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Abstract 

Accurate monitoring of homeostatic perturbations following various psychophysiological stressors is essential 

in sports and exercise medicine. Various biomarkers are routinely used as monitoring tools in both clinical and 

elite sport settings.  Blood collection and muscle biopsies, both invasive in nature, are considered the gold 

standard for the analysis of these biomarkers in exercise science. Exploring non-invasive methods of collecting 

and analysing biomarkers which are capable of providing accurate information regarding exercise induced 

physiological and psychological stress is of obvious practical importance. This review describes the potential 

benefits, and the limitations, of using saliva and urine to ascertain biomarkers capable of identifying important 

stressors which are routinely encountered before, during or after intense or unaccustomed exercise, competition, 

over-training, and inappropriate recovery. In particular we focus on urinary and saliva biomarkers that have 

previously been used to monitor muscle damage, inflammation, cardiovascular stress, oxidative stress, hydration 

status, and brain distress. Evidence is provided from a range of empirical studies suggesting that urine and saliva 

are both capable of identifying various stressors.  Although additional research regarding the efficacy of using 

urine and/or saliva to indicate the severity of exercise induced psychophysiological stress is required, it is likely 

that these non-invasive biomarkers will represent ‘the future’ in sports and exercise medicine. 

 

Key Points 

1. Urine and saliva offer a non-invasive alternative to blood and muscle collection when monitoring 

various psychophysiological stressors. 

2. Due to their practicality additional research addressing the diagnostic capabilities (sensitivity and 

specificity) of using these non-invasive biomarkers is required. 
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1. Introduction 

Understanding the impact of exercise induced psychophysiological stress is essential in sports and exercise 

medicine. Historically, the analysis of exercise induced stress relied on the measurement of functional outcome 

measures including strength, speed, power and subjective scales to assess recovery status, the effectiveness of 

training programs, and symptoms of overreaching.  Recently, the use of biomarkers, which in a clinical setting 

are considered the gold standard [1-6], has become the quintessential monitoring tool in the field of sport and 

exercise medicine.  This is primarily related to the ability of biomarkers to provide a quantitative individualistic 

snapshot of the homeostatic response of an individual at a certain time point. Therefore, the purpose of this 

review is to examine the use of urine and saliva as non-invasive diagnostic media for the quantification of 

“stress” through biochemical markers in the field of sport and exercise medicine.  A broad literature search was 

performed using PubMed which included the following terms: urine, saliva, exercise, sport, medicine, stress, 

muscle damage, inflammation, immune system, oxidative stress, brain stress, hydration and cardiovascular 

stress.  Biomarker article inclusion criteria included research on active and healthy humans only. 

 

1.1 What is a Biomarker? 

In order to review the use of urine and saliva as diagnostic tools in sports and exercise medicine the nature and 

function of a biomarker must be explored. The National Institute of Health (NIH) defines a biomarker as “a 

characteristic that is objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes, or pharmacologic responses to a therapeutic intervention” [7].  There are two types of 

biomarker; those used in risk prediction, and those used to screen, monitor and diagnose [8].  Consequently, for 

an analyte to be considered as a prognostic, diagnostic and acceptable marker, it has to go through five stages of 

evaluation:  

 

1) analytic (precision and accuracy). 

2) diagnostic (sensitivity and specificity). 

3) patient outcome efficacy (medical decision-making). 

4) operational (predictive value and efficiency). 

5) cost/benefit (societal efficacy) [9]. 
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Through providing a quantifiable characteristic of a biological process, biomarkers can be used as a clinical 

surrogate endpoint [10], or provide objective information regarding the effect of an exercise protocol [11-14] or 

clinical treatment [15-17].  In addition, they can aid in understanding the prediction, cause, diagnosis, 

progression, regression, or outcome of treatment of disease [8], or in the context of this review, the acute and 

chronic psychophysiological stress response to exercise. 

  

Biomarkers have several added advantages that can include and are not limited to: the provision of a full 

spectrum of disease, recovery and injury progression, instantaneous and initial stress analysis that reduces the 

degree of misclassification [8] and separate individual physiological variations amongst individuals. These can 

isolate the individual variations in perceived soreness or fatigue that to help facilitate the coaches and medical 

staff in making objective decisions regarding recovery and re-entry into training and playing.  Three 

measurements have been suggested which include the degree to which the biomarker reflects the biological 

phenomenon (content), the degree to which a marker measures what it claims (construct), and the extent to 

which it correlates with a specific disease (criterion) [18].   

 

2. Invasive and Non-invasive Methods 

While different invasive and non-invasive procedures offer various benefits, consistent sample collection in 

recreational and professional athletes requires an approach that is practical and non-disruptive to the playing and 

coaching staff alike.  Whilst exercise research is in abundance, the general analysis consensus still revolves 

around an invasive approach: likely a result of the wealth of potential biomarkers available in plasma, serum and 

cerebrospinal fluid (CSF) and the extensive literature pertaining to exercise stress and the ability to make 

comparisons.  Implementing a practise that incorporates the use of non-invasive methods that allows for the 

accurate evaluation of exercise induced physiological and psychological stress is important for continued and 

sustained participation.  Moreover, the examination, development and identification of potentially useful 

biomarkers are often completed in a controlled laboratory setting which may not always successfully translate to 

an elite sport setting.  

 

For the purpose of this review, an invasive procedure is defined as a diagnostic technique that requires entry of a 

body cavity (eg: skin) or interruption of normal body functions [19].  Typical invasive procedures in exercise 

science and medicine include blood (serum and plasma), CSF and muscle biopsies.  A non-invasive technique is 
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strictly defined when no break in the skin is created and there is no contact with the mucosa or skin break or 

internal body cavity beyond a natural or artificial body orifice [19].  Procedures can include collection of urine, 

saliva, sweat and imaging techniques such as magnetic resonance imaging (MRI), electrocardiogram (ECG) or 

computerised tomography (CT).   

 

In a sports and exercise medicine setting the non-invasive nature of urine and saliva collection allows for 

personalised timing of sample collection, limited increases in stress hormone concentrations, rapid sample 

collection and reduced risk of cross-contamination which does not require a specific professional for obtaining a 

sample (e.g. phlebotomist).   Moreover, the added advantage of saliva and urine over blood collection can be 

attributed to the simplicity of the collection devices.  Blood collection requires sample tubes containing anti-

coagulating compounds, clot activating factors, and ligand binding compounds to safely collect and stabilise the 

blood components whilst urine and saliva collection simply involves a sterilised, often pre-weighed tube [20]. 

 

Invasive procedures are also associated with pain and considerable distress of the athlete or participant.  This 

may affect secretion of certain stress hormones like cortisol [21, 22].  This becomes especially important in 

studies quantifying stress following exercise that may lead to false-positive results and an over-estimation of the 

stress imposed by the exercise. Similarly, venepuncture can become overly obtrusive and time consuming 

especially in a team sport where large numbers of athletes are involved.  Previous research has clearly 

demonstrated the unpleasant connotations associated with venepuncture.  Comments ranging from “extremely 

distressing” in children [23] to “dread” in >10% of patients surveyed [24] indicate the general population’s 

preference for non-invasive procedures in sample collection. 

 

 

2.1 Analyte Availability 

Analyte availability can often cause certain restrictions in the assessment of exercise induced stress.  

Improvement in diagnostic methodologies however has led to the development of specific and sensitive 

immunoassay [25], chromatographic [26] and spectrometric assays [27] capable of providing an overview of an 

individual’s molecular profile through saliva and urine.  Haematological parameters have been investigated 

extensively in exercise research [28-30] that provide a comprehensive overview of stress relative to acute and 

chronic exposure.  Whilst this offers an effective representation, individual biomarkers often overlap providing 
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unnecessary and time consuming analysis.  Non-invasive alternatives such as urine and saliva collection offer 

reliable indicators that do not restrict the ability to quantify “stress”.  Certain urinary biomarkers have been 

shown to repeatedly provide a precise quantification and analysis of exercise induced stress and disease or 

illness that does not require the use of an invasive procedure [26, 31-37].  For example, providing a 

measurement of the total free (un-bound) hormone concentration in the case of saliva more accurately reflects 

the active form in the body [38].   

 

3. Saliva 

Saliva is an exocrine solution [39] made of 99% water which can be considered as gland-specific or whole 

saliva.  Differentiated by the four types of individual glands, analysis is typically completed on whole saliva 

secretions.  It contains a wide spectrum of oral fluids, secretions from both the major and minor salivary glands, 

and several constituents of non-salivary origin such as gingival crevicular fluid (GCF), expectorated bronchial 

and nasal secretions, serum and blood derivatives from oral wounds, bacteria and bacterial products, viruses and 

fungi, desquamated epithelial cells, other cellular components, and food debris [40-44].   

 

3.1 Correction of Measurements for Salivary Flow Rate 

Typically, saliva compounds are expressed in four different forms; 

1) Absolute concentration (µg/mL, nmol/L). 

 

2) Secretion rate (µg/min) to account for those biomolecules (IgA, DHEAS) [45] affected by flow rate.  Some 

evidence suggests that exercise induced changes in flow rate are psychological and related to parasympathetic 

withdrawal rather than sympathetic activation [46, 47]. Exercise is established as causing a decrease in saliva 

volume [48] that may cause a concentration effect of a marker.  This correction has been presented following a 

160 kilometre run where IgA concentration had not changed, but a 50 %  decrease in secretion rate was 

observed [49]. 

 

3) Concentration relative to total protein content (µg/mg protein) to account for oscillations in protein content 

relative to changes in biomolecule concentration.  The assumption is that total protein content does not change 

in response to exercise.  A decrease in sIgA was observed following cross country skiers and cyclists which 

further decreased when corrected for total protein [50, 51].  However it has been suggested that correction with 
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total protein is inappropriate and misleading [52]. Studies have identified no change in sIgA or flow rate 

following intense exercise, but an increase in total salivary protein which indicates an evaporative loss of saliva 

when breathing through the mouth during exercise [53, 54]. 

 

4) Concentration relative to saliva osmolality (mg/mOsm) to account for low salivary flow rates [55].  Exercise 

is detrimental to saliva flow quantity but not quality, and with the total protein content in saliva less than one 

percent [52], expressing a salivary biomarker as a ratio to osmolality may be an appropriate means of 

expression. 

 

The presentation and reference range determination of salivary biomarkers is an extremely important aspect of 

exercise induced stress analysis.  This may explain some of the variation involved when comparing and 

contrasting results within and between sports.  While most exercise studies will suggest the intensity of the 

protocol or game is the determining factor in changes in salivary biomarkers of physiological and psychological 

stress [33, 56, 57], it is possible the difference may be attributed to either the collection protocols in place and 

mishandling of samples, or the expression of the marker in the processes described. 

 

3.2 Production and Composition 

Saliva originates mainly from four pairs of glands; parotid, sublingual, submandibular and minor [58], with 

relative contributions ranging from four to 65 %  [59].  Each gland can produce a variable amount of salts, ions 

and proteins [60, 61] that can be influenced by factors including psychological and hormonal status, physical 

exercise, flow rate, circadian rhythm, type and size of the gland, size and type of the stimulus, blood type, smell 

and taste, drugs, age, hereditary influences, and oral hygiene [59, 62-64] with composition variability dependent 

upon basal secretion or ANS stimulation [61].   

 

Containing a variety of enzymes, hormones, antibodies, antimicrobial constituents, and growth factors [65, 66], 

saliva is an ideal medium for the analysis and diagnosis of exercise stress.  It is primarily composed of water 

with an abundance of weak and strong ions where their concentration is dependent on secretion stimulation type 

[67]. Organic non-protein compounds such as uric acid, creatinine, bilirubin, glucose, amino acids, fatty acids, 

amines and lactate are also detectable [59, 68-73].  Other constituents include up to 2290 proteins [74] 
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comprised mainly of amylase, sIgA, carbonic anhydrase and proline-rich proteins, catecholamines [75] and 

hormones such as cortisol and testosterone whose concentrations represent serum-free levels [76].   

 

3.3 Use in Exercise Stress 

Saliva represents an increasingly useful auxiliary means of diagnosis due to its relative ease and stress free 

collection protocol, especially when blood or urine sampling is not feasible. Its role and connection with several 

pathological [77, 78] and physiological states [79, 80] enables suitable analysis and predictions. Whilst saliva 

diagnostics have been predominantly utilised in the detection of oral diseases such as Sjögren [81] and Beçhet 

syndrome and oral tumours [82], they have been proposed as reliable and accurate predictors of several other 

illnesses, diseases and exercise induced stress changes as previously reviewed [83].   

 

Exercise induced stress provides a similar avenue for the use of salivary biomarkers in prediction and 

evaluation.  These biomarkers offer potential in both an acute assessment of physiological and psychological 

stress (e.g. a competitive game) [84] and chronic assessment (e.g. symptoms of over-training or non-functional 

overreaching) [35].   Salivary markers have also identified fatigued and over-trained swimmers during the 

course of a competitive season [85], those at risk of a upper respiratory tract infection (URTI) in elite rowers, 

yachtsmen and soccer players [86-89], marathon runners who become immnocompromised [90], elite rugby 

union and league players suffering from over-reaching, over-training or post-match fatigue [91, 92], 

psychophysiological and catabolic stress associated with high intensity or intermittent exercise [93-95], changes 

in the circadian rhythm of trained athletes following strenuous exercise [96], and monitored rugby based 

performance [97].  Thus saliva offers exciting potential in athletic settings. 

 

3.4 Biomarkers 

The development of more sophisticated detection techniques has allowed for an increasing concentration of 

salivary biomarkers capable of providing diagnostic capabilities in exercise research.  Whilst the list of potential 

biomarkers is not quite as exhaustive as its serum and plasma counterparts, its combination with urinary 

biomarkers provides a similarly reliable alternative.  Table 1 lists some of the most popular biomarkers found in 

saliva that have shown precision and accuracy for quantifying exercise stress.  Although not exhaustive, Table 1 

highlights the most commonly used salivary biomarkers in research on active individuals in exercise and sport 

medicine. 
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3.4.1 Salivary Immunoglobulins 

Salivary immunoglobulins, in particular IgA, are the most well studied markers of the mucosal immune system 

due to their relative ease of collection and extensively investigated response in relation to exercise. A selective 

deficiency in sIgA has been noted in those with a high incidence of infection [98] or poor saliva flow rate [99].  

This is in contrast to Ammann and Hong [100] who stated IgA deficiency is relatively common and not usually 

associated with a markedly impaired resistance to infection.  Even though several diseases are associated with 

an increased sIgA secretion rate [101-103] and low incidence of URTIs [104], the  common immunosuppression 

observed in athletes does not necessarily mean they are immunocompromised in their response to common 

antigens [105].  Equivocal evidence surrounds this topic with suggestions the antiviral defence mechanisms of 

athletes may be compromised which leads to a decrease in performance [106, 107]. 

The research on the effect of exercise on sIgA is expansive and extensively reviewed elsewhere [108].  Salivary 

immunoglobulin A is unquestionably exercise intensity dependent, with moderate intensity protocols failing to 

elicit any significant post-exercise changes [53, 109-111].  Similar studies have also identified no change in 

sIgA following an elite soccer match [112], intensive tennis training [113], a collegiate rugby game [114], jiu-

jitsu matches [115] or resistance exercise [116, 117].  Participating in ultra-endurance events and rugby union 

however result in an immediate post-exercise suppression [20, 118-120].  Similarly, prolonged cycling at 70% 

V̇O2max [34], cross country skiing for 50 km [50], and competing in a triathlon [121] all cause an individual 

athlete to become immunocompromised. 

sIgA monitoring may also be useful in determining the risk of infection [122, 123] and excessive training in 

athletes [124, 125].  Decreased levels of sIgA have been associated with stale, underperforming and over-trained 

athletes [126-129].  Elite kayakers have showed a 27 – 38 % decrease in sIgA secretion rate after each session of 

training over three weeks [130].  In contrast, no change in sIgA secretion rate was observed in 20 female 

division one soccer players during a 13 week season [131], which is similar to the lack of change in pre-race 

sIgA in competitors completing 10 marathons in 10 days [132] and professional rugby players during a 

competition [133]. 

There current literature appears to be in agreement that decreased levels of sIgA are associated with an increased 

incidence of URTIs [134-136].  An increase in URTIs has been linked to decreased sIgA concentrations 

following a soccer match [88], basketball game [137], at least three hours a week endurance training [79], 
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American Football [138], swimming [85] and rugby union [35, 139].  In contrast,  no relationship between 

URTI incidence and sIgA following a 84 km ultra-marathon was observed [140], while similar observations 

have been seen in soccer [131], military training [141] and yachting [87].   

 

3.4.2 Cortisol and Testosterone 

Cortisol and testosterone are steroid hormones synthesised in the zona fasciculata layer of the adrenal gland and 

Leydig cells of the testes, respectively.  Their secretion is controlled by the direct stimulation of the HPA and 

hypothalamic-pituitary-testicular axis.  Cortisol specifically has several biological properties including 

stimulating gluconeogenesis and glycogen synthesis in the liver and its ability to inhibit protein synthesis and 

stimulate protein degradation in peripheral tissues [142].  Cortisol is extensively studied in professional and 

recreational athletes due to its immunosuppressive, catabolic and protein synthesis inhibitory effects.  It has 

been shown to suppress both CD4 and CD8 T-cells [143] as well as regulating degranulation [144], ROS 

production [145] and mobilization of neutrophils [146].  Furthermore, cortisol also has the ability to inhibit 

DNA replication and mitosis and repress the formation of antibodies and lymphocytes [142, 147].  This was 

evident following three hours of intense exercise where a strong correlation (r = 0.63) was observed between 

post-exercise cortisol concentrations and lymphocyte apoptosis [148].  Testosterone meanwhile, has both 

anabolic [149] and andronergic effects [150] that are used in a medical context for hormone replacement therapy 

[151] and illegally to improve athletic performance [152]. 

 

Salivary cortisol has been used in exercise related studies due to its ease of collection and general reflection of 

the free fraction of the free component in blood [153, 154].  Most serum cortisol is bound to proteins including 

cortisosteroid binding protein and albumin, whereas free cortisol passes relatively obstruction free through 

plasma membranes [155] allowing for rapid availability and ease of measurement.  It has been used to study the 

acute effects of exercise [156, 157], identify athletes in a state of over-training [158-160], the recovery of an 

athlete [91], or used simultaneously with testosterone to predict performance [161-163].  Participation in 

professional rugby league matches has been associated with significant increases in salivary cortisol [164], 

which is similar to the post-exercise increases following soccer [112], ultra-endurance marathon [120], 

synchronized swimming [165], golf [166], rock-climbing [167], and resistance training [168-170].  However 

there is conflicting evidence regarding the salivary cortisol response and some studies have reported no 
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alterations in the biomarker following a professional soccer match [171], resistance exercise [172], repeated 

high intensity sprints [173] or a professional rugby season [133]. 

Testosterone has been used extensively in physical impact sports such as rugby union and league to monitor 

training programs [174, 175] and predict performance [176, 177].  It has also been used in sporting competitions 

[178], cross country running [179], resistance exercise [180], body building training [169], elite triathlete 

training camps [181], high intensity interval cycling [182] and as a direct marker of overtraining in elite 

volleyball players [183]. 

 

3.4.3 Other Biomarkers 

Several other biomarkers have the precision and accuracy to provide quantifiable data pertaining to exercise 

stress.  Alpha-amylase is responsible for starch and glycogen degradation [83] and is a marker of 

psychophysiological stress and sympathetic nervous system activation [184].  Its measurement provides 

information regarding sympathetic adrenal medullary axis activation, given that α-amylase concentration has 

found to be lower in athletes who are more experienced and confident [185].  It has also shown to change in 

response to acute down-hill running [186] and cumulative tennis training [160].   

 

Lactoferrin and lysozyme, antimicrobial compounds found in saliva secretions [187, 188] have been used to 

monitor longitudinal changes in elite weightlifters [189] and basket-ballers [190], measured in endurance 

exercise in which hydration has an effect on secretion [191] and shown to increase in response to running at 

75% VO2max [192].  Intense exercise however, may reduce their concentration which may subsequently 

increase risk of infection and incidence of a URTI [83].  Other useful biomarkers include TBARS and uric acid, 

both of which have been shown to change in response to resistance training [193] and provide a reliable 

indication of oxidative stress.  Protein carbonyls and 8-oxo-2'-deoxyguanosine (8-oxo-dG) also have potential; 

while not yet measured in an exercise context they have been used as key indicators of oxidative stress in 

diabetes mellitus [194] and periodontitis [195].  Saliva osmolality can provide hydration status in exercise 

research [196], whilst S100B has shown promise as a non-invasive biomarker of brain injury in various 

sportsmen during competition [197].  More recently, nanoparticle-enabled protein biomarkers (proteomics) have 

been proposed as sensitive indicators of brain injury/concussion with further developments required [198]. 
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Salivary CRP and neopterin have not been measured in exercise research but have been shown to provide 

information pertaining to inflammation in a clinical context [199-201].  Similarly, cTnT and CK-MB have also 

been used in a clinical context to provide information regarding cardiovascular stress [202] and muscle damage 

[203] respectively, that may become useful in exercise medicine as non-invasive alternatives.  Furthermore, 

specific interleukins have been identified in saliva [204, 205], although their relationship to blood 

concentrations remains unclear. 

 

 

3.5 Limitations 

As a diagnostic medium, saliva has some limitations; specifically in the medical field where diagnostics rely 

heavily on combinations of biomarker panels used as screening tools to improve overall reliability.  Its 

practicality, in addition to the development of modern and more precise technologies, has however expanded its 

efficacy in the assessment of exercise-induced stress. 

 

As a consequence of the diurnal and circadian variations of certain biomolecules present in saliva [206], 

concentrations do not always reliably reflect the concentrations of these molecules in serum.   Therefore it is 

imperative when analysing exercise stress to plan a precise collection protocol before the experiment to 

understand the individual biological variation of a subject, or take multiple samples at the same time to provide 

meaningful results [38]. 

 

Biomolecules in saliva that rely on active transport are generally flow rate dependent meaning exercise-induced 

changes have to be corrected for saliva flow rate.  Studies have identified differences in post-exercise changes in 

sIgA in cyclists completing an exercise protocol in a cold environment.  Saliva flow decreased significantly 

following exercise resulting in an increase in sIgA concentration, however when corrected for flow rate, the 

protocol seemingly caused immune suppression calculated by the secretion rate of IgA [34].   

 

Salivary composition can also be influenced by the method of collection and the degree of stimulation of 

salivary flow [40, 45].   Careful consideration has to be given to the methodology of sample collection due to 

the risk of over-stimulation providing a false-positive or negative result (analyte dependent) using cotton 

absorbent materials, hydrocellulose or acidic based stimulation (citric acid) [207-211].  However, some devices 



13 
 

such as Sarstedt-Salivette
®
 have been shown to reflect total and free steroid concentrations more accurately than 

the traditionally accepted passive-drool technique [212].  Furthermore collection time duration and position of 

collection can significantly affect concentration and secretion rate of specific analytes [213]. 

 

Saliva contains analytes in concentrations that are several-fold lower than blood [67, 75, 214, 215] which 

reduces the risk of danger or infection when dealing with potentially hazardous antigens.   It is for this reason 

advanced technologies are required to quantify any changes in analyte concentration.  The development of 

affordable ELISAs can detect concentrations of salivary steroids as low as 2 pg/mL with a sensitivity limit of 1 

pg/mL, while liquid-liquid extraction by either diethylether or dichloromethane provides an added detection step 

extracting polar substances from the saliva [216]. This allows the detection of any small changes following 

exercise stress that may represent a significant change.  As a result of the large concentration differences 

between blood and saliva, contamination through use of mouth guards or impact related gum trauma causing 

bleeding can significantly alter the concentrations of specific analytes [45, 217]. Consequently, the need for 

robust saliva collection protocols is imperative for precise and accurate interpretation of results. 

 

4. Urine 

Urine is an aqueous solution of an organism that is used to excrete the by-products of cellular metabolism 

through kidney filtration; its appearance is based on colour, foaming, odour and clarity [218].   The filtration 

process and non-invasive nature of collection involved in urine sampling makes it an ideal matrix for the 

detection of exercise-induced stress. 

 

4.1 Correction of Measurements for Urine Volume 

Whilst measurement of salivary biomarkers requires correction for flow rate, urine requires volume correction.  

Hydration levels are known to affect the concentrations of urinary biomarkers.  Hypo-hydration has a 

concentration effect while hyper-hydration has a dilution effect.  In exercise specifically, the consumption of 

water and carbohydrate-electrolyte formulations is known to influence temperature regulation, physiological 

strain and endurance during exercise [219-222].  This is a key indication of how vital hydration status is for 

exercise performance and therefore the challenges associated with urinary biomarker correction and hydration 

status.  
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It is critical when presenting the concentration of a selected marker in relation to a reference range to correct for 

the hydration level of a subject, patient or athlete.  This is especially important when dealing with a severe 

intensity exercise or analysing the urine of suspected doping athletes in a controlled competition.  The two most 

commonly utilized methods for urine volume correction involve creatinine and specific gravity (SG). 

 

4.1.1 Creatinine 

Creatinine is a spontaneous breakdown product of creatine and creatine phosphate [223] during muscle cell 

metabolism present in serum, erythrocytes, cerebrospinal fluid and all bodily secretions [224, 225].  Originally 

identified in 1847 [226] and produced initially through heating of creatine in 1885 [227], creatinine is now 

recognised and utilised as a principal compound for urine volume correction and hydration status. 

 

Creatinine’s constant secretion rate [228] and easy quantification are two of its key properties that allow it to be 

used as an indicator of hydration status [229, 230], while lean body mass [231, 232], age [233] and renal 

function are contributing factors in its clearance that have to be considered.   

 

Modern quantification methods include the reaction with o-nitrobenzaldehyde [234], reverse phase [235-237] 

and cation-exchange HPLC [26], cation-pairing HPLC [238], mass-spectrometry and gas-chromatography 

[239].  The advantage of chromatography is the simultaneous determination of creatinine with the analyte that 

requires creatinine correction.  Usually analysed at 234 nm by ultra-violet detection, the method has been used 

effectively in the quantification correction of NP [26, 240, 241], desmosine [242], catecholamines and 

metanephrines [243]. 

 

There are a number of limitations associated with urinary creatinine correction.  Evidence has identified higher 

levels of urinary creatinine in the urine of men or lean individuals than women and obese individuals 

respectively [231, 244, 245].  This indicates lean body mass as a major factor in its excretion.  Furthermore, 

those of African-American descent excrete 5 % more creatinine per weight than those of European descent, and 

older individuals and those with renal impairment excrete less urinary creatinine than the young and healthy 

[246]. Individuals who are subjected to a creatine-free or excess creatine diet show a gradual decline and 

increased excretion respectively [247, 248].   The combination of all these variables identifies the need to 
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ascertain the normal excretion of creatinine for each individual, even though the co-efficient of variation (CV) 

for individual creatinine excretion can vary from 4 to 50 % [249-251]. 

 

Exercise provides another layer of complexity for creatinine volume correction.  Urinary creatinine has been 

demonstrated to increase by as much as 50 - 100% following a strenuous 6-mile run, 100 km marathon and 70 – 

90 km cross country ski race [252-254].  It is difficult to ascertain whether observed changes in a selected 

analyte are negatively affected by this change.  A study [255] investigating the excretion of the muscle damage 

marker 3-methyl histidine following resistance exercises showed a decrease in concentration in conjunction with 

an increase in serum myoglobin and CK.  It is unusual that a change in muscle tissue damage occurs without 

skeletal muscle protein degradation.  This may be a result of the likely increased urinary creatinine 

concentration that has been shown to increase following resistance training; which presents the potential 

difficulties associated with urine volume correction by creatinine.  In rugby union, the large aerobic and 

anaerobic component of the game may stimulate large increases in creatinine that could theoretically affect the 

interpretation of any meaningful urinary biomarker.  However, the World Anti-Doping Agency (WADA) 

(www.wada-ama.org) has adapted the use of SG in their quantification of urinary steroids and doping analysis 

[256]. 

 

4.1.2 Specific Gravity 

Specific gravity is the ratio of the density of a substance to the density of a reference substance measured 

optimally through refractometry [257].  Urine specifically can be compared to distilled H2O as a reference and is 

known to increase in SG with solute concentration [257].  This varies with the total mass of solutes that depends 

not only on the number of particles present, but also on their molecular weight [258].  The advantages of urinary 

SG include its cost and time efficient measurement using a simple hand-held refractometer in comparison to the 

time consuming and costly assays associated with creatinine. 

 

Since 1908, creatinine has been used as the method for correcting analyte concentrations in urine due to its 

“constant rate” [228].  As a result of the known variations in creatinine excretion, SG has been sought after as a 

viable alternative and used in recent exercise research [20].  The minimal studies that have compared creatinine 

and SG have shown SG performs as well as creatinine in correcting urinary analyte concentrations [26, 229, 

http://www.wada-ama.org/
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258-260] and assessing patient and pre-exercise hydration status [261-263].  Its limited use is a result of finite 

research that has not elucidated reference ranges which are critical for diagnosis.   

 

In the field, the Levine-Fahy equation is used to correct fluctuating urinary concentrations and adjust them to a 

reference value for a specific population [264]. 

 

ConcentrationSG normalized = concentrationspecimen • (SGreference – 1) / (SGspecimen – 1) 

 

The WADA uses a SG of 1.020 [265] for normalisation of testosterone precursors, metabolites, and other 

endogenous steroids in urine [256].   Other reference values ranging from 1.018 to 1.024 have also been used 

[258, 264, 266, 267] that are population dependent, while  values < 1.0010 or > 1.020 indicate relative hydration 

and dehydration respectively [268].  However, these guidelines are not without complications as measuring SG 

before two different marathons in a large cohort identified 46 % of the runners would be considered dehydrated 

which seems unlikely considering the magnitude of the impending exercise [269]. 

 

Similar limitations are associated with urinary SG quantification.  As a correction method, it may not be 

appropriate for individuals with diabetes mellitus and nephrotic syndrome.  These diseases cause high 

concentrations of heavy molecules known to affect SG and therefore introduce the potential for underestimation 

of a urinary analyte [257, 270, 271].  The effect of exercise on SG however is not well understood, although it 

can be assumed the aerobic, anaerobic and physical impacts of contact sports would significantly affect the 

density of urine.  Furthermore, the contraction and expansion of urinary constituents due to temperature and 

pressure requires the measurement of SG to be conducted in a uniform manner [272], while values < 

1.002/1.003 or > 1.003 are considered too “dilute” or “concentrate” for accurate correction [230, 272-274]. 

 

4.2 Composition and Biomarkers 

As an aqueous solution, urine is predominantly water (> 95 %), electrolytes, metabolic excretory products and 

other organic and non-organic compounds [218] controlled by the kidneys in a series of events; filtration, 

reabsorption, secretion and excretion [275].  While urine includes nitrogen containing compounds and specific 

elements [276], it also contains several compounds (Table 2) capable of providing useful information regarding 

certain illnesses and psychophysiological changes following exercise induced stress.  The subsequent list is a 
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compilation of the most popular biomarkers found in urine that have been used to evaluate “stress” in sport and 

exercise medicine research.   

 

4.2.1 Myoglobin 

Myoglobin is an O2 transportation heme protein, is specific to muscle and its detection in urine is diagnostically 

relevant and indicative of trauma induced muscle damage commonly seen following strenuous exercise [277].  

The extremely rapid elimination kinetics of myoglobin [278] in comparison to more commonly utilised plasma 

markers such as creatine kinase [279, 280], make it an ideal biomarker that provides an immediate evaluation of 

severity.  It has been used extensively in several forms of exercise [20, 240, 241, 281-285] and is quantifiable 

using both ELISA [241] and RP-HPLC [284].    

 

4.2.2 3-Methylhistidine 

3-Methylhistidine is a commonly used muscle damage marker that directly represents myofibrillar degradation 

[286].  It has been demonstrated to increase considerably following exercise [287-289]; although careful 

consideration is required based on the influence dietary meat can have on its abundance [290].   

 

4.2.3 Total Neopterin and Inflammation 

Total neopterin (neopterin + 7,8-dihydroneopterin) are compounds released by activated macrophages [291] 

following γ-interferon stimulation by T-cells [292].  They are up-regulated following resistance training [26] 

and indicate acute and cumulative changes in immune system activation following games of rugby union [20], 

Olympic rowing [293] and mixed martial arts [285].  Careful interpretation of neopterin data is essential 

however due to the large disparity in the presentation of neopterin as either neopterin or total neopterin; the 

former of which is the oxidation product of 7,8-dihydroneopterin and therefore may represent a change in 

oxidative status [240, 294].  Other inflammatory biomarkers such as interleukin-1β (IL-1β), interleukin-2 (IL-2), 

interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α), monocyte 

chemotactic protein-1 (MCP-1) and interferon-γ (IFN-γ) have also been used to identify a physiological 

response to various forms of exercise [295-297]. 
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4.2.4 Stress 

‘Stress’ has been assessed in urine through cortisol [298], testosterone [299], epitestosterone [300] and 

tetrahydrobiopterin (BH4) [240].  Steroidal compounds including natural and synthetic varieties are filtered 

through the glomerulus without any limitation.  Identification of these compounds within the urine can provide 

useful information regarding doping; the primary identification system used by the WADA.  The 

testosterone:epitestosterone ratio is often used in the detection of doping athletes [152] with concentrations 

exceeding one to four considered above normal.  BH4 meanwhile has been used to assess synthesis of 

monoamine neurotransmitters such as epinephrine and nitric oxide following rugby union matches [240], while 

the quantification of steroidal compounds is traditionally measured in saliva to avoid the need for 24 hour 

collections and because of its non-invasive nature [301]. 

 

4.2.5 Cardiovascular Stress 

Assessment of cardiovascular stress is often neglected when monitoring the internal load of athletes despite 

being a pertinent marker of exercise performance, cardiovascular fatigue and subsequent performance potential.   

NT-proBNP is the cleaved inactive fragment of brain natriuretic peptide (BNP) synthesized by cardiac myocytes 

[302] and fibroblasts [303] in response to ventricular wall tension/stress.  It is increased in the plasma of patients 

with cardiac dysfunction [304] and healthy individuals following strenuous endurance exercise [305].  Although 

not currently measured in urine following exercise, it has been quantified repeatedly in patients with cardiac 

failure [306, 307] and could potentially provide an assessment of cardiovascular stress in exercise and sports 

medicine.  

 

4.2.6 Other Biomarkers 

Urinary pterins [240] and isoprostanes [308] have increased in response to professional rugby union and 

resistance training respectively.  Moreover, urine also provides a reliable diagnostic medium for the assessment 

of hydration through creatinine [254, 297] and specific gravity [26] from endurance exercise to body-building 

resistance training, as well as showing promise as a medium for the detection of exercise induced brain injury 

[309].  Although S100B has only been measured in people suffering traumatic brain injury [309], the increasing 

concern for the welfare of athletes in contact related sports may require a non-invasive biomarker capable of 

providing instantaneous information regarding concussion or damage severity.  However, careful consideration 
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is required when interpreting S100B levels because of conflicting data about the specificity of this biomarker to 

brain related injury [310, 311]. 

 

5. IMPLICATIONS AND RECOMMENDATIONS FOR RESEARCH 

When designing exercise or sports medicine research requiring the capability of biomarkers, investigators 

should consider urine and saliva as a similarly reliable alternative to traditionally utilised invasive procedures.  

Whilst the literature on urine and saliva as a diagnostic medium is progressively emerging in exercise and sports 

medicine, their employment in a clinical setting warrants further investigation.  Specifically, developing 

sensitive and specific urine and saliva assays capable of quantifying both the physiological and psychological 

stress response which provide a stress-free, non-disruptive and non-invasive approach is required.  Where 

recruitment and sustained participation of athletes or patients is required, the ability to effectively identify 

“stress” through urine and saliva may also allow provide a cost-effective approach.  Moreover, the developing 

cascade of biomarkers within urine and saliva has the potential to not only alleviate any safety concerns and 

specific training associated with invasive techniques, but also provide a comprehensive methodology that offers 

similar efficacy with the likes of blood and CSF for an accurate snapshot of a biological process.   Providing 

urine and saliva are effectively utilised in the future for assessing both the intra- and inter-individual 

psychophysiological stress response to exercise and sports medicine research, a substantial database 

incorporating reference ranges applicable to various exercise protocols and sporting codes can be developed.  

This will allow data between the extensive array of studies to be comparable and positively influence the 

direction of prospective exercise and sports medicine research. 

 

 

6. CONCLUSION 

Urine and saliva have the ability to provide a quantitative physiological and psychological “stress” assessment 

in sport and exercise medicine using a non-invasive approach.  Like all biological media both saliva and urine 

have some limitations. In comparison to plasma or serum, salivary and urinary biomarkers have not been used 

extensively in sport and exercise medicine; however the markers currently being used are capable of providing a 

comprehensive overview of physiological perturbations that mirror the extensive literature conducted on 

invasive procedures.   If collection, handling, storage, analysis and correction of salivary and urinary biomarkers 

are standardised, it may be feasible to determine their sensitivity and specificity as a diagnostic medium in 
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exercise trials.  Although additional research regarding the efficacy of using urine and/or saliva to indicate the 

severity of exercise induced psychophysiological stress is required, it is likely that these non-invasive 

biomarkers will represent ‘the future’ in sports and exercise medicine. 
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Table 1. List of the most popular non-invasive salivary biomarkers used in sports and exercise science.  Selection criteria included studies on healthy, active 

humans only.   

Stress type Biomarker Method of analysis Study design Participants (total n; M:F) Setting Outcome 

Muscle damage 
 
 

CK-MB[203]a Autoanalyzer Observational Cardiac patients (32; 22:10) 
 

Myocardial infarction Sig.  in patients vs healthy controls 
 

Inflammation 
 
 
 
 
 
 
 

CRP[199, 200]a 

 
 
 
 
Neopterin[201]a 

ELISA 
 
ELISA 
 
 
ELISA 

Observational 
 
Observational 
 
 
Observational 

Healthy adults (61; 18:43) 
 
Cardiac patients (28; N/A) 
Controls (55; N/A) 
 
Patients (16; 10:6) 
Controls (13; 7:6) 

Medium to study 
inflammation 
Cardiac disease 
 
 
Periodontitis 

Sig. correlated with serum CRP 
 
Sig.  in patients vs healthy controls 
 
 
Sig.  in patients vs healthy controls 
 

Cardiovascular 
stress 
 
 
 

cTnT[202]a ELISA Observational Cardiac patients (30; 20:10) 
Controls (30; 23:7) 

Myocardial infarction Sig.  in patients vs healthy controls 
 

Stress 
 
 
 

Cortisol [20, 156, 312] 

 
 
 
 
 
 
 
Testosterone [156, 181] 
 
 
 
 
 
Alpha-amylase[14, 185] 
 
 
 
DHEA[312, 313] 
 

ELISA 
 
 
Radioimmunoassay 
 
ELISA 
 
 
Radioimmunoassay 
 
ELISA 
 
 
 
Kinetics method 
 
Kinetics method 
 
Radioimmunoassay 
 

Observational 
 
 
Observational 
 
Observational 
 
 
Observational 
 
Observational 
 
 
 
Observational 
 
Observational 
 
Observational 
 

Rugby player (24; 24:0) 
 
 
Strength trained (28; 28:0) 
 
Professional rugby league players (17; 
17:0) 
 
Strength trained (28; 28:0) 
 
Professional rugby league players (17; 
17:0) 
 
 
College athlete (42; 21:21) 
 
National athletes (12; 12:0) 
 
Elite athletes and controls (24; 0:24) 
 

Three consecutive rugby 
games 
 
Resistance training 
 
Rugby league game 
 
 
Resistance training 
 
Rugby league game 
 
 
 
Rowing 
 
Cycling to exhaustion 
 
Handball 
 

Sig.  post-games 
 
 
Sig.  post exercise 
 
Sig.  post exercise 
 
 
Sig.  post exercise 
 
Sig.  post exercise 
 
 
 
Sig.  at exhaustion 
 
Sig.  post exercise 
 
Sig.  in controls vs athletes 
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a Have not been used as markers in exercise research, but show promise in clinical contexts with potential use in sport and exercise medicine. 

8-oxo-dG; 8-oxo-2'-deoxyguanosine,  ; increase,  ; decrease, CK-MB; creatine kinase-MB, CRP: C-reactive protein, cTnT; cardiac troponin T, DHEA; dehydroepiandrosterone, ELISA; enzyme linked immunosorbent 

assay, F; female, M; male, N/A; not available, S100B; S100 calcium binding protein B,  sIg; secretory immunoglobulin, Sig; significant, TBARS; thiobarbituric acid reactive substances. 

 

Radioimmunoassay 
 

Observational Strength trained (28; 28:0) Resistance training Sig.  post exercise 
 

Immune system 
 
 
 

sIgA, sIgM, sIgG [20, 51, 
314] 
 
 
 
 
Lactoferrin[190]] 
 
 
 
 
 
Lysozyme[315] 
 

ELISA 
 
ELISA 
 
ELISA 
 
ELISA 
 
ELISA 
 
 
ELISA 
 
 

Observational 
 
Observational 
 
Observational 
 
Observational 
 
Observational 
 
 
Observational 

Professional rugby players (24; 24:0) 
 
Trained cyclists (8; 8:0) 
 
Healthy men (12; 12:0) 
 
Elite athletes (8; N/A) 
 
Elite rowers (17; 8:9) 
Sedentary group (17; 8:9) 
 
Elite rowers (17; 8:9) 
Sedentary group (17; 8:9) 

Rugby game 
 
Endurance exercise 
 
Interval exercise 
 
Basketball season 
 
Rowing season 
 
 
Rowing season 

Sig.  post-game 
 
Sig.  post-exercise 
 
Sig.  post-exercise 
 
Sig.  during training and competition  
 
Sig.  post exercise 
Sig.  in rower 
 
Sig.  post exercise 
No differences between groups 
 

Oxidative stress 
 
 
 

8-oxo-dG [195]* 
 
 
 
 
Protein carbonyls[194]* 
 
 
Uric acid[193] 
 
TBARS[193] 

ELISA 
 
ELISA 
 
 
ELISA 
 
 
ELISA 
 
Spectrophotometric 
test 

Observational 
 
Observational 
 
 
Observational 
 
 
Observational 
 
Observational 

Patients (34; 17:17) 
Healthy controls (17: 11:6) 
Patients (215; 105:110) 
Controls (481; :217:264) 
 
Patients (215; 105:110) 
Controls (481; :217:264) 
 
Trained men (11; 11:0) 
 
Trained men (11; 11:0) 

Periodontitis   
 
Diabetes mellitus 
 
 
Diabetes mellitus 
 
 
Resistance exercise 
 
Resistance exercise 

Sig.  in patients vs healthy controls 
 
Sig.  in patients vs healthy controls 
 
 
Sig.  in  patients vs healthy controls 
 
 
Sig.  post-acute training 
 
No change post exercise 

 
Hydration 
 
 
 

 
Osmolality[196, 316] 
 
 

 
Freezing-point 
depression  
Freezing-point 
depression 
Freezing-point 
depression 

 
Observational 
 
Observational 
 
Observational 

 
Healthy males (12; 12:0) 
 
Healthy active volunteers (24; 17:7) 
 
Soldiers (8: 6:2) 

 
Endurance cycling 
 
Extracellular dehydration 
Treadmill walking 

 
 linearly with dehydration  
 
Sig.  post dehydration 
 
Sig.  post dehydration 

Brain distress S100B[197] Immunoluminometric 
assay 

Case–control study Professional athletes (25; 25:0) 
Controls (50, 50:0) 

Before and after vigorous 
exercise 

Sig.  post exercise  
Sig.  in athletes vs controls at rest and 
after exercise 
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Table 2. List of the most popular non-invasive urinary biomarkers used in sports and exercise science. Selection criteria included studies on healthy, active 

humans only.   

Stress type Biomarker Method of analysis Study design Participants (total; M:F) Setting Outcome 

Muscle damage 
 
 
 

Myoglobin [20, 240, 
281-283] 
 
 
 
 
 
 
 
 
3-methylhistidine[286-
288, 317] 
 

 

ELISA 
 
ELISA 
 
ELISA 
 
ELISA 
 
Automated analyser 
 
GC/MS 
 
GC/MS 
 
HPLC 
 
HPLC 

Observational  
 
Observational  
 
Observational  
 
Observational 
 
Observational 
 
Randomised double blind 
 
Randomised 
 
Randomised double blind 
 
Randomised double blind 
 
 

Amateur rugby players (24; 24:0) 
 
Professional rugby players (37; 37:0) 
 
Professional rugby players (25; 25:0) 
 
Healthy students (119; 74:45) 
 
Duathlon athletes (14; 14:0) 
 
Resistance trained (24; 24:0) 
 
Resistance trained (20; 20:0) 
 
Untrained healthy individuals (32; 32:0) 
 
Strength trained (69; 52:17) 

Rugby game 
 
Rugby season 
 
Rugby game 
 
Push-ups 
 
Duathlon 
 
Resistance exercise 
 
Resistance exercise 
 
Resistance exercise 
 
Resistance exercise 

Sig.  post-game 
 
Sig.  post-games 
 
Sig.  post-game 
 
No change 
 
 during and post-
exercise 
No change 
 
No change 
 
Sig.  post-exercise 
 
No change 
 
 

Inflammation 
 
 
 

Total neopterin [26, 
241, 293, 318] 
 
 
 
 
 
 
IL-1 β, IL-1ra, IL-2, IL-4, 
IL-6, IL-8, IL-10, IL-12, 
TNF-α, MCP-1, γ-IFN 
[297] 
 

HPLC 
 
HPLC 
 
HPLC 
 
ELISA 
 
ELISA 

Observational 
 
Observational 
 
Observational 
 
Observational 
 
Observational 
 

Amateur rugby players (11; 11:0) 
 
Amateur body-builders (10; 10:0) 
 
Professional rugby players (37; 37:0) 
 
Olympic athletes (27; 27:0) 
 
Duathlon athletes (14; 14:0) 
 

Rugby game 
 
Body-building 
 
Rugby game 
 
Rowing camp 
 
Duathlon 

Sig.  post-exercise 
 
No change 
 
Sig.  post-exercise 
 
Sig.  post-camp 
 
Sig.  post-exercise 
 

Cardiovascular stress 
 
 

NT-proBNP [306]a  Immunoassay Observational Cardiac patients and controls (116; 96 patients: 20 
controls) 

Heart failure Sig.  in patients vs control 
 



39 
 

a Not currently measured in sport related concussion but has the potential to do so. 

; increase, ; decrease, γ-IFN; gamma-interferon, admin; administrated, BH4; tetrahydrobiopterin, BP; biopterin, ELISA: enzyme linked immunosorbent assay, F; female, GC/MS: gas chromatography/mass 

spectrometry, HPLC; high performance liquid chromatography, IL; interleukin, ra; receptor antagonist, M; male, MCP-1;monocyte chemoattractant protein-1 , NP; neopterin, NT-proBNP; N-terminal prohormone of 

brain natriuretic peptide, S100B; S100 calcium binding protein B Sig; significant, TNF-α; tumor necrosis factor-α, XP; xanthopterin  

 

Stress 
 
 
 

Testosterone and 
epitestosterone[299, 
300, 319-322] 
 
 
 
 
 
 
 
 
 
 
Cortisol[298, 323, 324] 
 
 
 
 
 
BH4 and 
norepinephrine [240, 
323] 

ELISA 
 
GC/MS 
 
GC/MS 
 
GC/MS 
 
GC/MS 
 
GC/MS 
 
 
HPLC 
 
HPLC 
 
Immunoassay 
 
HPLC 
 
HPLC 

Randomised 
 
Observational 
 
Double-blind 
 
Randomised cross-over 
 
Observational 
 
Observational 
 
 
Observational 
 
Observational 
 
Randomised  
 
Observational 
 
Observational 

Resistance trained (10; 10:0) 
 
Professional cyclists (7; 7:0) 
 
Elite rugby league players (22; 22:0) 
 
Healthy active individuals (13; 13:0) 
 
Elite handball players (19; 0:19) 
 
Professional weight lifters (19; 19:0) 
 
 
Healthy untrained and trained triathletes (19; 19:0) 
 
Trained adolescent tennis players (7; 0:7) 
 
Resistance trained (29; 0:29) 
 
Professional rugby players (25; 25:0) 
 
Trained adolescent tennis players (7; 0:7) 

Resistance 
exercise/administration 
Cycling race 
 
Resistance 
exercise/supplementation 
Supplementation 
 
Handball game 
 
Resistance exercise training 
 
 
Triathlon season 
 
Tennis season 
 
Resistance exercise 
 
Rugby game 
 
Tennis season 

Testosterone  in admin 
group 
Testosterone  compared 
to epitestosterone post-race 
No change 
 
No change 
 
Sig.  post-game 
 
No change 
 
 
Seasonal variation 
 
Sig.  end of season 
 
Sig.  in concentric group 
post-exercise 
Sig. post-game 
 
Sig.  end of season 

 
Oxidative stress 
 
 
 

 
NP, BP, XP [240] 
 
Isoprostanes[308] 

 
HPLC 
 
ELISA 

 
Observational 
 
Observational 

 
Professional rugby players (25; 25:0) 
 
Recreationally trained (12; 12:0) 

 
Rugby game 
 
Resistance exercise 

 
Sig  post-game 
 
Sig.  during overtraining 
 

Hydration 
 
 
 

Specific gravity [26, 
241] 
 
 
 
Creatinine[241, 297] 

Refractometer 
 
Refractometer 
 
 
Automated analyser 
 
HPLC 

Observational 
 
Observational 
 
 
Observational 
 
Observational 

Amateur body-builders (10; 10:0) 
 
Amateur rugby players (11; 11:0) 
 
 
Duathlon athletes (14; 14:0) 
 
Amateur rugby players (11; 11:0) 

Resistance exercise 
 
Rugby game 
 
 
Duathlon 
 
Rugby game 

No change 
 
Sig.  post-game 
 
 
Sig.  post-race 
 
Sig.  post-game 
 

Brain distress S100B[309]a Immunoassay Observational Patients (does not state gender) Traumatic brain injury Sig.  post head injury 
 


