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Abstract—Classification is one of the most popular tasks of
machine learning, which has been involved in broad applications
in practice, such as decision making, sentiment analysis and
pattern recognition. It involves the assignment of a class/label
to an instance and is based on the assumption that each instance
can only belong to one class. This assumption does not hold,
especially for indexing problems (when an item, such as a movie,
can belong to more than one category) or for complex items
that reflect more than one aspect, e.g. a product review outlining
advantages and disadvantages may be at the same time positive
and negative. To address this problem, multi-label classification
has been increasingly used in recent years, by transforming the
data to allow an instance to have more than one label; the nature
of learning, however, is the same as traditional learning, i.e.
learning to discriminate one class from other classes and the
output of a classifier is still single (although the output may
contain a set of labels). In this paper we propose a fundamentally
different type of classification in which the membership of an
instance to all classes(/labels) is judged by a multiple-input-
multiple-output classifier through generative multi-task learning.
An experimental study is conducted on five UCI data sets to show
empirically that an instance can belong to more than one class, by
using the theory of fuzzy logic and checking the extent to which
an instance belongs to each single class, i.e. the fuzzy membership
degree. The paper positions new research directions on multi-
task classification in the context of both supervised learning and
semi-supervised learning.

Keywords—Data Mining; Machine Learning; Binary Classifi-
cation; Multi-class Classification; Fuzzy Logic

I. INTRODUCTION

Machine learning has become an increasingly popular ap-
proach of artificial intelligence, due to the vast and rapid
increase in the size of data. In the form of learning strategies,
machine learning can be specialized into two types: supervised
learning and unsupervised learning. Supervised learning means
learning with a teacher, i.e. data used in the training stage
is labeled. In practice, supervised learning can be involved
in classification and regression tasks. The main difference
between classification and regression is that the output attribute
must be discrete for the former type of tasks whereas it
must be continuous for the latter type of tasks. Unsupervised
learning means learning without a teacher, i.e. data used in the
training stage is unlabeled. In practice, unsupervised learning
can be involved in association and clustering tasks. Association
is aimed at identifying the relationships between different

attributes in a quantitative or qualitative way. Clustering is
aimed at grouping of different objects on the basis of their
similarity.

Classification is one of the most popular tasks of machine
learning in practice and has been involved in broad application
areas, such as decision making [1], [2], sentiment analysis [3],
[4] and ontology engineering [4]. In general, classification
can be specialized into binary classification and multi-class
classification. The former type of classification means to
classify a data instance into one of two given categories
whereas the latter type of classification means to classify an
instance into one of multiple categories. The rest of this paper
focuses on multi-class classification tasks.

In the past years, classification problems have been dealt
with in a mutually exclusive way, which means that differ-
ent classes are assumed to be mutually exclusive and thus
each instance can belong to one class only. However, this
assumption is not always appropriate in practice, especially
when considering the commonly known example that a student
can belong to multiple categories. In particular, a student
can belong to international students according to their na-
tionality, to full-time student according to the study mode,
or to undergraduate student according to the degree level.
The above example indicates that nationality, study mode and
degree level are three totally independent aspects and thus the
three class labels (international student, full-time student and
undergraduate student) do not involve mutual exclusion.

To address this issue, the area of multi-label classification
has emerged, which allows an instance to be given more
than one label. The way to achieve multi-label classification
still does not fundamentally change the nature of learning
of classifiers, i.e. multi-label classification is still aimed at
discriminating one class from other classes, although each
class may consists of multiple labels. In addition, both multi-
class (single-label) classification and multi-label classification
belong to single-task learning. This paper proposes a funda-
mentally different approach by turning discriminative single-
task classification into generative multi-task classification. In
particular, the class attribute is transformed into several binary
attributes, each of which is corresponding to one of the class
labels and is judged on the membership of an instance to it
in a generative way. We call this approach generative to stress
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the opposition to the discriminative approach.

The rest of this paper is organized as follows: Section II pro-
vides an overview of multi-class classification in the machine
learning context, and identifies the limitations of the existing
classification approaches; Section III proposes to adopt a fuzzy
classification approach to investigate empirically the extent
to which each instance actually belongs to each single class
by checking the fuzzy membership degree; in Section IV an
experimental study is conducted on five UCI data sets to show
the results that support the argumentation that an instance can
naturally belong to more than one class; Section V analyses
the impact of the proposed new type of classification on real
applications; Section VI summarises the contributions of this
paper and suggests further directions for this research.

II. OVERVIEW OF MULTI-CLASS CLASSIFICATION

In the context of machine learning, multi-class classification
involves classifying an instance into one of three or more
categories. This has been involved in broad application areas.
In medical applications, multi-class classification can involve
judging the type of contact lenses for patients, i.e. hard lenses,
soft lenses or no lenses [5]. In pattern recognition, multi-class
classification can involve letter recognition [6], handwritten
digit recognition [7], Human Hand Movements recognition [8]
and emotions recognition [9], [10]. In social media analysis,
multi-class classification frequently involves in identifying the
attitude of a person, i.e. sentiment classification [3]. Also,
movie classification [11] is a special type of item ratings on
social media and other platforms. In other social media like
Twitter, a tweet could be classified to one of multiple classes,
e.g. ”sports”,’health, food...etc. Newspaper articles could also
be classified to one of multiple categories, e.g. politics, medi-
cal care...etc. Also, multi-class classification could be used in
book classification, i.e. a book could be put into one of genres
e.g Fiction, Horror, English..etc.

As mentioned in Section 1, multi-class classification tasks
are generally undertaken by assuming that different classes are
mutually exclusive, which forces each instance to belong to
one class only. In practice, this assumption can result in the
following issues.

Firstly, the above assumption is not always appropriate in
practical applications. For example, a movie on war can belong
to both military and history, due to the fact that this type
of movies tells a real story that involves soldiers and that
happened in the past. In the context of library management, the
same book may be used by students from different departments
and thus can belong to different subjects. In the context
of shopping, the same product may have multiple functions
that provide users with different applications. From this point
of view, the same product can also be put into different
categories. On the other hand, there is also the real case
that the classes are mutually exclusive but some instances
are complex leading to the difficulty in classifying each of
such instances to one category only. For example, in letter
recognition, handwritten ‘a’ and ‘d’ are very similar and
sometimes hard to distinguish; in fact, it may be beneficial
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to identify that an individual tends to write these letters in a
very similar way for the purpose of preventing signature fraud.

Secondly, a real data set is dynamically grown in practice.
In this context, if a classifier is trained using a data set with a
certain number of predefined classes, then it is likely to result
in inaccurate classifications when the data set is updated [19],
[20]. In fact, it is very likely to occur in practice that a data set
is initially assigned a number of class labels by domain experts
on the basis of their incomplete knowledge, but the data set
is later provided with extra labels following the gain of new
knowledge. In this case, the learning of a classifier must be
redone once the labels of the data set are updated. In addition,
the classifier learned from the initially labelled data set is not
useful any more. In the context of software engineering, the
above case generally indicates that the classifier is poor in
maintainability, re-usability, extendability and flexibility and
thus not acceptable in real applications [21].

Thirdly, in the context of object oriented software en-
gineering, different classes can have interrelations such as
association, generalization and aggregation [21]. Association
means that different classes relate to each other through
passing messages between them. For example, Fig. 1 illustrates
the association between the two classes (Machine Learning
and Rule Based Systems), which indicates that these two
subjects are academically linked to each other. Generalization
means that classes have hierarchical relationships, i.e. one
class can be specialized into a number of subclasses. For
example, Fig. 1 illustrates that the class ‘Rule Based System’
has two subclasses, namely ‘Single Rule Based System’ and
‘Ensemble Rule Based System’. Aggregation means that one
class consists of a number of subclasses, i.e. each of the
subclasses is a part of its superclass. For example, Fig. 1
illustrates that the class ‘Design Framework’ consists of three
subclasses, namely ‘Rule Generation’, ‘Rule Simplification’
and ‘Rule Representation’. If the classes defined on a data set
involve the relationship of generalization or aggregation, then
it would be inappropriate to assume that different classes are
mutually exclusive in a multi-class classification problem. In
fact, if an instance belongs to a class, then this instance would
automatically belong to the superclass of this class.

In recent years, the above issues were addressed in practice
by transforming a multi-class classification problem into a
multi-label classification problem. The term multi-label gener-
ally means that an instance is assigned multiple labels jointly
or separately, which is the main difference to the term single-



TABLE I
EXAMPLE OF PT3

Instance ID  Class

1 A

2 B

3 ANB

4 ANB
TABLE II

EXAMPLE OF PT4 ON LABEL A

Instance ID  Class

1 A
2 -A
3 A
4 A

label meaning that an instance is assigned a single label only.
Details can be found in [12], [13], [14], [15], while here we
briefly outline the approaches used and their disadvantages.

There are three typical ways of dealing with multi-label
classification problems referred to as PT3, PT4 and PT5
respectively, as reviewed in [12]. PT3 is designed to enable
that a class consists of multiple labels as illustrated in Table I.
For example, two classes A and B can make up three labels:
A, B and A A B. PT4 is designed to do the labelling on
the same data set separately regarding each of the predefined
labels as illustrated in Tables II and III. In addition, PTS
is aimed at uncertainty handling. In other words, it is not
certain to which class label an instance should belong, so
the instance is assigned all the possible labels and is treated
as several different instances that have the same inputs but
different class labels assigned. An illustrative example is given
in Table IV: both instances (3 and 4) appear twice with two
different labels (A and B) respectively, which would be treated
as four different instances (two assigned A and the other two
assigned B) in the process of learning.

However, all of these approaches are still fundamentally
aimed at dealing with classification problems on a mutually
exclusive basis. In spite of some practical differences be-
tween single-label classification and multi-label classification
in terms of data labelling, they are still fundamentally the same
by learning a multiple-input-single-output classifier through
discriminating one class from other classes, i.e. the aim is still
to learn a classifier that provides a unique output, in terms of
the class to which an instance belongs.

The practical differences mentioned above can be inter-
preted in the context of granular computing [16]. In particular,
the main difference between single-label classification and
multi-label classification by PT3 is that the former simply
treats each label as a single class, whereas the latter manages
to merge multiple labels to make a new class, such as A A B,
where A and B are two labels, i.e. PT3 involves the use of
a granular computing concept referred to as organization by
means of composing several parts into a whole [17]. However,
like single-label classification, PT3 is still aimed at learning a

TABLE III
EXAMPLE OF PT4 ON LABEL B

Instance ID  Class
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TABLE IV
EXAMPLE OF PT5

Instance ID  Class
1 A
2 B
3 A
3 B
4 A
4 B

classifier on a mutually exclusive basis, leading to the output
of a unique class to which an instance belongs, although the
unique class may consist of multiple labels.

PT4 involves another concept of granular computing re-
ferred to as granulation, by means of decomposing a whole
into several parts [17]. In other words, PT4 decomposes a
complex learning problem into several separate sub-problems,
each of which is aimed at binary classification towards judging
whether an instance belongs to a particular label. However,
each of the sub-problems is resolved in a separate way, which
is the same as how a single-label classification problem is dealt
with.

PTS5 involves the use of rough set theory which is another
part of granular computing. In general, rough set theory
allows an instance to belong to a label subject to specific
conditions, due to the incomplete information available from
a data set [16]. In the context of multi-label classification
by PTS, different labels may cover common patterns that an
instance matches, but it is still unable to judge further if the
instance also matches the pattern that is uniquely covered by
only one of the labels, due to the insufficient information. In
this case, PT5 is designed to assign all the possible labels
to the instance with uncertainty, resulting in several instances
that have the same inputs but different labels. However, the
actual learning of a classifier is still on a mutually exclusive
basis towards having several distinct parts of pattern, each of
which is uniquely covered by a particular label. Due to the
presence of overlapping instances, different parts of the pattern
are likely to have intersection, leading to multiple possible
labels with different certainty degrees that can be provided as
an output set. In order to manage the uncertainty handling, it
is designed to allow the output of a set of labels with higher
certainty degrees. The output of multiple labels would result in
practical issues in classifying test instances and measuring the
accuracy. In fact, as shown in Table IV, each test instance only
has a single output attribute (the class attribute) of the string
type and thus can only be assigned one label. If the output is
a set of labels, then it would not be feasible to assign a test



instance multiple labels nor to test the accuracy effectively
against multiple labels.

In practice, all three approaches have limitation in relation to
correlation/independence between labels, as well as computa-
tional complexity [15]. In particular, PT3 only works under the
assumption that different labels are correlated. In other words,
if two labels only coincidentally happen to cover common
instances, it does not make much sense to merge them to
make a new class, especially when considering the case that
different labels may be totally independent of each other and
merge of them may result in high coupling in the context
of software engineering [21]. Coupling generally means the
degree of interdependence between different parts. Also, PT3
may result in the massive classes problem [18]. In fact, a finite
set of labels can make up 2" —1 classes, where n is the number
of labels.

PT4 only works under the assumption that different labels
are independent of each other. If these labels are actually
correlated, PT4 may result in reduction of cohesion in the
context of software engineering [21], i.e. the degree to which
the parts of a whole link together is lower, and thus failing to
identify the correlations between different classes. PT5 may
result in a massive size of sample, especially when the data
set already encounters the massive classes problem due to a
large number of labels. In fact, for labels that are independent
of each other, the learning to judge the membership or non-
membership of an instance to each of these labels needs to
be done separately. If the labels are correlated, they need
to be defined as several output variables in order to enable
identifying their correlations in the training stage and judging
the membership or non-membership of an instance to the
labels on a correlative basis.

Overall, PT3, PT4 and PT5 all aim to involve learning of a
multiple-input-single-output classifier from a single data set,
i.e. single-task learning, towards providing a unique output to
classify an instance. None of the above ways actually concerns
the relationship between different classes/labels, regarding the
natural case that an instance belongs to multiple classes/labels.
Also, the multi-labelling of instances is done artificially by
experts without empirically checking the necessity. The next
section presents how fuzzy rule based classification approaches
can be used to investigate and show empirically that an
instance can belong to multiple classes on the basis of natural
patterns learned from data, although the training data is single-
labelled by experts. Furthermore, the experimental results
presented in Section IV show the necessity to propose a new
type of classification, which involves an adaptable way of data
labeling and learning of classifiers.

III. Fuzzy RULE BASED CLASSIFICATION

This section presents in detail the concepts of fuzzy logic
and illustrates the procedure of fuzzy rule based classification
approaches. This section also justifies theoretically why and
how fuzzy classification approaches can be used to check that
an instance can naturally belong to multiple classes with a
high level or even full certainty.

A. Key Features

Fuzzy logic is an extension of deterministic logic, i.e. the
truth value is ranged from O to 1 rather than a binary value.
The theory of fuzzy logic is mainly aimed at turning a black
and white problem into a grey problem [22]. In the context
of set theory, deterministic logic is employed by crisp sets
regarding the membership of an element to a set, which means
that each element in a crisp set fully belongs to the set with
no uncertainty. In contrast, fuzzy logic is employed by fuzzy
sets, which indicates that each element in a fuzzy set may just
partially belong to the set, i.e. the element belongs to the set
to a certain degree referred to as fuzzy membership degree. In
practice, the degree of a fuzzy membership can be measured
by using a particular fuzzy membership functions such as
trapezoid, triangular and Gaussian membership functions [23].

Fuzzy logic involves some logical operations that are
slightly different from the operations used in deterministic
logic such as conjunction, disjunction and negation. In terms
of conjunction, the men function is used to get the smallest
value among the values of the given fuzzy variables. For
example, if a, b and ¢ are three fuzzy variables with the
fuzzy truth values of 0.4, 0.6 and 0.8 respectively, then
aANbAc = min(a,b,c) = 0.4. For the same example,
disjunction involves using the max function instead of the
min function, i.e. a VbV ¢ = mazx(a,b,c) = 0.8. In terms
of negation, for the above example, —a = 1 — a = 0.6. More
details on fuzzy operations can be found in [23].

Fuzzy logic is popularly used in rule based systems for
dealing with uncertainty [24]. In general, there are three
popular types of fuzzy rule based systems namely Mamdani,
Sugeno and Tsukamoto [23]. The first two types of fuzzy rule
based systems apply to regression problems, as the output from
such a system is a real value, and the third type generally
applies to classification problems, as the output is a discrete
value. As this paper focuses on classification, an illustrative
example of a Tsukamoto system is provided below.

The Tsukamoto system has two input variables x; and x5
and one output variable y. The variable x; has two linguistic
terms Good’ and 'Bad’, x5 has two linguistic terms 'High’
and 'Low’ and y has two linguistic terms ’Positive’ and
’Negative’. The fuzzy membership functions for the above
linguistic terms are defined as follows:

Good: 0.25/1, 0.5/2, 0.75/3, 0.5/4, 0.25/5
Bad: 0.75/1, 0.5/2, 0.25/3, 0.5/4, 0.75/5
High: 0.3/1, 0.4/2, 0.6/3, 0.7/4, 0.5/5
Low: 0.7/1, 0.6/2, 0.4/3, 0.3/4, 0.5/5
Positive: equals to the rule firing strength
Negative: equals to the rule firing strength

There are four rules as follows:

Rule 1: if 7 is Good and x5 is High then y= Positive;
Rule 2: if 21 is Good and x5 is Low then y= Positive;
Rule 3: if ;1 is Bad and x2 is High then y= Negative;
Rule 4: if 21 is Bad and x5 is Low then y= Negative;



In practice, each rule is derived of its firing strength
following the given input values, e.g. if both x; and zo are
assigned the value of 3, then the firing strength of rule 1 is
0.6 as the fuzzy truth values for ’Good’ and "High’ are 0.75
and 0.6, respectively. In this case, Rule 1 provides the output
value ’Positive’ with the fuzzy truth value of 0.6 towards
predicting an unseen instance. Each of these four rules work
in the same way and the final output value is determined by
taking the output value provided by the rule with the highest
firing strength. In particular, the firing strengths of Rule 2,
Rule 3 and Rule 4 are 0.4, 0.25 and 0.25 respectively. Finally,
the output value provided by the fuzzy rule based system is
"Positive’ as Rule 1 is of the highest firing strength (0.6), i.e.
the fuzzy truth value for "Positive’ is 0.6= max(0.6,0.4) and
the value for *Negative’ is 0.25= max(0.25,0.25).

B. Justification

Fuzzy rule based approaches are used in this paper to show
empirically that an instance can belong to multiple classes,
due to the nature that fuzzy approaches consider each class to
be assigned to an instance with a membership degree, i.e. the
extent to which an instance belongs to each single class. In
this context, the final classification is made by assigning an
unseen instance the class with the highest fuzzy membership
degree.

Since fuzzy approaches can show explicitly the fuzzy mem-
bership degree of an instance to each single class, we can
observe if an instance has a fuzzy membership degree equal to
or close to 1 for two or more classes. If the above phenomenon
is frequently discovered, then it can strongly support the
argumentation that an instance can belong to multiple classes.
In addition, even if an instance happens to have a fuzzy
membership degree higher than 0.5 for at least two classes,
it can still be considered that the instance weakly belongs to
both of the two classes.

On the other hand, fuzzy approaches can be used to inves-
tigate if classes are mutually exclusive or not. In particular,
if classes are mutually exclusive, then the sum of the fuzzy
membership degrees for these classes should typically be equal
to 1. This could have two different phenomena. One would
show that the fuzzy membership degree of an instance is 1 to
only one class and O to all the other classes. This phenomenon
indicates that the instance fully belongs to one class only. The
other one would show that an instance belongs to more than
one class but the sum of the fuzzy membership degrees for
these classes is equal to 1. This phenomenon indicates that the
classes are mutually exclusive, but the instance is complex and
belongs to different classes to different degrees. However, if
the sum of the fuzzy membership degrees for these classes is
greater than 1, then the classes are not mutually exclusive.

The next section shows experimentally how the fuzzy
membership degree of an instance to each single class can
be checked and in what way it can be judged that an instance
belongs to two or more classes and if the classes are mutually
exclusive or not.

TABLE V
DATA CHARACTERISTICS

Dataset  Attribute Types Attributes  Instances  Classes
anneal discrete, continuous 38 798 6
autos discrete, continuous 26 205 7
heart-c discrete, continuous 76 920 5
heart-h discrete, continuous 76 920 5
Z00 discrete, continuous 18 101 7
TABLE VI
RESULTS ON ANNEAL DATASET
ID class 1 2 3 4 5 U  output
20 3 0 0 1 0 1 0 3
52 3 0 1 1 0 0 0 3
66 5 0 099 0 0 099 0 2
76 2 0 0.6 1 0 0 0 3
183 3 0 1 1 0 0 0 3
197 3 0 0 1 0 0 0 3
218 2 0 0.8 1 0 0 0 3
296 2 0 1 1 0 0 0 3
329 3 0 1 1 0 0 0 3
380 3 0 0 1 0 1 0 3
457 2 0 0.8 1 0 0 0 3
559 3 0 096 1 0 0 0 3
588 2 0 1 075 0 0 0 2
606 3 0 1 1 0 0 0 3
670 5 0 0 1 0 1 0 3
681 5 0 1 1 0 1 0 3
682 2 0 1 1 0 0 0 3
696 3 0 1 1 0 1 0 3
700 5 0 0 1 0 1 0 3
721 3 0 096 1 0 0 0 3
744 3 0 1 1 0 1 0 3
777 2 0 1 1 0 0 0 3
848 3 084 1 0.1 0 0 0 2
857 3 0 1 1 0 0 0 3
870 U 0 1 0.6 0 0 1 U

IV. EXPERIMENTAL STUDY

This experimental study is conducted on five data sets
retrieved from the UCI repository [25]. The characteristics
of these data sets are presented in Table V. In particular, all
these chosen data sets are single labelled. The aim is to show
empirically that instances that belong to different classes may
have high fuzzy similarity to each other and thus classes can
be overlapping by having common instances. In addition, the
fuzzy rule induction approach implemented on the KNIME
platform is adopted to undertake the experiments [26].

Table VI shows that 25 test instances (selected as represen-
tative examples from 200) are judged to belong to multiple
classes in accordance with the fuzzy membership degrees
measured. In particular, three instances (681, 696 and 744)
are judged to belong to three classes and the rest of the
instances are judged to belong to two classes. Moreover,
Table VI shows 11 instances incorrectly classified according
to traditional machine learning principles. However, looking
at the columns 3 to &, it can be noted that the the above 11
instances may not be considered as incorrectly classified. For
example, it can be seen for instance 66 that the actual class



TABLE VII
RESULTS ON AUTOS DATASET

TABLE IX
RESULTS ON HEART-H DATASET

ID class -1 2 3 0 1 2 3 output ID num 50 50_1 50_2 50_3 50_4 output
17 0 077 0 0 073 020 O 0 -1 17 50 0.9 1 0 0 0 50_1
130 0 0 0 0 0.5 0 0 084 3 68 50 0.6 1 0 0 0 50_1
141 0 0 0 0 075 0 0.7 0 0 86 50 1 0.9 0 0 0 50
150 1 0 0 0 074 082 0 0 1 92 50 1 1 0 0 0 50
172 2 0 0 0 083 0 068 0 0 93 50 1 1 0 0 0 50
181 -1 0.6 0 0 0.67 0 1 0.5 2 96 50 074 1 0 0 0 50_1
197 -1 1 1 0 0 0 0 0 -1 107 50 0.7 1 0 0 0 50_1
124 50 1 1 0 0 0 50
127 50 1 1 0 0 0 50
160 50 1 1 0 0 0 50
TABLE VIII 169 50 1 1 0 0 0 50
RESULTS ON HEART-C DATASET 214 50 1 1 1 0 0 0 50
228  50_1 1 0.6 0 0 0 50
ID num 50 50_1 50_2 50_3 50_4 output 231 50_1 1 1 0 0 0 50
1 50 ) ) 0 0 0 =0 293 50_1 1 1 0 0 0 50
28 50 1 1 0 0 0 50
36 50_1 1 1 0 0 0 50
82 50 1 0.83 0 0 0 50 TABLE X
102 50 0.8 1 0 0 0 50_1 RESULTS ON Z0OO DATASET
113 50_1 0.81 1 0 0 0 50_1
138 50_1 096 1 0 0 0 50_1
194 50 1 1 1 0 0 0 50‘ ID type 1 2 3 4 5 6 7 output
271  50_1 098 1 0 0 0 50_1
291  50_1 1 1 0 0 0 50

label is ‘5° and the predicted label is ‘2’ but the instance has
the membership degree of 0.99 to both classes (columns 4 and
7). Another example is instance 681 — it is assigned ‘3’ as the
predicted class label and the actual label is ‘5°, but according
to the fuzzy membership the instance fully belongs to three
classes (‘2’, ‘3” and ‘5’). Overall, most of the instances from
this data set are assigned ‘3’ as their predicted class label,
but none of these cases can really be considered as incorrect
classifications when looking at column 5 regarding the fuzzy
membership degrees for class ‘3’. In addition, this table shows
to some extent the correlation between classes ‘2” and ‘3’.

Table VII shows that 7 instances (selected as representative
examples from 200) are judged belonging to multiple classes
in accordance with the fuzzy membership degrees measured.
In particular, there are 4 instances incorrectly classified accord-
ing to traditional machine learning principles — see columns
2 and 10. However, these instances may not be considered to
have been incorrectly classified when looking at their fuzzy
membership degrees to these classes. For example, it can be
seen from instance 17 that the predicted label is ’-1’ and
the actual label is 0’ but the instance actually belongs to
both of the two classes, as the instance has the membership
degree of 0.77 to class -1’ and the degree of (.73 to the
class ’0’. In addition, this table does not show any obvious
correlations between different classes, which may indicate that
these classes are independent of each other. However, the
opposite phenomenon can be seen in Tables VIII and IX. Thus,
the results on the two data sets, 'Heart-¢’ and "Heart-h’,show
correlation between the classes 50 and 50_1.

Table X shows that 26 instances (selected as representative
examples from 30) are judged belonging to two or more
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classes in accordance with the fuzzy membership degrees
measured. In this table, columns 3-9 represent the IDs of the
7 class labels predefined for the *Zoo’ data set. In particular,
‘1’ represents amphibian, ‘2’ represents bird, ‘3’ represents
fish, ‘4’ represents insect, ‘5’ represents invertebrate, ‘6’ rep-
resents mammal, and ‘7’ represents reptile. Table X shows 15
instances that are incorrectly classified according to traditional
machine learning principles. However, when looking at the
fuzzy membership degrees of these instances to different
classes, it can be noted that different classes have strong
correlations. For example, 11 instances (1, 3, 6, 9, 10, 31,
36, 47, 67, 68 and 84) all belong to three classes, namely



amphibian (‘1’), invertebrate (‘5’) and mammal (‘6’). Also, 5
instances (2, 18, 73, 82 and 92) belong to three classes, namely
fish (°3”), invertebrate (‘5’) and mammal (‘6’). In the former
case, all 11 instances are considered to have been correctly
classified by traditional classification. In contrast, the latter
case shows that although all mentioned 5 instances have been
incorrectly classified by traditional machine learning, these
instances actually belong to both the predicted class label
(mammal — ‘6’) and the actual class label (fish — ‘3”), which
indicates that none of these 5 instances should be considered
to have been incorrectly classified.

A similar phenomenon can also be seen for other instances,
i.e 21, 37, 41, 71, 83 and 100. Overall, most of the 26
instances are assigned mammal (‘6’) as their predicted class
label, but none of these instances is really incorrectly classified
when looking at column 8. In addition, this table shows four
different correlations between different classes, i.e. amphibian,
invertebrate and mammal; bird and mammal; fish, invertebrate
and mammal; and, insect and invertebrate.

V. DISCUSSION

The results shown in Section IV indicate that an instance can
belong to multiple classes and that different classes may not be
mutually exclusive and can even have correlations among each
other. According to the findings obtained from the results, this
section analyses the impact of the proposed generative multi-
task classification on real applications.

As identified in Section II, traditional multi-class classifi-
cation, which is dealt with by considering different classes
to be mutually exclusive, may result in poor extendability
of classifiers. The same issue also arises with multi-label
classification. In contrast, the proposed generative multi-task
classification addressed this issue by judging the membership
of each instance to all classes. Thus, if a new class is added
a new learning task can deal with it without affecting the
previous learning tasks on the other classes. Consequently,
in this context, building a classifier is defined as a multiple
learning task, in which each of the single learning tasks
involves learning to judge the membership of an instance to a
particular class, and these single learning tasks are generative
on an independent or correlative basis. In this case, if a new
class is added to the data set, then the classifier, which is built
on the basis of the original data set, can easily be extended by
having another new single learning task on the updated data
set. In other words, in the context of multi-class/multi-label
classification, each classifier has only a single output, which is
one or a subset of the predicted class labels. In contrast, in the
context of generative multi-task classification, each classifier
can have multiple outputs, each of which is corresponding to
a particular class label. In practice, it is critical that a classifier
can be easily extended in accordance with the dynamic update
of a data set in terms of class labels.

On the other hand, as mentioned in Section II, it is not
always appropriate to assume that different classes are mu-
tually exclusive in a classification task. For example, a book
can belong to different subject areas. In fact, the nature of

a classification problem is on prediction of the value of a
discrete attribute. As introduced in [27], a discrete attribute can
be specialized into different types, such as nominal, ordinal,
string and categorical. For rating problems, the class attribute
is of ordinal type. In this case, all the labels make up a whole
enumeration so these labels need to be mutually exclusive.
Also, classification tasks can be undertaken in practice for
the purpose of decision making, which means to make a
decision on the selection of one of the class labels. In this
case, different classes also need to be mutually exclusive.
When a classification task is undertaken for the purpose of
categorization of items, it is very likely to occur that different
classes have common instances, i.e. an instance can belong to
multiple classes. In this case, it is not appropriate to consider
that different classes are mutually exclusive. On the basis
of the above statement, in the context of traditional multi-
class classification, some problems cannot be solved properly
in practice. Although multi-label classification was proposed
to allow multi-labeling of instances, the nature of classifier
learning is still the same by means of learning to discriminate
one class from other classes. However, in the context of
generative multi-task classification, these problems can be
effectively solved by involving each class in a generative single
learning task as part of multi-task learning. Also, the outcome
of multi-task learning can be used as the basis for secondary
learning towards identification of the relationships between
different classes, such as generalization and aggregation.

In practice, the proposed generative multi-task classification
can be achieved through both supervised and semi-supervised
learning. For supervised learning, data labelling needs to be
done by transforming the class attribute into several binary
attributes, each of which is corresponding to a class label.
In this way, experts need to judge on each class whether an
instance belongs to it by assigning a truth value (0 or 1). For
semi-supervised learning, data sets which have been previously
used in multi-class classification tasks, can be used again by
transforming the class attribute into several binary attributes.
In this way, the transformed data set would have all the binary
attributes assigned truth values of O or 1. If an instance has
its one of the binary attributes assigned 0, this would mean
that the instance has not been labelled on the corresponding
class. Otherwise, the instance would have been labelled on
the corresponding class. On the basis of the transformed data
set, fuzzy rule learning approaches can be used to measure
the fuzzy membership degrees of each instance to each of
the predefined class labels. Through cross validation, each
of the instances would be used in turn as a test instance to
be measured on the extent to which the instance belongs to
each single class. Finally, all these instances would have been
assigned fuzzy truth values regarding the fuzzy membership
degrees to each of the classes, which can be easily discretised
to binary truth values.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a fundamentally different ap-
proach to address the issue of multi-output for classification



tasks. Previous approaches worked with the assumption that
different classes need to be mutually exclusive in multi-class or
multi-label classification tasks, due to discriminative learning
of classifiers. In particular, this paper has proposed to trans-
form a discriminative single-task classification problem into a
generative multi-task classification problem. In other words,
the class attribute, which is typically involved in a multi-class
or multi-label classification task, needs to be transformed into
several binary attributes, each of which is corresponding to
one of the predefined class labels and could be independent
or correlated to the other labels.

The proposed generative multi-task classification is funda-
mentally different from both single-label (multi-class) classi-
fication and multi-label classification discussed in Section II.
The proposed type of classification is aimed at judging the
membership or non-membership of an instance to each of the
predefined class labels, through learning of a multiple-input-
multiple-output classifier. In this way of learning, it is possible
that an instance does not belong to any of the classes/labels,
whereas the other two types of classification are aimed at
learning of a multiple-input-single-output classifier that pro-
vides a unique output towards classifying an instance. This
would be useful in identifying outliers or unusual behaviour
which are difficult problems due to class imbalance issues (i.e.
fewer examples to learn from).

The above proposal has been investigated empirically by
using fuzzy rule based classification approaches on five UCI
data sets. The experimental results show that different classes
may not be mutually exclusive and thus an instance can belong
to multiple classes, especially when the classification task is
for the purpose of categorization. Also, this paper has also
demonstrated a novel application of fuzzy classification ap-
proaches towards identifying the membership of an instance to
each of the predefined classes. Consequently, fuzzy approaches
are well suited for this new type of classification.

The proposed new type of classification, which is referred to
as generative multi-task classification, can be achieved through
both supervised learning and semi-supervised learning, as
mentioned in Section V; we will explore the use of multi-
task classification in future work for both of these contexts.
In addition, we will use this new type of classification for
the identification of the relationships between different classes
such as generalization and aggregation, especially when fuzzy
approaches are adopted.
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