead-lettered Carrara 17 

marble gravestones provides a quantitative measure of acid flux to the stone surfaces and is 18 

closely related to local land use and air quality. Correlation of stone decay, land use, and air 19 

quality for the period after 1960 when reliable estimates of atmospheric pollution are available 20 

is evaluated. Gravestone decay and SO2 measurements are interpolated spatially using 21 

deterministic and geostatistical techniques.  A general lack of spatial correlation was identified 22 

and therefore a land-use-based technique for correlation of stone decay and air quality is 23 

employed.  Decadally averaged stone decay is highly correlated with land use averaged spatially 24 

over an optimum radius of 7 km even though air quality, determined by records from the UK 25 

monitoring network, is not highly correlated with gravestone decay. The relationships among 26 

stone decay, air-quality, and land use is complicated by the relatively low spatial density of both 27 

gravestone decay and air quality data and the fact that air quality data is available only as 28 

annual averages and therefore seasonal dependence cannot be evaluated. However, acid 29 

deposition calculated from gravestone decay suggests that the deposition efficiency of SO2 has 30 

increased appreciably since 1980 indicating an increase in the SO2 oxidation process possibly 31 

related to reactions with ammonia. 32 
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1. Introduction 35 

From the onset of the Industrial Revolution until the environmental revolution of the 1970s 36 

Britain was plagued by air pollution from industrial, urban, and residential sources (Sale and 37 

Foner, 1993; McCormick, 2013).  The largest contributors to air pollution were particulate 38 

matter (smoke) and acid in the form of oxides of nitrogen (NOx) and sulfur (SOx) compounds, 39 

particularly sulfur dioxide (SO2). (Marsh, 1978; Bricker and Rice, 1993). As early as the 1840s 40 

there were efforts to measure air pollution in British cities (Moseley, 2009) and Smith (1876) 41 

determined that the burning of coal was the principle source of “acid rain.” It was not until 42 

about 1960 that the network was greatly expanded with the establishment of the National 43 

Survey, which measured daily smoke and sulfur concentrations at over 500 locations (Moseley, 44 

2009).  Prior to 1960, air quality measurements were limited in spatial and temporal coverage 45 

and often described anecdotally, particularly during severe air quality events.  Proxy records 46 

have been used to reconstruct air quality; these records include physical descriptions (Allen 47 

1966; Allen 1994; Auliciems and Burton, 1973; Fenger, 2009), particulates in lung tissue samples 48 

(Hunt at al. 2003) and sediment cores (Kelly and Thornton, 1996), and lake acidification studies 49 

(Battarbee and Renberg, 1990; Battarbee et al., 1990).   Air quality measurements are of great 50 

interest in studies of ambient environmental conditions (Urone and Schroeder, 1969; Eggleston 51 

et al., 1992; Leck and Rodhe, 1989; Fenger, 2009), efficacy of environmental regulation, and 52 

health related studies of mortality and morbidity related to acute and chronic respiratory 53 

ailments (Macfarlane, 1977; Spix et al. 1993; Ito et al. 1993; Greenstone, 2004).   54 

A proxy that has been used successfully to evaluate historical trends in acid deposition is 55 

surface recession of Carrara marble gravestones (Cooke 1989; Cooke et al., 1995; Dragovich, 56 

1991; Inkpen, 1998, 2013; Inpken and Jackson, 2000; Inkpen et al., 2000, 2001, 2008, in press; 57 

Meierding, 1981; Mooers et al., 2016; Mooers and Massman, in press; Thornbush and 58 

Thornbush, 2013; Viles, 1996), hereafter referred to as gravestone decay to be consistent with 59 

the body of recent literature.  Mooers et al. (2016) report on a 120-year record of acid 60 

deposition in the West Midlands, UK, reconstructed from lead-lettered marble gravestone 61 

decay.  Their record is compiled from measurements on nearly 600 lead-lettered marble 62 
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gravestones and they demonstrate that gravestone decay is a robust measure of acid 63 

deposition.  However, the correlation between acid deposition and available air quality data is 64 

more tenuous (Inkpen, 2013; Inkpen et al., in press) and can be influenced by numerous factors 65 

(Wesley and Hicks, 1977; Schaefer et al., 1992). Therefore the goal of this study is to explore the 66 

relationship between gravestone decay and air quality. Correlation between air quality (SO2 and 67 

smoke) and gravestone decay would then allow quantitative estimation of air quality for earlier 68 

periods of time where lead-lettered marble gravestones are available but atmospheric 69 

concentrations of pollutants were not measured. 70 

The correlation between surface recession of lead-lettered, Carrara marble gravestones and 71 

annually averaged atmospheric SO2 and smoke measurements in the West Midlands, UK, for 72 

the period 1960-2010 is evaluated. The study area includes West Midlands County and 73 

surrounding portions of Staffordshire, Worcestershire, and Warwickshire (Figure 1).  The 74 

industrial and residential development of the area is well documented, there is a large number 75 

of cemeteries (Figure 1A) with lead-lettered marble gravestones, and a network of air quality 76 

monitoring stations was in place by 1960 (Figure 1B) (Mosley, 2009, 2011). Decadally averaged 77 

rates of gravestone decay and measured SO2 and smoke are interpolated spatially for the 78 

period after 1960 and correlation between them is evaluated. Interpolation techniques include 79 

deterministic and geostatistical methods; however, because of a high degree of spatial non-80 

stationarity and anisotropy in gravestone decay and limited spatial and temporal coverage of 81 

air quality measurements, there is great uncertainly in the interpolated values and correlation 82 

between stone decay and air quality is poor.  83 

Because acid deposition is directly related to proximity of sources of SO2 and NOx, a land-84 

use based approach for correlation of gravestone decay rates with air quality is developed. 85 

Sensitivity and optimization analysis were used to determine the optimum radius of influence 86 

of land use on gravestone decay and weighting factors for interpolating intermediate values of 87 

decay. In addition, if stone decay is assumed to result primarily from deposition of sulfuric acid 88 

then stone decay rates are functions of the production rate of sulfuric acid from SO2 oxidation.  89 

The relationship between stone decay and atmospheric concentration is nonlinear, suggesting a 90 
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marked increase in the efficiency of the oxidation process of SO2 after about 1980.  The aim of 91 

this investigation is therefore to determine the efficacy of gravestone decay in spatially and 92 

temporally integrating and recording air quality and explore the nonlinearity of the SO2 93 

oxidation process. 94 

2. Methods 95 

Mooers et al. (2016) examined the spatial and temporal pattern of acid deposition over the 96 

period 1890-2010 from decay of lead-lettered Carrara marble gravestones.  Their dataset 97 

includes 1417 individual measurements on 591 tombstones in 33 cemeteries collected between 98 

2005 and 2010.  The current investigation assesses the correlation of acid deposition and air 99 

quality and is more restricted in both space and time.  Therefore only the cemeteries within the 100 

vicinity of the air quality monitoring network were chosen for analysis (Figure 1A).  21 of the 101 

cemeteries reported by Mooers et al. (2016) are used. Additional measurements were taken in 102 

July of 2014 to enhance the spatial resolution of gravestone decay over the past 55 years that 103 

coincide with air quality monitoring data. 485 inscriptions were measured from 227 tombstones 104 

in 10 additional cemeteries with emphasis on post 1950 inscriptions. In addition, Bilston (BIL) 105 

Cemetery was revisited and additional data were acquired to constrain post 1950 decay rates.  106 

Cemeteries, their locations, and associated data are listed in Table 1. 107 

26 air quality monitoring stations lie in the study area; their locations are shown in Figure 108 

1B and the annually averaged SO2 and smoke concentrations for all stations are shown in Figure 109 

2. Despite the expansion of the air-quality monitoring network after 1960, there is still a general 110 

lack of temporal and spatial continuity of records.  The period of record of each monitoring 111 

station is highly variable; many stations were only in operation for short periods of time (Table 112 

2).     113 

2.1 Gravestone decay measurements 114 

Gravestones were selected for measurement following the criteria of Mooers et al. (2016), 115 

which closely follow the criteria of Cooke et al. (1995).  Measured gravestones were standing 116 

vertically, had planar surfaces, used lead lettering, had limited ornamentation, and contained 117 
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two or more inscriptions per stone. In addition, inscriptions had to be in chronological order 118 

and there had to be visible evidence that the stone had been resurfaced at the location of each 119 

new inscription.   120 

Surface recession of the marble was measured with the depth probe of a digital caliper 121 

(accuracy of 0.01mm and precision of ± 0.02mm (instrument error)) from the surface of the 122 

lead letters to the stone surface.  Resting the digital caliper on two neighboring lead letters 123 

provided stability in measurement while reducing error associated with tilting of the depth 124 

probe. Ten measurements were made along the date line of each inscription without regard to 125 

letter or numeral. Decay for that measurement was then calculated as the trimmed mean 126 

(Tukey, 1962) with the high and low values omitted. The trimmed mean was used to avoid bias 127 

from unusually large or small values that might result from a variety of causes such as poorly 128 

set lettering, odd shaped letters that may hold moisture, etc. 129 

2.2 Determination of Decay Rates 130 

Post 1940 gravestone decay data were plotted vs. inscription date. In general, gravestone 131 

decay as a function of time is nonlinear (Mooers and Massman, in press; Mooers et al., 2016) 132 

and follows a trend similar to SO2 and smoke (Figure 2).  Gravestone decay rates were therefore 133 

determined by best-fit least squares regression function, which in most cases was a 2nd order 134 

polynomial. In the case of Rycroft Cemetery in Dudley (DUD) a 3rd order polynomial provided a 135 

higher correlation coefficient and prevented the function from becoming slightly negative in 136 

the most recent decade  Decay rates were then determined as the derivative of the best-fit 137 

polynomial at the midpoint of each respective decade.   138 

2.3 Spatial Interpolation of Gravestone Decay  139 

2.3.1 Variogram analysis and Kriging 140 

Since air quality measurements do not coincide geographically with cemeteries, proper 141 

spatial interpolation of gravestone decay is critical for comparison.  Variograms of the decadally 142 

averaged gravestone decay rates from the 33 measured cemeteries were evaluated for best 143 

model fit.  Stone decay rate for each decade from 1965-2005 was then gridded in ArcGIS® using 144 
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Empirical Bayesian Kriging (EBK) at a grid spacing of 200 m. Whereas classical Kriging assumes 145 

the estimated semivariogram is the true semivariogram generated from a Gaussian distribution, 146 

EBK generates many semivariogram models and removes local trends (Krivourchko, 2012). EBK 147 

is particularly well suited for small, moderately non-stationary datasets (Chiles and Delfiner, 148 

1999; Pilz and Spöck, 2007). Interpolated decay rates were compared with air quality data. 149 

2.3.2 Land-use-based approach 150 

Initial variogram analysis suggested that gravestone decay exhibits poor spatial correlation, 151 

which is likely an artifact of significant variation in air quality over short spatial scales (Hoek et 152 

al., 2002, 2008). Therefore a land-use-based approach was devised to spatially interpolate 153 

gravestone decay. Land use was organized into three categories; 1.) urban areas with high 154 

concentrations of factories, large buildings and heavy automobile traffic, 2.) residential areas 155 

with dense housing and moderate automobile traffic and 3.) rural/green space with few 156 

residences and light traffic.  Land use was digitized from recent aerial photography and 157 

converted to a 200 m grid for analysis.  Evaluation of air photos back to 1960 indicates that 158 

there have been few major changes in land-use classification. Grid cells were assigned a land-159 

use indicator as follows:  green space generates essentially no pollution and was assigned a 160 

land-use indicator of 0.0 and urban/industrial areas were assigned a land-use indicator of 1.0.  161 

The relation between urban/industrial and residential is less clear but the land-use indicator will 162 

lie somewhere between 0 and 1 and this value must be determined through optimization. 163 

Three parameters were then optimized: the indicator value of residential land use, the radius of 164 

influence contributing to acid deposition at any location, and a weighting parameter to 165 

determine the influence of proximal versus distal locations within the optimum radius. 166 

2.4.1 Optimization of Parameters  167 

The initial optimization of weighting of the residential land-use and radius of influence were 168 

done using inverse distance weighting as it provides easy variation of parameters.   In its 169 

simplest form, the inverse distance weighting parameter (w) is 170 

 𝑤𝑖(𝑥) =
1

𝑑(𝑥,𝑥𝑖)
𝑝
   [1] 171 
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where x is the point where the interpolation is being made, d is the distance between known 172 

point xi and the interpolated point, and p is the power parameter. Typical default value for the 173 

power parameter for many applications is 2 (inverse distance squared). Reducing the exponent 174 

weighs distant points more heavily.  For p=0 (zero) there is no decrease in weight with distance 175 

and the prediction will be simply an average of the values within the search radius.   To conduct 176 

the initial sensitivity analysis, values of residential land use were varied from 1.0 to 0.0 in steps 177 

of 0.2, radius varied from 1 to 10 km, and the inverse distance weighting parameter was varied 178 

from 2 to 0.  Land use, integrated for each combination of parameters, was calculated for each 179 

cell in the 200 m grid. Integrated land use was then correlated with gravestone decay at each 180 

cemetery and correlation coefficients (R2) determined.     181 

Since deterministic methods such as IDW differ in their application from geostatistical and 182 

interpolation methods (Zimmerman et al., 1999), several additional techniques of land-use 183 

interpolation were employed. These included: ordinary kriging, kernel density, and point 184 

density calculations all done within ArcGIS® Geostatistical Analyst® and Spatial Analyst®. For 185 

each land-use interpolation method the resulting land-use values at cemeteries were correlated 186 

with gravestone decay rate for each decade. 187 

2.4.2 Directional dependence of land-use and gravestone decay rate 188 

The directional dependence of land use on stone decay rate was evaluated by integrating 189 

land use within search windows of 90, 120, and 180 rotated in 45, 60, and 60 degree 190 

increments, respectively. For each search window, land-use indicators were calculated at 200 m 191 

grid cells using the point density function in ArcGIS® Spatial Analyst®. Calculations were made 192 

using optimized parameters for radius and residential land use for each search window. The 193 

interpolated land use at each measured cemetery was again correlated with gravestone decay 194 

at that point. To evaluate directional trends, rose diagrams were constructed using the mean 195 

azimuth of each search window and the correlation coefficient between measured gravestone 196 

decay rate and the calculated land-use indicator for each directional search. 197 

2.5 Correlation of gravestone decay rates and measured atmospheric SO2 and smoke 198 
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Two separate sets of interpolated grids of gravestone decay rates were generated.  First, 199 

decadally averaged decay rates for each cemetery were interpolated spatially using Empirical 200 

Bayesian Kriging.  Second, the linear least-squares regression equation describing the relation 201 

between land use and gravestone decay rate was used to assign decay rates spatially. The 202 

interpolated and assigned gravestone decay rates at the location of air quality monitoring 203 

stations were then plotted against measured SO2 and smoke and correlation coefficients (R2) 204 

determined to evaluate the relationship between gravestone decay rates (either spatially 205 

interpolated or assigned based on land use) and air quality.   206 

2.6 Evaluation of SO2 deposition efficiency 207 

 Marble gravestone decay is a direct measure of flux density of acid (F) (Mooers and 208 

Massman, in press), which, in turn, is determined by the atmospheric concentration of 209 

pollutants (C) at height z, and the deposition velocity (𝑣𝑑) given as 210 

 𝑣𝑑 =
−𝐹

𝐶𝑧
. [2] 211 

SO2 measurements give us a quantitative measure of the atmospheric concentration. If the 212 

stone decay is assumed to result from deposition of sulfuric acid, stone decay rates are a 213 

measure of the flux of acid to the stone surface, which is a function of the production rate of 214 

sulfuric acid from SO2 oxidation.  It is therefore instructive to plot 𝑣𝑑 as a function of time to 215 

evaluate temporal changes in deposition velocity (deposition efficiency) of SO2 , which can be 216 

affected by a number of factors that influence the correlation of gravestone decay with air 217 

quality.   218 

Deposition velocities were calculated at the 26 air quality monitoring stations using the 219 

mean annual SO2 concentration and the interpolated gravestone decay rate determined using 220 

the optimized land use correlation with gravestone decay.  Decay rates were then converted to 221 

flux of acid as equivalent SO2 as 222 

  𝐹 = �̇�𝜌𝑤𝑖
𝑀(𝐶𝑎𝐶𝑂3)

𝑀(𝐻2𝑆𝑂4)
, [3] 223 
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where (�̇�) is decay rate (l t-1),  is the density of marble (M l-3) (we used 2600 kg m-3, Malaga-Starzec et 224 

al., (2006)), 𝑤𝑖 is the mass fraction of SO2 in sulfuric acid (0.65), and M(CaCO3) and M(H2SO4) are the 225 

mole weight of calcite (100) and sulfuric acid (98), respectively. 226 

3. Results 227 

3.1 Decay rates 228 

Gravestone decay for the 33 cemeteries included in this study is shown in Figure 3 for the 229 

period 1950 to 2010.  There is a great deal of variability in decay among stones within any single 230 

cemetery. Mooers et al. (2016) conducted an investigation of the sources of variability of stone 231 

decay and concluded that by far the largest variability is inherent to the stone. Differences in 232 

the physical setting and local effects influence decay by at most a few percent, therefore the 233 

data plotted are uncorrected for environmental variables. Time-dependent decay rates were 234 

determined by least squares regression (Figure 3, Table 1) for each location. 235 

3.2 Spatial Interpolation of Gravestone Decay  236 

3.2.1 Variogram analysis 237 

Variograms of the decadally averaged gravestone decay rates from the 33 cemeteries for 238 

each decade are shown in Figure 4A-E. In all cases the nugget is large compared with the sill, 239 

particularly for the 1960s – 1980s, which leads to relative equality in kriging weights and 240 

interpolated values are simply averages of known points (Webster and Oliver 1992; University 241 

of Salzburg 2014). The ranges in all cases are between 5 and 10 km; this distance is similar to 242 

the average distance between measured cemeteries, again suggesting a lack of spatial 243 

correlation resulting in simply averaging of known points by kriging.  Figure 4F shows the 244 

spatially interpolated gravestone decay rates for the 1960s using Empirical Bayesian Kriging 245 

gridded at 200 m. The interpolated decay rates were then compared with air quality data from 246 

the 11 air quality monitoring stations available in the 1960s; the correlation between 247 

interpolated gravestone decay (and therefore acid flux) is poor  (Figure 4G) and results for 248 

other decades are similar.   249 

3.2.2 Land Use and Optimization of Parameters 250 
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Digitized land use is shown in Figure 5 and the results of the optimization of parameters for 251 

the land-use analysis using IDW are shown in Figure 6 and Table 3.  The correlation between 252 

land use and gravestone decay was maximized for an effective radius of approximately 7000m 253 

(Figure 6A), a residential land-use indicator of 0.0 (Figure 6B), and an IDW power of < 0.25 with 254 

the best correlation at a value of 0.0 (Figure 6C). Therefore the best correlation between land 255 

use and gravestone decay is achieved using the same indicator for residential area and green 256 

space. Within the study area there are essentially no green spaces larger than 2-3 km in 257 

diameter (Figure 5), which is less than half of the calculated effective radius of influence (7000 258 

m) suggesting that air quality in green spaces is likely no different from, and is controlled by, 259 

surrounding urban/industrial or residential areas.  An optimum inverse distance weighting 260 

power of 0.0 indicates that gravestone decay depends basically on an average of the air quality 261 

over a 7000 m radius of the surrounding area. This averaging is consistent with the variogram 262 

analysis, which suggested little spatial correlation in the gravestone decay measurements 263 

among cemeteries.  264 

Land use was then interpolated to a 200 m grid using ordinary Kriging, kernel density, point 265 

density and inverse distance weighting.  Figure 7 shows the correlation between the calculated 266 

land-use indicator and gravestone decay rate for the various interpolation techniques for a 267 

radius of 7000m and a residential land-use indicator of 0.0. Although there is reasonable 268 

correlation between land use and stone decay, 4 cemeteries are considered outliers (BEN, COD, 269 

JQK, and WAL). Bentley Cemetery (BEN) has an anonymously low decay rate; it is surrounded by 270 

four other cemeteries (WIL, WAL, DAR, and BIL) all of which have significantly higher decay 271 

rates and far larger number of measurements (Figure 3).  Codsall (COD) is anomalously high for 272 

the calculated land use, which is mostly rural farmland. Only the relatively small village of 273 

Codsall has significant residential neighborhoods. The reason for the anomalously high 274 

calculated decay rate is unclear. Key Hill Cemetery (JQK), located in the Birmingham Jewellery 275 

Quarter, has anomalously low stone decay compared to Warstone Lane Cemetery, which is 276 

located only 100 m away. The dramatic difference in decay rate is attributed to the continuous 277 

tree canopy of 100 to150-year-old London plane at Key Hill Cemetery, whereas Warstone Lane 278 

Cemetery is largely open (Mooers and Massman, in press; Mooers et al. 2016). 279 
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Rrycroft Cemetery (WAL) in Walsall has a relatively high decay rate relative to the calculated 280 

land use.  Therefore to evaluate the overall effect of these anomalous decay values on the 281 

correlation between land use and gravestone decay, BEN, COD, JQK, and WAL were removed 282 

from the analysis and the results are shown in Figures 7B, D, F, and H. Note that correlation 283 

coefficients are significantly higher with these four outliers omitted. 284 

The highest correlation between the spatially averaged land-use parameter and gravestone 285 

decay at measured cemeteries was achieved using point-density analysis and kriging with the 286 

omission of the aforementioned four anomalous cemeteries. The point density function simply 287 

averages the values within a given radius and kriging, given the poor spatial correlation 288 

suggested by variogram analysis, does little more than average the land use over the same 289 

radius.    290 

Table 4 shows the correlation coefficients of land-use vs. stone decay rates using the point-291 

density calculation for each decade and for radii of 4000 – 12,000 m. Correlation coefficients 292 

are high for 1960s – 1980s at a radius of approximately 6-7 km.  The correlation between land 293 

use and stone decay drops off after 1990 and the radius of highest correlation increases.   294 

3.2.3 Directional dependence of land use on gravestone decay 295 

The correlation between interpolated land use and gravestone decay rate for the 296 

directionally dependent search patterns are shown in Table 5 and Figure 8.  Once again 297 

omitting BEN, COD, WAL, and JQK from the analysis improves the correlation for the reason 298 

stated above.  Note that the wider the search pattern the better the correlation between land 299 

use and stone decay (Table 5). The correlation coefficients for gravestone decay and land use 300 

for each of directional searches are shown in Table 5.  Although the correlation coefficients are 301 

not as high as the omnidirectional calculation there is a clear directional trend.  The highest 302 

correlation of land use and gravestone decay for the 1960s and 1970s is south and southwest.  303 

From the 1980s to the 2000s the correlation coefficients decrease as the directional 304 

dependence of stone decay rate shifts to westerly and then nearly to the north. This change in 305 

directional trend coincides with improving air quality and the increase in effective radius of 306 

influence contributing acid and changing deposition efficiency of SO2. 307 
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3. 3 Correlation of land use and air quality 308 

The correlation of gravestone decay rate and optimized land use suggests that interpolated 309 

land use may be used as a proxy for acid deposition and the relationship between land use and 310 

air quality can be evaluated.  The decadally averaged SO2 and smoke concentrations for 23 311 

monitoring stations are shown in Table 6.  The correlation of land use (calculated using the 312 

point density function, a radius of 7 km, a residential land-use indicator of 0.0) and SO2 and 313 

smoke for the 1960s-1980s is shown in Figure 9. Trends are clearly evident for the 1960s and 314 

1970s even though R2 values are relatively low.  By the 1980s, there is little correlation between 315 

land use and SO2 and smoke.   316 

3.4 Evaluation of SO2 deposition efficiency 317 

Figure 10 shows the calculated deposition velocities for all air quality monitoring locations for 318 

all years (Figure 10). Five-year and ten-year moving averages are also plotted to remove high-319 

frequency variation. Note that after about 1980 there is an increasing trend in the deposition 320 

velocity indicating an increase in the efficiency of SO2 oxidation to sulfuric acid. SO2 emissions in 321 

Europe have decreased substantially since 1980, which has been reflected in large reductions in 322 

airborne concentrations of SO2 (Vestreng et al., 2007).  Jones and Harrison (2011) used data 323 

from the European Monitoring and Evaluation Programme (EMEP) to examine relationships 324 

between SO2 and sulfate in rural air.  The data from all countries examined could be fit to a 325 

curvilinear relationship:   326 

 [SO4
2-] = a · [SO2]b + c [4] 327 

where [SO4
2-] and [SO2] are airborne concentrations, and a, b and c are constants.  As b takes 328 

values of typically around 0.6, the percentage reduction in SO4
2- is less than proportionate for a 329 

given reduction in SO2.  Hidy et al. (2014) examined measured concentrations from sites in the 330 

southeastern United States; between 1999 and 2013, average SO2 concentrations fell by 331 

approximately 84%, while SO4
2- over the same period fell by only 60%.  The trend seen in Figure 332 

10 of higher sulfuric acid production efficiency at lower concentrations of SO2 in more recent 333 

years is consistent with this pattern.   334 
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4.0 Discussion and Conclusions 335 

Gravestone decay has been shown to serve as an excellent proxy for acid deposition (Mooers et 336 

al., 2016; Inkpen, 1998, 2013; Cooke, 1989, Cooke et al., 1995).  In addition, the results of this 337 

investigation suggest that gravestone decay exhibits a high degree of correlation with 338 

interpolated land use (Figure 7), which when integrated over some optimal area essentially 339 

determines the pollution sources and therefore the acid flux.  The correlation between 340 

interpolated land use and air quality, however, is rather poor (Figure 9) and the reasons for the 341 

poor correlation are difficult to determine.   The paucity of measurements of SO2 and smoke 342 

and the lack of spatial and temporal continuity of the records all contribute to poor correlation. 343 

In addition, SO2 data are annual averages and gravestone decay may well be sensitive to 344 

seasonal variations or even short-term extreme events that are not represented in the available 345 

data. Correlation between gravestone decay and measured SO2 and smoke concentrations (air 346 

quality) is suggested by their similar exponential trends (Figures 2 and 3). Although spatial 347 

interpolation procedures can be used to determine intermediate values of gravestone decay, 348 

variogram analysis indicates that there is a lack of spatial correlation particularly prior to about 349 

1980. Local factors, likely related to land use (or possibly even microclimatic effects), therefore 350 

appear to overwhelm the spatial continuum. The land-use approach of spatial interpolation is 351 

therefore at least as good as other methods even though the correlation with annually 352 

averaged annual air-quality data is rather poor.  353 

By about 1980 there was a dramatic turnaround in air quality (Mosley, 2009; 2011) that is 354 

evident in both the SO2 and smoke data (Figure 2) and is well documented in decreasing 355 

gravestone decay rates (Mooers et al., 2016) and therefore acid flux. At this time there is a 356 

change in the directional dependence of gravestone decay on land use (Figure 8) and an 357 

increase in the optimum radius of influence of land use on gravestone decay rates (Tables 3 and 358 

4). Also at this time there appears to be a marked increase in the efficiency of the SO2 oxidation 359 

process (Figure 10).   The most probable explanation for the increased deposition efficiency is 360 

non-linearity in the SO2 conversion to sulfate, which is seen in both field measurement data 361 

(Jones and Harrison, 2011; Hidy et al., 2014) and numerical model results (Harrison et al., 2013).  362 
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An alternative explanation of Figure 10, which needs to be considered, is that increased 363 

emissions of nitrogen oxides have led to increased concentrations of nitric acid and higher 364 

decay rates.  However, UK emission statistics for NOx show a peak in 1990 with continual 365 

decrease until 2013 (National Atmospheric Emissions Inventory, 2016), suggesting that decay 366 

due to nitric acid cannot explain the observed trends. 367 

As sulfuric acid production falls in response to decreased SO2 concentrations, so the extent of 368 

neutralization by ammonia is likely to increase, hence reducing sulfate acidity and working in 369 

the opposite sense to Figure 10.  An alternative role for ammonia is in enhancing the deposition 370 

efficiency of SO2 through co-deposition (Erisman and Wyers, 1993).  This is expected to 371 

enhance SO2 deposition efficiency at lower concentrations, and if followed by oxidation of the 372 

SO2 leads to enhanced sulfate concentrations, although not necessarily to sulfuric acid. 373 

As overall air quality improves four trends are evident; 1) the correlation between interpolated 374 

land use and stone decay becomes less (Table 4), 2) the effective radius of influence of land use 375 

on local air quality increases (Table 4), 3) the directional dependence of land use on local air 376 

quality changes from southerly to westerly to northerly, and 4) the efficiency of stone decay 377 

increases as SO2 concentrations fall. These trends are consistent with greatly reduced contrast 378 

in air quality among different land-use types. The reason for the change in directional trend 379 

from south to north over 50 years is unclear, but possibly related to industrial decline in the 380 

Midlands over this time (Spencer et al., 1986).  381 

Finally, interpolated land use and the correlation with SO2 and smoke can be used to estimate 382 

average air quality over the study area for each decade (Figure 11). The improvement in air 383 

quality is quite dramatic, particularly between the 1960s and the 1980s. After about the mid-384 

1980s air quality is relatively uniform spatially in the West Midlands and the correlation with 385 

land use is significantly lower. 386 
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Figure 1. West Midlands County, UK, showing the locations of cemeteries (A) and air-quality 

monitoring stations (B). 
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Figure 2. SO2 and smoke concentrations from all stations for the period 1960 to 2005, the period of 

available record. Each data point represents a one-year average of SO2 or smoke for the 23 stations 

listed in Table 2. 
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Figure 3. Gravestone decay for 33 cemeteries in the West Midlands and surrounding area.  Each 

point represents stone decay on a single inscription. Values are the average of 10 

measurements on the date line of the inscription with the high and low values removed 

(trimmed mean). Data are plotted as years before 2010 so that regression equations pass 

through the graph origin. 
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Figure 4. A-E) variograms of the gravestone decay rate for the 1960s – 2000s, respectively; F) 

results of Empirical Bayesian Kriging of decay rates, and G) correlation of interpolated 

gravestone decay rate and SO2 concentrations at air quality monitoring locations. 
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Figure 5. Land use digitized from recent aerial photography.   
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Figure 6. IDW optimization; A) radius, B) residential land-use indicator, and C) inverse-distance 

weighting factor. 
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Figure 7. Relationship between Interpolated land use and gravestone decay rate for 33 

cemeteries.  Land-use interpolation by Kriging (A, B), Kernel Density (C,D), Point Density (E,F), 

and IDW (G,H). For each method of interpolation the correlation coefficient is greatly improved 

by omitting the four anomalous cemeteries as described in the text (B, D, F, and H). 
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Figure 8. Rose diagrams of directional dependence of land use on gravestone weathering rate.  

Diagrams were constructed from the directional searches using the mean azimuth of each 

search and the correlation coefficient for that search window between gravestone weathering 

and the interpolated land-use indicator. 
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Figure 9. Correlation between land-use indicator and SO2 and smoke concentrations for the 

1960s (A, B), 1970s (C, D), and the 1980s (E, F). 
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Figure 10.  Surrogate deposition velocity (F/Cz) as a function of year of measurement.  Blue 
diamonds are all data, red squares are 5-year and green triangles are 10-year moving averages. 
Trend line was calculated from all data points using a third-order polynomial least-squares 
regression. 
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Figure 11. Predicted SO2 and smoke concentrations based on land-use/air quality correlations in Figure 

9 for the 1960s through 1980s. 

  



30 
 

 

Table 1. List of cemeteries visited during this investigation. Locations are given in UTM Zone 30.  

Gravestone decay vs. age for each cemetery was fitted with a non-linear polynomial regression 

and the equation and R2 value are tabulated.  For each decade 1960-2010 mean decay rates 

were calculated at the derivative of the regression equation for the midpoint year and are given 

in m/yr. 
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Table2. Name and location of air-quality monitoring stations active within the study area, their 

location (UTM), and period of record. 
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Table 3.Results of optimization of parameters, radius, residential land-use indicator, and inverse 

distance weighting (IDW) power. Maximum values in bold. 

 Radius 1960s 1970s 1980s 1990s 2000s 

 

  300 0.02 0.01 0.01 0.00 0.02 

 3000 0.19 0.20 0.19 0.12 0.01 

 7000 0.33 0.37 0.38 0.28 0.05 

 8000 0.28 0.33 0.38 0.33 0.10 

 10000 0.22 0.27 0.34 0.34 0.14 

 

 Land Use 1960s 1970s 1980s 1990s 2000s 

 

  1.0 0.24 0.28 0.34 0.31 0.12 
 

0.8 0.32 0.35 0.41 0.32 0.12 

 0.6 0.35 0.40 0.43 0.33 0.11 

 0.4 0.40 0.44 0.45 0.36 0.10 

 0.2 0.46 0.50 0.49 0.44 0.11 

 0.0 0.55 0.57 0.53 0.35 0.07 

 

 IDW 1960s 1970s 1980s 1990s 2000s 

 2.00 0.00 0.00 0.00 0.01 0.03 

 1.50 0.00 0.00 0.00 0.01 0.03 

 1.00 0.00 0.00 0.00 0.01 0.03 

 0.50 0.02 0.02 0.01 0.00 0.01 

 0.40 0.17 0.18 0.16 0.09 0.00 

 0.25 0.33 0.36 0.37 0.26 0.04 

 0.00 0.33 0.37 0.39 0.29 0.06 
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Table 4. Correlation coefficients for land-use using the point-density calculation vs. average 

decadal gravestone stone decay rate for radii of 4000 – 12000 m. Maximum values in bold/italic  

 Residential Value 0.2    
Resid. 

Ind. Radius 1960s 1970s 1980s 1990s 2000s 

0.2 4000 0.45 0.48 0.47 0.32 0.06 

0.2 6000 0.56 0.60 0.59 0.40 0.07 

0.2 7000 0.53 0.58 0.59 0.43 0.10 

0.2 8000 0.45 0.51 0.55 0.44 0.12 

0.2 10000 0.37 0.44 0.49 0.43 0.14 

0.2 12000 0.34 0.42 0.48 0.42 0.14 

       
  Residential Value 0.0       

0.0 4000 0.45 0.45 0.40 0.23 0.02 

0.0 6000 0.65 0.66 0.60 0.34 0.03 

0.0 7000 0.65 0.68 0.65 0.41 0.06 

0.0 8000 0.52 0.58 0.60 0.45 0.10 

0.0 10000 0.38 0.44 0.48 0.41 0.14 

0.0 12000 0.33 0.40 0.46 0.40 0.14 
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Table 5. Correlation coefficients for gravestone decay and land use for each directional search 

window. Maximum values in bold/italic with near maximum values in grey. 

Azimuth 1960s 1970s 1980s 1990s 2000s 

      
0 0.01 0.02 0.05 0.12 0.14 

45 0.00 0.00 0.00 0.01 0.05 

90 0.13 0.14 0.14 0.12 0.04 

135 0.39 0.38 0.33 0.16 0.00 

180 0.33 0.26 0.14 0.01 0.06 

225 0.31 0.27 0.18 0.03 0.03 

270 0.32 0.39 0.44 0.34 0.06 

315 0.15 0.23 0.33 0.39 0.19 

      
0 0.10 0.16 0.26 0.33 0.20 

45 0.00 0.00 0.01 0.04 0.09 

135 0.45 0.41 0.29 0.09 0.01 

135 0.15 0.15 0.14 0.11 0.03 

225 0.31 0.27 0.18 0.03 0.03 

270 0.36 0.44 0.51 0.41 0.09 

      
0 0.08 0.12 0.19 0.27 0.20 

45 0.12 0.13 0.15 0.15 0.08 

135 0.35 0.31 0.23 0.09 0.00 

180 0.52 0.49 0.37 0.13 0.01 

225 0.46 0.49 0.45 0.24 0.01 

315 0.29 0.37 0.46 0.43 0.14 
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Table 6. Mean decadal SO2 and smoke concentrations (g/m3) for 23 air-quality monitoring 

stations in the study area.  Interpolated land-use indicator determined by point-density 

function. 

 Land Use 1960s   1970s   1980s   

site_name Indicator SO2 Smoke SO2 Smoke SO2 Smoke 

BILSTON 3 0.56 99.00 128.00 -  - -   - 

BILSTON 18 0.55 -  - 64.50 29.00 40.67 25.00 

BILSTON 19 0.64 -  - - -  42.60 15.60 

BIRMINGHAM 11 0.55 277.33 131.17 - -  -  -  

BIRMINGHAM 13 0.46 202.40 125.20 - -   - -  

BIRMINGHAM 21 0.55 - - 101.86 27.57 75.00 22.67 

BIRMINGHAM 26 0.52 - - 100.00 28.60 46.50 15.30 

CANNOCK 15 0.07 103.50 103.50 - -  -  -  

CANNOCK 17 0.07 - - 88.33 65.50 54.13 50.88 

CANNOCK 18 0.06 - - - - - - 

KIDDERMINSTER 3 0.07 167.33 112.75 -  -  - -  

KIDDERMINSTER 4 0.06 60.00 60.00 47.14 14.86  - -  

KIDDERMINSTER 5 0.07 - -  72.00 13.00  -  - 

OLDBURY 5 0.50 127.71 94.29 108.70 37.90 116.00 25.67 

ROWLEY REGIS 1 0.46 126.33 64.00 86.80 44.40 -   - 

ROWLEY REGIS 2 0.46 - -  58.80 22.00 63.33 14.67 

ROWLEY REGIS 3 0.50 - - - - - - 

STOURBRIDGE 1 0.24 115.33 84.00 82.13 34.44 66.00 24.33 

WALSALL 13 0.33 155.50 111.63 78.60 50.00 44.22 26.78 

WALSALL 18 0.32 -  - 81.33 29.33 46.44 21.56 

WEDNESFIELD 1 0.43 117.50 117.50 79.00 46.20 81.00 30.00 

WEDNESFIELD 2 0.43 -  - - -  44.75 15.38 

WILLENHALL 1 0.52 159.67 132.75 - -  -  -  

WILLENHALL 15 0.53 -  - 113.40 42.70 52.50 26.00 

WOLVERHAMPTON 3 0.33 118.71 109.43 85.50 43.90  - -  

WOLVERHAMPTON 7 0.33 102.67 85.00 54.83 23.33 52.63 13.38 

 

 

 


