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ABSTRACT
It is usually assumed that we will need to wait until next-generation surveys like Euclid, LSST
and SKA, in order to improve on the current best constraints on primordial non-Gaussianity
from the Planck experiment. We show that two contemporary surveys, with the SKA precursor
MeerKAT and the Dark Energy Survey (DES), can be combined using the multitracer technique
to deliver an accuracy on measurement of fNL that is up to three times better than Planck.

Key words: cosmology: miscellaneous – large-scale structure of Universe.

1 IN T RO D U C T I O N

Future cosmological surveys will probe the three-dimensional large-
scale structure of the Universe in ever larger volumes, delivering
tighter and tighter constraints on cosmological parameters and mod-
ified gravity. Most of these surveys are based on sampling a large
number of galaxies at optical or near-infrared wavelengths, such as
Euclid1 and LSST.2 The SKA3 will use the 21-cm emission of H I,
both to detect H I galaxies and to map the integrated intensity from
each pixel.

One of the key targets of these next-generation surveys is to go
beyond the capability of cosmic microwave background (CMB)
experiments in probing the primordial Universe – in particular to
surpass CMB constraints on primordial non-Gaussianity. Primordial
non-Guassianity in the fluctuations that are generated by inflation
leaves a ‘frozen’ signal in the matter distribution on ultralarge scales,
which is why ultralarge volume surveys will be able to improve on
the CMB state of the art. In this paper, we only focus on local-type
non-Gaussianity measured by the parameter fNL. The current best
bound on fNL is from the Planck experiment, giving4 σ (fNL) � 6.5
(Planck Collaboration XVII 2015).

Recent and current surveys, such as BOSS5 and Dark Energy
Survey (DES),6 are unable to match the CMB accuracy on fNL.
Next-generation surveys are forecast to beat the Planck constraint
(Alonso et al. 2015; Raccanelli et al. 2016). Even these surveys,
using the galaxy power spectrum and a single tracer, will be unable
to push σ (fNL) below 1, which is needed to rule out some of the sim-
plest inflationary models. The problem is cosmic variance, which

� E-mail: josecarlos.s.fonseca@gmail.com
1 www.euclid-ec.org
2 www.lsst.org
3 www.skatelescope.org
4 We use the large-scale structure convention, fNL = f LSS

NL � 1.3f CMB
NL .

5 www.sdss3.org/surveys/boss.php
6 www.darkenergysurvey.org

grows with the increase of scales being probed. A way to beat down
cosmic variance is the multitracer technique, which combines the
information from two or more surveys (or multiple tracers within the
same survey; McDonald & Seljak 2009; Seljak 2009; Hamaus, Sel-
jak & Desjacques 2011; Abramo & Leonard 2013). This technique
is forecast to deliver game-changing improvements in σ (fNL) from
next-generation surveys (Yoo et al. 2012; Ferramacho et al. 2014;
Yamauchi, Takahashi & Oguri 2014; Alonso & Ferreira 2015; Fon-
seca et al. 2015).

However, these improvements will only be available from future
surveys in the coming decade. Hence, a question arises: Can sur-
veys be combined within the next few years to match or improve
CMB bounds on fNL? We address this question, using the multi-
tracer technique for two surveys. The multitracer confines us to use
the overlap sky area and redshift range. Furthermore, the technique
is more powerful the more different are the tracers of dark matter in
each survey, and the more different are the systematics. This leads
us to choose the two contemporary surveys: DES (optical/infrared
telescope, photometry) and MeerKAT7 (radio dish array, H I inten-
sity mapping). Our forecast is that DES and MeerKAT combined
can measure fNL with Planck-level accuracy or better.

In Section 2, we review the large-scale effects of non-Gaussianity
as well as the Fisher forecast method using the multitracer tech-
nique. Then we describe in Section 3 the experimental specifica-
tions for MeerKAT and DES. In Section 4, we present our results,
and we conclude in Section 5.

2 T H E O R E T I C A L I N G R E D I E N T S

2.1 Local primordial non-Gaussianity

Local primordial non-Gaussianity is described by a non-linear cor-
rection to the primordial Newtonian potential �(x):

� = φ + fNL(φ2 − 〈φ2〉). (1)
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Here φ is a first-order Gaussian potential and the perturbed met-
ric is ds2 = a2[−(1 + 2ψ)dη2 + (1 − 2φ)dx2]. The galaxy power
spectrum is altered by scale-dependent bias on large scales (Dalal
et al. 2008; Matarrese & Verde 2008):

b(z, k) = bL(z) + 3fNL
[bL(z) − 1]�mH 2

0 δc

D(z)T (k)k2
, (2)

where bL is the linear Gaussian bias, δc � 1.69 is the critical matter
density contrast for spherical collapse, T is the transfer function
(normalized to 1 on large scales) and D is the growth factor (nor-
malized to 1 at z = 0). On superequality scales, T(k) � 1 and the bias
grows as fNLk−2. If we use the power spectrum to probe primordial
non-Gaussianity, we therefore need to look at the largest scales pos-
sible. When using a single tracer of the dark matter distribution, the
signal is eroded by cosmic variance, and even the next-generation
ultralarge survey volumes are unable to achieve σ (fNL) < 1 (Alonso
et al. 2015; Raccanelli et al. 2016). We deal with the cosmic vari-
ance problem by using multiple tracers, following the method of
Fonseca et al. (2015).

2.2 Angular power spectrum with all relativistic effects

The observed number density or brightness temperature contrast is

A(z, n), where n is the direction of observation and A labels the
tracer. Its two-point correlators define the angular power spectra:〈

A(z, n)
B (z′, n′)

〉
=

∑
�

(2� + 1)

4π
CAB

� (z, z′) P�(n · n′), (3)

where P� are the Legendre polynomials. The sky maps of the tracers
are decomposed into spherical harmonic modes and the a�m are used
as estimators. We assume that the a�m are Gaussian distributed.
Since the universe has no preferred structure (〈a�m〉 = 0), all the
information will be encoded in the angular power spectra CAB

� ,
where 〈aA

�maB∗
�′m′ 〉 = δ��′δmm′CAB

� .
Extending the single-tracer case (Challinor & Lewis 2011) to

multiple tracers, the angular power spectra across two redshift bins
are given by

CAB
�

(
zi, zj

) = 4π

∫
d ln k 


WA
� (zi, k) 


WB
�

(
zj , k

)P(k), (4)

where zi are the redshift bin centres and the dimensionless primor-
dial curvature perturbation power spectrum is

P(k) = As

(
k

k0

)ns−1

. (5)

Here the pivot scale is k0 = 0.05 Mpc−1, As is the amplitude and ns

is the spectral index. The theoretical transfer function 
A
� (z, k) [not

to be confused with T(k)] defines the observable transfer function
in each bin via the window function W:



WA
� (zi, k) =

∫
dz pA(z)W (zi, z)
A

� (z, k). (6)

Here pA is a selection function for tracer A that is de facto the red-
shift distribution function of observed sources. For galaxy number
counts, pA ∝ dnA/dzd�. For H I temperature intensity maps, pA ∝
TA. The selection function accounts for the fact that we have differ-
ent numbers of emitters at different redshifts. It therefore weights
the relative importance of each redshift in the signal.

The observational window function centred on zi is W(zi, z), and
is the probability distribution function for a source to be inside the
i-bin. This is broadly speaking a binning choice based on the ex-
perimental specifications. The window function can also be chosen

differently for different tracers, but when using the multitracer tech-
nique, it has to be the same. The product of the selection function
and the window function is the tracer’s effective redshift distribution
function inside the bin, normalized so that

∫
dz pA(z)W(zi, z) = 1 for

all zi.
The observed fluctuations 
A(z, n), and thus the transfer func-

tions 
A
� (z, k), are gauge independent and any gauge may be used

to compute them. For galaxies, expressions have been given in Yoo
(2010); Challinor & Lewis (2011); Bonvin & Durrer (2011) and
for H I intensity mapping in Hall, Bonvin & Challinor (2013). In
Newtonian gauge, we have (Di Dio et al. 2013; Fonseca et al. 2015)


A
� (k) =

[
bAδs

k + (
bA

e − 3
) Hvk

k

]
j� (kχ )+ kvk

H j ′′
� (kχ )

+ � (�+1)
(
2 − 5sA

)
2

∫ χ

0
dχ̃

(χ−χ̃ )

χχ̃

(
φ̃k + ψ̃k

)
j� (kχ̃ )

+
(

2 − 5sA

Hχ
+5sA − bA

e + H′

H2

) [
vkj

′
�(kχ )+ψkj� (kχ )

+
∫ χ

0
dχ̃

(
φ̃′

k+ψ̃ ′
k

)
j� (kχ̃)

]

+
(
2 − 5sA

)
χ

∫ χ

0
dχ̃

(
φ̃k+ψ̃k

)
j�(kχ̃ )

+
[
ψk+

(
5sA−2

)
φk+φ′

k

H
]

j� (kχ ) , (7)

where we have suppressed the redshift dependence, H is the con-
formal Hubble parameter, χ is the comoving line-of-sight distance
and vk is the peculiar velocity. For  cold dark matter (CDM) and
standard dark energy models, the metric perturbations are equal:
ψk = φk.

The first term on the right-hand side of equation (7) is the contri-
bution from the tracer fluctuations, where δs is the dark matter den-
sity contrast in the matter rest frame, equivalently in synchronous
gauge. It is necessary to use the rest frame in order to avoid gauge de-
pendence in the definition of bias (Bonvin & Durrer 2011; Challinor
& Lewis 2011; Bruni et al. 2012; Jeong, Schmidt & Hirata 2012).
In the presence of non-Gaussianity, the bias bA(z, k) of tracer A is
given by (2), with bL → bA

L . The evolution bias, bA
e (z), accounts for

the redshift evolution of the sources for tracer A:

bA
e = −

∂ ln
[
(1 + z)−3NA

]
∂ ln(1 + z)

, (8)

where NA is the background number density, of galaxies or H I

atoms.
The second term on the right-hand side of equation (7) is the

redshift-space distortion contribution, which is independent of the
chosen tracer (given the assumption that there is no velocity bias).

The second line of equation (7) gives the contribution of lensing
convergence to the tracer fluctuations, integrated along the line of
sight to each source. The lensing effect is modified by the mag-
nification bias, sA. Here, we need to make a careful distinction
between number counts and intensity mapping. At linear order,
there is no lensing contribution to the H I intensity fluctuations.
This follows from conservation of surface brightness in gravita-
tional lensing, similar to the case of CMB temperature fluctuations.
It turns out that the H I brightness temperature fluctuations coincide
with the H I atom number density fluctuations, provided that we set
sH I = 2/5, which removes the lensing contribution, and some other
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terms in equation (7) related to the luminosity distance fluctuations
(Hall et al. 2013). For galaxy number counts, sG is the logarithmic
slope of the cumulative luminosity function NA(z,m < m∗) at the
magnitude limit m∗ of the survey. Thus, we have

sH I = 2

5
, (9)

sG = ∂ log10 NG

∂m∗
. (10)

In the third line of equation (7), there is a Doppler term and a Sachs–
Wolfe term. The fourth and fifth lines are integrated Sachs–Wolfe
and time delay terms, respectively, while the final line is a further
Sachs–Wolfe type contribution. The last four lines of equation (7)
are the horizon-scale relativistic effects, which have k-dependences
of (H/k) δs

k and (H/k)2δs
k . This follows from the Euler equation,

which gives vk = f (H/k) δs
k , and the Poisson equation, which gives

φk ∝ (H/k)2δs
k . Note that the first line also contains a horizon-scale

term, since Hvk/k = f (H/k)2δs
k .

These relativistic terms become relevant on the same ultralarge
scales, where local primordial non-Gaussianity is boosting the
power spectrum via the bias, (2). For accurate constraints on fNL,
we need to include the relativistic terms. In the single-tracer case,
this has been done by Camera, Santos & Maartens (2015a), Alonso
et al. (2015), Raccanelli et al. (2016). Note that the best-fitting value
of fNL, as opposed to the measurement error σ (fNL), can be signifi-
cantly biased if the relativistic terms are omitted (Camera, Maartens
& Santos 2015b). For the multitracer case, the relativistic effects
can be detected and simultaneously σ (fNL) < 1 can be achieved,
as shown by Yoo et al. (2012) when neglecting all integrated terms
in equation (7), and by Alonso & Ferreira (2015); Fonseca et al.
(2015) in the general case.

2.3 Fisher forecasts with multiple tracers

The Fisher matrix for a set of parameters {ϑ i} is

Fϑiϑj
= 1

2
Tr

[(
∂ϑi

C
)
�−1

(
∂ϑj

C
)
�−1

]
, � = C + N , (11)

where C is the covariance matrix of the estimator and N is the
noise contaminant, which we assume is independent of fNL. For
instrumental noise in radio surveys this is necessarily true, but it may
not hold for shot noise, since non-Gaussianity induces deviations in
halo overdensity from the pure Poisson sampling noise case – see
Hamaus et al. (2011) for a discussion. However, the same authors
conclude that this correction is tiny if one considers a large halo
mass bin, which will be the case in this paper, hence justifying
our assumption. If the angular power spectrum CAB

� (zi, zj ) is the
estimator’s covariance, then we need to account for all multipoles
and equation (11) becomes (Tegmark, Taylor & Heavens 1997)

Fϑiϑj
=

�max∑
�min

(2� + 1)

2
fsky Tr

[(
∂ϑi

C�

)
�−1

�

(
∂ϑj

C�

)
�−1

�

]
, (12)

where fsky is the fraction of sky surveyed. The multitracer technique
requires that we use the same sky maps of two (or more) differently
biased tracers. Not only should the sky areas be the same, but also
the binning in redshift, so that we are always comparing the same
patch of the universe. If we use an H I intensity map survey and a
galaxy survey, we can schematically represent the covariance matrix

as (Ferramacho et al. 2014)

CAB
�

(
zi, zj

) =

⎛
⎜⎝

CH I,H I

�,ij CH I,G
�,ij

CG,H I

�,ij CG,G
�,ij

⎞
⎟⎠ . (13)

Note that if we have n bins then the covariance matrix is 2n × 2n
for two tracers. The autotracer correlations are symmetric, but not
the cross-correlations. Nevertheless, the overall angular power is
symmetric with CH I,G

�,ij = CG,H I

�,j i . We do not include foregrounds and
systematics in the full covariance matrix �. Note that, in addition
to the reduction of cosmic variance, the multitracer technique also
lessens the individual systematics of the two experiments and re-
duces the impact of foreground residuals.

Assuming that for Gaussian likelihoods the inverse of the Fisher
matrix approximates well the parameter covariance, the marginal
error in a parameter is given by

σϑi
=

[
(F−1)ϑiϑi

]1/2
. (14)

3 SU RV E Y S

The multitracer technique is more effective if the differences be-
tween the tracers, and between the experimental characteristics, are
large. An intensity map in the radio and a photometric galaxy sur-
vey have very different experimental features and the bias, evolution
bias and magnification bias are also very different. We combine the
two premier contemporary surveys of these types – an H I intensity
survey with MeerKAT and a galaxy survey with DES.

3.1 MeerKAT H I intensity map

MeerKAT will be composed of 64 antennas and will operate from
2017. A proposed cosmological survey MeerKLASS (Santos et al.,
in preparation) includes an H I intensity map survey. Forecasts
for such a survey have been investigated (Bull 2016; Pourtsidou
et al. 2016a; Pourtsidou, Bacon & Crittenden 2016b), showing that
MeerKAT can provide very good cosmological constraints.

In H I intensity mapping, all galaxies with H I contribute to the
signal. To compute the angular power spectrum, we use the transfer
function multipoles given by equation (7) together with equation (9).
For brightness temperature fluctuation maps, the selection function
follows the H I temperature, pH I(z) ∝ T H I(z), which we fit using
the results of Santos et al. (2015).

The Gaussian H I bias, bH I
L , is modelled by weighting the halo

bias with the H I content in the dark matter haloes, and is shown in
Fig. 1: details of the modelling are given in Santos et al. (2015). In
our forecasts, we marginalize over the H I and galaxy bias – we use
the modelled bias only to set the fiducial bias value in each redshift
bin.

Given the background relation between NH I and T H I, the H I

evolution bias equation (8) becomes (Hall et al. 2013)

bH I

e (z) = −
∂
[

ln T H I(z)H(z)(1 + z)−1
]

∂ ln(1 + z)
. (15)

The noise angular power spectrum for an experiment with Nd

collecting dishes, total observation time ttot and observed sky area
Sarea, is given by

N H I

ij = Sarea

2Ndttot

∫
dν T 2

sys (ν) W̄ν (ν, νi) W̄ν(ν, νj ) , (16)
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Figure 1. Gaussian bias for H I intensity (solid, red) and DES (dashed,
green).

Figure 2. MeerKAT system temperature for L band (blue dots) and UHF
band (red triangles).

where Tsys is the system temperature of the receiver. The window
function in frequency is equivalent to the one in redshift, given that
W̄ν(ν, νi) = W̄ (z, zi) dz/dν and that the window is normalized:∫

dν W̄ν(ν, νi) = 1. The expression (16) is more general than what
is commonly found in the literature and is valid when we do not
consider a top hat window function. This allows us to deal correctly
with the noise even when the bins overlap. In the case of a top-
hat window function, we recover the conventional result (Santos
et al. 2015), assuming a constant system temperature in the band.

There is also a shot-noise term in intensity mapping, since the
signal requires the existence of galaxies in order to produce the
emission lines. However, for H I, this shot-noise term is quite small
and can be safely neglected (Gong et al. 2011).

MeerKAT’s bands are

L: 900 < ν < 1670 MHz, 0.58 > z > 0, (17)

UHF: 580 < ν < 1015 MHz, 1.45 > z > 0.40. (18)

Although the total bandwidths are similar, the UHF band will probe
a larger physical volume, allowing in principle for better cosmo-
logical measurements. Fig. 2 shows the system temperature for the
MeerKAT bands.

3.2 DES photometric galaxy survey

DES is a 5000 deg2 photometric galaxy survey in the southern
sky, currently underway. In order to determine the observational
details for forecasts, we followed closely the approach taken by

Alonso et al. (2015, their section 7.1) for a DES-like photometric
galaxy survey.

Following Alonso et al. (2015), we adopt a simulation-based
model (Weinberg et al. 2004) for the Gaussian galaxy bias (see
Clerkin et al. 2015 for alternative bias models):

bG
L = 1 + 0.84z . (19)

Note that this bias model is used only to set the fiducial value in
each redshift bin, since we marginalize over bias.

We use an r′-band Schechter luminosity function, as given by
Gabasch et al. (2006). We approximate r′ � r and use the following
parametrization of the Schechter function:

α = −1.33 , M∗(z) = −21.49 − 1.25 ln (1 + z) , (20)

ϕ (z) = 2.59 − 0.136z − 0.081z2
[
10−3 Mpc−3

]
. (21)

Here α is the slope of the low end of the luminosity function, and
M∗ is the magnitude of transition from lower to higher luminosities.
The absolute magnitude M and apparent magnitude m are related
by

M = m(z) − 25 − 5 log10

dL(z)

Mpc
− k (z) , (22)

where dL is the luminosity distance and the k-correction is taken as
k(z) � 1.5z (Alonso et al. 2015).

We then use equations (20) and (21) in the Schechter luminosity
function to estimate (with a five-point stencil numerical derivative)
the magnification bias (10), which we fit with the polynomial

sG(z) = 0.132 + 0.259z − 0.281z2

+ 0.691z3 − 0.409z4 + 0.152z5 . (23)

We truncated the polynomial once the error between the estimate
and the fit to the polynomial was <1 per cent.

DES will observe galaxies with magnitude r < 24 and the redshift
distribution of sources that we obtain is modelled as

dnG

dz
= 22.36

( z

0.57

)1.04
exp

[
−

( z

0.57

)1.34
]

arcmin−2. (24)

The overall normalization agrees with DES science verification data
(Bonnett et al. 2016). Using the relation between nG and NG, the
evolution bias (8) is given by

bG
e = −∂ ln

[
(1 + z)Hχ−2dnG/dz

]
∂ ln(1 + z)

. (25)

The noise angular power spectrum for a galaxy survey is dominated
by shot noise (Alonso et al. 2015):

N G
ij = 1

NG
i NG

j

∫
dz

dnG

dz
W

(
z, zi ; 
zi, σ

z
i

)
W

(
z, zj ; 
zj , σ

z
j

)
,

(26)

where NG
i is the number of galaxies per steradian in the i-bin:

NG
i =

∫
dz

dnG

dz
W

(
z, zi ; 
zi, σ

z
i

)
. (27)

W is the window function centred at zi with bin size 
zi and pho-
tometric redshift scatter σ z

i = σ0(1 + zi), with σ 0 = 0.05 for DES.
For a photometric survey, the window function is given by a com-
bination of error functions (Ma, Hu & Huterer 2005),
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W
(
z, zi ; 
zi, σ

z
i

)
= 1

2

[
erf

(
zi + 
zi − z√

2 σ z
i

)

− erf

(
zi − 
zi − z√

2 σ z
i

)]
. (28)

Equation (26) is also valid when different redshift bins overlap,
which is the case we consider. Note that if we consider a top-hat
window function, we recover the result commonly found in the
literature N G

ii = 1/NG
i .

3.3 H I–G cross-noise

We also take into account the possible shot-noise cross power spec-
trum. This is due to an overlap in the halo mass range that the tracers
probe. Even if this is small, it might be important for the multitracer,
since this is the only component in the noise matrix (30) corre-
sponding to the cross-correlation between tracers. We are assuming
Poisson noise. Simulations have shown that non-overlapping mass
ranges can exhibit off-diagonal shot noise, and mass-dependent
weighting schemes can suppress the total shot-noise contamination
(Hamaus et al. 2010). However, the error in estimating the cross-
correlation between tracers is dominated by the individual noises
in each tracer, so that our Poisson assumption is not unreasonable.
Then the cross-shot-noise is given by (Fonseca et al. 2015)

N H I,G
ij =

∫
dz W̄

(
z, zi ; 
zi, σ

z
i

)
W

(
z, zj ; 
zj , σ

z
j

) T H I(z)

ρH I(z)NG
j

×
∫

dMh MH I(Mh) � (Mh, z)
dNh

dMh
(Mh, z) = N G,H I

ji ,

(29)

where ρH I is the H I density, MH I is the mass of H I in a halo of mass
Mh, and dNh/dMh is the halo mass function. If the halo masses
probed by the two surveys overlap, then �(Mh) = 1, otherwise it
is zero. For further details on the halo mass range for H I intensity
mapping, see Santos et al. (2015). The mass range for a photometric
survey is found by matching the number of galaxies given by the
halo mass function with the number given by the selection function.
Note that the two windows have similar shapes but different nor-
malizations, i.e. W̄ ∝ W . While W is given by equation (28), W̄ is
the same as in equation (16) and is normalized to 1.

Including all noise contributions, we can write the multitracer
noise angular power spectrum matrix as

NAB
ij =

⎛
⎜⎝

N H I
ij N H I,G

ij

N G,H I

ij N G
ij

⎞
⎟⎠ . (30)

Note that it is independent of the multipole �.

4 R ESULTS

We perform the Fisher forecast analysis as described in Section 2
for the set of parameters

ϑα = {ln As, ln �cdm, fNL, ln ns, ln �b, w, bA
i , εWL, εGR}, (31)

where �cdm is the density parameter of CDM, �b is the density
parameter of baryonic matter and w is the dark energy equation
of state parameter. We assume a fiducial concordance flat cosmol-
ogy with H0 = 67.74 km s−1 Mpc−1, �cdm = 0.26, �b = 0.05,
As = 2.142 × 10−9, ns = 0.967, w = −1 and fNL = 0. The bias

parameters bA
i in each bin have fiducial values shown in Fig. 1. The

last two parameters in (31) have fiducial values εWL = 1 = εGR, and
are defined so as to isolate the weak lensing and general relativistic
terms in equation (7):


A
� = 
A

� (density + RSD) + εWL
A
� (WL) + εGR
A

� (GR). (32)

These parameters take into account that we do not have full knowl-
edge of the evolution and magnification biases in (7).

To compute the multitracer angular power spectrum we modified
the code CAMB_sources (Challinor & Lewis 2011) so that it computes
both auto- and cross-tracer correlations with the correct selection
function. We also changed it to compute the correct evolution bias
of each tracer and to have different window functions as options.
The output is in the same format as CAMB_sources. The modified
code is available on GitHub.8

We computed forecasts for the single surveys and the combined
surveys, with the following configurations:

MeerKAT L Band: 24 bins of width 20 MHz between 1380 and
920 MHz; sky coverage from 1000 to 30 000 deg2; a smooth top-hat
window function.

MeerKAT UHF Band: 21 bins of width 20 MHz between 1000
and 600 MHz; sky coverage from 1000 to 30 000 deg2; a smooth
top-hat window function.

DES: 8 bins in the redshift range z = 0–2, each with the same
number of galaxies; sky coverage from 1000 to 5000 deg2; an error
window function.

Multitracer: L Band × DES: 4 bins that coincide with the first
4 bins taken for DES alone; sky overlap of 1000 to 5000 deg2; an
error window function.

Multitracer: UHF Band × DES: 5 bins between z = 0.40 and
1.45; sky overlap of 1000 to 5000 deg2; an error window function.

The minimum � used in our forecasts depends on the surveyed
area: �min = 1 + the integer part of π/

√
Sarea. For the maximum �,

we only consider information in the Fisher matrix if the scales are
within the linear regime, as defined by (Smith et al. 2003)

kNL(z) = kNL,0 (1 + z)2/(2+ns ) , with kNL,0 � 0.2h Mpc−1.

(33)

Using the Limber approximation, �max �χkNL. Each redshift bin has
its own corresponding �max,i. We therefore neglect the information
coming from the i-th bin in the sum of the Fisher matrix (12) when
� > �max, i. This will only be necessary for the low-redshift bins. For
higher redshifts, we impose the global maximum �max = 300, since
the additional information from higher � (within the linear regime),
provides very little improvement on the constraints.

The main results of this paper can be seen in Fig. 3 and Table 1,
where we fix the MeerKAT observational time at 4000 h. The error
on fNL has been marginalized over the other parameters in equa-
tion (31). None of the surveys on their own can match the accuracy
on fNL of Planck (although DES is close). But with the multitracer
technique, MeerKAT combined with DES over an overlap area of
∼4000–5000 deg2, improves significantly on the Planck σ (fNL) – for
both bands. (Note that the steps seen in the curves in Fig. 3 come
from the fact that as the surveyed area decreases, the minimum
accessible � increases.)

8 https://github.com/ZeFon/CAMB_sources_MT
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Figure 3. Marginal error in measuring fNL, against the surveyed area for different configurations, with fixed MeerKAT observing time of 4000 h. Left-hand
panel: MeerKAT with L band (dashed, blue) and UHF band (dot–dashed, red). Right-hand panel: DES on its own (solid, green); multitracer MeerKAT L
band × DES (dashed, blue); multitracer MeerKAT UHF band × DES (dot–dashed, red).

Table 1. Marginal errors on fNL for H I intensity map sur-
veys with MeerKAT L- and UHF bands, a DES photomet-
ric survey, multitracer analyses combining DES and each
MeerKAT band. (We assume 5000 deg2 survey area, and
4000 h MeerKAT time.)

σ (fNL)

MeerKAT L Band 56.5
MeerKAT UHF Band 43.8
DES 11.9
MT: MeerKAT L Band × DES 3.6
MT: MeerKAT UHF Band × DES 2.3

5 C O N C L U S I O N S

Table 1 summarizes the marginal errors on fNL for the individ-
ual and multitracer cases, using a survey area of 5000 deg2 and
MeerKAT’s integration time of 4000 h. DES with the MeerKAT L
band is two times better than Planck, while DES combined with
the UHF band improves on Planck by a factor of 3. In both cases,
the multitracer is forecast to beat Planck on fNL within the next few
years.

The right-hand panel of Fig. 3 also shows that the multitracer
technique is powerful enough to improve the forecast error on fNL

even with a smaller surveyed area, as can be seen by comparing

DES on its own to the multitracer of DES with MeerKAT. This can
be contrasted with single-tracer measurements, which require larger
volumes to reduce the error bars.

Fig. 4 shows how our results vary with integration time and
surveyed area. Contours are plotted for σ (fNL) when both the overlap
survey area and the MeerKAT integration time are varied. Even a
survey overlap area of �2000 deg2 and a MeerKAT observation
time �2000 h suffices to give an improvement over Planck-level
accuracy with the UHF band × DES (right-hand panel). The same
area and integration time with the L band × DES (left-hand panel)
gives an improvement on full DES (with 5000 deg2).

We have assumed that all multipoles down to � = 3 can be used
when considering a 5000 deg2 survey. If the largest scales are not
accessible, the result worsens as we can see in Fig. 5 (left-hand
panel). The effect is more prominent for the single tracer case, as
shown for DES. In the multitracer case, the accuracy is only mildly
degraded.

We chose to truncate the sum in the Fisher matrix at � = 300, even
when higher � would still correspond to linear scales. Although this
choice may seem arbitrary, we can see in Fig. 5 (right-hand panel)
that not much more information is added for � � 150.

We use models for the H I and galaxy bias to provide the fiducial
values in each redshift bin. The uncertainties in bias modelling can
be mitigated by marginalizing over the bias in each redshift bin.
The results of Alonso & Ferreira (2015); Fonseca et al. (2015)
indicate that uncertainties in the bias are less important than those
in the magnification bias and evolution bias. We also incorporate

Figure 4. Contour plot of σ (fNL) against survey area and observing time, using the multitracer with MeerKAT and DES. Left-hand panel: L band × DES.
Right-hand panel: UHF band × DES.
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Figure 5. σ (fNL) as a function of the minimum multipole (left-hand panel) and maximum multipole (right-hand panel) used in the Fisher forecast (with
5000 deg2 survey area and 4000 h MeerKAT time).

uncertainties in these by marginalizing over the parameters εWL and
εGR, respectively.

We do not include foregrounds and observational systematics in
creating the maps in the full covariance matrix – but the multitracer
technique includes cross-correlations and thereby lessens the impact
of individual systematics and of foreground residuals.

We conclude that the best contemporary radio and optical sur-
veys, i.e. MeerKAT and DES, when combined via the multitracer
technique, can improve on the Planck error bars for fNL, well before
the next-generation surveys deliver data. This is important not only
for improving on Planck – but also because it can serve as a ‘proof
of concept’ for the multitracer technique applied to primordial non-
Gaussianity. The MeerKAT–DES multitracer will effectively be a
pathfinder for radio–optical multitracing with next-generation sur-
veys, such as SKA–LSST or SKA–Euclid.

AC K N OW L E D G E M E N T S

The authors are supported by the South African Square Kilometre
Array Project and National Research Foundation. RM is also sup-
ported by the UK Science & Technology Facilities Council, Grant
No. ST/N000668/1.

R E F E R E N C E S

Abramo L. R., Leonard K. E., 2013, MNRAS, 432, 318
Alonso D., Ferreira P. G., 2015, Phys. Rev. D, 92, 063525
Alonso D., Bull P., Ferreira P. G., Maartens R., Santos M., 2015, ApJ, 814,

145
Bonnett C. et al., 2016, Phys. Rev. D, 94, 042005
Bonvin C., Durrer R., 2011, Phys. Rev. D, 84, 063505
Bruni M., Crittenden R., Koyama K., Maartens R., Pitrou C., Wands D.,

2012, Phys. Rev. D, 85, 041301
Bull P., 2016, ApJ, 817, 26
Camera S., Santos M. G., Maartens R., 2015a, MNRAS, 448, 1035
Camera S., Maartens R., Santos M. G., 2015b, MNRAS, 451, L80

Challinor A., Lewis A., 2011, Phys. Rev. D, 84, 043516
Clerkin L., Kirk D., Lahav O., Abdalla F. B., Gaztanaga E., 2015, MNRAS,

448, 1389
Dalal N., Dore O., Huterer D., Shirokov A., 2008, Phys. Rev. D, 77, 123514
Di Dio E., Montanari F., Lesgourgues J., Durrer R., 2013, J. Cosmol. As-

tropart. Phys., 1311, 044
Ferramacho L. D., Santos M. G., Jarvis M. J., Camera S., 2014, MNRAS,

442, 2511
Fonseca J., Camera S., Santos M. G., Maartens R., 2015, ApJ, 812, L22
Gabasch A. et al., 2006, A&A, 448, 101
Gong Y., Chen X., Silva M., Cooray A., Santos M. G., 2011, ApJ, 740, L20
Hall A., Bonvin C., Challinor A., 2013, Phys. Rev. D, 87, 064026
Hamaus N., Seljak U., Desjacques V., Smith R. E., Baldauf T., 2010, Phys.

Rev. D, 82, 043515
Hamaus N., Seljak U., Desjacques V., 2011, Phys. Rev. D, 84, 083509
Jeong D., Schmidt F., Hirata C. M., 2012, Phys. Rev. D, 85, 023504
Ma Z.-M., Hu W., Huterer D., 2005, ApJ, 636, 21
Matarrese S., Verde L., 2008, ApJ, 677, L77
McDonald P., Seljak U., 2009, J. Cosmol. Astropart. Phys., 0910, 007
Planck Collaboration XVII, 2015, A&A, 594, 17
Pourtsidou A., Bacon D., Crittenden R., Metcalf R. B., 2016a, MNRAS,

459, 863
Pourtsidou A., Bacon D., Crittenden R., 2016b, preprint (arXiv:1610.04189)
Raccanelli A., Montanari F., Bertacca D., Doré O., Durrer R., 2016, J.
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