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Abstract   A rule based model is a special type of computational models, which can 

be built by using expert knowledge or learning from real data. In this context, rule 

based modelling approaches can be divided into two categories: expert based ap-

proaches and data based approaches. Due to the vast and rapid increase in data, the 

latter approach has become increasingly popular for building rule based models.  In 

machine learning context, rule based models can be evaluated in three main dimen-

sions, namely accuracy, efficiency and interpretability. All these dimensions are 

usually affected by the key characteristic of a rule based model which is typically 

referred to as model complexity. This paper focuses on theoretical and empirical 

analysis of complexity of rule based models, especially for classification tasks. In 

particular, the significance of model complexity is argued and a list of impact fac-

tors against the complexity are identified. This paper also proposes several tech-

niques for effective control of model complexity, and experimental studies are re-

ported for presentation and discussion of results in order to analyze critically and 

comparatively the extent to which the proposed techniques are effective in control 

of model complexity. 
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1 Introduction 

A rule based model is a special type of computational models, which can be used 

for the purpose of knowledge discovery and predictive modelling. A rule based 

model consists of a set of rules, which can be built by using expert knowledge or by 

learning from real data. From this point of view, rule based modelling approaches 

can be categorized into expert based approaches and data based approaches. Due to 

the vast and rapid increase in data, the latter approach of modelling has become 

increasingly popular. The data based approach typically involves learning of rules 

for building of rule based models. In practice, rule based models can be used for 

different tasks such as classification, regression and association. From this point of 

view, rules extracted from a rule based model can be categorized into classification 

rules, regression rules and association rules. Both classification and regression rules 

can be viewed as a special type of association rules, due to the fact that these two 

types of rules represent the relationship between multiple independent variables and 

a single dependent variable, whereas association rules represent the relationship be-

tween multiple independent variables and multiple dependent variables. The main 

difference between classification rules and regression rules is that the output attrib-

ute on the right hand side must be discrete for the former and continuous for the 

latter [1]. Therefore, classification rules are generally used for categorical predic-

tions whereas regression rules are used for numerical predictions. 

In machine learning research, rule based models can be evaluated in three main 

dimensions namely accuracy, efficiency and interpretability. One of the important 

characteristics of rule based models is referred to as model complexity, which usu-

ally impacts on the above three main dimensions. As described in [2], complex 

models are usually less generalized than simple models, which are likely to result 

in overfitting. This problem typically results in loss of accuracy for predictive mod-

elling and decrease of the level of reliability for knowledge extracted from a rule 

based model. On the other hand, as analyzed in [3], complex models usually lead to 

less efficient prediction on test instances and poor interpretability to people for the 

purpose of knowledge discovery. On the basis of the above description, this paper 

focuses on theoretical and empirical analysis of complexity of rule based models 

and how the complexity can be controlled effectively. 

The rest of this paper is organized as follows: Section 2 argues why complexity 

control is important for rule based models to be applied in real world. Section 3 

identifies a list of impact factors that affect complexity of rule based models as well 

as analyze in depth how these identified factors impact on model complexity. Sec-

tion 4 introduces two main techniques, namely scaling up algorithms and scaling 

down data, towards effective complexity control in rule based models. In particular, 

scaling up algorithms involves proper use of statistical heuristics for rule generation 

and effective assistance from rule simplification, and scaling down data involves 

effective pre-processing of training data, which includes feature selection, feature 

extraction and attribute discretization. Section 5 describes setup of the experimental 
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studies, and results are presented and discussed critically and comparatively in order 

to show the extent to which the techniques used for complexity reduction are effec-

tive. Section 6 summaries the contributions of this paper and provides some sug-

gestions for further directions towards advances in this research area. 

2 Significance of Complexity Control 

As mentioned in Section 1, model complexity usually impacts on accuracy, effi-

ciency and interpretability. This section justifies why it is important to effectively 

control the complexity of a rule based model. 

As mentioned in [3], rule based models can be used in practice for the purpose 

of knowledge discovery and predictive modelling. For the latter purpose, rule based 

models are used in a black box manner, which means that the emphasis is on the 

mapping from inputs to outputs without interpretation of the reasons, i.e. to predict 

the values of the outputs on the basis of the values of the inputs. In this context, rule 

based models need to be both accurate and efficient in predicting unseen instances. 

On the other hand, for the purpose of knowledge discovery, rule based models are 

used in a white box manner which should allow the interpretation of the reasons for 

the mapping. In this context, rule based models need to be both accurate and inter-

pretable for people to use knowledge extracted from the models, i.e. to see a list of 

causal relationships by going through a set of rules. On the basis of the above de-

scription, model complexity can have a significant impact on the accuracy, effi-

ciency and interpretability of rule based models. 

In terms of accuracy, on the basis of the same data, more complex models usually 

have lower generality than simpler models, which are likely to result in models per-

forming well on the training data but poorly on the testing data. The above case is 

commonly known as overfitting. As mentioned in [2], one of the biases that arise 

with rule based models is referred to as overfitting avoidance bias [4, 5], which 

means that rule learning algorithms prefer simpler rules to more complex rules un-

der the expectation that the accuracy on the training data is lower but that on the 

testing data it would be higher. 

In terms of efficiency, more complex models are usually less efficient than sim-

pler models in predicting unseen instances. This is because of the fact that predic-

tions by a rule based model are made through checking the rules extracted from the 

model [3]. In this context, a model that consists of a large number of rule terms is 

considered as a complex model whereas a model that is made up of a small number 

of rule terms is considered as a simple model. In the worst case, it always takes 

longer to make a prediction using a more complex model than using a simpler 

model, if the two models are represented in the same structure [3]. Section 3 will 

give more details on complexity analysis in terms of rule representation. 

In terms of interpretability, more complex models are usually less interpretable 

for people to read and understand knowledge extracted from the rule based models. 
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This is because of the fact that people need to read each of the rules extracted from 

a particular model in order to see any causal relationships between the inputs and 

the outputs. In this context, a model that consists of a large number of complex rules 

is considered as a complex model whereas a model that is made up of a small num-

ber of simple rules is considered as a simple model. In other words, a model that 

consists of a large number of complex rules is like an article that is made up of a 

large number of long paragraphs, which usually makes it difficult and cumbersome 

for people to follow. 

On the basis of the above description, model complexity needs to be considered 

as an important impact on accuracy, efficiency and interpretability, and thus needs 

to be controlled effectively. 

3 Impact Factors for Model Complexity 

Section 2 justified the significance of complexity control for rule based models to-

wards generation of accurate, efficient and interpretable models in practice. This 

section identifies a list of impact factors for model complexity and justifies how 

these factors would affect the complexity of rule based models. In particular, the 

strategy involved in a learning algorithm and the characteristic of a data set are 

viewed as two main impact factors as already identified in [6]. Also, ways to impact 

on the model complexity are analyzed in the context of rule based classification. 

3.1 Learning Strategy 

In terms of learning algorithms, the strategy of rule generation usually significantly 

affects the model complexity. As mentioned in [7, 8], the generation of classifica-

tion rules can be divided into two categories: ‘divide and conquer’ [9] and ‘separate 

and conquer’ [2]. The former is also referred to as Top-Down Induction of Decision 

Trees (TDIDT) due to the fact that this learning approach aims to generate classifi-

cation rules in the form of a decision tree. The latter is also referred to as covering 

approach because of the fact that this approach aims to learn a set of if-then rules 

sequentially, each of which covers a subset of training instances that are normally 

removed from the current training set prior to the generation of the next rule. 

As introduced in [10, 11], Prism, which is a rule induction method that follows 

the ‘Separate and Conquer’ approach, is likely to generate fewer and more general 

rules than ID3, which is another rule induction method that follows the ‘Divide and 

Conquer’ approach. The above phenomenon is due mainly to the strategy of rule 

learning. As mentioned in [10], the rule set generated by the TDIDT needs to have 

at least one common attribute in order to be represented in the form of a decision 

tree. The same also applies to each of the subtrees of a decision tree, which requires 
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to have at least one common attribute represented as the root of the subtree. Due to 

this requirement, the TDIDT is likely to generate a large number of complex rules 

with many redundant terms such as the replicated subtree problem [10] illustrated 

in Fig.1 and thus results in a model with high complexity. 

 

 

Fig. 1. Cendrowska’s replicated subtree example [3] 

3.2 Data Characteristics 

As mentioned in Section 3.1, different algorithms involve different strategies of 

learning and thus generate rule based models with different levels of complexity. In 

this sense, when the same data set is used, different learning algorithms would usu-

ally lead to different levels of model complexity. However, for the same algorithm, 

data of different size would also usually result in the generation of models with 

different levels of complexity. The rest of this subsection justifies the potential cor-

relation between data size and model complexity. 

As mentioned earlier, rule learning methods involve the generation of rule based 

models. The complexity of a rule based model is determined by the total number of 

rule terms, which is dependent upon the number of rules and the average number of 

terms per rule. However, the total number of rule terms is also affected by the data 

size in terms of both dimensionality (number of attributes) and sample size (number 

of instances). For example, a data set has n attributes, each of which has t values, 

and its sample contains m instances and covers all possible values for each of the 

attributes. In this example, the model complexity would be equal to Σ t i, for i=0, 1, 

2…n, in principle, but no greater than m × n in the worst case in practice. This 

indicates that a rule based model consists of a default rule, which is also referred to 

as the ‘else’ rule, and t i rules, each of which has i terms, for i=0, 1, 2…n respec-

tively. However, each rule usually covers more than one instance and the rule based 

model is expected to cover all instances. Therefore, the number of rules from a rule 

based model is usually less than the number of instances from a data set. As also 

justified above, each rule would have up to n (the number of attributes) terms due 
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to the requirement that each attribute can only appear once comprising one of its 

possible values in any of the rules. On the basis of the above description, the com-

plexity of a rule based model is up to the product of dimensionality and sample size 

of a data set. In addition, the complexity of each attribute also impacts on the com-

plexity of the rule based model, especially for continuous attributes. 

4 Techniques for Control of Model Complexity 

Section 3 identified two main impact factors for model complexity – learning algo-

rithms and data characteristics, and analyzed theoretically in what way the two fac-

tors impact on the complexity of a rule based model. This section presents several 

techniques towards effective control of model complexity. In particular, these tech-

niques follow one of the two approaches namely scaling up algorithms and scaling 

down data. 

4.1 Scaling Up Algorithms 

As introduced in [6], scaling up algorithms for complexity reduction can be 

achieved through proper employment of rule generation methods or proper use of 

rule pruning algorithms. 

In terms of rule generation, the learning approaches can be categorized into di-

vide and conquer and separate and conquer as mentioned in Section 3.1. In particu-

lar, examples of the divide and conquer approach include ID3 [12] and C4.5 [9] and 

examples of the separate and conquer approach include IEBRG [7] and Prism [10]. 

ID3 and IEBRG both involve use of information entropy for generation of rules but 

with different strategies resulting in rule based models being represented in different 

forms and having different levels of complexity. The illustration of these methods 

are presented below using the contact-lenses data set [10] retrieved from the UCI 

repository [13]. 

As mentioned in [14], ID3 makes attribute selection based on average entropy, 

i.e. ID3 is an attribute oriented learning method and the calculation of entropy is for 

a whole attribute on average. In addition, IEBRG makes selection of attribute-value 

pairs based on conditional entropy, i.e. IEBRG is an attribute-value oriented learn-

ing method and the calculation of entropy is for a particular value of an attribute. 

For each of the methods, the detailed illustration can be seen in [14]. As mentioned 

in [14], ID3 makes attribute selection based on average entropy, i.e. ID3 is an at-

tribute oriented learning method and the calculation of entropy is for a whole attrib-

ute on average. In addition, IEBRG makes selection of attribute-value pairs based 

on conditional entropy, i.e. IEBRG is an attribute-value oriented learning method 
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and the calculation of entropy is for a particular value of an attribute. For each of 

the methods, the detailed illustration can be seen in [14]. 

Table 1. Contact-lenses Data Set [14] 

age prescription astigmatic Tear production rate class 

young myope no reduced no lenses 

young myope no normal soft lenses 

young myope yes reduced no lenses 

young myope yes normal hard lenses 

young hypermetrope no reduced no lenses 

young hypermetrope no normal soft lenses 

young hypermetrope yes reduced no lenses 

young hypermetrope yes normal hard lenses 

pre-presbyopic myope no reduced no lenses 

pre-presbyopic myope no normal soft lenses 

pre-presbyopic myope yes reduced no lenses 

pre-presbyopic myope yes normal hard lenses 

pre-presbyopic hypermetrope no reduced no lenses 

pre-presbyopic hypermetrope no normal soft lenses 

pre-presbyopic hypermetrope yes reduced no lenses 

pre-presbyopic hypermetrope yes normal hard lenses 

presbyopic myope no reduced no lenses 

presbyopic myope no normal soft lenses 

presbyopic myope yes reduced no lenses 

presbyopic myope yes normal hard lenses 

presbyopic hypermetrope no reduced no lenses 

presbyopic hypermetrope no normal soft lenses 

presbyopic hypermetrope yes reduced no lenses 

presbyopic hypermetrope yes normal hard lenses 

 

In accordance with the illustration in [14], the complete decision tree generated 

is the one as illustrated in Fig.2 and the corresponding if-then rules are represented 

as follows: if tear production rate = reduced then class= no lenses; if tear produc-

tion rate = normal and Astigmatic = yes then class= Hard lenses; if tear production 

rate = normal and Astigmatic= no then class= Soft lenses. 

 

Fig. 2. Complete decision tree 
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For IEBRG, the first rule generated is also the same as the one represented above: 

if tear production rate = reduced then class= no lenses; this is because the condi-

tional entropy E(tear production rate= reduced)=0 is the minimum and indicates 

that there is no uncertainty any more for classifying instances covered by this rule. 

The same can be seen from Table 1 as the class is always no lenses, while tear 

production rate = reduced. All the subsequent rules are generated in the same way 

as the first rule by appending rule terms on the left hand side of the rule by iteratively 

selecting the attribute-value pair with the lowest conditional entropy for discrimi-

nating different classes. In particular, the rest of the rules generated are the follow-

ing: if Astigmatic = yes then class= Hard lenses; if Astigmatic = no then class = 

Soft lenses. 

It can be seen that ID 3 generates a decision tree which contains 3 rules and 5 

terms whereas IEBRG generates a set of if-then rules which contains 3 rules and 3 

terms. The difference in the resulted complexity is due to the presence of the redun-

dant term generated (tear production rate = normal) in the decision tree illustrated 

in Fig.2. The essential reason is that the ID3 method is attribute oriented for meas-

uring uncertainty and must have the current training subset split on a particular at-

tribute at each iteration, whereas IEBRG is attribute-value oriented for measuring 

uncertainty and only needs to separate some instances from the current training sub-

set through selection of a particular attribute-value pair at each iteration. On the 

basis of the above statement, a rule based model generated by the decision tree 

learning approach must have at least one common attribute and the same also ap-

plies to each of its subtrees. However, a model generated by the if-then rules learn-

ing approach does not have such a constraint, which usually results in a lower level 

of complexity than that of a model generated by the other learning approach. There-

fore, it has been recommended in the research literature [2, 10, 14] that the if-then 

rules learning approach should be used instead of the decision tree learning ap-

proach towards generation of simpler rules. 

On the other hand, use of pruning algorithms can also manage to reduce the com-

plexity of a rule based model as mentioned above. As introduced in [2], pruning 

methods can be categorized into pre-pruning and post-pruning. 

While decision tree learning methods are used for rule generation, pre-pruning 

aims to stop a particular branch in a tree growing further whereas post-pruning aims 

to simplify each of the branches in a tree after the whole tree has been generated. In 

particular, the tree needs to be converted into a set of if-then rules before the pruning 

action is taken. In addition, post-pruning can also be done through replacing a sub-

tree with a leaf node. A popular method used for pruning of decision trees is referred 

to as Reduced Error Pruning (REP) [15] which follows the strategy of post pruning. 

While if-then rules learning methods are used for rule generation, pruning is 

taken per single rule generated in contrast to tree pruning. In other words, each sin-

gle rule is pruned prior to the generation of the next rule rather than posterior to the 

completion of the generation of a whole rule set. In this context, pre-pruning aims 

to stop the specialization of the left hand side of a rule. Post-pruning aims to sim-

plify the left hand side of a rule after its generation has been completed. An example 
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of the methods for pruning of if-then rules is referred to as Jmid-pruning [8], which 

follows the strategy of pre-pruning. 

Section 5 will report experimentally more detailed analysis of model complexity 

controlled through scaling up algorithms in terms of both rule generation and rule 

pruning. 

4.2 Scaling Down Data 

As mentioned in Section 3, the size of data may also affect the complexity of a rule 

based model. In other words, if a data set has a large number of attributes with 

various values and instances, the generated model is very likely to be more complex. 

The dimensionality issue can be resolved by using feature selection techniques 

such as Correlation Based Feature Selection (CFS) [16]. In other words, the aim is 

to remove those irrelevant attributes and thus make a model simpler. In addition, 

the issue can also be resolved through feature extraction methods, such as Principal 

Component Analysis (PCA) [17]. In other words, the aim is to transform the data 

set to a lower dimensional space through combining existing attributes. 

Besides, in some cases, it is also necessary to remove some attribute values as 

they may be irrelevant. For example, in a rule based model, an attribute-value pair 

may never be involved in any rules as a rule term. In this case, the value of this 

attribute can be judged irrelevant and thus removed. In some cases, it is also neces-

sary to merge some values for an attribute in order to reduce the attribute complexity 

especially when the attribute is continuous with a large interval. There are some 

ways to deal with continuous attributes such as ChiMerge [18] and use of fuzzy 

linguistic terms [19]. 

As analyzed in Section 3.2, dimensionality reduction can effectively reduce the 

average number of rule terms per rule. This is because each single rule can have 

only up to n rule terms, where n is the data dimensionality. As also analyzed in 

Section 3.2, reduction of the complexity for each input attribute can effectively re-

duce the number of rules. For example, three attribute a, b, c have 2, 3 and 4 values 

respectively. In this case, the number of first order rules (with one rule term) is 

2+3+4=9; the number of second order rules (with two rule terms) is 

2×3+2×4+3×4=26; the number of third order rules (with three rule terms) is 

2×3×4=24. 

On the basis of the above description, feature selection, feature extraction and 

reduction of attribute complexity are all generally effective towards reduction of 

model complexity. More detailed experimental results are reported in Section 5 to 

analyze the extent to which the model complexity can be effectively controlled 

through scaling down data. 
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5 Experimental Studies 

This section presents the validation of the proposed techniques mentioned in Sec-

tion 4 for effective control of model complexity towards advances in model effi-

ciency and interpretability. In particular, the validation includes five parts: rule gen-

eration, rule pruning, feature selection, feature extraction and attribute 

discretization. The first two parts are in line with scaling up algorithms and the rest 

of them are in line with scaling down data. 

In terms of rule generation, ID3 is chosen as an example of the divide and con-

quer approach and IEBRG is chosen as an example of the separate and conquer 

approach. This is based on the fact that both methods involve use of information 

entropy as the heuristic for uncertainty measure. The rule based models generated 

by using the above two methods are compared in terms of model complexity. In 

particular, for the purpose of advancing model efficiency, the models generated by 

ID3 and IEBRG are compared in terms of the total number of rule terms generated. 

This is because the computational complexity of a rule based model in predicting 

the class of an unseen instance is typically measured by using the BigO notation 

and considering the worst case. As introduced in [3], if a rule based model is repre-

sented in the form of a decision tree, then the prediction is made by going through 

the tree from the root node to a leaf node in a divide and conquer search. The com-

putational complexity is O (log (n)), where n is the tree size, i.e. the number of nodes 

in the tree. If a rule based model is represented in the form of a set of if-then rules, 

then the prediction is made by linearly going through the whole rule set until the 

firing rule is found. The computational complexity is O (n), where n is the total 

number of rule terms in the rule set. In this experimental study, the models generated 

by ID3 are all converted from the form of decision trees to the form of if-then rules 

in order to make consistent comparisons with models generated by IEBRG. This is 

because models represented in different forms cannot be compared consistently, and 

it is straightforward to convert from a decision tree to a set of if-then rules but much 

more difficult the other way around.  On the other hand, for the purpose of advanc-

ing model interpretability, the models generated by ID3 and IEBRG are compared 

in terms of the number of rules and average number of rule terms per rule in a rule 

set. In this context, models generated by ID3 need to be converted from the form of 

decision trees to the form of if-then rules with the same reason as mentioned above. 

However, in general, models represented in the form of decision trees can be 

checked in terms of height and width, i.e. the length of the longest branch of a tree 

and the number of branches/leaf nodes respectively. This is because of the fact that 

the two popular search strategies are depth first search and breadth first search. 

In terms of rule pruning, C4.5 is chosen as an example of the divide and conquer 

approach with the use of REP for tree pruning. The decision is based on the fact that 

C4.5 is a popular decision tree learning method and REP has been proven effective 

in reduction of overfitting of models generated by C4.5 towards improvement of 
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accuracy [15]. In addition, Prism is chosen as an example of the separate and con-

quer approach with the use of Jmid-pruning for pruning of if-then rules. The deci-

sion is based on the fact that Prism is a representative method for learning of if-then 

rules and Jmid-pruning has been proven effective in reduction of overfitting of mod-

els generated by Prism towards improvement of accuracy [8, 14]. In the case of 

decision tree pruning, the comparisons on model complexity are in terms of tree 

size, height and width, whereas the comparisons in the case of pruning of if-then 

rules are in terms of the total number of rule terms, number of rules and average 

number of rule terms per rule. 

In terms of feature selection, feature extraction and attribute discretization, CFS, 

PCA and ChiMerge are used respectively to assist C4.5 for the purpose of data pre-

processing. This is in order to reduce the level of difficulty for rule based modelling 

towards effective control of model complexity. In particular, models generated by 

C4.5 on the basis of the original data are compared in terms of tree size, height and 

width, with those ones generated by the same method on the basis of the processed 

version of the data by CFS for feature selection, PCA for feature extraction, and 

ChiMerge for attribute discretization. 

All parts of the validation mentioned above are undertaken by using data sets 

retrieved from the UCI repository and the characteristics of these data sets can be 

seen in [13]. The results for the rule generation part are presented in Table 2 and 3. 

Table 2. Total number of rule terms 

Dataset ID3 IEBRG 

vote 333 24 

zoo 12000 5 

car 54 91 

breast-cancer 167 7 

kr-vs-kp 502 9 

lung-cancer 52015 3 

mushroom 6595 9 

nursery 85 846 

soybean 12257 9 

splice 5815740 10 

tic-tac-toe 174 605 

trains 11048 2 

contact-lenses 5 3 

sponge 75240 4 

audiology 14475 7 

 

It can be seen from Table 2 that IEBRG outperforms ID3 in 12 out of 15 cases 

in terms of the total number of rule terms. The same phenomenon can also be seen 

from Table 3. In the three cases that IEBRG performs worse than ID3, the reason is 

that IEBRG cannot effectively learn consistent rules from the three data sets car, 

nursery and tic-tac-toe. As reported in [20], on the above three data sets, IEBRG 

generates a large number of inconsistent rules, each of which has already included 

all attributes on its left hand side but still covers instances that belong to different 

classes. In this case, the number of terms of an inconsistent rule is exactly the same 
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as the number of attributes of the data set, which is the maximum as analyzed in 

Section 3.2, and thus leads to a higher level of model complexity. 

On the basis of the above description, methods (e.g. IEBRG) that follow the sep-

arate and conquer approach typically generate a smaller number of simpler rules in 

comparison with methods (e.g. ID3) that follow the divide and conquer approach, 

while the former ones can effectively learn consistent rules with high quality. There-

fore, rule based models generated by the former type of methods are generally more 

efficient and interpretable. 

Table 3. Number of rules and average number of terms per rule 

Dataset ID3 IEBRG 

 Count(rules) Avg(terms) Count(rules) Avg(terms) 

vote 31 10.74 10 2.4 

zoo 1500 8.0 5 1.0 

car 16 3.38 23 3.96 

breast-cancer 43 3.88 7 1.0 

kr-vs-kp 228 21.94 9 1.0 

lung-cancer 1631 31.89 3 1.0 

mushroom 521 12.66 9 1.0 

nursery 20 4.25 121 6.99 

soybean 576 21.28 9 1.0 

splice 190680 30.5 10 1.0 

tic-tac-toe 31 5.61 91 6.65 

trains 565 19.55 2 1.0 

contact-lenses 3 1.67 3 1.0 

sponge 3344 22.5 4 1.0 

audiology 314 46.1 7 1.0 

Table 4.  Tree size I- Tree Pruning 

Dataset  unpruned C4.5 pruned C4.5 

anneal 72 60 

breast-cancer 179 22 

breast-w 45 27 

car 186 112 

credit-a 135 43 

credit-g 466 64 

diabetes 43 15 

ecoli 51 11 

heart-c 77 21 

heart-h 47 8 

heart-statlog 61 25 

hepatitis 31 1 

ionosphere 35 9 

vote 37 9 

segment 101 59 

 

The results for the rule pruning part are presented in Table 4 and 5 for decision 

tree pruning and in Table 6 and 7 for pruning of if-then rules. 
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In terms of tree pruning, it can be seen from Table 4 that the pruned decision tree 

has a smaller size than the unpruned decision tree in all cases. The same phenome-

non can also be seen from Table 5. This is because of the fact that REP is a post-

pruning method and the aim is to replace a subtree with a leaf node without affecting 

any other branches/subtrees after the whole tree has been generated. In addition, as 

also analysed in [2], for a decision tree, pruning one branch does not affect any other 

branches normally growing when using either pre-pruning or post-pruning. There-

fore, in the context of decision tree learning, if there are any branches taken pruning 

actions, the tree is definitely simpler than the one without pruning taken and thus 

more efficient and interpretable. 

Table 5. Tree complexity analysis I – Tree Pruning 

Dataset  unpruned C4.5 pruned C4.5 

 Tree height Count(leafs) Tree height Count(leafs) 

anneal 13 53 12 44 

breast-cancer 7 152 2 18 

breast-w 9 23 27 14 

car 6 134 6 80 

credit-a 10 101 9 30 

credit-g 11 359 8 47 

diabetes 10 22 6 8 

ecoli 9 26 4 6 

heart-c 8 46 5 14 

heart-h 7 29 4 5 

heart-statlog 10 31 7 13 

hepatitis 10 16 1 1 

ionosphere 12 18 5 5 

vote 9 19 5 5 

segment 15 51 11 30 

Table 6. Total number of rule terms by Prism 

Dataset  Prism without pruning Prism with Jmid-pruning 

cmc 168 112 

vote 157 77 

kr-vs-kp 368 116 

ecoli 45 33 

anneal.ORIG 25 44 

audiology 173 106 

car 2 6 

optdigits 3217 1287 

glass 74 79 

lymph 13 10 

yeast 62 30 

shuttle 116 12 

analcatdataasbestos 8 7 

irish 15 14 

breast-cancer 12 11 
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In terms of pruning of if-then rules, it can be seen from Table 6 that the pruned 

rule based model is simpler than the unpruned one in 12 out of 15 cases. The similar 

phenomenon can also be seen from Table 7. For the three exceptional cases, the 

reason could be explained by the fact that for learning of if-then rules, pruning one 

rule could affect the generation of all subsequent rules. In other words, taking prun-

ing actions can effectively make the current rule simpler, but may disadvantage 

learning of the subsequent rules leading to generation of more complex rules if the 

current pruning action is not appropriately taken. In this case, the model accuracy 

is also decreased as reported in [8, 14]. 

Table 7. Number of rules and average number of rule terms by Prism 

Dataset  Prism without pruning Prism with Jmid-pruning 

 Count(rules) Avg(terms) Count(rules) Avg(terms) 

cmc 36 4.67 25 4.48 

vote 25 6.28 15 5.13 

kr-vs-kp 63 5.84 21 5.52 

ecoli 24 1.88 17 1.94 

anneal.ORIG 16 1.56 12 3.67 

audiology 48 3.60 38 2.79 

car 2 1.0 3 2.0 

optdigits 431 7.46 197 6.53 

glass 26 2.85 24 3.29 

lymph 10 1.3 10 1.11 

yeast 37 1.68 20 1.5 

shuttle 30 3.87 12 1.0 

analcatdataasbestos 5 1.6 5 1.4 

irish 10 1.5 11 1.27 

breast-cancer 11 1.09 11 1.0 

Table 8. Tree size II - Feature Selection 

Dataset C4.5 C4.5 with CFS 

 Attribute# Tree size Attribute# Tree size 

kr-vs-kp 37 82 8 16 

ionosphere 35 35 15 31 

sonar 61 35 20 29 

mushroom 23 30 5 21 

anneal 39 72 10 70 

waveform 41 677 16 621 

spambase 58 379 16 229 

splice 62 3707 23 555 

sponge 46 18 4 6 

cylinder-bands 40 432 7 432 

audiology 70 62 17 59 

lung-cancer 57 12 9 7 

spectf 45 17 13 19 

credit-g 21 466 4 30 

breast-cancer 10 179 6 94 

The results for the rest of the parts are presented in Table 8 and 9 for feature 

selection, Table 10 and 11 for feature extraction and Table 12 and 13 for attribute 

discretization. 
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In terms of feature selection, it can be seen from Table 8 that the tree generated 

by using the pre-processed data is simpler than the one generated by using the orig-

inal data in 13 out of 15 cases. The similar phenomenon can also be seen from Table 

9. For the case on the cylinder-bands data set that the same tree is generated after 

the data dimensionality is reduced, the reason is typically that C4.5 does not select 

any irrelevant attributes for learning of a decision tree, while the data set is not pre-

processed, and that the set of attributes removed by CFS does not contain any of the 

attributes that are supposed to be selected by C4.5 for generation of the tree. In 

addition, the other case on the spectf data set could normally be explained by the 

possible reason that there are a few relevant attributes removed posterior to the pre-

processing of the data set, which disadvantages the learning of a tree by C4.5. 

Table 9. Tree complexity analysis II - Feature Selection 

Dataset  C4.5 C4.5 with CFS 

 Tree height Count(leafs) Tree height Count(leafs) 

kr-vs-kp 14 43 7 9 

ionosphere 12 18 10 16 

sonar 8 18 7 15 

mushroom 6 25 5 17 

anneal 13 53 12 45 

waveform 20 339 17 311 

spambase 31 190 19 115 

splice 9 3597 11 440 

sponge 4 14 2 5 

cylinder-bands 3 430 3 430 

audiology 14 37 10 38 

lung-cancer 4 8 3 5 

spectf 7 9 8 10 

credit-g 11 359 5 21 

breast-cancer 7 152 6 80 

Table 10. Tree size III – Feature Extraction 

Dataset  C4.5 C4.5 with PCA 

 Attribute# Tree size Attribute# Tree size 

vehicle 19 207 8 165 

waveform 41 677 35 369 

spambase 58 379 49 345 

trains 33 11 9 3 

hepatitis 20 31 17 9 

lung-cancer 57 12 26 7 

vowel 14 277 20 241 

sonar 61 35 31 35 

sponge 46 18 66 7 

autos 26 88 37 61 

car 7 186 16 123 

cmc 10 665 16 197 

heart-statlog 14 61 13 21 

dermatology 35 44 72 17 

tic-tac-toe 10 208 17 43 



16  

In terms of feature extraction, it can be seen from Table 10 that the tree generated 

by using the pre-processed data set is simpler than the one generated by using the 

original data set in 14 out of 15 cases. The similar phenomenon can also be seen 

from Table 11. For the case of the sonar data set that the same tree is generated after 

the data is transformed by PCA, the reason is typically that C4.5 can very effectively 

learn from the data set without the need to transform the data and thus the data 

transformation by PCA does not provide any help. 

Table 11. Tree complexity analysis III - Feature Extraction 

Dataset  C4.5 C4.5 with PCA 

 Tree height Count(leafs) Tree height Count(leafs) 

vehicle 17 104 15 83 

waveform 20 339 20 185 

spambase 31 190 16 173 

trains 3 9 2 2 

hepatitis 10 16 4 5 

lung-cancer 4 8 4 4 

vowel 11 178 23 121 

sonar 8 18 8 18 

sponge 4 14 3 4 

autos 8 65 16 31 

car 6 134 18 62 

cmc 15 437 14 99 

heart-statlog 10 31 6 11 

dermatology 7 33 8 9 

tic-tac-toe 7 139 14 22 

Table 12. Tree size IV - Attribute Discretization 

Dataset  C4.5 with original attributes C4.5 II with discretised attributes 

anneal 72 64 

balance-scale 119 13 

heart-c 77 71 

heart-h 47 45 

heart-statlog 61 43 

labor 22 13 

sick 72 58 

tae 69 5 

liver-disorders 53 3 

cmc 665 462 

colic 129 107 

haberman 47 15 

glass 59 50 

weather 8 8 

hypothyroid 36 76 

 

In terms of attribute discretization, it can be seen from Table 12 that the tree 

generated by using the discretized set of attributes is simpler than the one generated 

by using the original data set. The similar phenomenon can also be seen from Table 
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13. For the case on the hypothyroid data set, the reason is typically that much infor-

mation gets lost after inappropriate discretization of continuous attributes. In par-

ticular, if the discretization is not appropriate, it is very likely to result in the case 

that important patterns cannot be learned from important continuous attributes and 

thus more attributes need to be selected for learning of a tree. A similar argumenta-

tion is also made in [21]. 

Table 13. Tree complexity analysis IV- Attribute Discretization 

Dataset  C4.5 with original attributes C4.5 with discretised attributes 

 Tree height Count(leafs) Tree height Count(leafs) 

anneal 13 53 10 50 

balance-scale 11 60 5 7 

heart-c 8 46 9 42 

heart-h 7 29 6 26 

heart-statlog 10 31 8 22 

labor 5 13 4 8 

sick 11 41 11 35 

tae 12 35 3 3 

liver-disorders 9 27 2 2 

cmc 15 417 9 325 

colic 7 95 7 82 

haberman 4 34 3 13 

glass 11 30 6 35 

weather 3 5 3 5 

hypothyroid 10 20 8 57 

6 Conclusion 

This paper argued the significance of complexity control for rule based models for 

the purpose of knowledge discovery and predictive modelling. In particular, rule 

based models need to be more efficient and interpretable. This paper also identified 

two main impact factors for model complexity namely learning algorithms and data 

characteristics, and also analyzed in what way the two factors impact on the model 

complexity. The main contributions of this paper include theoretical analysis of the 

proposed techniques for control of model complexity and empirical validation of 

these techniques to show the extent to which these techniques are effective towards 

generation of more efficient and interpretable models in practice. The results have 

been discussed critically and comparatively and indicated that the proposed tech-

niques can effectively manage to reduce the model complexity. On the basis of the 

results obtained, the further directions identified for this research area are to inves-

tigate in depth how to employ existing methods to achieve scaling up algorithms 

and scaling down data, respectively, in more effective ways. 
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