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Abstract We consider imprecise evaluation of alternatives in multiple crite-
ria ranking problems. The imprecise evaluations are represented by n-point
intervals which are defined by the largest interval of possible evaluations and
by its subintervals sequentially nested one in another. This sequence of subin-
tervals is associated with an increasing sequence of plausibility, such that the
plausibility of a subinterval is greater than the plausibility of the subinter-
val containing it. We explain the intuition that stands behind this proposal,
and we show the advantage of n-point intervals compared to other methods
dealing with imprecise evaluations. Although n-point intervals can be applied
in any Multiple Criteria Decision Aiding (MCDA) method, in this paper, we
focus on their application in Robust Ordinal Regression (ROR) which, un-
like other MCDA methods, takes into account all compatible instances of an
adopted preference model, which reproduce an indirect preference information
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provided by the Decision Maker (DM). An illustrative example shows how the
method can be applied in practice.

Keywords Imprecise evaluations · n-point intervals · Multiple criteria
decision aiding · Robust ordinal regression · Preference relations

1 Introduction

Multiple Criteria Decision Aiding (MCDA) (for an exhaustive collection of
state-of-the-art surveys see Figueira et al. 2005) concerns a set of alternatives
A = {a, b, c, . . .} evaluated on a set of m criteria G = {g1, . . . , gm}, and deal
with three main types of problems: ranking, sorting and choice taking into
account preferences of a Decision Maker (DM). To handle these problems,
three different approaches are commonly used:

– assigning to each alternative a value through a value function, i.e., a real
number reflecting its degree of desirability,

– comparing the evaluations of alternatives on the considered criteria using
a binary relation,

– using a set of “if..., then...” decision rules induced from the DM’s preference
information.

In the first case, the Multi-Attribute Value Theory (MAVT) (Keeney and
Raiffa 1993) is most frequently used; MAVT provides a methodology for build-
ing a value function. In the second case, the most popular are the methods
which build an outranking relation on the set of alternatives to compare them
pairwise (Roy 1996). In the third case, the decision rules are derived from the
DM’s preference information structured by the Dominance-based Rough Set
Approach (DRSA) (Greco et al. 2001; S lowiński et al. 2009).

In the context of MAVT, one often uses additive value functions, that is
functions obtained by adding up marginal value functions representing the
degree of preference on the corresponding evaluation criteria. In order to use
this approach, one needs to construct marginal value functions for all consid-
ered criteria. The construction requires some preference information elicited
by the DM. An analyst can obtain it in one of two ways: asking the DM to
provide this information directly, or indirectly. As direct definition of marginal
value functions requires too big cognitive effort from the DM, indirect elicita-
tion of preference information has been proposed and widely used in MCDA
(see, e.g., Jacquet-Lagreze and Siskos 2001). Indirect preference information
is expressed by the DM in terms of decision examples, e.g., holistic pairwise
comparisons of some reference alternatives. When looking for an additive value
function which is compatible with the decision examples provided by the DM,
i.e., which reproduces the DM’s decisions, one can find, in general, many com-
patible instances of such value function, and each of these instances can give
a different recommendation in the considered decision context. For this rea-
son, Robust Ordinal Regression (ROR) (Greco et al. 2008) was proposed (for
a survey on ROR see Corrente et al. 2013), that takes into consideration all
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compatible instances of the value function simultaneously. In the context of
ROR, possible and necessary preference relations are built for each pair of
alternatives a and b, such that the first one is true if a is at least as good as
b for at least one compatible instance of the value function, and the second is
true when a is at least as good as b for all compatible instances of the value
function.

In this paper, we extend ROR on a new important issue: imprecise evalua-
tions of alternatives. In many real world problems, alternatives are imprecisely
evaluated on the considered criteria; this is due to several reasons: inexact def-
inition of criteria, uncertainty or imprecision of data used for calculation of
performances of alternatives on particular criteria, or subjective assessment of
the performances. Different types of imprecise information on weights, value
functions and probabilities have been dealt with in the literature (Park and
Kim 1997; Weber 1987). Moreover, imprecise evaluation of alternatives on cri-
teria has been considered in different studies. Among them, let us remember
an adaptation of the Dominance-based Rough Set Approach to the case of
multiple criteria sorting problems with imprecise evaluations and assignments
(Dembczynski et al. 2009).

A review of literature on handling imprecise evaluations of alternatives in
the MCDA context leads us to conclusion that there are three main approaches
to this issue:

– considering imprecise evaluations by means of probability distributions, as
in the decision under uncertainty (Moskowitz et al. 1993),

– Stochastic Multicriteria Acceptability Analysis (SMAA) (Lahdelma et al.
1998) which considers probability distributions on the space of evaluations
as well as on the space of weights and computes for each alternative the
probability of getting a given ranking position or the frequency with which
it is preferred to another one,

– application of fuzzy numbers for modeling imprecise evaluations of alter-
natives (Zadeh 1975), so that a membership function assigns to each per-
formance a value ranging from 0 (in case of certain non-membership) to 1
(in case of certain membership), like in the adaptation of outranking meth-
ods to fuzzy evaluations of alternatives proposed by Czyżak and S lowiński
(1997) (for a survey of applications of fuzzy set theory to MCDA see,
e.g., Dubois 2011; handling of imprecision due to verbal evaluation of al-
ternatives has been considered by Dong and Herrera-Viedma (2015) and
surveyed by Herrera et al. (2009)).

In this paper, we approach the issue of imprecise evaluations of alterna-
tives in a different way than above. The basic idea is that the DM, or experts
advising the DM, can specify an imprecise evaluation not only in terms of the
interval of possible values, but also in terms of several gradually embedded
subintervals, such that each subinterval contained in a larger subinterval in-
cludes more plausible values than the larger one. Suppose, for example, that
three experts assessed an investment alternative with respect to a “profit” it
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may bring. The first one estimates the profit could vary between 2000 and
5000, the second estimates it between 2500 and 6000, and the third one es-
timates it between 4000 and 8000. If the DM would like to summarize these
estimates, (s)he could say that the range of the possible profit (confirmed val-
ues by at least one expert) is equal to the interval [2000, 8000], the subinterval
of more plausible values (confirmed by at least two experts) is [2500, 6000], and
the subinterval of the most plausible values (confirmed by all three experts) is
[4000, 5000]. This type of information can be modeled by means of the n-point
interval recently proposed by Ozturk et al. (2011). In this example, the infor-
mation related to the profit of the investment alternative can be represented
by the 6-point interval [2000, 2500, 4000, 5000, 6000, 8000]. Handling imprecise
evaluations on considered criteria by n-point intervals has several advantages
over other models. These benefits are listed below:

– n-point intervals permit the DM to express imprecision in a quite easy way
by using few meaningful reference values, that does not require a great
cognitive effort;

– using n-point intervals, the DM can give a finer information than just inter-
vals of possible performances of an alternative on the considered criteria;

– using n-point intervals, the DM is not obliged to give any exact probability
distribution on imprecise performances of alternatives which, in general, is
an information not available to her/him;

– the use of n-point intervals avoids the adoption of the linear interpolation
typically considered in triangular and trapezoidal fuzzy numbers, that is
an arbitrary assumption to some extent.

All above points have been detailed in section 3, where we compared the
n-point intervals with other ways of handling imprecise evaluations, such as
probabilities, stochastic multiobjective acceptability analysis and fuzzy num-
bers.

The paper is structured in the following way: section 2 describes basic con-
cepts of imprecise evaluations; in section 3 we compare the proposed method
with other ways of handling imprecision in multiple criteria evaluations; sec-
tion 4 provides definitions of dominance relations and their properties; section
5 shows how ROR can handle imprecise evaluations; section 6 provides some
properties of necessary and possible preference relations; section 7 presents
a didactic example, and conclusions are gathered in section 8; all proofs and
some further results are deferred to the Appendix.

2 Imprecise Evaluations - intuition behind the model and basic

definitions

We are considering a decision problem in which a finite set of alternatives,
denoted by A = {a, b, c, . . .}, can have imprecise evaluations with respect to a
set of m evaluation criteria G = {g1, . . . , gm}. In case of precise evaluations,
a criterion gj , j ∈ J = {1, . . . ,m}, is a function gj : A → Xj , where Xj
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is the set of all possible evaluations (cardinal or ordinal, depending on the
evaluation scale of criterion gj) that an alternative could assume on criterion
gj . In case of n-point intervals we assume that each criterion is a function
gj : A → Ij , where Ij = {(x1, . . . , xn) : xl+1 %j xl, l = 1, . . . , n− 1} ⊆ Xj

n,
and %j is a complete preorder (transitive and complete binary relation) on
Ij , representing preferences with respect to criterion gj . %j coincides with the
binary relation ≥ on R if criterion gj has a quantitative-numerical scale, how-
ever, it is defined differently if criterion gj has a qualitative-nominal scale. To
explain this difference, let us consider the evaluation of a student regarding a
certain subject denoted by gj . If the evaluation is expressed on a quantitative-
numerical scale (for example the evaluation of the student can vary between 2
and 10), then %j coincides with ≥ because to state that student a is not worse
than student b on criterion gj , it is sufficient to check if gj(a) ≥ gj(b). Now, let
us suppose that the evaluations with respect to this subject are expressed on
the following qualitative-nominal scale: “very bad”, “bad”, “medium”, “good”
and “very good”. Then, one needs to define an ordering %j of these nominal
terms that is obviously different from the inequality ≥ between two real num-
bers, that is “very good” %j “good” %j “medium” %j “bad” %j “very bad”.

In the description of the proposed methodology, for the sake of simplicity
and without loss of generality, we shall assume the following:

– each criterion has a quantitative scale; therefore Xj ⊆ R, and thus %j

coincides with ≥ (indeed, if the scale Xj of criterion gj is ordinal, one can
always encode it in numerical terms, such that for all xj , yj ∈ Xj

xj %j yj ⇔ xj ≥ yj ,

with xj and yj being number codes of xj and yj);

– the greater gij(a), a ∈ A, the better is alternative a on indicator gij , j =

1, . . . ,m, i = 1, . . . , n (in the opposite case, we can take as indicator −gij
and we come back to the previous case).

We represent the imprecise evaluation of alternative a on criterion g by means
of an n-point interval [g1(a), ..., gn(a)], where g1(a) ≤ ... ≤ gn(a). The n-points
g1(a), . . . , gn(a) define a sequence of c nested intervals, where c = n

2 if n is
even and c = n+1

2 if n is odd,

[
g1(a), gn(a)

]
⊇

[
g2(a), gn−1(a)

]
⊇ . . . ⊇

{[
gc(a), gc+1(a)

]
, if n is even,

[gc(a), gc(a)] , if n is odd

related to c increasing levels of plausibility L1, ..., Lc, such that the evalua-
tion of alternative a on criterion g belongs to the interval

[
g1(a), gn(a)

]
with

level of plausibility L1, while the evaluation of a on g belongs to the interval[
gc(a), gc+1(a)

]
(or [gc(a), gc(a)]) with level of plausibility Lc. In general, the

evaluation of a on g belongs to the interval [gr(a), gn−r+1(a)] with level of
plausibility Lr, r = 1, . . . , c.
For example, consider an imprecise evaluation of an investment a on criterion
“profit”, denoted g1, expressed by the following 6-point interval
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[2000, 2500, 4000, 5000, 6000, 8000] with the corresponding plausibility levels
L1 =“possible”, L2 =“fairly plausible”, L3 =“very plausible”. This means
that:

– values in the interval [2000, 8000] = [g11(a), g61(a)] are possible, that is their
plausibility is L1,

– values in the interval [2500, 6000] = [g21(a), g51(a)] are fairly plausible, that
is their plausibility is L2,

– values in the interval [4000, 5000] = [g31(a), g41(a)] are very plausible, that
is their plausibility is L3.

In the following, considering the same number n of indicators for each
considered criterion, the evaluations of a will be represented by the following
vector:

g(a) =
([
g11(a), . . . , gn1 (a)

]
, . . . ,

[
g1j (a), . . . , gnj (a)

]
, . . . ,

[
g1m(a), . . . , gnm(a)

])
.

Even if in this paper we consider ROR, n-point intervals can be used
with any MCDA method. Indeed, from this point of view, each one of the
indicators gij(a), gj ∈ G and i = 1, . . . , n, can be seen as a specific cri-
terion in a reformulation of the original MCDA problem, where the origi-
nal set of criteria G = {g1, . . . , gm} is replaced by the new set of criteria
G = {g11 , . . . , g

n
1 , . . . , g

1
m, . . . , gnm}. For example, if a weighted sum would be

the utility model, then for each alternative a ∈ A the following overall value
of a would be defined as:

U(a) =

m∑

j=1

n∑

i=1

wi
jg

i
j(a)

with wi
j representing the weight given to the indicator gij , such that wi

j ≥ 0,

j = 1, . . . ,m, i = 1, . . . , n, and
m∑

j=1

n∑

i=1

wi
j = 1.

3 Comparison with other ways of handling imprecision in multiple

criteria evaluations

In this section, we compare the proposed way of handling imprecise evaluations
with other methods known from the literature: decision under uncertainty,
SMAA, and fuzzy numbers.

3.1 Decision under uncertainty

Let us begin this section observing that the values g1(a),...,gn(a) of the n-point
interval [g1(a), ..., gn(a)] can be interpreted as qualitative counterparts of the
Hurwicz criterion (Hurwicz 1951). In case of decision under uncertainty the
Hurwicz criterion suggests to evaluate the payoff of an act by the value
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αM + (1 − α)m,

where m and M are the minimum and the maximum outcomes, and α ∈ [0, 1] is
a coefficient measuring the optimism of the DM. Indeed, one can imagine that
each indicator g1(a),...,gn(a) is related to an increasing degree of optimism,
such that g1(a) is the most pessimistic evaluation, gn(a) is the most optimistic
evaluation, and, in general, gr(a), r = 1, . . . , n, are evaluations such that the
greater is r the more optimistic they are.

Let us observe that our approach can easily be applied also in case of
probabilistic evaluations on criteria gj ∈ G (see, e.g., Moskowitz et al. 1993)
in the sense that imprecision is related to some probability distribution on
the set of values that alternatives from A can assume on criteria gj ∈ G.
In this case, for each a ∈ A and gj ∈ G, one can associate to each interval
[grj (a), gn−r

j (a)] when r 6= c, and to the value grj (a), when r = c, the probability
levels prj , r = 1, . . . , c, where

0 ≤ p1j ≤ p2j ≤ . . . ≤ pcj ≤ 1,

such that there is a probability prj that gj(a) is not smaller than grj (a), and

there is an analogous probability prj that gj(a) is not greater than gn−r
j (a). For

example, if one knows the probability distribution P on values of the profit
for the investment considered in the previous section, and supposing that the
DM is focusing (her)his attention on probability levels 10%, 25% and 40%,
the 6-point interval [2000, 2500, 4000, 5000, 6000, 8000] can be interpreted as
follows:

– there is a probability of 10% that the profit is smaller than g1(a) = 2000,
and there is the same probability of 10% that the profit is greater g6(a) =
8000,

– there is a probability of 25% that the profit is smaller than g2(a) = 2500,
and there is the same probability of 25% that the profit is greater than
g5(a) = 6000,

– there is a probability of 40% that the profit is smaller than g3(a) = 4000,
and there is the same probability of 40% that the profit is greater than
g4(a) = 5000.

In our opinion, evaluations expressed as n-point intervals have some advan-
tages over probabilistic evaluations for the following reasons:

– even if the probability distributions of the values taken by alternatives
a ∈ A on criteria gj ∈ G are perfectly known, n-point intervals permit
to focus on the probability levels most important for the DM, so that the
MCDA procedure becomes more controllable;

– if the probability distributions of the values taken by alternatives a ∈ A

on criteria gj ∈ G are not perfectly known, n-point intervals permit to use
this imperfect information taking as indicators grj the values corresponding
to the probability levels for which there is some information;
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– n-point intervals can also represent qualitative probability distributions by
considering plausibility levels L1, ..., Lc with a probabilistic meaning such
as
– L1 =“at least weakly probable”,
– L2 =“at least fairly probable”,
– L3 =“very probable”.

Due to the verbal ordinal scale of plausibility L = {L1, . . . , Lc}, which is
intuitively understandable for the DM, expressing the imprecision in terms
of n-point intervals is relatively easy for the DM. Consequently, the use of n-
point intervals is the best way of getting a reliable information about imprecise
evaluations of alternatives.

3.2 Stochastic Multiobjective Acceptability Analysis (SMAA) and fuzzy
numbers

Handling of imprecision by n-point interval evaluations is related to SMAA
(Lahdelma et al. 1998) and to the approach based on the use of fuzzy numbers.

Let us consider an interval characterized by two extreme values only, that
is, the most pessimistic and the most optimistic evaluation of an alternative on
the considered criterion. This means that the evaluation of alternative a on cri-
terion g is represented by the 2-point interval [g1(a), g2(a)], such that a could
get whichever evaluation between g1(a) (the most pessimistic evaluation) and
g2(a) (the most optimistic evaluation). This is typical for handling imprecise
evaluation of alternatives on particular criteria in SMAA. However, differently
from SMAA, we do not assume any probability distribution of the evaluations
in the interval [g1(a), g2(a)]. In fact, within SMAA, a uniform probability dis-
tribution is considered, even if, in general, any probability distribution could
be assumed. It is not easy, however, to select the proper probability distribu-
tion. Is it enough to justify the use of a uniform distribution by saying that
it is the simplest one? It is rather more reasonable and methodologically cor-
rect to avoid consideration of any probability distribution (which is almost
always the case in multiple criteria decision making), unless one has a strong
evidence in favour of one specific probability distribution. In this sense, we
retain the most stable and robust part of the information given by the inter-
val [g1(a), g2(a)], that is the two extreme values, and we do not assume any
probability distribution.

Now, consider the case where each interval is characterized not only by the
two extreme values but also by another point between them; in this way g(a) =
[g1(a), g2(a), g3(a)], and this 3-point interval indicates that, with respect to
criterion g, alternative a can assume whatever evaluation between g1(a) and
g3(a), but, it is very plausible that the evaluation assumed by a on criterion g

is around g2(a). This interpretation is coherent with an evaluation expressed
by a linguistic variable represented by means of a triangular fuzzy number.
If a linguistic variable v is represented by a triangular fuzzy number ṽ =
(v1, v2, v3), then the possible values of v are between v1 and v3, such that
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other values have a null membership and the maximum membership equal
to 1 is assumed in v2. Moreover, the membership between v1 and v2, as well
as that one between v2 and v3, is supposed to follow a linear interpolation.
Formally, we have that the membership function µv : R → [0, 1] assigns to
each x ∈ R a value as shown in Figure 1.

µv(x) =



































0, x < v1

x−v1
v2−v1

, v1 ≤ x ≤ v2

v3−x

v3−v2
, v2 ≤ x ≤ v3

0, x > v3

Fig. 1: Membership function of a triangular fuzzy number

Observe, however, that the information represented by the 3-point interval, is
less arbitrary than the one represented by a triangular fuzzy number. Indeed,
in the first case, the information specifies only the minimum and maximum
values, v1 and v3, respectively, and the most plausible value, v2. We avoid
to assign a value of membership to all the values between v1 and v3, which
would be arbitrary. The question is: why a linear interpolation and not some
other interpolating function? Even if one would assume another interpolating
function, how to verify that the values taken by the membership function are
correct? This doubt makes our proposal more trustworthy again.

Finally, let us consider an imprecise evaluation represented by a 4-point
interval [g1(a), g2(a), g3(a), g4(a)], which means that the possible evaluation
of a is included between g1(a) and g4(a), but the most plausible evaluation is
between g2(a) and g3(a). This interpretation is coherent with an evaluation
expressed by a linguistic variable represented by a trapezoidal fuzzy number.
If a linguistic variable v is represented by a trapezoidal fuzzy number ṽ =
(v1, v2, v3, v4), then the possible values of v are between v1 and v4, such that
other values have a null membership and the maximum membership equal to
1 is assumed between v2 and v3. Moreover, the membership between v1 and
v2, as well as that one between v3 and v4, is following a linear interpolation.
Formally we have that the membership function µv : R → [0, 1] assigns to
each x ∈ R a value as shown in Figure 2.

The analogy between n-point intervals and fuzzy numbers could be contin-
ued for n greater than 4, however, the argument about the sensitivity of the
end result on the choice of the interpolating function would be still in favor of
our proposal.
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µv(x) =



















































0, x < v1

x−v1
v2−v1

, v1 ≤ x ≤ v2

1, v2 ≤ x ≤ v3

v4−x

v4−v3
, v3 ≤ x ≤ v4

0, x > v4

Fig. 2: Membership function of a trapezoidal fuzzy number

4 Definitions of dominance relations and their properties

Various types of dominance relations stem from the formulation of multiple
criteria decision problem without considering preferences. The following two
concepts of dominance arise naturally in the context of imprecise evaluations
of alternatives:

Definition 4.1 Given alternatives a, b ∈ A, and i, k ∈ {1, . . . , n}, we say that
“a (i, k)-dominates b”, denoted by a∆(i,k)b, if gij(a) ≥ gkj (b), ∀j = 1, . . . ,m.

Definition 4.2 Given alternatives a, b ∈ A, we say that “a normally domi-
nates b”, denoted by a∆b, if gij(a) ≥ gij(b), ∀j = 1, . . . ,m, and ∀i = 1, . . . , n.
Equivalently, we can say that “a normally dominates b” if a (i, i)-dominates

b, ∀i = 1, . . . , n.

Let us explain the meaning of the two above concepts of dominance taking
into consideration alternatives a, b, d that get 3-point evaluations on criteria
g1, g2 and g3, where L1=“possible” and L2=“very plausible”, as follows:

– [g11(a), g21(a), g31(a)] = [25, 35, 40], [g12(a), g22(a), g32(a)] = [40, 55, 65],

[g13(a), g23(a), g33(a)] = [25, 50, 55],
– [g11(b), g21(b), g31(b)] = [10, 20, 45], [g12(b), g22(b), g32(b)] = [35, 50, 60],

[g13(b), g23(b), g33(b)] = [20, 45, 60],
– [g11(d), g21(d), g31(d)] = [10, 15, 20], [g12(d), g22(d), g32(d)] = [30, 50, 55],

[g13(d), g23(d), g33(d)] = [20, 45, 55].

Observe that, according to indicator g1j , j = 1, 2, 3, alternative a is at least as

good as alternative b: indeed g11(a) ≥ g11(b), g12(a) ≥ g12(b) and g13(a) ≥ g13(b).
Thus, considering the most pessimistic evaluation, a is not worse than b on all
considered criteria. Therefore, one can say that “a (1, 1)-dominates b”, denoted
by a∆(1,1)b. Analogously, according to indicator g2j , j = 1, 2, 3, a is at least as
good as b. This means that considering the most plausible evaluation, a is not
worse than b on all considered criteria. Instead, it is not true that according
to indicators g3j , j = 1, 2, 3, a is at least as good as b, because g33(a) < g33(b).
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This means that considering the most optimistic evaluation, a is not at least as
good as b on all considered criteria. Observe, instead, that a∆(1,1)d, a∆(2,2)d

and a∆(3,3)d, so one can conclude that a∆d, which means that a is not worse
than d on all criteria considering pessimistic evaluations, the most plausible
evaluations and the most optimistic evaluations on all three criteria.

Observe also that for some criterion g, one could take into account the
most optimistic evaluation for a and the most plausible evaluation for b, i.e.,
one could consider indicator g3 for a and indicator g2 for b. This is consistent
with preference representation by interval orders (Fishburn 1985). An interval
order is a binary relation R on a set X which is reflexive and Ferrers transitive
(i.e., for all x, y, w, z ∈ X,xRy and wRz imply xRz or wRy). If X is finite,
then a binary relation R on X is an interval order if and only if there exists
u+ : X → R and u− : X → R with u+(z) ≥ u−(z) for all z ∈ X, such that
for all x, y ∈ X

xRy ⇔ u+(x) ≥ u−(y).

Suppose that the interval order R is a weak preference relation on X, such that
for each x, y ∈ X,xRy means that x is at least as good as y. In this case, u+(z)
and u−(z) can be interpreted as the optimistic and the pessimistic evaluation
of z ∈ X and, consequently, one can say that x is weakly preferred to y,
i.e., xRy, if the optimistic evaluation of x, i.e., u+(x), is not worse than the
pessimistic evaluation of y, i.e., u−(y). Observe moreover that Rd, being the
dual of R, i.e., the complement of the inverse of R, such that for all x, y ∈ X,
xRdy iff not(yRx), can be interpreted as a strong preference relation on X.
Thus, we have that for all x, y ∈ X,

xRdy ⇔ u−(x) > u+(y),

which can be interpreted as “x is strongly preferred to y if and only if the
pessimistic evaluation of x is better than the optimistic evaluation of y”.

The idea of considering the pessimistic and the optimistic evaluations of
alternatives to define preference relations with respect to criterion gj ∈ G can
be easily extended to the case of n-point intervals considering indicator gij for

alternative x and indicator gkj for alternative y, which permit to say that x

is (i, k)-preferred to y on criterion gj ∈ G (denoted by x %
(i,k)
j y), if gij(x) ≥

gkj (y). Considering the above example, we have a %
3,2
3 b because g33(a) ≥ g23(b),

which means that with respect to criterion g3 the most optimistic evaluation
of a is not worse than the most plausible evaluation of b.

Using preference relations %
(i,k)
j one can say that for all a, b ∈ A, a∆(i,k)b

if and only if a %
(i,k)
j b for all gj ∈ G. For example, a∆(3,2)b, because

g31(a) ≥ g21(b), g32(a) ≥ g22(b) and g33(a) ≥ g23(b), which means that on all
three criteria the optimistic evaluation of a is at least as good as the most
plausible evaluation of b.
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It is also worth noting that among all the considered pairs (i, k), an im-
portant place has to be given to the pairs (i, n − i + 1) with i ≤ c1 because

a %
(i,n−i+1)
j b means that all the evaluations of a ∈ A on gj ∈ G with plau-

sibility Li, i.e., [gij(a), gn−i+1
j (a)], are not worse than all evaluations of b ∈ A

on gj with the same plausibility Li, [gij(b), g
n−i+1
j (b)]. Looking at the above

example, a %
(1,3)
1 d, are not worse than all values with plausibility L1 for d,

i.e. [g11(d), g31(d)] = [10, 20].
The following proposition provides some basic properties of the dominance

relations introduced above for n-point interval evaluations. These are the prop-
erties of reflexivity and transitivity that, if satisfied conjointly, characterize the
structure of a partial preorder.

Proposition 4.1

1. If i ≥ k, i, k ∈ {1, . . . , n}, then ∆(i,k) is reflexive,

2. If i ≤ k, i, k ∈ {1, . . . , n}, then ∆(i,k) is transitive,

3. For each i ∈ {1, . . . , n} , ∆(i,i) is a partial preorder,

4. If r ≥ i and s ≤ k, i, k, r, s ∈ {1, . . . , n}, then ∆(i,k) ⊆ ∆(r,s),

5. Given alternatives a, b, c ∈ A, if a∆(i,k)b, b∆(i1,k1)c, and k ≥ i1, i, k, i1, k1 ∈
{1, . . . , n}, then a∆(r,s)c with r, s ∈ {1, . . . , n}, such that r ≥ i and s ≤ k1,

6. ∆ is a partial preorder,

7. Given alternatives a, b, c ∈ A, if a∆(i,k)b, b∆c, i, k ∈ {1, . . . , n}, then

a∆(s,t)c with s, t ∈ {1, . . . , n}, such that s ≥ i and t ≤ k,

8. Given alternatives a, b, c ∈ A, if a∆b, b∆(i,k)c, i, k ∈ {1, . . . , n}, then

a∆(s,t)c with s, t ∈ {1, . . . , n}, such that s ≥ i and t ≤ k.

Note 4.1 In the following, we shall call strong dominance, and we shall denote
it by ∆S , the dominance relation ∆(1,n). Similarly, we shall call weak domi-
nance, and we shall denote it by ∆W , the dominance relation ∆(n,1). When
n = 2, then the dominance relation ∆(i,k) boils down to strong dominance,
normal dominance and weak dominance only. In this case, we can compare two
alternatives considering only their best values and their worst values, or inter-
vals of values created by them. Using Proposition 4.1, we can state that weak
dominance and normal dominance are reflexive relations, normal dominance
and strong dominance are transitive relations, and so on.

Considering the strong and the weak dominance relations simultaneously,
we can state the following proposition:

Proposition 4.2

1. ∆(1,n) ⊆ ∆ ⊆ ∆(n,1),

2. For i, k = 1, . . . , n, ∆(1,n) ⊆ ∆(i,k) ⊆ ∆(n,1).

1 Let us remember that by c we denote the number of nested intervals in the n-point
intervals, which correspond to c levels of plausibility
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Note 4.2 Proposition 4.2 shows how important are the weak and the strong
dominance relations, as they are the only two relations that can be compared
directly with ∆. Indeed, in general, for any (i, k) ∈ {1, . . . , n} × {1, . . . , n},
with (i, k) 6= (1, n) and (i, k) 6= (n, 1), we can have ∆(i,k) 6⊆ ∆ and ∆ 6⊆ ∆(i,k).

5 Robust Ordinal Regression for Imprecise Evaluations -

description of the methodology

The dominance relation, which is the only objective information that comes
with the statement of a multiple criteria decision problem, is very poor. For this
reason, in order to handle DM’s preferences in one of the three typical multiple
criteria decision problems, we are using the MAVT (Keeney and Raiffa 1993).
MAVT considers value functions

U(g1(a), . . . , gm(a)) : R
m

→ R

such that:

“a is at least as good as b” ⇔ U(g1(a), . . . , gm(a)) ≥ U(g1(b), . . . , gm(b)),

taking into account the evaluations of alternatives on the m considered criteria.
In case of imprecise evaluations, we are considering for each criterion gj , j ∈ J,

n indicators gij : A → Xj , i = 1, . . . , n, assigning to each alternative a ∈ A

the i-th evaluation from interval gj(a). Using this notation, we can distinguish
different types of value functions:

– i-th sub-marginal value function referring to the i-th indicator of criterion
gj , u

i
j(g

i
j(a)) : Xj → R, for all j ∈ J , and i = 1, . . . , n,

– marginal value function referring to criterion gj , such that
Uj

([
g1j (a), . . . , gnj (a)

])
: Ij → R, and

Uj

([
g1j (a), . . . , gnj (a)

])
= u1

j

(
g1j (a)

)
+ . . . + un

j

(
gnj (a)

)
.

The marginal value of alternative a with respect to criterion gj depends on
all the n indicators gij because each of them takes part in the evaluation of a
on criterion gj with a different level of plausibility, which is represented by
the corresponding sub-marginal value function ui

j . In the paper, we admit
that the indicators of each criterion are preferentially independent, which
permits an additive aggregation of sub-marginal value functions (Keeney
and Raiffa 1993). An analogous assumption is adopted with respect to
aggregation of marginal value functions.

– total additive value function

U
([
g11(a) . . . , gn1 (a)

]
, . . . ,

[
g1m(a), . . . , gnm(a)

])
: I1 × · · · × Im → R

such that

U
([
g11(a) . . . , gn1 (a)

]
, . . . ,

[
g1m(a), . . . , gnm(a)

])
=
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=

m∑

j=1

Uj

([
g1j (a), . . . , gnj (a)

])
=

m∑

j=1

[
n∑

i=1

ui
j

(
gij(a)

)
]
. (1)

In the following, for the sake of simplicity, for each j ∈ J we write Uj(a)
instead of Uj

([
g1j (a), . . . , gnj (a)

])
, and U(a) instead of

U
([
g11(a), . . . , gn1 (a)

]
, . . . ,

[
g1m(a), . . . , gnm(a)

])
.

In order to take into account the imprecise nature of evaluations, we con-
sider for each alternative a ∈ A, n fictitious alternatives a(i), having precise
evaluations on all criteria, equal to the i-th point of interval gj(a), for each
j ∈ J , i.e., g1j

(
a(i)

)
= . . . = gnj

(
a(i)

)
= gij(a), for each j ∈ J .

For example, in case of three point intervals, a(1), a(2) and a(3) represent the
“most pessimistic”, the “most plausible” and the “most optimistic” realiza-
tions of alternative a, because these fictitious alternatives take the worst, the
average and the best evaluations on all considered criteria, respectively.
Note that given a ∈ A, a value function U assigns to the corresponding alter-
natives a(i) the value:

U
(
a(i)

)
= u1

1

(
gi1(a)

)
+ . . .+un

1

(
gi1(a)

)
+ . . .+u1

m

(
gim(a)

)
+ . . .+un

m

(
gim(a)

)
.

(2)
Proposition 5.1 describes the relationship between the value functions of the
fictitious alternatives a(i), and the relationship between the total additive value
function U(a) and the value obtained in correspondence to the most pessimistic
and the most optimistic realizations of alternative a.

Proposition 5.1

1. For each a ∈ A, if i ≥ k, i, k ∈ {1, . . . , n}, then U(a(i)) ≥ U(a(k)),
2. For each a ∈ A, U(a(1)) ≤ U(a) ≤ U(a(n)).

Let us now discuss elicitation of preference information and application of
ROR to model (1).
In order to assign to each alternative a real number representing its degree of
desirability, we need to know the sub-marginal value functions ui

j(·), for all
j ∈ J and for all i ∈ {1, . . . , n}. They can be obtained in two different ways:
asking directly the DM which is the analytical expression of functions ui

j(·), or
inducing them from indirect preference information elicited by the DM on a set
AR ⊆ A of alternatives called reference alternatives. The reference alternatives
will be marked with a dash, like a. We propose to use the second method, and
thus the DM is asked to provide some preference information regarding pairs
of alternatives or intensity of preference for quadruples of alternatives, such
that, for all a, b, c, d ∈ AR,

– a % b iff a is at least as good as b,
– a %j b iff a is at least as good as b on criterion gj ,
– (a, b) %∗ (c, d) iff the difference of importance between a and b is at least

the same as the difference of importance between c and d,
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– (a, b) %∗

j (c, d) iff, on criterion gj , a is preferred to b at least as much as c

is preferred to d.

Let us notice that ∼, ∼j , ∼
∗ and ∼∗

j are the symmetric parts of %, %j , %
∗

and %∗

j while ≻, ≻j , ≻
∗ and ≻∗

j are the asymmetric parts of %, %j , %
∗ and

%∗

j . That is, for example, a ∼ b iff a % b and b % a, while a ≻ b iff a % b and

not(b % a).
All this preference information can be translated into inequality constraints

on the values as follows:

– U(a) ≥ [>]U(b) iff a % [≻] b,
– Uj(a) ≥ [>]Uj(b) iff a %j [≻j ] b,
– U(a) − U(b) ≥ [>]U(c) − U(d) iff (a, b) %∗ [≻∗] (c, d),
– Uj(a) − Uj(b) ≥ [>]Uj(c) − Uj(d) iff (a, b) %∗

j

[
≻∗

j

]
(c, d).

Strict inequality constraints are translated into weak inequality constraints
by using an auxiliary variable ε such that, for example, U(a) > U(b) becomes
U(a) ≥ U(b)+ε. In the following, EDM denotes the set of inequality constraints
translating the preference information provided by the DM.
We shall call compatible a value function satisfying the set of constraints in
EDM , as well as some monotonicity and normalization constraints:

ui
j(x

k
j ) − ui

j(x
k−1
j ) ≥ 0, for each j ∈ J, k = 2, ...,mj(A), i = 1, . . . , n

ui
j(x

1
j ) = 0, for each j ∈ J, i = 1, . . . , n

∑

j∈J

i=1,...,n

ui
j

(
x
mj(A)
j

)
= 1.





EMN

where, for each j ∈ J , mj(A) =
∣∣{gij(a), i = 1, . . . , n, a ∈ A

}∣∣, x
mj(A)
j =

max
a∈A

gnj (a), x1
j = min

a∈A
g1j (a), and the values xk

j , k = 1, ...,mj(A), are ordered in

an increasing way, i.e., x1
j < x2

j < ... < x
mj(A)−1
j < x

mj(A)
j .

Denoting by EAR

=
{
EDM ∪ EMN

}
the whole set of constraints, to check

the existence of at least one compatible value function, one has to solve the
following optimization problem

ε∗ = max ε,

subject to EAR

where the variables are ui
j(x

k
j ), j ∈ J , i ∈ {1, . . . , n}, k = 1, . . . ,mj(A), and ε.

If EAR

is feasible and ε∗ > 0, then there exists at least one compatible value
function U(·); conversely, there does not exist any compatible value function
U(·).
Supposing that more than one compatible value function exist, we indicate by
U the set of all compatible value functions; in general, each of these functions
will produce a different ranking on the set A of alternatives. This is why ROR
methods take into account all compatible value functions instead of only one.
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Definition 5.1 Given two alternatives a, b ∈ A and the set U of compatible
value functions on AR ⊆ A, we say that a is possibly preferred to b, if a is at
least as good as b for at least one compatible value function:

a %P b ⇔ there exists U ∈ U : U(a) ≥ U(b).

Definition 5.2 Given two alternatives a, b ∈ A and the set U of compatible
value functions on AR ⊆ A, we say that a is necessarily preferred to b, if a is
at least as good as b for all compatible value functions:

a %N b ⇔ U(a) ≥ U(b), for all U ∈ U .

Following the description of the ∆(i,k) dominance relation defined in Sec-
tion 4, it is meaningful from the DM’s point of view to compare U(a(i)) and
U(b(k)) for all compatible value functions U ∈ U and for all pairs of indica-
tors (i, k). In fact, even if not(a %N b), that is a is not at least as good as
b for all compatible value functions, it is interesting to check if there exists
some pair of indicators (i, k) such that U(a(i)) ≥ U(b(k)) for all compatible
value functions in order to understand which is the degree of plausibility of
the necessary preference of a over b. For example, considering two alternatives
a, b ∈ A evaluated by means of 3-point intervals, as done in Section 4, if one
discovers that U(a(2)) ≥ U(b(3)) for all U ∈ U this means that, considering
the most plausible evaluations for a (i.e., g2j (a) for all j) and the most opti-

mistic evaluations for b (i.e., g3j (b) for all j), a is at least as good as b for all
compatible value functions.
Analogously, it is interesting to understand if there exists some pair of indi-
cators (i, k) such that U(a(i)) ≥ U(b(k)) for at least one value function com-
patible with the preferences provided by the DM. Going back to the previous
example, if one gets that there does not exist any value function such that
U(b(3)) ≥ U(a(2)), this means that even considering the best evaluations of b

(i.e., g
(3)
j (b) for all j) and the most plausible evaluations for a (i.e., g

(2)
j (a) for

all j), there is no compatible value function for which b is at least as good as
a.
In consequence of these considerations, the following two types of necessary
and possible preference relations can be considered:

Definition 5.3 Given two alternatives a, b ∈ A, the set U of compatible value
functions on AR ⊆ A, and i, k ∈ {1, . . . , n}, we say that a is (i, k)-possibly
preferred to b, if a(i) is at least as good as b(k) for at least one compatible
value function:

a %P
(i,k) b ⇔ there exists U ∈ U : U

(
a(i)

)
≥ U

(
b(k)

)
.

Definition 5.4 Given two alternatives a, b ∈ A, the set U of compatible value
functions on AR ⊆ A, and i, k ∈ {1, . . . , n}, we say that a is (i, k)-necessarily
preferred to b, if a(i) is at least as good as b(k) for all compatible value functions:
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a %N
(i,k) b ⇔ U

(
a(i)

)
≥ U

(
b(k)

)
, for all U ∈ U .

For all a, b ∈ A, and for all i, k ∈ {1, . . . , n}, we have that:

– a %P b if EP (a, b) = EAR

∪ {U(a) ≥ U(b)} is feasible and εP (a, b) > 0,
where εP (a, b) = max ε, s.t. constraints EP (a, b),

– a %N b if EN (a, b) = EAR

∪{U(b) ≥ U(a) + ε} is infeasible or εN (a, b) ≤ 0,
where εN (a, b) = max ε, s.t. constraints EN (a, b),

– a %P
(i,k) b if EP

(i,k)(a, b) = EAR

∪
{
U(a(1)) ≥ U(b(k))

}
is feasible and

εP(i,k)(a, b) > 0, where εP(i,k)(a, b) = max ε, s.t. constraints EP
(i,k)(a, b),

– a %N
(i,k) b if EN

(i,k)(a, b) = EAR

∪
{
U(b(k)) ≥ U(a(i)) + ε

}
is infeasible or

εN(i,k)(a, b) ≤ 0, where εN(i,k)(a, b) = max ε, s.t. constraints EN
(i,k)(a, b).

6 Properties of necessary and possible preference relations

As to the basic properties of the classical necessary and possible preference
relations, they were discussed in Greco et al. (2008) and Giarlotta and Greco
(2013). Let us recall that the necessary relation is included in the possible pref-
erence relation (%N⊆%P ), that the necessary preference relation is a partial
preorder on A, and that the possible preference relation is strongly complete
and negatively transitive.

Proposition 6.1 describes the relationship between the classical dominance
and necessary preference relations, and then the relationship between the dom-
inance and necessary preference relations in case of imprecise evaluations.

Proposition 6.1

1. ∆ ⊆ %N ,

2. For all i, k ∈ {1, . . . , n}, ∆(i,k) ⊆ %N
(i,k) .

Proposition 6.2 gives some properties of the necessary and possible prefer-
ence relations in case of imprecise evaluations. Moreover, it provides an inclu-
sion property for %N

(i,k) and %P
(i,k), and a completeness property for %N

(i,k) and

%P
(k,i).

Proposition 6.2

1. For all i, k ∈ {1, . . . , n}, %N
(i,k) ⊆ %P

(i,k),

2. If i ≥ k, i, k ∈ {1, . . . , n}, then %N
(i,k) is reflexive,

3. If i ≤ k, i, k ∈ {1, . . . , n}, then %N
(i,k) is transitive,

4. For all a, b ∈ A, for all i, k ∈ {1, . . . , n}, we have a %N
(i,k) b or b %P

(k,i) a,

5. If i ≥ k, i, k ∈ {1, . . . , n}, then %P
(i,k) is strongly complete and negatively

transitive.



n-point intervals in MCDA and ROR 17

Note 6.1 Let us observe that by points 1 and 3 of Proposition 6.2, %N
(i,i) is a

partial preorder for all i = 1, . . . , n.

Proposition 6.3 specifies the inclusion between different necessary and pos-
sible preference relations in case of imprecise evaluations. Moreover, it links the
preference relations for the case of imprecise evaluations with the preference
relations for the case of precise evaluations.

Proposition 6.3

1. If i1 ≥ i and k1 ≤ k, i, k, i1, k1 ∈ {1, . . . , n}, then %N
(i,k) ⊆ %N

(i1,k1)
,

2. If i1 ≥ i and k1 ≤ k, i, k, i1, k1 ∈ {1, . . . , n}, then %P
(i,k) ⊆ %P

(i1,k1)
,

3. %N
(1,n) ⊆ %N ⊆ %N

(n,1),

4. %P
(1,n) ⊆ %P ⊆ %P

(n,1) .

Some propositions specifying more properties of the necessary and possible
preference relations in case of imprecise evaluations are given in the Appendix.

Note 6.2 Since the necessary and possible preference relations %N
(1,n), %

N
(n,1),

%P
(1,n) and %P

(n,1), are the only preference relations for the case of imprecise
evaluations that can be linked to the necessary and possible preference rela-
tions for the case of precise evaluations, we shall use also the following notation:

– “strongly necessary preference relation”, to indicate the necessary prefer-
ence relation %N

(1,n) (denoted by %SN ),
– “strongly possible preference relation”, to indicate the possible preference

relation %P
(1,n) (denoted by %SP ),

– “weakly necessary preference relation”, to indicate the necessary preference
relation %N

(n,1) (denoted by %WN ), and
– “weakly possible preference relation”, to indicate the possible preference

relation %P
(n,1) (denoted by %WP ).

Considering the weak, normal and strong dominance, necessary and possi-
ble preference relations, as a straightforward consequence of Propositions 4.2,
5.1, 6.1 and 6.2, and of the inclusion %N⊆%P , we obtain the set of relationships
shown in Figure 3.

7 A simple example

Let us imagine that the dean of a high school intends to give a scholarship to a
good student; for this reason, she has to choose a laureate among 10 students
of the school considered to be the best candidates. In order to manage this
situation, the dean decides to use an MCDA approach taking into account eval-
uations of the student on three subjects: Mathematics (Mat), Physics (Phy)
and Computer Science (Com). Each subject is thus an evaluation criterion with
an ordinal scale composed of five levels ordered from the worst to the best:
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Fig. 3: Relationships between all kinds of dominance relations and preference
relations

∆S ⇒ ∆ ⇒ ∆W

⇓ ⇓ ⇓

%SN ⇒ %N ⇒ %WN

⇓ ⇓ ⇓

%SP ⇒ %P ⇒ %WP

Very Bad (VB), Bad (B), Medium (M), Good (G), and Very Good (VG). Dif-
ferently from previous cases, the dean has to face a new problem because some
students got imprecise evaluations on some criteria. The students’ evaluations
are shown in Table 1.

Table 1: Evaluations of students on three criteria

student\subject Mat Phy Com

A M VG VG
B [G,G,VG] [VB,M,M] [B,M,G]
C [B,G,VG] G [M,M,G]
D [G,VG,VG] [M,M,G] [M,G,G]
E VG [VB,M,G] [M,M,G]
F [VB,M,G] [B,B,M] [B,B,M]
H [M,G,G] [M,G,G] [M,G,G]
I VG [M,G,VG] B
L [VB,VB,B] [B,M,M] [VB,B,M]
M [VB,B,B] [G,G,VG] VG

One can see that in the evaluation table there are either crisp evalua-
tions or 3-point intervals. In order to apply our method we need to consider
them all as 3-point intervals. For 3-point intervals we have nested subinter-
vals,

[
g1(a), g3(a)

]
and

[
g2(a), g2(a)

]
, with the corresponding levels of plau-

sibility L1 and L2, where L1 < L2. Remark that a crisp evaluation g(a) is,
formally, a 1-point interval and it can be represented by the 3-point inter-
val [g(a), g(a), g(a)] with equal subintervals [g(a), g(a)], [g(a), g(a)]. In our
example this would mean that the evaluation of student A on Mat is rep-
resented by the 3-point interval [M,M,M ]. As to the levels of plausibility,
we have to distinguish between 3-point intervals with three different evalua-
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tions and 3-point intervals with two different evaluations only. On one hand,
Mat(F) = [V B,M,G] means that the evaluation of F with respect to Mat

belongs to the interval [V B,G] with plausibility L1, and it can be equal to M
with level of plausibility L2. On the other hand, Com(C) = [M,M,G] and
Com(D) = [M,G,G] mean that the evaluation of C and D on Com belongs
to the interval [M,G] with level of plausibility L1, but the level of plausibility
L2 is assigned to the evaluation M for student C and to the evaluation G for
student D.

The only preference relation that stems from the evaluations of the students
is the dominance relation shown in Figure 4(a). Therefore, taking into account
all different indicators, one can observe that six of the nine students dominate
L. Referring to the weak and strong dominance relations shown in Figures
4(b) and 4(c), the first impression about the bad quality of L is confirmed.
Indeed, considering the best evaluations of L and the worst evaluations for
all others students, L weakly dominates F only (see Figure 4(b)), while four
students strongly dominate L (see Figure 4(c)). Since two different levels of
plausibility are considered in case of 3-point intervals, it is interesting to see
what happens when the evaluations have the highest level of plausibility for
all students. This result is shown in Figure 4(d). One can observe that L is
dominated there by all other students but F, and that D and H dominate
four other students each. Remark that due to point 2 of Proposition 4.1, the
strong dominance relation ∆(1,3) and the dominance relation ∆(2,2) shown in
Figures 4(c) and 4(d) are transitive, while the weak dominance relation shown
in Figure 4(b) is not transitive.

In order to get a more conclusive recommendation, the dean has expressed
her preferences through three pieces of the following preference information:

– “student M is preferred to student D”, which is translated into the con-
straint U(M) > U(D);

– “Student M is preferred to student I more than student C is preferred
to student H”, which is translated into the constraint U(M) − U(I) >

U(C) − U(H);
– “Student C and student M are indifferent”, which is translated into the

constraint U(C) = U(M).

Taking into account this preference information, we compute the necessary
preference relation %N , the weak necessary preference relation %N

(3,1), the

strong necessary preference relation %N
(1,3) and the necessary preference re-

lation %N
(2,2) obtained for evaluations with the highest level of plausibility.

These necessary preference relations are shown in Figure 5.
One can see that the preference information provided by the dean enriched

considerably the dominance preference relations. Without any preference in-
formation, A dominated students L and M only, while after the preference
information was added, A is necessarily preferred to eight other students and
neither necessarily nor weakly necessarily preferred only to E (Figures 5(a)
and 5(b)). Looking at Figures 5(c) and 5(d), one can observe two interesting
things: A is strongly necessarily preferred to the largest number (3) of stu-
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(a) Dominance relation ∆

(b) Weak Dominance relation ∆(3,1)

(c) Strong dominance relation ∆(1,3) (d) Dominance relation for
evaluations with the highest
level of plausibility ∆(2,2)

Fig. 4: Dominance relations in the set of students obtained for imprecise eval-
uations shown in Table 1 and according to definitions introduced in Section
2.
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dents, and H is necessarily preferred to the largest number of students (5)
considering the necessary preference relation computed for evaluations with
the highest level of plausibility. This means that even taking into account the
worst possible evaluations, A is a good student, however for evaluations with
the highest level of plausibility, H is better than A.

The above discussion shows that the proposed method permits to get a use-
ful insight into the multiple criteria choice problem that became more compli-
cated by the fact of imprecise evaluations of alternatives. Based on minimum
available information about the range and tipicality of imprecise evaluations,
and using few examples of exhibited preferences, the method sheds light on
the preference relations in the set of alternatives and facilitates a conscious
decision making.

8 Conclusions

In this paper, we dealt with one of the most important issues of Multiple Crite-
ria Decision Aiding (MCDA), that is the imprecise evaluations of alternatives.
The possible sources of this imprecision are, for example, lack of data, impre-
cise measurement or intangible criteria. Many authors have studied different
types of imprecision regarding weights of criteria, utility functions or probabil-
ities about the different states of the world. In our approach, we are supposing
that evaluations of the alternatives with respect to the different criteria can
be imprecise and expressed by n-point intervals. These intervals are charac-
terized not only by the largest interval of possible evaluations, but also by its
subintervals sequentially nested one in another. To each of these subintervals
is associated an increasing level of plausibility such that the plausibility of a
subinterval is not lower than the plausibility of the subinterval containing it.
Due to this way of representing the imprecision, our approach permits fine
modelling of imprecise multiple criteria evaluations, taking into account a
whole spectrum of attitudes ranging from an extremely pessimistic one to an
extremely optimistic one in the evaluations. Moreover, differently from other
ways of dealing with imprecision, such as Stochastic Multiobjective Accept-
ability Analysis (SMAA) or fuzzy numbers, n-point intervals take into account
only the most stable, robust and meaningful information carried by imprecise
evaluations. n-point intervals can be applied to any MCDA method but, in
this paper, we focused on additive value functions and, in order to take into
account the whole set of value functions compatible with the preference infor-
mation provided by the DM, we adapted Robust Ordinal Regression (ROR).
In result of applying ROR, one gets necessary and possible preference relations
for all realizations of the imprecise evaluations.

The methodology proposed in this paper follows the constructivist ap-
proach (Roy 1993). This means that MCDA methods do not assume that
there pre-exist some preference system in the DM’s mind that need to be dis-
covered, but the DM’s preferences have to be built step by step in the course of
an interaction between the DM and the analyst responsible for mathematical
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(a) Necessary preference rela-
tion %N

(b) Weak necessary preference relation %N
3,1

(c) Strong necessary preference rela-
tion %N

(1,3)

(d) Necessary preference rela-
tion having the highest level of
plausibility %N

(2,2)

Fig. 5: Necessary preference relations in the set of students obtained after in-
cluding the preference information provided by the dean and computed accord-
ing to definitions given in Section 5. Full arrows represent the corresponding
dominance relation; dotted arrows represent preference information provided
by the dean; bold arrows represent new necessary preferences got in conse-
quence of the added preference information. Note that by point 3 of Proposi-
tion 6.2, the strong necessary preference relation %N

(1,3) is transitive while the

weak necessary preference relation %N
(3,1) is not.
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modeling. In other words, MCDA methods should be seen as tools for going
deeper into the decision problem, for exploring various possibilities, interpret-
ing them, debating and arguing, rather than tools able to make the decision.
As a consequence, the performances of the MCDA methods cannot be tested
on some benchmarks, like, for example, Machine Learning methods (Corrente
et al. 2013). Instead, the MCDA methods are acceptable if they possess some
practical and theoretical properties judged as desirable in the actual decision
context (Keeney and Raiffa 1993; Roy and S lowiński 2013). Unfortunately,
many researchers are tempted to compare different MCDA methods by basing
their conclusions on comparison of end results obtained by these methods. As
argued in Roy and S lowiński (2013) such a comparison is ill-founded.

The presented methodology can be extended in several directions that are
shortlisted below:

– consideration of preference models in the form of outranking relations in-
stead of value functions (Roy 1996);

– consideration of the decision rule preference model composed of “if...,
then...” decision rules induced from the DM’s preference information struc-
tured by Dominance-based Rough Set Approach (Greco et al. 2001; S lowiński
et al. 2009);

– consideration of the hierarchy of criteria using the Multiple Criteria Hier-
archy Process (Corrente et al. 2012).
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