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Abstract: This paper examines the capacitated planar multi-facility location-allocation 

problem, where the number of facilities to be located is specified and each of which has a 

capacity constraint. A two-stage method is put forward to deal with the problem where in the 

first stage a technique that discretises continuous space into discrete cells is used to generate a 

relatively good initial facility configurations. In Stage 2, a Variable Neighbourhood Search 

(VNS) is implemented to improve the quality of solution obtained by the previous stage. The 

performance of the proposed method is evaluated using benchmark data sets from the 

literature. The numerical experiments show that the proposed method yields competitive 

results when compared to the best known results from the literature. In addition, some future 

research avenues are also suggested.  
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1 Introduction 

In this study, we investigate the planar multi-facility location-allocation problem, known as 

the multi-source Weber problem (MSWP). In this problem, we are provided with a set of 

customers, located at n fixed points, with their respective demands. We need to locate M 

facilities in continuous space to serve these n customers, and to find the allocation of these 

customers to these M facilities in order to minimise the sum of the weighted total Euclidean 

distances to serve these customers. If the facilities are assumed to have unlimited capacities, 

the customers are served by the nearest facility (for examples, see Brimberg et al., 2008 and 

Brimberg et al., 2014). However, in practice, this may not be true as facilities have capacity 

restrictions and as a result some customers may have to be served by a farther facility as the 

nearest facility cannot satisfy their demands. This study focuses on the MSWP in the presents 

of capacity constraints. This problem is referred to as capacitated multi-source Weber 

problem (CMSWP). 

The earliest work on the CMSWP was conducted by Cooper (1972) who designed the 

well-known alternating transportation-location (ATL) heuristic.  The ATL is an enhancement 

of the alternate location-allocation (ALA) method initially proposed by Cooper (1964) to 

solve the classical location-allocation problem. The basic idea of ATL is that the location-

allocation problem and the transportation problem (TP) are alternately applied until no epsilon 

() improvement in total cost is found. Sherali and Shetty (1977) developed a convergent 

cutting plane algorithm to deal with the rectilinear distance CMSWP. 

In 1992, the CMSWP was restudied by Sherali and Tuncbilek (1992). They proposed a 

branch and bound algorithm to compute strong upper bounds via a Lagrangean relaxation 

scheme and a partitioning approach. Sherali et al. (1994) put forward a reformulation-

linearization technique (RLT) to solve the rectilinear distance CMSWP and reformulated the 

problem as a linear mixed-integer programming. Sherali et al. (2002) investigated the 

capacitated Euclidean and lp distances MSWP by creating a branch and bound based on a 

partitioning of the allocation space to construct global optimization procedures. Zainuddin 

and Salhi (2007) tackled the CMSWP by designing a perturbation-based heuristic which 

considered borderline customers whose locations were situated approximately half-way 

between their nearest and their second nearest facilities. 

Aral et al. (2007a) put forward three heuristic methods which adopted Lagrangean 

heuristic, the p-median method of Hansen et al. (1998), and the cellular heuristic of Gamal 

and Salhi (2003) to solve the CMSWP with Euclidean, squared Euclidean, and lp distances. 



 

 

Aral et al. (2007b) applied simulated annealing, threshold accepting, and genetic algorithms to 

tackle the CMSWP with rectilinear, Euclidean, squared Euclidean, and lp distances. In a 

subsequent research, Aras et al. (2008) used their earlier approaches to tackle the CMSWP 

with rectilinear distance. 

Luis et al. (2009) studied the CMSWP by proposing the concept of region-rejection 

which restricted some locations to be sited too close to the previously chosen locations. A 

discretization technique of converting a plane into a discrete space was also put forward.  

Mohammadi et al. (2010) developed genetic algorithms to solve the CMSWP. Luis et al. 

(2011) designed a novel guided reactive greedy randomized adaptive search which integrated 

adaptive learning with the concept of region-rejection. Akyüz et al. (2014) put forward two 

forms of branch and bound algorithms where the first is based on the allocation space whereas 

the second on the partition of the location space to tackle the CMSWP.  

Other variants on the Weber problems includes the works of Jamalian and Salahi (2014) 

who studied the uncapacitated multi-facility Weber problem with uncertain location of 

demand points and Euclidean and lp distances for both interval and ellipsoidal uncertainty 

sets. Fernandes et al. (2014) designed a global optimisation algorithm to solve the single 

facility Weber problem with limited distances and in the presences of minimum and 

maximum numbers of customers served. Uno et al (2015) reformulated the Weber problem by 

considering random and fuzzy demands, known as the extension of the weighted Weber 

problems. Drezner (2015) modified the well-known Weizsfeld algorithm based on a parabolic 

approximation and optimality test of demand points to deal with the single facility Weber 

problem. Farham et al. (2015) suggested a hybrid evolutionary algorithm to solve the single 

facility Weber problem in the presence of congested regions where locating a facility is 

restricted but travelling is allowed.   Hosseininezhad et al. (2015) applied a cross entropy 

metaheuristic to tackle the CMSWP by introducing production and installation costs. 

Brimberg et al. (2008) and Brimberg et al. (2014) provide a comprehensive review on 

the multi-source Weber problem and in their works; a Variable Neighbourhood Search (VNS) 

was also pointed out to be applied to solve efficiently the uncapacitated case. To the best of 

our knowledge, this is the first time that the VNS is adapted to tackle this hard variant of the 

Weber problem with capacity constraints. 

The remainder of this paper is structured as follows: in the next section, the 

mathematical formulations of the capacitated multi-source Weber problem are presented. The 

section thereafter discusses the proposed two-stage method. Then, a section on computational 



 

 

results is reported. The last section provides some conclusions and highlights some potential 

future research directions. 

 

2 The CMSWP Formulations 

The CMSWP is defined as there are a set of customers, located at n fixed points, with their 

respective demands. The aim is to locate M facilities in a continuous space with their 

capacities b, and to find the allocation of these n customers to these M facilities without 

violating the capacity of any of the facilities while minimising the total sum of transportation 

costs. First, we present the notations and the decision variables then followed by the 

mathematical formulation for the CMSWP. 

 

Notations: 

M : the number of facilities to be located;  

xij  : the allocation quantities sent from facility i to customer j, i = 1, … M;  j = 1, …, n;  

d(Xi, aj) is the Euclidean distance between facility i and customer j; 

aj   =  21 , jj aa  
2
 is the location of customer j;  

wj  : the demand, or weight, of customer j, where j = 1, …, n;   

bi  : a capacity of facility i, where b  ; 

 : a set of facilities’ capacities. 

 

Decision Variables 

Xi  =  21, ii XX  
2
 are coordinates of facility i;  

 

The capacitated multi-source Weber problem (CMSWP) can be mathematically formulated 

as: 

Minimise  
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The objective function (1) is to minimise the sum of the transportation costs using 

Euclidean distances. Constraints (2) ensure that the total demand of each customer is met. 

Constraints (3) guarantee that capacity constraints of the facilities are not violated. Constraints 

(4) are non-negativity constraints which imply that the decision variables xij are positive 

flows. It is observed that once the M facilities are located, the problem becomes the 

generalized assignment problem. In addition, if the size of the located facilities is known, the 

problem reduces to the classical Transportation Problem (TP). The problem is considered to 

have at least one feasible solution by assuming that  
 


n

j

M

i

ij bw
1 1

. 

 

3 Solution Method 

In this work, a two-stage method is introduced where the first stage aims to generate a 

relatively good solution whereas in the second stage, a metaheuristics technique is 

implemented to improve the solution. In the first stage, a technique called the Basic Cell 

Approach (BCA) is used to generate a relatively good initial facility configuration. This 

approach is adapted from Irawan and Salhi (2015) which was originally designed by Gamal 

and Salhi (2003) to solve the MSWP and it was also modified by Luis et al. (2009) to tackle 

the CMSWP. The BCA discretises continuous space into discrete cells based on the location 

of customers. This approach determines the promising cells (areas) that many customers are 

located. Then, initial facility locations are generated pseudo randomly within these cells and a 

local search based on the well-known on Cooper’s Alternating Transportation-Location 

(ATL) Heuristic (Cooper, 1972) is applied to improve the facility locations.  

In Stage 2, a powerful metaheuristics called Variable Neigbourhood Search (VNS) is 

implemented to improve the quality of solution obtained by Stage 1. In this method, Cooper’s 

ATL is also incorporated as its local search. VNS was formally designed and proposed by 

Brimberg and Mladenović (1996) and Hansen and Mladenović (1997) to deal with facility 

location problems. VNS has been widely used to solve various hard combinatorial 

optimisation problems including travelling salesman problems, vehicle routing problems, 



 

 

location problems, scheduling, and time tabling problems, among others. A comprehensive 

review on variants and applications of VNS is provided by Hansen and Mladenović (2001), 

Hansen et al. (2010) and Brimberg et al. (2014). Figure 1 presents the main steps of the 

proposed two-stage method to tackle the CMSWP. 

 

Figure 1  The main steps of the proposed two-stage method to solve the CMSWP 

Stage  1  

 Build m=2*M equal squares covering all demand points by using The Basic Cell 

Approach (BCA).  The BCA also select M points (X) pseudo randomly based on 

cumulative probability distribution.  

 Improve the solution (X) by implementing Cooper’s ATL.  

Stage 2   

 Implement the proposed VNS starting from X. Note that Cooper’s ATL is also used in 

our proposed VNS as the local search. 

 Record the best solution as the final result.  

 

In the following subsections, the well-known Cooper’s ATL is first briefly presented as 

this method is used in the proposed method. This is followed by a subsection explaining the 

main steps of the BCA and the proposed VNS algorithm. 

 

3.1 Cooper’s Alternating Transportation-Location (ATL) Heuristic   

The reasoning behind the ATL is to construct M open facilities which are randomly selected 

from the customer locations, then the transportation problem (TP), using these M open 

facilities, is applied to find the allocation for this capacitated problem. At this point, the 

output is the M independent set of allocations, each subset consisting of ni customer locations 

where  i = 1, 2, …, M and  



M

i

i nn
1

. It is worth noting that we used ‘’ instead of ‘=’ as 

some customers may have their demand split between different facilities during the allocation 

stage. The Weiszfeld equations, see (5), is iteratively carried out to get the new location of 

these M facilities (i = 1, 2, …, M). 

Note that the demand of some customers may have been split as a result of the solution 

of the TP, such as jj ww
i
 . It can also be observed that some customers may be utilized 

more than once in (5) but every time, it is only a portion 
ij

w of their demand utilized. The 

location-allocation problem and the transportation problem are alternately applied until no 



 

 

improvement in total cost can be obtained. The step by step of Cooper’s ATL Heuristic is 

illustrated in Figure 2. 
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where  

the superscript k refers to the iteration number within the Weiszfeld iterative procedure; 

 21 ,
ii jj aa  is the location of the set of ni customer points, ji = 1, 2, …, ni;  

    kk

ii XX 21 ,  indicates the new found location of the i
th

 facility at iteration k (i = 1, 2, …, M) and 

ij
w  designates to all or a fraction of the j

th
 customer demand that is served by facility i. 

 

Figure 2  The main steps of Cooper’s ATL heuristic 

Step 1 Generate M initial starting locations at random from customers’ 

locations. 

Step 2  Find the corresponding allocation by solving the TP.  

Step 3  Find the new location using (5). 

Step 4  Solve the TP to obtain the new corresponding allocation based on 

the new locations and its cost. 

Step 5  Iterate Steps 3 and 4 until there is no further changes in cost, 

within some tolerance, in two successive iterations. 

 

3.2 The Basic Cell Approach (BCA) 

An illustration of the BCA is shown in Figure 3. Firstly, square cells are constructed which 

will cover all demand points with a side  and then empty cells (cells with no customers) are 

deleted. If the number of non-empty cells is not in the range of a prescribed number of 

aggregated spatial unit (ASU) then the value of   is revised and this process step is repeated. 

Once the specified number of the non-empty cells, ρ, is reached, a point or a potential location 

is chosen randomly from each cell to represent the aggregated point (ASU) within that cell. 

Finally, to increase the diversity of the solutions, the remaining (m – ρ) ASUs are generated at 

random. The detailed algorithm of the Basic Cell Approach is given in Figure 4. 

 

Figure 3  The illustration of the Basic Cell Approach  



 

 

 

 

Figure 4  The main step by step of the Basic Cell Approach 

 

 

Step 1 Define the parameters the number of ASUs (m), γ, and . 

Step 2 Initialize the length of the side of the cell  as follows: 




















minmax

minmax
minmax /)(

yy

xx
mxx  

 where xmax and xmin refer to the maximum and the minimum x coordinates of the potential 

points, respectively. ymax and ymin are defined similarly. 

Step 2 Let ρ denote the number of non-empty cells, where ρ  [mγ(1-), mγ]. 

Step 3 Construct square cells of length  which cover all demand points where cell 1 has its 

bottom-left corner at (xmin, ymin). If (ρ  [mγ(1-), mγ] then go to Step 8. 

Step 4 Let L and U be lower and upper bounds of the length of the side of the cell. Set U =  

and L = U / 2. 

Step 5 Construct square cells of length L. If ρ< mγ(1-) then set   U = L and L = U / 2 and 

repeat this step, otherwise conduct the bisection method as in Step 6.  

Step 6 Calculate 2/)( LU   . 

Step 7 Construct square cells of length . If ρ mγ(1-) and  ρ mγ then go to Step 8, otherwise, 

if ρ< mγ(1-) then U =   else L =  and go back to Step 6. 

Step 8 Set count = 0. 

Step 9 Generate randomly  (0,1) and choose )(1
)(

~   ~ 
z

Fzstz  with  


z

v vz PF
1)( . 

Step 10 Choose randomly a demand point k in the cell z~ . 

Step 11 Set X = X  {k}. If |X| = M stop the search. Otherwise set count = count + 1 and return to 

Step 9 



 

 

 

 

3.3 The proposed VNS algorithm 

In Stage 2, the implementation of the metaheuristic VNS is adopted to enhance the solutions 

obtained from the first stage. The aim is to reduce the risk of being trapped at poor local 

minima. Figure 5 presents the main steps of the proposed VNS to tackle the CMSWP. Let 

cmax denote the number of cycles (times) for executing the VNS. In the VNS, the 

neighbourhood search is conducted by ‘shaking’ the current solution. In our method, the 

shaking process is done by swapping a randomly chosen facility with a randomly facility 

chosen to diversify the search even more. In the local search, the Cooper’s ATL heuristic is 

implemented.  

 

Figure 5  The proposed VNS Algorithm to solve the CMSWP 

 

Step 1  Repeat cmax times the following steps: 

Step 1.1  Set counter k = 1 

Step 1.2  Shaking 

Do the following step k times. 

 Remove randomly 1 facility from X and add 1 facility randomly as well. The new 

facility is chosen at random from one of customer locations. 

Step 1.3  Local Search 

 Apply local search (Cooper’s ATL heuristic) starting from X.  

Step 1.4  Move or Not 

If there is an improvement, update the solutions and set k = 1 else k = k+1. 

Step 1.5  If k  kmax then return to Step 1.2, else go to Step 2 

Step 2 Keep the best solution as the final result. 

 

4 Computational Experiments 

To evaluate the performance of the proposed two-stage method, the experiments were 

conducted using the well-known data sets taken from Brimberg et al. (2000). These data sets 

were originally used for the case of MSWP. Initially, there were four data sets in Brimberg et 

al. (2000) which consist of 50, 287, 654, and 1060 customer points, respectively. In this 

experiment, we only use three data sets to represent medium and large problems, i.e., 287, 



 

 

654, and 1060 customer points. 

The number of open facilities (M) is set to be from 5 to 50 with an increment of 5. Since 

these data sets were originally used for the uncapacitated cases, hence Zainuddin and Salhi 

(2007) suggested that the capacity of facility i (bi) is computed as the average demand of each 

facility, such that 







 
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Mwb
n

j

ji

1

, where  x  is the smallest integer  x. This setting is also 

adopted by Luis et al. (2009; 2011). It is also observed that there would be cases where the 

total capacity of the facilities (i.e. Mbi) would be larger than the total customer demand             
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will be introduced. This dummy customer will only 

contribute at the transportation problem stage and will be ignored during the location and the 

allocation processes. 

The proposed VNS algorithm was implemented in C++ .Net 2012 and run on a PC with an 

Intel Core i5 CPU @ 3.20GHz processor, 8.00 GB of RAM and under Windows 7. Some 

parameters were used during the execution of the proposed VNS algorithm, i.e., kmax = M,   

cmax = M, m = 2*M, γ = 1-0.1, and  = 0.05. The figures of these parameters were found based 

on our preliminary experiments.  

The solutions of the MSWP provided by Brimberg et al. (2000) are used as lower 

bounds for the CMSWP. The percentage deviation is computed based on these lower bounds 

as follows: 

100(%) 



LB

LBbest

F

FF
dev   (6) 

where Fbest designates to the best solution obtained by the proposed VNS algorithm and FLB 

refers to the lower bound or “best” cost for the MSWP.  

To the best of our knowledge, the results of Zainuddin and Salhi (2007), ZS for short, 

Luis et al. (2009), LSN for short, and Luis et al. (2011), GLSN for short are the only ones 

available in the literature for direct comparison. The summary results for the three data sets 

are presented in Tables 1-3, respectively. For completeness, the overall average (OAV) for 

each data set is also given. The bold numbers in Tables 1-3 refer to the best new found 

solutions. Based on our results, the proposed method provides encouraging solutions when 

compared to the results from the literature. Our results are superior from the results given by 

Zainuddin and Salhi (2007) and Luis et al. (2009) and very competitive compared to Luis et 



 

 

al. (2011). For instance, in the case of the 287-customers problem, the proposed method found 

6 new best solutions and the OAV outperform the results of Zainuddin and Salhi (2007), Luis 

et al. (2009), and Luis et al. (2011) by 0.26%, 0.09%, and 0.05%. In the case of the 654-

customers problem, the proposed method found one new best solutions. In the case of n=1060 

customers, the proposed method gives better results by 1% and 0.50% from Zainuddin and 

Salhi (2007) and Luis et al. (2009) respectively and the proposed method found 5 new best 

solutions out of 10. However, based on the overall average, the proposed method still 

provides favourable results compared to the GLSN of Luis et al. (2011).  

To diversify the search, our proposed two-stage method explores different 

neighbourhoods by swapping potential facility locations. However, as we introduce a multi-

start approach within the search, the proposed method requires more computing time.  

 

Table 1  Comparison for All the Results for the 287-Customers Problem 

M 
Lower 

Bound 

ZS LSN GLSN 
The Proposed 

VNS Algorithm 

Dev. 

(%) 

CPU 

(sec) 

Dev. 

(%) 

CPU 

(sec) 

Dev. 

(%) 

CPU 

(sec) 

Dev. 

(%) 

CPU 

(sec) 

5 9715.63 7.90 56.57 7.92 11 7.92 14 7.94 110662 

10 6705.04 25.77 539.11 25.80 17 25.80 41 25.80 487580 

15 5224.70 33.82 1837.17 33.89 25 33.99 118 33.87 1250507 

20 4148.84 38.99 2532.21 38.48 38 38.48 251 38.44 1586951 

25 3348.71 44.37 3442.54 44.33 64 44.31 478 44.27 1537624 

30 2716.91 54.23 6265.81 54.15 85 54.14 792 54.10 1657516 

35 2238.18 69.27 8310.36 69.24 125 69.23 1202 69.17 3126617 

40 1900.84 84.96 10948.99 84.33 151 84.33 1688 84.26 2115969 

45 1630.31 94.82 12169.82 94.92 219 94.82 2530 94.89 2731977 

50 1402.58 115.94 19814.90 116.06 312 115.93 3815 115.86 3974198 

OAV 57.01 6601.76 56.91 104.70 56.89 1092.90 56.86  

 

 

Table 2 Comparison for All the Results for the 654-Customers Problem 

M 
Lower 

Bound 

ZS LSN GLSN 
The Proposed 

VNS Algorithm 

Dev. 

(%) 

CPU 

(sec) 

Dev. 

(%) 

CPU 

(sec) 

Dev. 

(%) 

CPU 

(sec) 

Dev. 

(%) 

CPU 

(sec) 

5 9715.63 54.00 62.67 54.00 18 54.00 25 54.00 215555 

10 6705.04 42.81 136.94 42.81 31 42.81 81 42.81 459415 

15 5224.70 67.69 852.92 67.69 64 67.69 355 67.69 859849 

20 4148.84 69.37 1086.59 69.36 107 69.36 726 69.36 1788603 

25 3348.71 47.52 3842.79 47.52 180 47.51 1331 47.52 7523410 

30 2716.91 86.77 852.18 76.33 247 76.33 2199 76.33 9113601 

35 2238.18 78.13 5772.53 78.13 354 78.13 3455 78.13 12558625 

40 1900.84 44.25 4740.56 43.85 517 43.84 5112 43.84 13148668 

45 1630.31 59.23 5112.34 55.28 638 55.26 7265 55.26 18756620 

50 1402.58 41.96 20333.38 29.13 807 29.13 9884 29.12 15897503 

OAV 59.17 4279.29 56.41 296.30 56.40 3043.30 56.40  



 

 

 

 

 

 

Table 3 Comparison for All the Results for the 1060-Customers Problem 

M 
Lower 

Bound 

ZS LSN GLSN 
The Proposed VNS 

Algorithm 

Dev. 

(%) 

CPU 

(sec) 

Dev. 

(%) 

CPU 

(sec) 

Dev. 

(%) 

CPU 

(sec) 

Dev. 

(%) 

CPU 

(sec) 

5 1851879.88 1.06 370.85 1.06 60 1.06 72 1.06 206564 

10 1249564.75 3.11 1167.35 3.11 101 3.11 264 3.11 1330936 

15 980132.13 1.63 4063.94 1.63 255 1.63 845 1.63 5424609 

20 828802.00 3.42 5116.90 3.35 436 3.35 1833 3.33 12549620 

25 722061.19 3.87 30551.64 3.91 662 3.85 3261 3.87 14588140 

30 638263.00 3.92 45191.83 3.95 1002 3.92 5311 3.93 17450855 

35 577526.63 3.35 21713.60 3.36 1365 3.31 8253 3.31 20181102 

40 529866.19 6.02 47253.61 6.16 1700 5.99 12754 6.04 24628143 

45 489650.00 7.83 120072.31 7.88 2204 7.74 17125 8.01 29593225 

50 453164.00 5.87 130753.06 5.50 2797 5.29 23854 5.40 37597025 

OAV 4.01 40625.51 3.99 1058.00 3.92 7357.20 3.97 16355021.90 

 

5 Conclusion 

This study has put forward the two-stage method to tackle the capacitated multisource Weber 

problem. In the first stage, initial facility configurations are generated using the Basic Cell 

Approach. In the second stage, the improvement is made through the implementation of the 

Variable Neighbourhood Search. Our results found seven new best solutions out of 30 

solutions. This has shown that our proposed two-stage method produce competitive results 

when compared to the existing results in the literature. 

Potential future investigations based on the current study may include implementations 

on other metaheuristic techniques such as large neighourhood search or evolutionary 

algorithms, see Gendreau and Potvin (2010) for a comprehensive review on metaheuristics. 

The inclusion of set up cost for constructing facilities in the objective function can be one of 

the new research areas. 
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