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Analogue algorithm for parallel factorization of an
exponential number of large integers
I. Theoretical description
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Abstract We describe a novel analogue algorithm that allows the simultaneous fac-
torization of an exponential number of large integers with a polynomial number of
experimental runs. It is the interference-induced periodicity of “factoring” interfero-
grams measured at the output of an analogue computer that allows the selection of the
factors of each integer [26,35,34,28]. At the present stage the algorithm manifests an
exponential scaling which may be overcome by an extension of this method to corre-
lated qubits emerging from n-order quantum correlations measurements. We describe
the conditions for a generic physical system to compute such an analogue algorithm.
A particular example given by an “optical computer” based on optical interference
will be addressed in the second paper of this series [25].

Keywords quantum computation · interference · algorithms · analogue computers ·
factorization · exponential sums · Gauss sums

1 Fundamental principle of our work

Multiplying numbers is much easier than the inverse problem of finding the factors
of large integers. Indeed, the security of codes relies on the current inability of a
fast solution of this problem but is endangered by the well-known Shor’s factoring
algorithm [21,36,9,7,8,16,15].

Recently, important works about the use of different kinds of exponential sums
[20] for factorization purposes have been published [3,24,39,14,40,10,13,23,22,38,
18]. Our method differs from the past experimental realizations [12,11,17,2,37,5,
19] in three important simultaneous achievements [26,35,34]. First, the division of N
by the test factors ` is not pre-calculated, but it is performed by the experiment itself.
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Second, several test factors are tested simultaneously. Third, a scaling property inher-
ent in the recorded interferograms allows us to obtain the factors of an exponential
number of large integers.

The core of Shor’s factoring algorithm stands on the measurement of the period-
icity in the dominant maxima of the quantum probability distribution at the output
of a quantum computer [15]. In line with Shor’s idea, the key behind the algorithm
we present in this paper stands in the measurement of the periodicity in the max-
ima of Continuous Truncated Exponential Sums (CTES) by performing first-order
“factoring” interference processes with a physical system. Interestingly, the number
n of necessary experimental runs scales logarithmically with respect to the largest
integer to be factored. A noteworthy theoretical result at the core of the algorithm
is that the periodicity of the resulting n interference patterns as a function of a con-
tinuous physical parameter in a given range, when appropriately scaled, allows us to
achieve factorization of large numbers by simply looking at the interference maxima
at integer values.

The paper is organized in the following way. In section II will be given some
mathematical background about CTES in connection with the hyperbolic function.
In section III we will describe the factoring algorithm for a generic physical system
and the conditions this system must satisfy. We will provide a generalization of the
described algorithm in Section IV. Section V and VI will address final remarks and
perspectives of extensions to polynomial scaling methods of factorization, respec-
tively.

2 Hyperbolic function, CTES periodicity and factorization

We define a continuous truncated exponential sum (CTES) in the form [26,35,34,28]

I (M, j)(ξ )≡ |s(M, j)( f (ξ ))|2, (1)

where s(M, j) is the modulo-squared value of the generalized curlicue function [1,26,
28]

s(M, j)(ζ )≡
∣∣∣∣ 1
M

M

∑
m=1

exp
[
2πi(m−1) j

ζ
]∣∣∣∣2 (2)

of integer order j ≥ 1, with M ≥ 2 interfering terms, and

f (ξ )≡ 1
ξ

(3)

is the hyperbolic function with continuous variable 0≤ ξ ≤ 1.
In Fig. 1, we represent the modulo squared of the curlicue function s(M, j) =

s(M, j)(ζ ) in its dependence on the argument ζ for M = 3,4,5 and j = 1,2,3. We note
that |s(M, j)|2 has, for all the orders j, a dominant maximum at ζ = 0 with s(M, j)(0) = 1
and decaying oscillations on the sides. The higher the order j and the truncation pa-
rameter M of the curlicue function are, the larger is the number of decaying oscil-
lations on the sides and the sharper is the dominant peak. Moreover, we recognize
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from Eq. (2) the periodicity property s(M, j)(ζ +1) = s(M, j)(ζ ). Therefore, it suffices
to consider s(M, j) = s(M, j)(ζ ) in the domain−1/2≤ ζ ≤ 1/2. In addition, |s(M, j)(ζ )|2
is symmetric with respect to ζ = 0.
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Fig. 1 Modulo-squared value s( j)
M of the generalized curlicue function in its dependence on the

argument ζ for the number M = 3,4,5 of interfering waves (column) and the power j = 1,2,3 of
the phase shift (row). For increasing M the dominant peak becomes narrower, which will make
it easier in our algorithm to check if a peak corresponds to a factor or not. Unfortunately, at the
same time the number of side maxima increases as well. However, we note that for a fixed j and
increasing M the value of the maxima of second order decreases and s( j)

M becomes sharper. On
the other hand, for a fixed M but increasing j the value of the maxima of second order increases
and s( j)

M becomes wider [28].

The hyperbolic function f in Eq. (3) induces in the function I (M, j) a notable
periodicity. Indeed, the function I (M, j) is characterized by dominant maxima, which
repeat each time f assumes integer values.

Why does such a CTES periodicity matter in factorization?
In order to answer this question we first point out that, as shown in Refs. [26,

34,28], the factorization problem could be, in principle, solved if we can achieve the
complete knowledge of the hyperbolic function f .

Indeed, if we look at f as a function of the new variable ξN obtained by the scaling
relation

ξN ≡ Nξ , (4)
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we obtain

f (ξN) =
N
ξN

. (5)

For each possible value of N, the factors are given by the integer values ξN = ` such
that

f (`) =
N
`
= k, (6)

with k a positive integer.
Unfortunately, it is not an easy task to compute the hyperbolic function so that for

any given integer N the condition (6) can be verified in order to identify the factors.
Interestingly, we can exploit the constructive/destructive periodic interference

characterizing the CTES function in Eq. (1) as a tool in the distinction between fac-
tors and non factors of any given number N. In particular, the rescaled hyperbolic
function f (ξN) in Eq. (5) corresponds to the rescaled CTES

I (M, j)(ξN) =

∣∣∣∣ 1
M

M

∑
m=1

exp
[
2πi(m−1) j f (ξN)

]∣∣∣∣2 (7)

as a function of ξN ≡ Nξ . The condition (6) leads to total constructive interference in
the rescaled CTES function I (M, j)(ξN) in Eq. (7). Indeed, the factors of an arbitrary
number N are the integer values ` of ξN corresponding to dominant maxima in the
function I (M, j).

In Fig. 2 is simulated the rescaled CTES function in Eq. (7), with M = 3, j = 2, as
a function of the variable ξN ∈ [330.84,337.21] for the factorization of N = 111547.
We can see that the two factors ` = 331,337 (represented by stars) correspond to
complete constructive interference. On the other hand, for the other test factors (rep-
resented by triangles) there is partially destructive interference. Moreover, there are
absolute maxima (represented by points) which do not correspond to integer test fac-
tors.

In Fig. 3, instead, we have simulated the CTES function in the case of j = 3 for
the same value of N and M and the same range of values of ξN . As expected, it turns
out that as the order j of the exponential sum increases, the peaks associated with the
absolute maxima become sharper. On the other hand, the values of the second order
maxima in the interference pattern increase for larger orders j. In order to suppress
such maxima, it is necessary to increase the number of terms M in the sum. Also, in
such a case, the first order peaks become increasingly sharper.

If we consider the range of values of ξN in Fig. 2 and Fig. 3, the closer a non factor
is to a factor, the larger the corresponding value is of the rescaled CTES function. Of
course, if we move to integer values of ξN farther from the factors there is a larger
probability of partial or total destructive interference between the terms in the CTES
function. This makes the distinction between factors and non factors easier.

In general, the maximum possible step ∆ξ between consecutive values of ξ where
the CTES has to be computed can not be exactly determined since it depends on the
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Fig. 2 Rescaled CTES (j=2) function I (M, j)(ξN) in Eq. (7) with M = 3 for N = 111547, as a
function of the variable ξN ≡Nξ in the interval [330.84,337.21] [35]. We can see that the two fac-
tors ξN = 331,337, represented by stars, correspond to complete constructive interference, with
respect to the other integer trial factors ξN = 332,333,334,335,336, represented by triangles,
which present partially destructive interference.

value of the factors of the integer N ≤ NAAmax to be factored. However, it can be
easily shown [26] that such value is included in the interval

N−2 < ∆ξ < 1 (8)

if ξN ∈ [1,
√

N], or the interval
√

N−3 < ∆ξ < 1 (9)

if ξN ∈ [
√

N,N].
In conclusion, the CTES function in Eq. (1) allows us to extract the information

about factors encoded by its periodicity in the dominant maxima. Such a periodicity
is imprinted by its functional dependence on the hyperbolic function f (ξ ) ≡ 1/ξ .
We recognize all the values ξ corresponding to an integer value of f (ξ ) ≡ 1/ξ as
dominant maxima in the interference pattern. When for one of these values of ξ we
find, for a given large number N, ξN ≡ Nξ be an integer, such an integer is a factor
of N.

However, a digital implementation of the CTES function for factoring purposes
would rely on performing an exponential number of divisions, which are expensive
operations for digital computers. On the other hand, an analogue implementation
of such a “factoring” function would rely on the help of “nature” to perform such
divisions for us. In the next section, we will describe the prerequisites for a generic
physical system to compute a factoring algorithm based on the implementation of
CTES interferograms.
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Fig. 3 Rescaled CTES (j=3) function I (M, j)(ξN) in Eq. (7) with M = 3 for N = 111547, as
a function of the variable ξN ≡ Nξ in the interval [330.84,337.21] [35]. The two factors ξN =
331,337, represented by stars, correspond to complete constructive interference, with respect to
the other integer trial factors ξN = 332,333,334,335,336 in such an interval, represented by
triangles. As expected, the peaks associated with the absolute maxima in the case j = 3 are
sharper than the respective peaks in the case j = 2 represented in Fig. 2. On the other hand, the
value of the maxima of second order in the function I (M, j) increases at the increasing of the
order j.

3 Factoring analogue algorithm

In the previous section we have shown how the implementation of the CTES func-
tion I (M, j)(ξ ) in Eq. (1) would allow, in principle, the prime number decomposi-
tion of arbitrary integers. Now, we want to describe the analogue implementation of
the CTES algorithm with a generic physical system that exploits interference. This
will lead us to the introduction of a two-dimensional interferogram I(M, j)(oξ ;x) ≡
I (M, j)(ξ ) as a function of a continuous physical parameter oξ ≡ ξ x and a discrete
physical parameter x associated with two independent observables Oξ and Ox, respec-
tively. In the second paper of this series [25] we will give an example of an “optical
computer” based on a multi-path Mach Zehnder interferometer, where the physical
parameter oξ and x will correspond to the wavelengths associated with the spectrum
of the optical source and the optical-path unit, respectively.

We will first introduce a CTES “factoring” procedure which takes advantage of
a single interferogram I(M, j)(oξ ;x) associated with a given value of x. We will deter-
mine the range Nmin ≤ N ≤ Nmax of factorable numbers N by covering all the trial
factors in either the range [1,

√
N] or [

√
N,N] with a given range omin ≤ oξ ≤ omax of

values of the observable Oξ [26].
Next, we will show that the CTES “factoring” algorithm can exploit the degree of

freedom in the variable x of the analogue function I(M, j)(oξ ;x) in order to check all
the necessary trial factors of an exponential number of large integers N [26]. In par-
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Fig. 4 Rescaled CTES ( j = 2) function I (M, j)(ξN) in Eq. (7) with M = 3 for N = 111547,
as a function of the variable ξN ≡ Nξ in the interval [230.9,237.1]. We can clearly see that
all the integer trial factors ξN = 231,232,233,234,235,236,237 in such a range, represented
by triangles, correspond to a relatively small value of the CTES function with respect to the
dominant maxima so they can be easily disregarded as possible factors.

ticular, such a procedure is based on the measurement of the periodicity of a number
n of interferograms for different suitable values of x. We will interestingly find that
the value of n scales logarithmically with respect to the largest number Nmax to be
factored.

3.1 Analogue implementation of the CTES function

We have shown that the implementation of a CTES function in Eq. (1) would allow
the factorization, in principle, of arbitrary numbers. Unfortunately, the calculation
of such a sum would require an exponential number of divisions associated with the
computation of the function f (ξ ). On a digital computer, for which division is a rather
costly process, such a computation turns out to be very slow. Therefore, it would be
more efficient to reproduce the CTES function with an analogue technique in order to
solve the problem quickly. More explicitly, an analogue implementation of the CTES
algorithm is possible if there is a physical system able to compute divisions for us
and then read out the factors by taking advantage of the interference process leading
to CTES interferograms.

In particular such a physical system needs to fulfill three main requirements.
First, we assume that the system is characterized by two independent observables

Ox and Oξ . The observable Ox can be tuned to values

o(m, j)
x ≡ (m−1) jx, (10)
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with j a positive integer and m = 1, ...,M. The unit of measurement x can be, in prin-
ciple, arbitrarily varied. On the other hand, the observable Oξ assumes a continuous
range of values

oξ ≡ ξ x, (11)

where x is the unit of measurement chosen in Eq. (10).
Second, the physical system needs to be able to compute the hyperbolic function

in Eq. (3) in the form of ratios between the values of Ox and Oξ for a given interval
of the variable ξ .

Third, the system must be able to exploit interference in order to reproduce the
interferogram

I(M, j)(oξ ;x)≡
∣∣∣∣ 1
M

M

∑
m=1

exp

[
i
o(m, j)

x

oξ

]∣∣∣∣2 ≡I (M, j)(ξ )

(12)

as a function of oξ ≡ ξ x. Of course, for a parallel evaluation of the sum for several
values of ξ it is necessary that the system contains at the same time the information
about all the possible values of the physical observable Oξ . The corresponding CTES
function I (M, j)(ξ ) in Eq. (1) will finally allow us to extract the information about
factors.

In particular, for a generic value of the number N to be factored, it is possible to
look at the obtained interferogram in Eq. (12) as a function of the rescaled variable
in Eq. (4)

ξN ≡ Nξ =
N
x

oξ , (13)

where we use Eq. (11) in the second equality.
Indeed, we obtain the rescaled interferogram

I(M, j)(ξN ;x)≡I (M, j)(ξN) (14)

corresponding to the rescaled CTES function I (M, j)(ξN) defined in Eq. (7).
Each time there is a dominant maximum at a value of oξ for which ξN in Eq. (13)

is an integer, we find such an integer to be a factor of N.
It is important to point out that the information about the one-dimensional CTES

function I (M, j)(ξ ) in Eq. (1) is inferred by the two-dimensional CTES interferogram
I(M, j)(oξ ;x) in Eq. (12) as a function of the physical variable oξ and the physical
parameter x. Indeed, as becomes clear later, this feature will turn out to be one of the
key points to understand the working principle behind the CTES analogue algorithm.
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3.2 Factorization with a single interferogram

In this section, we describe the “factoring” procedure based on the use of a single
interferogram given by the CTES analogue function I(M, j)(oξ ;x) in Eq. (12) recorded
at a given value of x. We address the question of the interval Nmin,x ≤ N ≤ Nmax,x of
numbers N factorable by covering all the trial factors in either the range [3,

√
N] 1 or

[
√

N,N] with a given range omin ≤ oξ ≤ omax of values for the observable Oξ .
In general, for each integer N a generic trial factor ` can be checked only if

ξN = ` ∈ [ξ
(min)
N ,ξ

(max)
N ]≡ [

N
x

omin,
N
x

omax], (15)

where ξ
(min)
N and ξ

(max)
N are respectively the smallest and largest values that the vari-

able ξN in Eq. (13) can assume for the rescaled interferogram I(M, j)(ξN ;x).
We consider the case in which we want to check all the trial factors ` ∈ [3,

√
N]

leading from Eq. (15) to the condition

Method (1): ξN = ` ∈ [3,
√

N]⊆ [
N
x

omin,
N
x

omax]. (16)

By dividing the upper and lower bounds of each interval respectively by
√

N and 3
we find

1 ∈ [
N
3x

omin,

√
N

x
omax], (17)

which implies

N
3x

omin ≤ 1≤
√

N
x

omax (18)

for each integer N in the interval Nmin,x ≤ N ≤ Nmax,x to be determined. By squaring
the third term in this series of inequalities we obtain the condition

x≤ x(1) ≡ 3o2
max

omin
, (19)

giving an upper bound to the choice of the parameter x associated with the rescaled
interferogram I(M, j)(ξN ;x) independent of the number N to factorize. From Eq. (18)
we also easily obtain 2

N(1)
max,x ≡

⌊
3x

omin

⌋
and

N(1)
min,x ≡

⌈
x2

o2
max

⌉
, (20)

1 We are sure that there is at least one factor of N in such interval. The trial factor 2 is obviously
excluded since it is easy to recognize if N is an even integer.

2 We recall that for any real number y the ceiling dye is the smallest integer larger than x, while the floor
byc is the largest integer lower than y.
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defining the interval of factorable numbers with a single interferogram associated
with a given value x in Eq. (19) in the range omin ≤ oξ ≤ omax.

In the particular case of an interferogram recorded at the maximum possible value
x = x(1) in Eq. (19), the condition (18) reads

N
3x(1)

omin =

√
N

x(1)
omax = 1.

If omax/omin is an integer, we find the largest but also the only integer

N(1) ≡ 9o2
max

o2
min

(21)

factorable by using a single experimental interferogram I(M, j)(oξ ;x) in Eq. (12) recorded
for the value x = x1.

We consider now the second method in which we want to check all the trial factors
ξN = ` ∈ [

√
N,N] leading from Eq. (15) to the condition

Method (2): ξN = ` ∈ [
√

N,N]⊆ [
N
x

omin,
N
x

omax]. (22)

By dividing the lower bound and the upper bound of each interval by
√

N and N,
respectively, we find

1 ∈ [

√
N

x
omin,

omax

x
], (23)

which implies

1≥
√

N
x

omin ≤
omax

x
≥ 1 (24)

for each integer N in the interval Nmin,x ≤ N ≤ Nmax,x to be determined. From the last
inequality in Eq. (24) we obtain the condition

x≤ x(2) ≡ omax. (25)

From Eq. (24) we also easily obtain

N(2)
max,x ≡

⌊
x2

o2
min

⌋
and

N(2)
min ≡ 1, (26)

defining the interval of factorable numbers with a single interferogram associated
with the generic value x in Eq. (25) for the given range omin ≤ oξ ≤ omax.

We consider now the case of a single interferogram recorded at the maximum
value x = x(2) ≡ omax in Eq. (25) leading to the largest interval

N(2)
min ≡ 1≤ N ≤ N(2)

max ≡
⌊

o2
max

o2
min

⌋
(27)
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of factorable integers.
We finally demonstrate that with a single interferogram it is possible to factorize

a number

∆N ∼ Nmax ∼
o2

max

o2
min
∼ 2nmax

of integers exponential with respect to the number of binary digits nmax associeted
with Nmax. However, in general, the largest factorable integer Nmax is limited by the
value omax/omin associated with the physical system. For this reason, in the next sec-
tion we will describe a factorization procedure which takes advantage of several in-
terferograms I(M, j)(oξ ;x) in Eq. (12) at different values x in order to factor numbers
exploiting a limited fixed range of values oξ of a physical observable Oξ . In such a
method, the maximum factorable number Nmax will depend only on the largest value
achievable for the parameter x.

3.3 Factorization with a sequence of interferograms

So far we have restricted ourselves to a factorization method involving a single inter-
ferogram I(M, j)(oξ ;x) in Eq. (12) defined at a fixed value of the parameter x. However,
the remarkable scaling property ξN ≡ Noξ/x characterizing the function I(M, j)(oξ ;x)
allows us to vary the physical values of both oξ and x. This implies that we can, in
principle, change arbitrarily both the number N we are looking at and the relative trial
factors to check by simply varying these two physical “knobs”.

In particular, we seek to address the question of the largest number Nmax that
can be factored by measuring several interferograms I(M, j)(oξ ;x) corresponding to
different values of x in a fixed domain omin ≤ oξ ≤ omax of the variable oξ .

3.3.1 Factorization of a single integer N

We consider first the case of a single generic large integer N to be factored. The
scaling property ξN ≡Noξ/x, written as N ≡ ξNx/oξ , implies that, in principle, there
is no limit to the largest possible value of N if we can vary the unit x up to arbitrary
large values. Of course, in practice, the maximum achievable value of x is limited by
the particular physical system we are using. We now demonstrate that the number n
of values of x, for which the “factoring” interferogram I(M, j)(oξ ;x) in Eq. (12) must
be recorded, scales logarithmically with respect to the value of N.

It should first be pointed out that a single interferogram registered at a given value
x allows us to check only the trial factors

ξN = ` ∈ [ξ
(min)
N ,ξ

(max)
N ]≡ [

N
x

omin,
N
x

omax], (28)

which, in general, for the fixed domain omin ≤ oξ ≤ omax of values oξ , may corre-
spond only to a subset of the total range 3≤ `≤

√
N or

√
N ≤ `≤N of values ξN = `

we would need to cover in order to factor a generic integer N. For this reason, we
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consider a suitable sequence of values x = xi, with i = 0,1, ...,n−1. Each interfero-
gram registered at the value x = xi, with i = 0,1, ...,n−1, allows us from Eq. (28) to
cover all the trial factors

ξN = ` ∈ [ξN,i,ξN,i+1]≡ [
N
xi

omin,
N
xi

omax], (29)

with i = 0,1, ...,n−1, where

ξN,i+1 ≡
N
xi

omax ≡
N

xi+1
omin (30)

satisfies the condition for consecutive intervals.
This implies that the sequence xi, with i = 0, ...,n−1, associated with the n inter-

ferograms is defined by the condition

xi+1 ≡
xi

c
< xi, (31)

with

c≡
ξN,i+1

ξN,i
=

omax

omin
> 1 (32)

and, from Eq. (29),

x0

omin
≡ N

ξN,0
. (33)

From Eq. (32) we obtain

ξN,n = cn
ξN,0, (34)

leading to the number

n≡ logc
ξN,n

ξN,0
(35)

of interferograms necessary to cover all the trial factors

ξN = ` ∈ [ξN,0,ξN,n]≡ [
Nomin

x0
,

Nomin

x0
cn]. (36)

We deduce that the value x0 for the first interferogram as well as the total number
n of interferograms I(M, j)(oξ ;x) depend on the integer N to be factored and on the
associated interval [ξN,0,ξN,n] of trial factors to be checked. In particular, factorization
can be achieved for a generic integer N only if

Method (1): (37)

ξN = ` ∈ [3,
√

N]⊆ [ξN,0,ξN,n]≡ [
Nomin

x0
,

Nomin

x0
cn]
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or

Method (2): (38)

ξN = ` ∈ [
√

N,N]⊆ [ξN,0,ξN,n]≡ [
Nomin

x0
,

Nomin

x0
cn].

Let us consider first the method (1). The lowest trial factor 3 to be checked leads
to the condition

ξN,0 ≡
Nomin

x0
≤ 3, (39)

implying

x0

omin
≥

x(1)0N
omin

≡ N
3
. (40)

In an analogous way, the value
√

N of the largest trial factor to be checked in Eq. (37)
determines the condition

ξN,n ≡
Nomin

x0
cn ≥

√
N. (41)

This, together with Eq. (40), implies the minimum number

n(1)N,x0
≡
⌈

logc
x0

omin
√

N

⌉
≤
⌈

logc

√
N

3

⌉
≡ n(1)N,min (42)

of necessary interferograms I(M, j)(oξ ;xi), with i = 0,1, ...,n− 1, to factor a generic
integer N with the method (1).

We consider now the method (2) in Eq. (38). The lowest trial factor
√

N to be
checked leads to the condition

ξN,0 ≡
Nomin

x0
≤
√

N, (43)

which implies

x0

omin
≥

x(2)0N
omin

≡
√

N. (44)

In an analogous way, the value N of the largest trial factor to be checked in Eq. (38)
determines the condition

ξN,n ≡
Nomin

x0
cn ≥ N. (45)

This, together with Eq. (44), leads to the minimum number

n(2)x0 ≡
⌈

logc
x0

omin

⌉
≥
⌈

logc
√

N
⌉
≡ n(2)N,min (46)
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of necessary interferograms I(M, j)(oξ ;xi), with i = 0,1, ...,n− 1, to factor a generic
integer N with the method (2).

This demonstrates that, in principle, the number n of interferograms necessary for
factorizing an arbitrary large number N, using a given range [omin,omax] of the physi-
cal variable oξ , scales logarithmically with respect to

√
N and thereby polynomially

with respect to the number of binary digits associated with N. It is important to point
out that the narrower the range omin ≤ oξ ≤ omax is, the closer the value of c in Eq.
(32) is to 1 and thereby the larger is the value of n in Eq. (35). However, it would be
enough to cover a spectrum such that omax ≡ 2omin in order to obtain a scaling that
is logarithmic (base 2) and thereby polynomial with respect to the number of binary
digits associated with N.

3.3.2 Extension to the factorization of an exponential number of integers

So far we have considered the case of factoring a single number with a sequence of
n “factoring” interferograms. However, the scaling property ξN ≡ Noξ/x implies, as
pointed out before, that we can exploit the same interferograms in order to factor
not only a single integer but any integer in any given range Nmin ≤ N ≤ Nmax. We
determine how, in such a case, the number n of experimental runs depends on the
smallest and the largest number Nmin and Nmax that can be factored.

In particular, factorization can be achieved for all values of N, with Nmin ≤ N ≤
Nmax, only if for each single value is satisfied either the condition (37) for the method
(1) or the condition (38) for the method (2). Let us consider first the method (1) in
Eq. (37). The condition in Eq. (39) needs to be satisfied for each Nmin ≤ N ≤ Nmax,
which implies

Nmaxomin

x0
≤ 3

leading to

x0

omin
≥

x(1)0
omin

≡ Nmax

3
. (47)

In an analogous way, the condition in Eq. (41) needs to hold for each Nmin ≤ N ≤
Nmax, leading to

omin

x0
cn ≥ 1√

Nmin
.

This, together with Eq. (47), implies the minimum number

n(1)x0 ≡
⌈

logc
x0

omin
√

Nmin

⌉
≥
⌈

logc
Nmax

3
√

Nmin

⌉
≡ n(1)min (48)

of necessary interferograms I(M, j)(oξ ;xi), with i = 0,1, ...,n−1, to factor all the in-
tegers N in any given interval Nmin ≤ N ≤ Nmax with the method (1).
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We consider now the method (2) in Eq. (38). The condition (43) needs to be
satisfied for each Nmin ≤ N ≤ Nmax, which implies

omin

x0
≤ 1√

Nmax

and thereby

x0

omin
≥

x(2)0
omin

≡
√

Nmax. (49)

In an equivalent way, Eq. (50) reads

n(2)x0 ≡
⌈

logc
x0

omin

⌉
≥
⌈
logc
√

Nmax
⌉
≡ n(2)min (50)

of necessary interferograms I(M, j)(oξ ;xi), with i = 0,1, ...,n−1, to factor all the in-
tegers N in any given interval Nmin ≤ N ≤ Nmax with the method (2).

In conclusion, the described algorithm allows in both method (1) and (2) the
factorization of an exponential number

∆N ≡ Nmax−Nmin ∼ Nmax ∼ 2nmax

of integers, with nmax number of binary digits of Nmax, by using a polynomial num-
ber of interferograms in a given physical domain [omin,omax]. The largest factorable
number is upper limited by the condition for x0/omin in Eq. (47) and Eq. (49).

3.3.3 Example of factorization of N ≤ Nmax ≡ 64

We now describe the implementation of our factoring algorithm for Nmax ≡ 64. We
consider a generic observable Oξ with values oξ = ξ x in a given range omin ≤ oξ ≤
omax which satisfies the condition

c≡ omax/omin = 2. (51)

We consider first the method (1) in Eq. (37). It turns out that any integer in the
range Nmin ≡ 8≤N ≤Nmax ≡ 64 can be factored, according to Eq. (48), by exploiting

n = n(1)min ≡
⌈

log2
64

3
√

8

⌉
= 3

interferograms I(oξ ;x(1)i ) ≡ I(M=3, j=2)(oξ ;x(1)i ) defined by Eq. (12), with i = 1,2,3,

where the value x = x(1)0 associated with the first interferogram satisfies the condition
in Eq. (47)

x(1)0
omin

≡ Nmax

3
=

64
3
. (52)
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From Eq. (13) we can now determine all the values

x = x(1)i ≡ c−ix(1)0 =
64
3
·2−iomin, (53)

with i = 0,1,2, for each of the n = 3 interferograms. We assume that our physical
system is able to record such interferograms in the range omin ≤ oξ ≤ 2omin. In Fig.
5 we simulate these interferograms, which are able to cover all the trial factors in the
interval [3,

√
N] for any integer in the range Nmin ≡ 8≤ N ≤ Nmax ≡ 64. An example

is given for the factorization of N = 15,63 by rescaling the axis oξ as a function of
ξ15 and ξ63 according to Eq. (13). The trial factors are marked, respectively, with
continuous lines and dashed lines. We find the factors 3 and 5 of 15 corresponding to
maxima of the interferogram I(M, j)(oξ ;x(1)2 ). On the other hand the factor 3 of 63 is

associated with the maximum of the interferogram I(M, j)(oξ ;x(1)0 ), while the factors

7 and 9 emerge from the maxima in the interferogram I(M, j)(oξ ;x(1)1 ).
We consider now the method (2) in Eq. (38). According to Eq. (50), any integer in

the range Nmin ≡ 1≤ N ≤ Nmax ≡ 64 can be factored by exploiting the same number

n = n(2)min ≡
⌈

log2
√

64
⌉
= 3

of interferograms I(oξ ;x(2)i )≡ I(M=3, j=2)(oξ ;x(2)i ) defined by Eq. (12), with i= 1,2,3,

where the value x = x(2)0 associated with the first interferogram satisfies the condition
in Eq. (49)

x(2)0
omin

≡
√

Nmax = 8. (54)

From Eq. (13) we can now determine all the values

x = x(1)i ≡ c−ix(1)0 = 8 ·2−iomin, (55)

with i = 0,1,2, for each of the n = 3 interferograms. We assume that our physical
system covers the spectrum omin ≤ oξ ≤ 2omin of values of a given observable Oξ . In
Fig. 6 we simulate such interferograms, which are able to cover all the trial factors
in the interval [

√
N,N] for any integer in the range Nmin ≡ 1 ≤ N ≤ Nmax ≡ 64. We

again give an example for the factorization of N = 15,63 by rescaling the axis oξ

as a function of ξ15 and ξ63 according to Eq. (13). We find that the factor 3 of 15
corresponds to a maximum of the interferogram I(M, j)(oξ ;x(2)0 ), while the factor 5 is

associated with a maximum of the interferogram I(M, j)(oξ ;x(2)1 ). On the other hand

the factor 9 of 63 is associated with the maximum of the interferogram I(M, j)(oξ ;x(2)0 ).
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Fig. 5 Factorization of any integer in the range Nmin ≡ 8≤ N ≤ Nmax ≡ 64 by using the method
(1) aimed at checking all the trial factors in the range [3,

√
N]. We exploit n = 3 interferograms

I(oξ ;x(1)i ) ≡ I(M=3, j=2)(oξ ;x(1)i ) defined by Eq. (12), with i = 1,2,3, where the range of values

oξ satisfies the condition (51) and the values x(1)i are given by Eq. (53). We give an example for
the factorization of N = 15,63 by rescaling the axis oξ as a function of ξ15 and ξ63 according to
Eq. (13). The trial factors correspond, respectively, to continuous lines and dashed lines. We find
the factors 3 and 5 of 15 corresponding to maxima of the interferogram I(M, j)(oξ ;x(1)2 ). On the

other hand, the factor 3 of 63 is associated with the maxima of the interferogram I(M, j)(oξ ;x(1)0 ),

while the factors 7 and 9 emerge from the maxima in the interferogram I(M, j)(oξ ;x(1)1 ).

4 Generalization of the CTES algorithm

In this section, we will introduce a generalization of the CTES algorithm. In particu-
lar, we generalize the scaling property ξN ≡ Nξ defining the new auxiliary variable

ξN,s ≡ sξN ≡ sNξ , (56)

where s is equal to the product of one or more generic prime numbers pk (s≡Πk pk).
We can now rescale the CTES function in Eq. (1) as a function of the continuous
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Fig. 6 Factorization of any integer in the range Nmin ≡ 1≤ N ≤ Nmax ≡ 64 by using the method
(2) aimed at checking all the trial factors in the range [

√
N,N]. We exploit n = 3 interferograms

I(oξ ;x(2)i ) ≡ I(M=3, j=2)(oξ ;x(2)i ) defined by Eq. (12), with i = 1,2,3, where the range of values

oξ satisfies the condition (51) and the values x(2)i are given by Eq. (55). We find that the factor

3 of 15 corresponds to a maximum of the interferogram I(M, j)(oξ ;x(2)0 ), while the factor 5 is

associated with a maxima of the interferogram I(M, j)(oξ ;x(2)1 ). On the other hand the factor 9 of

63 is associated with the maximum of the interferogram I(M, j)(oξ ;x(2)0 ).

variable ξN,s:

I (M, j)(ξN,s) = |
1
M

M

∑
m=1

exp
[

2πi(m−1) j Ns
ξN,s

]
|2. (57)

Let us describe how such a rescaled function allows us to find the factors of a
generic number N. If one of the chosen prime numbers pk that defines the value of s
is a factor of N, we have solved the problem. If not, the factors of N are the integer
values of ξN,s, different from the prime numbers pk that correspond to dominant
maxima in the rescaled CTES function given by Eq. (57).
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In a general analogue implementation, the auxiliary variable ξN,s in Eq. (56) is
obtained by rescaling the values oξ ≡ ξ x of the observable Oξ according to

ξN,s ≡
sN
x

oξ . (58)

Thereby, the range [ξ (min)
N,s ,ξ

(max)
N,s ] of trial factors covered by the variable ξN,s can

be equivalent to the interval [ξ (min)
N ,ξ

(max)
N ] of trial factors covered by the variable

ξN by exploiting a range for the variable oξ of the physical observable Oξ of length
∆o = omax−omin reduced by a factor s. However, at the same time, each of the values
x = xi, with i = 0,1, ...,n−1, increases by the same factor s according to the iteration
formula (31) where x0 in Eq. (49) now reads

x0 ≡ sNmaxomin/ξ0, (59)

with ξ0 ≡ 1,
√

Nmin depending on the range (37) or (38), respectively, of trial factors
we are considering. This implies that the maximum factorable integer Nmax is upper
limited by x0/(somin), where xmax is the maximum value physically allowed for the
parameter x.

5 Remarks

We have described a novel analogue algorithm based on the experimental measure-
ment of CTES interferograms I(M, j)(oξ ;x) depending on the continuous argument oξ

and the discrete parameter x associated with two suitable physical observables Oξ

and Ox, respectively. The domain of factorable integers is determined by the range
omin ≤ oξ ≤ omax of the continuous variable oξ and by the maximum value xmax al-
lowed by the parameter x .

The largest integer Nmax factorable with a single CTES interferogram I(M, j)(oξ ;x)
associated with a given value of x and defined in a certain range omin ≤ oξ ≤ omax is
upper limited by the value (omax/omin)

2. For larger integers N the available physical
spectrum of observable values oξ may not be enough to cover all the trail factors ei-
ther in the range 1≤ ξN ≤

√
N or

√
N ≤ ξN ≤ N. For this reason, we have introduced

an algorithm based on the measurement of n different interferograms I(M, j)(oξ ;xi),
with i = 0,1, ...,n− 1, associated with the respective values x = xi. In this case the
largest number factorable is upper limited by the value xmax/omin. We have demon-
strated that the number n of necessary experimental runs scales logarithmically with
respect to the root of the number N we want to factor. Very interestingly our method
allows a parallel factorization of an exponential number of large integers with re-
spect to the number of binary digits nmax associated with Nmax. These results are very
important in view of the optical implementation of the algorithm described in Ref.
[25].

Moreover, we have introduced a generalized CTES procedure defined by the scal-
ing property ξN,s ≡ sNξ , where s ≡ Πk pk with pk generic prime numbers which are
non factors of N. We have shown that it is possible to reduce for a factor s the length
∆o = omax − omin of the range of values oξ in which the function I(M, j)(oξ ;x) is
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recorded. In such a case, the maximum factorable integer Nmax is upper limited by
x0/(somin).

In Ref. [25], we describe in detail how an optical computer enables a physical
computation of the CTES algorithm for several orders j. In such a case the values oξ

and x defining the analogue interferogram I(M, j)(oξ ;x) correspond, respectively, to
the wavelengths λ of a polychromatic source and to the unit of displacement defining
the optical paths in a generalized Michelson interferometer [35]. Indeed, an experi-
mental proof of the principle of the CTES algorithm has been performed in the case
of j = 2 and j = 3, leading to the factorization of seven-digit numbers [25,34].

6 Towards a polynomial scaling in the number of physical resources

We point out that any “classical” implementation of the algorithm described so far
would lack exponential speed-up. Indeed, the largest number factorable Nmax is upper
limited either by the value (omax/omin)

2 or x0/omin, depending on the use of a single
interferogram or a sequence of interferograms.

Moreover, the accuracy in the variable ξ in Eq. (11)

∆ξ =
oξ

x2 ∆x+
1
x

∆oξ ≤
omax

x2 ∆x+
1
x

∆oξ

depends on the given experimental indeterminations ∆oξ and ∆x associated with the
measurement of the observables Oξ and Ox, respectively. This shows from Eqs. (8)
and (9) that the unit x defining the CTES interferograms in Eq. (12) needs to grow
exponentially with respect to the number of bits associated with the largest number
Nmax in the interval of integers to be factored.

The ability to resolve the maxima associated with factors from non factors for
larger and larger integers N [26] can be, in general, improved by implementing ”fac-
toring” interferograms of either a larger order j or with a larger number M of inter-
fering terms as can be inferred by the relative curlicue functions in Fig. 1.

Ultimately, only a “quantum” system able to encode such physical observables in
a qubit representation in line with Shor’s algorithm would make it possible to avoid
the requirement of exponentially large values for the observable Ox. In particular, a
crucial role in our algorithm is played by the hyperbolic function f (ξ ) in Eq. (3)
emerging from the ratio of the values ox and oξ and characterizing the “factoring”
CTES interferograms in Eq. (12). A “qubit” parallel representation of functions anal-
ogous to the curlicue function may lead to novel factoring algorithms based on a
polynomial number of resources. Moreover, multi-photon quantum interference [32,
6,30,31,33,29,27,4] may serve as an efficient tool to distinguish factors from non
factors.
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