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Abstract  

Toward the development of drug carriers that are capable of crossing biological membranes, 

controlled emulsion polymerisation has been utilised to produce nanoparticulate carriers from 

the combination of poly(alkyl cyanoacrylate) and alkylglyceryl dextran to a molecular 

structure designed to combine the non-immunogenic and stabilising properties of dextran 

with the demonstrated permeation enhancing ability of alkylglycerols. To this aim, a 

systematic series of alkylglyceryl dextrans have been synthesised and functionalised with 

ethyl or butyl cyanoacrylates to form stable polymeric nanocarriers (100-500 nm). Results of 

investigations into their capability to act as controlled-release devices and their cytotoxicity 

against bEnd3 cells are reported.  
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Introduction 

One of the major inhibiting factors to the efficient treatment of brain disorders is the lack of 

universally applicable methods for transporting therapeutic agents across the blood-brain 

barrier (BBB) [1-4]. Therapeutic approaches to circumvent the BBB without altering its 

integrity represent an area of intense activity in drug research, and several methods have been 

proposed as potential means of improving the access of neuroactives to the brain [5].  Among 

these methods, the intravascular route is generally regarded as least invasive [4,6]. Variants 

of the approach include the: employment of biologically active agents (e.g. mannitol, 

histamine, nitric oxide, bradykinin, 5-hydroxytryptamine, or cytokines) [7,8]; chemical 

modification or  formulation of drugs such that they mimic substrates of influx transporters 

[9]; and, the employment of nano-sized carriers [ 10,11], liposomes [12,13] and micro- or 

nano-sized drug transporters [14,15]. 

 

Since colloidal carriers, particularly biodegradable polymeric nanoparticles, are often 

amenable to structural modifications that may bestow to them the capability to enhance drug 

permeation through the BBB, many researchers regard these structures as promising vehicles 

for the delivery of drugs to the brain [16, 17].  

Consequent to their proven biocompatibility (following extensive use as medical adhesives 

[18]), alkyl cyanoacrylates have long been identified as candidate materials for the 

fabrication of nanoparticulate vehicles for biomedical applications, especially for the 

transport of therapeutic agents across the BBB [19, 20].  It has been shown that the coating of 

such nanoparticles with polysorbate 80 improves stability and enhances the prospect for the 
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therapeutically useful delivery of actives to the brain [19, 21]. While a note of caution has 

been sounded regarding the use of poly(butylcyanoacrylate) (PBCA; which has been shown 

by in vitro experiments to exhibit a time and concentration dependent toxicological effect 

[22,23] that is linked to the products of its degradation [24]), the clinical-trial-data based 

toxicological evaluation of poly(isohexylcyanoacrylate) (PIHCA) did not unmask any 

adverse effects of therapeutic significance [25]. Although there are not any clinical trials data 

available for poly(ethylcyanoacrylate) (PECA), the ready availability of its precursor 

monomer, ECA, renders this polymer a candidate material for the fabrication of 

nanoparticulate vehicles for biomedical applications.  

Since the stability of injectable nanoparticulate formulations can be improved by coating with 

surfactants, such as poly(ethylene glycol)s,  or with non-toxic and non-immunogenic 

polysaccharides, such as dextran [26-29], and considering that alkylglycerols are known to 

encourage a transient increase in the transport of actives into the brain (when co-administered 

carotidally with antineoplastics or antibiotics [30-33]), alkylglyceryl-modified dextrans are 

among the materials investigated for their potential to enhance drug penetration across the 

BBB [34].  

 

Rationalised by the assumption that a nanoparticulate drug-carrier system based on poly(ethyl 

cyanoacrylate) and dextran that had been modified with alkylglyceryl moieties may lead to 

improved particle stability and facilitate increased drug availability to the brain, we report on 

methods for the preparation of such a system and on the associated physicochemical 

characterisation and toxicity assessment against mouse brain capillary endothelial cells 

(bEnd3). 

 

Experimental  
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General. Dextran from Leuconostoc (MW 6 and 100 KDa), anhydrous dimethyl sulfoxide 

(DMSO; ≥ 99.9 %), alkyl glycidyl ethers (butyl (G4); octyl (G8); dodecyl (G12); tetradecyl 

(G14); hexadecyl  (G16)), potassium tert-butoxide (t-BuOK),  ethyl 2-cyanoacrylate, N-

methylisatoic anhydride (MIA), anhydrous toluene (99.8 %), Sephadex® G-50, and esterase 

from porcine liver (lyophilized powder, ≥15 units/mg) were obtained from Sigma-Aldrich, 

Gillingham, UK. Butyl cyanoacrylate was kindly donated by Henkel Ireland Ltd, Dublin. 

Doxorubicin hydrochloride was obtained from LGM Pharma, Nashville, USA; methanol and 

water (HPLC grade), tetramethylrhodamine-5-carbonyl azide (TMRCA), diethyl ether, 

acetone, dimethylformamide (DMF) and dichloromethane were obtained from Fisher 

Scientific, Loughborough, UK; high purity deionised water was sourced from a PURELAB 

Optima lab system ELGA High Wycombe, Bucks UK. Unless otherwise specified, all 

reagents were used as obtained. Dialysis was performed using Visking membrane (cut-off 12-

14 kDa or 3 kDa; Medicell International Ltd, London, UK), in deionised water. Cellulose 

nitrate (0.2 µm) and polyether sulfonate membrane filters were obtained from Whatman, 

Maidstone, UK and  Alpha Laboratories Ltd, Hampshire, UK respectively. 

Solvents used for polymerisation were degassed using three freeze-thaw cycles. A Büchi 

Rotovapor R-200 equipped with a Sogevac Saskia PIZ 100 vacuum pump was used for 

solvent removal. Sonication was performed using a Grant ultrasonic bath XB3 (Farnell, UK). 

A Rotofix 32A Hettich (Zentrifugen-Germany), an Eppendorf MiniSpin (F-45-12-11 rotor; 

Eppendorf UK) and an X3 (50.2 Ti rotor; Beckman Coulter Ltd. UK) were used for 

centrifugation. Freeze drying was carried out by flash freezing in liquid nitrogen and using a 

Virtis® Benchtop instrument, SP Industries-Warminster, USA. An orbital shaking water bath 

with thermostat (Grant OLS 200, Farnell, UK) was used for drug-release studies and for the 

enzyme-induced degradation study.  
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Materials were characterised by 1H-NMR (400 MHz) spectroscopy using a JEOL Eclipse 

400+ instrument (Jeol, UK), in DMSO-d6 with 0.2 % TMS; spectra were processed using 

JEOL Delta v 5.0.2 software. FT-IR spectra were recorded using a Nicolet 6700 instrument 

(Thermo Scientific, UK) equipped with an ATR Smart Orbit accessory with diamond crystal 

(128 scans; 4 cm-1) and controlled by Omnic Specta 8.0 software. MALDI-TOF MS 

experiments were performed on a Micromass MALDI MicroMX instrument operating in 

positive reflectron mode (m/z range 400-1600; 337 nm laser) with α-cyano-4-

hydroxycinnamic acid (CHCA) matrix. The molecular weight of alkylglyceryl dextrans was 

determined using a Waters Alliance GPC 2000 instrument (PL-aquagel-OH column; 0.6 

mL/min 80:20 water/methanol; 30 °C; refractive index detector). The calibration was 

performed using Pullulan standards (Shodex Denko) in the MW range 0.6 × 104 - 80.5 × 104. 

TG and DSC analyses (10 K/min heating rate; N2) were performed on TG 209 F1 Libra and 

DSC 214 ASC Polyma instruments (Netzsch, Germany).  

Statistical analysis was performed using SPSS version 22 software; significance was tested 

using one-way analysis of variance (ANOVA) followed by Scheffe posthoc test (p values 

were set at level 0.05, unless stated otherwise). Data are presented as mean ± standard 

deviation. 

Synthesis of alkylglyceryl modified-dextrans  (Dex6G4; Dex6G8; Dex6G12; Dex6G14; 

Dex6G16; Dex100G4; Dex100G8; Dex100G12; Dex100G14; Dex100G16). To a solution of 

dextran (2 g; MW either 6 kDa or 100 kDa; 12.35 mmol glucose equivalent) in anhydrous 

DMSO (150 mL) stirred at 40 °C under nitrogen, a solution of potassium tert-butoxide (t-

BuOK; 1.385 g, 12.35 mmol) in anhydrous DMSO (50 mL) was gradually added.  Stirring 

was continued for 2 h before the drop wise addition of a solution of alkyl glycidyl ether 

(either butyl (G4; 7.03 ml;  48.9 mmol), octyl (G8; 10.17 ml; 49.17 mmol), lauryl (G12; 2.99 
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g; 12.35 mmol), tetradecyl (G14; 4.16 ml; 12.39 mmol), or hexadecyl (G16; 3.68 g; 12.35 

mmol)). After stirring for a further 24 h, the reaction mixture was transferred into a dialyzing-

membrane bag (MWCO 3.5 for modified 6 kDa dextrans, and MWCO 12-14 kDa for 

modified 100 kDa dextrans) and dialysed against deionised water for five days. The content 

of each dialysis bag (ca. 400 mL) was then washed with diethyl ether (3 × 150 mL) in a 

separating funnel, traces of volatile solvents were removed from the aqueous layer under 

reduced pressure using a  rotary evaporator, and the material was  again dialyzed (48 h) to 

remove any remaining traces of water-soluble impurities. Lyophilisation afforded the 

corresponding alkylglyceryl-modified dextrans as white powders (40-60 % yield), which 

were characterized by 1H- and 13C-NMR,  MALDI-TOF MS, TGA and  DSC.  1H-NMR (400 

MHz; DMSO-d6; ppm): 0.86 (t, CH3); 1.3 and 1.5 (m, alkyl groups); 3.5-3.9 (m, pyranose); 

4.5-5.1 (m, anomeric H at C1). 13C NMR (101 MHz, DMSO-d6) ppm 14.50-31.85 (alkyl 

glyceryl carbons), Dextran-66.69 (C-6), 70.71 (C-2), 72.42 (C-5), 73.90 (C-3), 98.80 

(anomeric-C-1). FTIR (ATR; max; cm-1): 3,398 (O-H str, OH glycerol); 2,925; 2,862 (C-H 

str, pyranose ring, CH2 of alkyl group); 1,379 (C-H def, CH3CO); 1,150; 1,072; 1,028 (C-O-C 

str, glycoside linkage).   

Preparation of alkylglyceryl dextran-poly(ethyl 2-cyanoacrylate) nanoparticles by controlled 

emulsion polymerisation. Ethyl 2-cyanoacrylate (ECA) (600 µL) was added dropwise to 

alkylglyceryl-dextran (100 mg)  in deionised water (100 mL; pH 2.5, HCl) and the mixture 

was stirred at room temperature for 4 h. After this time the solution was neutralised with 

NaOH solution (1 N), centrifuged for 15 min (3000 rpm; 1502 g; Rotofix) and further ultra-

centrifuged for 30 min (12,200 rpm; 18000 g; Beckman ultracentrifuge). The pellet was 

rinsed with deionized water (10 mL; 3×), then dispersed again in water (10 mL; 10 min 

sonication) followed by freeze drying.  
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Preparation of alkylglyceryl dextran-poly(ethyl 2-cyanoacrylate) nanoparticles by emulsion 

polymerisation in a water-acetone mix. A solution of ECA (150 µl) in acetone (50 mL) was 

added gradually under stirring to alkyl glyceryl dextran (250 mg) in deionised water (50 mL). 

Stirring was continued overnight at room temperature, after which time the mixture was 

centrifuged (40,000 rpm, 193,011 g; 30 min), the resulting nanoparticles were rinsed with 

water (followed by centrifugation) and re-suspended in deionised water (10 mL) prior to 

freeze drying.  

Nanoparticles characterisation. The resulting nanoparticulate white powders were 

characterised by 1H- NMR spectroscopy as well as elemental and thermogravimetric analysis.  

Dispersions of these nanoparticles (concentration range 10 - 100 µg/mL) were prepared by 

vortex and sonication in deionized water or PBS. 

A Malvern Zetasizer Nano ZS instrument equipped with a 633 nm He-Ne laser (173° back-

scattering angle detection) and controlled by Zetasizer v7.01 software was used to determine 

the hydrodynamic diameter of nanoparticles; samples were analysed in triplicate using 

disposable polycarbonate cuvettes (equilibration time 2 min at 25 °C). Results of cumulative 

analyses were expressed as Z-average values (Z-av) and the associated polydispersity index 

(PDI). Zeta potential was determined from electrophoretic mobility measurements (EPM) 

using the same instrument; samples were measured in folded capillary cells (DTS1070, 

Malvern) and data was processed according to Smoluchowski’s model (Henry’s function 

f(ka) = 1.5). An MTP-2 (Multi-Purpose Titrator-2, Malvern, UK) equipped with a solvent 

degasser was employed for the investigation of pH-dependent behaviour: samples (10 mL 

each) were titrated automatically against aq. HCl solutions (5 mM or 50 mM) from pH 8 to 

pH 3; all samples were filtered (Whatman 0.2 μm PES filters) prior to use.  

The morphology of nanoparticles was investigated by Scanning Electron Microscopy (SEM); 

powdered samples were deposited onto mica that had been adhered onto aluminium stubs and 
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secured under a flow of nitrogen. Samples were sputter-coated with Au/Pd under Ar using a 

Quorum Q150RES coater (Quorum Technologies Ltd., UK) and imaged using a JEOL-JSM-

6060LV SEM Microscope. Transmission electron microscopy (TEM) studies were performed 

using a TEM/JEOL-2000FX instrument (JEOL Ltd, Japan); samples were deposited as an 

aqueous dispersion on 3.05 mm copper grids with formvar/carbon support film (300 mesh), 

followed by drying. 

 Model drug loading and release studies.  

Doxorubicin hydrochloride was loaded into nanoparticles during their preparation: a solution 

of ECA (150 µL) in acetone (25 mL) was added gradually to a stirring mixture of modified 

dextran (either Dex6G4 or Dex6G8; 25 mg) in deionized water (25 mL) followed by the 

addition of a solution of Doxorubicin hydrochloride (2 mg) in acetone (1 mL). The mixture 

was allowed to stir overnight at room temperature, and the resulting colloidal suspension was 

separated by centrifugation (40,000 rpm; 145421 g; 30 min); the amount of unloaded 

Doxorubicin hydrochloride left in the supernatant was determined using a Varian Cary 

Fluorescence spectrophotometer (480 nm / 590 nm excitation / emission wavelengths).  

For release studies, the centrifuged pellet was dispersed in deionised water (10 mL) by 

sonication (10 min) and an aliquot (5 mL) of each sample (either PECA-Dex6G4-Dox or 

PECA-Dex6G8-Dox) was placed in a dialysis membrane bag that had been immersed in 

Falcon tubes containing PBS (20 mL). The tubes were incubated in an oscillating water bath 

(37 °C; 100 rpm) and, at specified time intervals, an aliquot (1 mL) was withdrawn and 

replaced with fresh media. Fluorescence intensity was measured in the supernatant and the 

amount of drug released at each time point was quantified by means of a calibration curve. 

The calculated amount of the equivalent content of free Doxorubicin hydrochloride in 

nanoparticles was used as control.  
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Curcumin was loaded by stirring (overnight, room temperature) PECA-Dex100G4 

nanoparticles in an ethanol-water (1:1 v/v) solution of curcumin (0.1 mg in 1 mL). The 

sample was centrifuged (mini-spin Eppendorf,  12200 rpm, 9984 g; 15 min) and absorbance 

of an aliquot taken from the supernatant (1 mL) to which 2 mL of DMSO had been added 

was measured to determine the degree of loading with reference to a standard calibration plot 

of curcumin in ethanol-water (1:1 v:v).  

Evaluation of Evans blue retentive capacity of PECA-alkyl glyceryl dextran nanoparticles. 

ECA (150 µg) in acetone (25 mL) was added to a stirring solution of Dex6G4 (25 mg) 

dispersed in deionized water (25 mL) containing Evans Blue (6 mg). Stirring was continued 

overnight at room temperature then the mixture was pre-spun (1500 rpm; 322 g; 5 min) and 

ultracentrifuged (12200 rpm; 18000g; 30 min). The Evans blue-loaded nanoparticles were 

dispersed in deionised water (10 ml) and loading capacity was determined by reference to a 

calibration curve. 

To evaluate the retentive capacity of nanoparticles, the colloidal mixture formed after loading 

Evans Blue to PECA-Dex6G4 nanoparticles was centrifuged twice and, after each 

centrifugation cycle, the absorbance of the supernatant was measured. The degree of loading 

after the second centrifugation was determined as 0.016 % and the efficiency of entrapment 

was 2.034 %. Similar results were obtained for the entrapment of Evans blue into PECA-

Dex6G12 nanoparticles. Generally, nanoparticles loaded with Evans blue via the monomer 

polymerisation method exhibited poor entrapment efficiency and a correspondingly low 

degree of loading; since Evans blue is a negatively charged dye, it is likely that the negative 

zeta potential of PECA-alkyl glyceryl dextran nanoparticles is accountable for the poor 

compatibility displayed by this dye-nanoparticle system. 

Fluorescent labelling 
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The fluorescent tagging of nanoparticles with MIA was performed by adapting a previously 

reported method [35], as follows: to a dispersion of PECA-Dex100G8 nanoparticles (20 mg) 

in ethanolic sodium borate buffer (10 mL), a solution of MIA (20 mg) in ethanol (0.2 mL) 

was added under sonication/vortexing (10 min); the mixture was dialysed (72 h) and freeze 

dried before the isolation of fluorophore-rich fractions by column chromatography. To this 

end, the column (Sephadex 50) was eluted with deionised water; the MIA-labelled 

nanoparticles were detected with a UV lamp (350 / 445 nm as MIA excitation / emission 

wavelengths). 

Labelling of tetramethyl rhodamine-5-carbonyl azide (TMRCA) to PECA-Dex6G12 

nanoparticles  

A mixture of PECA-Dex6G12 nanoparticles (50 mg) dispersed in anhydrous toluene (20 mL) 

and TMRCA (0.6 mg) was stirred at 80 °C for 5 h under nitrogen, according to a similar 

literature protocol [36]; the mixture was dialysed (3500 MWCO) against DMF (72 h) and 

then deionised water (4 day) before freeze drying. 

 

Biodegradation studies. ECA (2.5 g) was added drop wise, over 3 h under stirring, to a 

solution of Dex100G4 (250 mg; 0.1 % w/v) in deionized water (pH 3, adjusted with HCl; 

25°C). After this time, specified volumes (Table S1, Supplementary material) of a solution  

of porcine liver esterase (2 mg/mL) in phosphate buffer (pH 7) were each added to 

nanoparticle suspensions (3.5 mL) that had been mixed with 30 mL of Ringer’s solution. The 

resulting mixtures and control (nanoparticle suspension mixed with Ringer’s solution) were 

incubated in a shaking water bath (37 °C). The withdrawal of aliquots at time points up to 84 

h allowed the monitoring of variation in nanoparticle size and PDI (as measured by DLS; 

Malvern Zetasizer Nano ZS).  
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Cell culture. Dulbecco’s Modified Eagle Medium (DMEM) media, TrypLE Express™, 

Phosphate Buffered Saline (PBS), MTT Cell Proliferation Assay Kit and Triton X-100 were 

sourced from Invitrogen Life Technologies, Paisley, UK. Recovery™ Cell Culture Freezing 

Medium and distilled water (cell culture quality) were obtained from Gibco, Paisley, UK. 

Trypan blue and L-cysteine were purchased from Sigma Aldrich, Gillingham, UK. Cryo-vials 

Greiner bio-one and sterile Nunc 96 well-plates were obtained from Fisher Scientific, 

Loughborough, UK. Nunclon F 96-well plates were sourced from Thermo Scientific, UK.  

Immortalised mouse brain endothelial cells (bEnd3) were obtained from the Health 

Protection Agency Culture Collections UK and were cultured under a humidified atmosphere 

(5 % CO2) in a Nuaire DH AUTOFLOW air-jacketed incubator at 37°C and in small T25 

culturing flasks (media is presented as Supplementary material). Cells were counted using a 

disposable haemocytometer, and the analysis of well-plates was performed using a POLAR 

star Optima (BMG Labtech) plate reader.  

Cytotoxicity assay. An MTT assay was used to assess the cytotoxicity of nanoparticles 

(formulated from PECA-Dex100G4 and PBCA-Dex100G4) against bEnd3 cells. 

Nanoparticles dispersed in modified DMEM (10-100 µg/mL; sonication) were incubated with 

confluent bEnd3 cells (seeding 1×104 cells) for 24 h. Sterile PBS and Triton X-100 (0.1 % 

w/v in PBS) provided the negative and positive controls, respectively.  

 

Results and discussion 

Dextrans of different molecular weight (6 and 100 kDa) were grafted with alkylglyceryl 

chains (butyl, octyl, dodecyl, tetradecyl, or hexadecyl) via nucleophilic substitution using 

alkyloxy-substituted oxiranes in the presence of potassium t-butoxide. The resulting modified 

dextrans: butylglyceryldextrans (Dex100G4, Dex6G4); octylglyceryl dextrans (Dex100G8, 
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Dex6G8); dodecylglyceryl dextrans (Dex100G12, Dex6G12); tetradecylglyceryl dextrans 

(Dex6G14, Dex100G14); and hexadecylglyceryl dextrans (Dex100G16, Dex6G16 - where 6 

or 100 denote the molecular weight of the original dextran, and 4, 8, 12, 14 or 16 denote the 

length of the alkyl substituent) were characterized by 1H and 13C-NMR, TGA, DSC, MALDI-

TOF MS.  These materials were further used for the preparation of nanoparticles in a method 

involving the in situ emulsion polymerisation of ethyl and/or butyl cyanoacrylates.   

The successful functionalisation of dextran with alkyl glyceryl chains was evidenced by FT-

IR and 1H- / 13C-NMR spectroscopies as new bands indicative of secondary alcohol and ether 

groups:  1127 cm-1 (C–O–C); 1343 cm-1 (O–C–H); 1539 cm-1 (CH2); and, 0.86 ppm (3 H, 

CH3), 1.3 ppm (2 H, CH2) and 1.5 ppm (2 H, CH2). Observed chemical shifts over the ranges 

65 ppm - 99 ppm and 3 ppm - 5.2 ppm, respectively for 13C- and 1H-NMR, were consistent 

with those that are characteristic of dextran [37-40]; the signal of the anomeric proton (C1, 

4.67 ppm) was well separated from other resonances of the glucopyranosyl ring (3.2–

3.7 ppm); the hydroxyl groups of dextran were manifested as a multiplet at 4.96 ppm.  

 

The degree of substitution (DS%, expressed as the number of alkylglyceryl chains per 100 

glucopyranose units of dextran) was calculated from the 1H-NMR spectra using Equation 1:  

              𝐷𝑆[%] =
1
3

 ×∫ C4′

∫ 𝐶1
 × 100       (1) 

where C4’ is the integral of the signal assigned to the alkyl chain CH3 end group (0.86 ppm), 

and C1 is the integral of the signal assigned to the anomeric proton (4.67 ppm). 

 

The degree of substitution, which varied widely (from 50 to 150 %, Table 1), was found to 

increase with reaction time and with the excess of oxirane employed.  Since the reactivity of 

the OH group of dextran towards alkylating agents is known to decrease in the order C2 > C4 



 

13 

 

> C3 [41] (likely due to the proximity to the anomeric C1 carbon [42]), it can be reasonably 

assumed that primary hydroxy groups were reacted with alkylglyceryl chains preferentially. 

No notable chain-length or molecular-weight dependent variations in the degree of 

substitution of the commercial dextrans employed were observed in this study. 

 

The FTIR spectra of native dextran is characterised by skeletal vibrational modes (δC-C-C, 

δC-C-O, δC-O and τC-C; 400-700 cm-1), the relative intensity of which is a function of water 

content. The grafting of alkyl glycerol chains on dextran was witnessed by FTIR as new 

secondary alcohol groups: the band at 1012 cm-1 is assigned to the vibrational mode of C–O; 

crystalline dextran is characterised by two absorptions at 851 and 914 cm-1, which are 

respectively assigned to the C–C and C–H bending modes. The absorption bands in the 

spectral range 1200 - 1500 cm-1 are primarily associated with CH deformation and C–O–H 

bending vibrations [43]. Bands at 2921 cm-1 and at 3215 cm-1 are respectively consistent with 

C–H and O–H stretching vibrations [43]. The alkyl groups were further evidenced by the 

symmetric and antisymmetric vibrations of aliphatic CH2 moieties at ca. 2920 and 2860 cm-1. 

Figure 1.  

Pullulan standards allowed the determination by GPC of the molecular weight distribution 

profile of the synthesised alkylglyceryl dextrans and that of the starting material. Owing to 

differences in the experimental protocol, the average molecular weights of commercial 

dextrans that served as starting materials (Dex 6 kDa and Dex 100 kDa) were higher than 

those claimed by the manufacturer. In accord with expectation, a study involving Dex100 

showed that the synthesised Dex100G16 (DS 144.92 %) had a higher average molecular 

weight (188.309 kDa) than its precursor macromolecule Dex100 (109.399 kDa). Indicative of 

the comparative nature of the technique, GPC-determined values did not match those 
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calculated from NMR data (366.62 kDa for Dex100G16). Similarly, the GPC-determined 

average molecular weight of Dex6G4 (DS 87.7 %) was lower (5.469 kDa) than that 

calculated from NMR data (10.228 kDa) and, interestingly, lower than that measured by GPC 

for its precursor dextran (Dex6; 9.811 kDa). Irrespective of molecular weight, the PDI values 

of synthesised alkyl glyceryl dextrans (e.g. 1.0 for Dex100G16 and 1.5 for Dex6G4) were 

lower than those of precursor dextrans (e.g. 4.4 for Dex100 and 2.3 for Dex6), which is 

consistent with the assumption that the purification process that follows the grafting of 

alkylglyceryl chains to dextrans reduces the polydispersity of materials. 

Table 1. 

Thermogravimetric analysis of alkylglyceryl dextrans revealed two discrete mass loss events 

(Figure 2A,B and Table 1): the first event represents loss of water and the second, which 

occurs over the temperature range 200-350 °C, is due to the thermal degradation of either 

dextran or alkylglyceryl dextran structures [44,45]. To investigate the variation in 

hydrophilicity across the range of synthesised materials, the percentage of water mass loss 

was represented as a function of the alkyl chain length (Figure 2C); for Dex6- and Dex100-

based materials, the water content was found to decrease with increasing alkyl-chain length 

(the longer the alkyl chain length, the less hydrophilic the sample and the lower its water 

content). This was however not reflected in the behaviour of Dex6G8, Figure 2C, due to its 

higher degree of functionalization (115 %, compared to 65 % for Dex100G8; Table 1). 

Irrespective of molecular weight, the residual mass of alkyl glyceryl dextrans was found to be 

lower than that of the corresponding unmodified dextrans, and did not appear to correlate 

with the alkyl chain length (Table 1). 

Figure 2.   

Table 2.  
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DSC data did not provide any evidence for the presence of crystallinity in any of the samples 

under study. Interestingly, two glass transition events were identified in samples of the 

unmodified dextran (Figure 2D) and also in those of short-chained alkylglyceryl dextrans. 

Dextrans substituted with long alkyl chains (octyl or longer) did not exhibit the higher 

temperature glass transition (Table 2). In accord with TG data, the total enthalpy change 

characterising the evaporation of residual water (seen as a large endotherm in the first DSC 

run, e.g. Figure 2D; summarized in Table 2) decreases with increasing alkyl chain length. The 

temperature values for the first glass transition (expressed as median points) were slightly 

higher for materials based on the high molecular weight dextrans (Dex100) than for those 

based on Dex6. 

In situ anionic emulsion polymerisation of ethyl cyanoacrylate in the presence of 

alkylglyceryl dextrans resulted in the formation of alkylglyceryl-dextran-poly(ethyl 

cyanoacrylate) nanoparticles. To effect control over the rate of polymerization, reactions 

were carried out under acidic conditions (pH 2.5) [19,22,46]. Following purification and 

drying, nanoparticles were isolated as white powders that were characterized by NMR and 

elemental analysis. Nanoparticles were also formulated without HCl, in a water-acetone mix 

(Table 3, samples 6 and 10), but this appears to be of little influence on the elemental 

composition (i.e. on the ratio of PECA to alkylglyceryl dextran found in the nanoparticles).  

Figure 3. 

 NMR spectra of PECA-alkylglyceryl dextran nanoparticles (typical example in Figure 3, 

PECA-Dex100G8) showed well-defined resonances that are characteristic of PECA (1.3 

ppm; 4.2 ppm)  and alkylglyceryl dextran (0.86 ppm, t, CH3;  1.3-1.5 ppm, m, CH2;  3.5-3.9 

and 4.5-5.1 ppm, pyranose). Indicative of a high ratio of PECA to alkylglyceryl dextran 

moieties in nanoparticles, the NMR spectral features of alkylglyceryl dextran were of lower 
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intensity than those due to the PECA component. This was supported by the elemental 

analysis results, which allowed the quantification of the constitutional units of nanoparticles 

(Table 3); the ratio of PECA to alkylglyceryl dextran in the nanoparticles was calculated from 

the percentage composition of carbon, nitrogen, oxygen, and hydrogen, and compared with 

theoretically calculated values.  Across the range of the synthesized materials, alkylglyceryl-

dextran accounted for a variable percentage (about 4 to 20 %) of the structural component of 

nanoparticles (Table 3).  Consistent with findings regarding the ratio of dextran to alkyl 

cyanoacrylate, the elemental-analysis-determined percentage composition (w/w) of dextran 

and poly (isobutyl cyanoacrylate), PIBCA, is reported at 22 % and 78 %, respectively [26]. 

Since sequential washing and centrifugation of nanoparticles from dextran and BCA is 

known to gradually increase the PBCA:dextran ratio (up to ca. 9:1), it may be reasonably 

assumed that a proportion of the dextran component is associated with the nanoparticles via 

physisorption [47]. 

Table 3.  

Mass spectroscopy investigations by MALDI-TOF revealed a spectral pattern with 

characteristic peak-to-peak mass differences of 130.2 and 146.2, likely due to fragmentation 

at the O-C bond level (Figure 4A). This is indicative of a fragmentation pathway that is 

characterised by the loss of C7H14O2 and C7H14O3 fragments (MW 130.18 and 146.18 Da, 

respectively), which in turn confirms the successful chemical grafting of native dextran with 

butylglyceryl pendent chains; no cross-ring fragments could be identified (Figure 4A). A 

similar pattern was observed for nanoparticles, as exemplified by those of PECA-Dex6G4 in 

Figure 4B. The failure to detect molecular ions is attributed to the α-cyano-4-

hydroxycinnamic acid (CHCA) matrix used (a strong acid in the gaseous phase), which tends 

to induce extensive fragmentation [48,49]; it has been suggested that 2,5-dihydroxybenzoic 

acid (2,5-DHB) might be a better matrix than CHCA for the MALDI-TOF MS study of high 
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molecular weight polysaccharides (such as dextran) that require a high matrix-to-analyte ratio 

to give enhanced signals [49,  50].  

Figure 4. 

Figure 5.  

The size of PECA-Dex100G4 nanoparticles prepared by emulsion polymerisation ranged 

from 100 to 500 nm. Indicative of the good aqueous stability characterising these 

nanoparticles, and in marked contrast with the zeta potential reported in the literature for 

PBCA nanoparticles (-5.3 ± 0.7 mV [20]), zeta potentials were found to be lower than -30 

mV.  

 Investigations of the morphology of freeze-dried PECA-Dex100G4 nanoparticles prepared 

by emulsion polymerisation indicated a spherical shape (Figure 5); aggregates observed in 

SEM had been formed during the evaporation of liquid media at the sample preparation stage. 

The size differences observed when comparing these images with those obtained for the same 

type of nanoparticles by DLS, when measured in colloidal form, are likely due to the 

hydration of the outer layer and possibly due to an induced conformational change of the 

polymer chains at the surface of nanoparticles [51]. 

Figure 6.  

To evaluate the stability of PECA and PECA-alkylglyceryl nanoparticles as a function of pH, 

the size and zeta potential of nanoparticles re-dispersed in ultrapure water (example in Figure 

6) were monitored during automatic pH titrations with aq. HCl (0.005/0.05M). Results 

showed that, for all formulations, the average particle sizes at pH 7.4 were in the range 100-

500 nm and the zeta potential between -15 and -30 mV. It was found that the zeta potential of 

PECA nanoparticles and PECA-alkylglyceryl dextran nanoparticles increased with 

decreasing pH, with isoelectric points at low pH values (< 3.2). Although pH-induced 
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changes in the size of nanoparticles were observable, the average nanoparticle size was 

relatively stable over the pH range 3–8; PECA-Dex6G16 nanoparticles were least amenable 

to pH-induced variations in size (Figure 6).  

 To investigate the esterase-induced biodegradation of nanoparticles, experiments using 

PECA-Dex100G4 nanoparticles and different enzyme concentrations were carried out 

according to standard literature procedures [52]. Data obtained in an 84 h degradation study 

indicate that, in agreement with a study involving PBCA nanoparticles [52], all sample sets 

treated with low enzyme concentrations exhibited a decrease in average size during the first 

few hours of the experiment (Figure 7a). However, at 4 h from the onset of the experiment, 

samples treated with high enzyme concentrations (≥ 420 units) exhibited increased sizes 

relative to those measured at the 1 h time point; this increase appears to be directly related to 

enzyme concentration and to signal the initiation of aggregation. The degradation pattern 

observed with samples treated with low concentrations of enzyme (up to 220 units)  could be 

consequent to surface degradation (PECA-nanoparticles are known to be susceptible to 

surface degradation [53]) whereby PECA-Dex100G4 nanoparticles become depleted over 

time; the time-dependent increase in size observed for samples treated with higher enzyme 

concentration may be explained in terms of agglomeration that is consequent to the 

significant degradation of the nanoparticulate structure; considering the high concentration of  

esterase, it is possible that depleted nanoparticles play a significant role in this process. In 

agreement with published data [54], the study shows that the degradation of nanoparticles is 

dependent on both time and enzyme concentration. Indicative of the strong degradative action 

of the enzyme, PDI increased over time but at a decreasing rate towards the end of the 

experiment, especially for samples that had been treated with high concentrations of the 

enzyme (Figure 7b).  

Figure 7. 
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The drug loading capacity of PECA-alkylglyceryl dextran nanoparticles loaded with 

Doxorubicin hydrochloride and their drug release profiles appear to be affected by the alkyl 

chain length of the modified dextran (Figure 8). PECA-Dex6G4 nanoparticles accommodated 

a smaller load of Doxorubicin hydrochloride than PECA-Dex6G8 nanoparticles and released 

their therapeutic content at a slower rate (Figure 8), possibly due to the competing high 

hydrophilicity and low surface adsorption. Doxorubicin release from PECA-Dex6G8-Dox 

nanoparticles was rapid (similar to that of the free Doxorubicin from the dialysis-membrane 

bag used as control, Figure 8). PECA-Dex6G4-Dox nanoparticles had about 40 % of their 

drug content released within about 8 h, in comparison with about 95 % of the drug released 

from PECA-Dex6G8 nanoparticles within the same timeframe. Overall, the release profiles 

demonstrated that, at the temperature and pH of the adopted experimental protocol, 

nanoparticles exhibited limited affinity for Doxorubicin hydrochloride; the release of 

Doxorubicin in its free base form has not been investigated. 

Figure 8. 

 To assess the potential usefulness of these nanoparticles for imaging applications, the 

possibility of surface functionalization  by chemically conjugating fluorescent labels suitable 

for carbohydrate substrates (such as N-methyl isatoic anhydride or tetramethyl Rhodamine-5-

carbonylazide [35,36]) was investigated. Conjugation of MIA to nanoparticles was evidenced 

by fluorescence measurements, NTA and confocal microscopy; DLS data indicated that the 

nature of the re-dispersion medium slightly affected both the size and PDI distribution of 

MIA-labelled nanoparticles (Table 4; also Supplementary material). 

Figure 9. 

Table 4.  
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To identify a range of safe concentrations of the nanoparticles under consideration, a dose 

response study has been carried out and also the apparent toxicity induced by PECA was 

compared with that of poly(butyl cyanoacrylate) - or PBCA, a material widely investigated 

for nanoparticulate drug delivery applications [55] - by testing nanoparticles that had been 

prepared from the same materials but where ECA was replaced with BCA.   

Experiments indicated that PBCA-Dex100G4 nanoparticles were well tolerated by bEnd3 

cells at concentrations of up to 50 µg/mL, while nanoparticles of PECA-Dex100G4 (1:1) and 

PECA-Dex100G4 (1:6) begin to exhibit toxic effects at concentrations >25 µg/mL (Figure 

10). This finding is consistent with earlier suggestions that the cytotoxicity of poly(alkyl 

acrylates) colloids (believed to be due to the formation of toxic formaldehyde via a minor 

degradation pathway[ 54,56]) correlates with their degradation rate, which is known to be 

inversely proportional to the length of the alkyl chain [23,54,56]. The faster degradation of 

PECA relative to that of longer-alkyl-chain PACA homologues may prove useful for 

applications where multiple dosing is required or for the delivery of vaccines or antigens with 

short optimal presentation and differentiation [57]. 

Literature reports have unveiled the complexity of the relationship between cytotoxic effect 

and cell type and also the effects of surface coatings on the particles. Lherm et al. have 

claimed that PECA nanoparticles are cytotoxic to L929 cells at concentration > 25µg/mL [23] 

while Pitaksuteepong et al. has reported adverse effects on cell viability at concentrations >10 

µg/mL [58]. Both PECA and PBCA particles have been reported to show identical cellular 

damage to mouse peritoneal macrophages [57]. Though Yordanov et al. suggested that PBCA 

nanospheres exert a low cytotoxic effect on A549 cells (viability >92 %)[20] and there was 

no noticeable induced cytotoxicity  at the concentration of 75µg/mL [24], membrane damage 

has been observed at 150 µg/ml [24]. Notably, while reports from clinical trials indicate that 
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PACA degradation products do not induce any adverse effects of therapeutic significance 

[25], no clinical trials that are specific to either PECA or PBCA have been conducted. 

Figure 10. 

In summary, incubation for 24 h of mouse brain endothelial cells bEnd3 with poly(alkyl 

cyanoacrylate)-alkylglyceryldextran (PECA-Dex100G4or PBCA-Dex100G4) nanoparticles 

revealed no significant toxicity induced by these nanoformulations at concentration <25 

µg/mL (p = 0.0010, ANOVA). 

 

Conclusions 

Alkylglyceryl-modified dextrans, prepared by the functionalisation of dextran (MW 6 and 

100 kDa) with alkyl oxiranes of systematically varied chain lengths (4 to 16), have been 

formulated into nanoparticles via controlled emulsion polymerization with either ethyl or 

butyl cyanoacrylates. The alkylglyceryl-modified dextran-poly(ethyl 2-cyanoacrylate) 

nanoparticles thus obtained were characterised by a unimodal average size in the range 100-

500 nm and a negative zeta potential. Formulations of these nanoparticles in physiologically 

relevant media exhibited good stability. 

Characterisation of alkylglyceryl dextrans by MALDI-TOF MS, TGA, DSC, GPC, FTIR and 

NMR indicated that the degree of substitution varied between 50 and 150 % (as determined 

by 1H-NMR) and that the hydrophilicity of the alkylglyceryl dextran decreased with 

increasing chain length of the progenitor alkyl glycerol; GPC data demonstrated that the 

polydispersity index of alkylglyceryl dextrans was lower than that of the corresponding 

precursor dextran irrespective of average molecular weight.  

Alkylglyceryl-modified dextran-poly(ethyl 2-cyanoacrylate) nanoparticles were formulated 

and characterised by DLS, NTA, elemental  analysis (CHN), NMR, FTIR, MALDI-TOF MS, 
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SEM, DSC and TGA. In agreement with NMR data, CHN analysis calculations determined 

that the weight ratio of alkylglyceryl dextran to alkyl cyanoacrylate in the formulated 

nanoparticles was in the, formulation-dependent, range of 1:4 to 1:24.5. Studies involving the 

systematic variation of the alkylglyceryl chain length indicated that there is no direct 

relationship between chain length and nanoparticle size. Notably, nanoparticles that had been 

prepared from alkylglyceryl dextrans exhibited zeta potentials that were more negative than 

those of congeners that had been formulated from native dextrans. Autotitration experiments 

revealed that drug-free nanoparticles exhibit decreasing zeta potentials with decreasing pH; 

average size appeared relatively stable across the pH range considered, with some of the 

tested nanoparticles exhibiting slightly smaller average size at lower pH values. 

The nanoparticles were amenable to tagging with fluorophores (MIA; TMRCA) and to 

loading with a range of model drugs (Curcumin; Doxorubicin; Evans blue).  Release studies 

from nanoparticles loaded with Evans blue have shown the rapid discharge of this 

hydrophilic model drug from the nanoparticulate matrix, however the release of Doxorubicin 

(or that of Curcumin) from nanoparticles was markedly slower. Tested against mouse bEnd3 

brain endothelial cells, alkylglyceryl-modified dextran-poly(alkyl 2-cyanoacrylate) 

nanoparticles exhibited dose-dependent toxicity profiles: PBCA-Dex100G4 nanoparticles 

were found to be more biocompatible than PECA-Dex100G4 nanoparticles. 
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Table 1. Dextrans and modified dextrans investigated in this study. The degree of substitution 

(DS) was determined from 1H-NMR data; the onset-of-degradation temperature and 

percentage residual mass at 450°C were determined by TGA. 

 
no  Material  DS (%) 

(1H-NMR) 

Degradation 

onset (°C) 

Residual mass 

at 450°C (%) 

1  Dex6 0 300.6 16.03 

2  Dex6G4 87.7 313.9 2.27 

3  Dex6G8 114.94 328.6 10.70 

4  Dex6G12 54.35 298.0 6.55 

5  Dex6G16 133.33 233.3 7.89 

6  Dex100 0 290.3 19.07 

7  Dex100G4 68.49 310.7 12.11 

8  Dex100G8 64.91 293.5 14.33 

9  Dex100G12 67.56 301.9 2.55 

10  Dex100G16 144.92 308.9 5.48 
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Table 2. Summary of DSC data for both native and modified dextrans. 

 1st run 2nd run 

 Endotherm 

peak area (J/g) 

1st Tg 

(°C) 

Cp  

(Jg-1K-1) 

2nd Tg 

(°C) 

Cp  

(Jg-1K-1) 

Dex6 204.2  48.6  0.007 198.4  0.428 

Dex6G4 122.7 45.5  0.026 175.7 0.178 

Dex6G8 75.47 49.5  0.036 - - 

Dex6G12 73.94 42.2  0.008 - - 

Dex6G14 61.37 46.0 0.001 - - 

Dex6G16 18.44 47.1  0.022 - - 

Dex100 229 58.2 0.028 216.4 0.384 

Dex100G4 169.5 50.2   0.003 183.4  0.052 

Dex100G8 102.9  50.3 0.036 - - 

Dex100G12 86.34 50.0  0.024 - - 

Dex100G14 39.1 55.6  0.006 - - 

Dex100G16 0 68.2  0.017 - - 
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Table 3. Elemental composition of PECA-alkylglyceryl dextran nanoparticles (found and 

calculated). 

S/No Material  Carbon Hydrogen Nitrogen Oxygen 

(%; 

100CHN) 

PECA 

(% w) 

Dex-G 

(% w) 
Found 

(av%C) 

Calc. 

C % 

Found 

(av%H) 

Calc. 

%H 

Found 

(av.%N) 

Calc. 

%N 

1 PECA 

Dex6G4 

55.94 57.22 5.77 5.83 10.33 10.33 27.96 92.25 7.75 

2 PECA 

Dex6G8 

56.31 58.03 6.34 6.51 8.65 8.65 28.70 80.38 19.62 

3 PECA 

Dex6G12 

56.31 57.61 5.89 5.88 10.41 10.41 27.39 94.34 5.66 

4 PECA 

Dex6G16 

56.95 59.36 6.45 6.61 9.13 9.133 27.47 88.09 11.91 

5 PECA 

Dex100G4 

56.07 57.17 5.81 5.79 10.41 10.41 27.71 92.99 7.01 

6 PECA 

Dex100G4A 

56.81 57.29 5.67 5.75 10.62 10.62 26.90 94.84 5.159 

7 PECA 

Dex100G8 

56.22 57.51 5.73 5.78 10.67 10.67 27.38 95.92 4.079 

8 PECA 

Dex100G12 

56.35 57.69 5.82 5.83 10.63 10.63 27.19 96.09 3.91 

9 PECA 

Dex100G16 

57.22 59.78 6.58 6.80 8.78 8.78 27.42 86.07 13.93 

10 PECA 

Dex100G16A 

57.99 59.63 6.35 6.72 8.94 8.94 26.73 87.05 12.95 

 

  



 

33 

 

 

Table 4. The effect of redispersion media on the size and size distribution (as measured by 

DLS) of PECA-Dex100G8 nanoparticles fluorescently labelled with MIA. 

Redispersion media  Z-av.d (nm) PDI ±SD 

water 141.4±1.0 0.241±0.006 

NaCl (10 mM) 133.2±1.6 0.224±0.009 

PBS (pH 7.4) 226.0±5.3 0.467±0.011 

PBS (pH 7.4; 0.2µm PES filter) 134.6±0.4 0.221±0.007 
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Figure 4. MALDI TOF spectra of: (A) Dex6G4 and (B) PECADex6G4 nanoparticles (CHCA matrix).  

Figure 5. SEM (A) and TEM (B) images of PECA-Dex100G4 nanoparticles. 

Figure 6. The effect of pH on the main characteristics of nanoparticles (0.25 mg/mL) for: (A) 
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Figure 9. Schematic representation of the conjugation reactions employed for the fluorescent 

tagging of: A) PECA-Dex100G8 nanoparticles, via reaction with N-methylisatoic anhydride 

(MIA); B) PECA-Dex6G12 nanoparticles, via reaction with Tetramethyl Rhodamine-5-

carbonylazide.  

Figure 10.  Relative viability of bEnd3 cells incubated with PBCA/PECA alkylglyceryl dextran 

nanoparticles at various concentrations (10 μg/mL; 25 μg/mL; 50 μg/mL; 100 μg/mL)  for 24 

h (MTT assay; media blank used as negative control; Triton-X100 as positive control; n =3; 

±SD; e.g. PECA(1:1)10 denotes PECA-Dex100G4(1:1) nanoparticles at 10 μg/mL conc., 

where 1:1 (or 1:6) indicates different ratios ECA : modified dextran at the preparation stage). 
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Supplementary information 
 

S-1. Biodegradation studies  
Table S1: The enzyme activity, mass and volume of the stock solution (conc. 12 mg/mL) used 

for the biodegradability study of PECA-Dex100G4 nanoparticles 

Units of enzyme 0 120 220 420 620 1220 

Enzyme mass (mg) 0 7.06 12.94 24.71 36.47 71.75 

Volume of enzyme 

solution used (mL) 

0 0.59 1.08 2.06 3.04 5.98 

  

 

 

S-2. MTT assay 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay protocol 

The MTT working solution was prepared by allowing a solution of MTT in DMEM (5 

mg/mL; kept in the dark at 2-8°C until needed) to reach 37°C and a steady state concentration 

of 5% CO2 before dilution (1:5) with DMEM. BEnd3 cells (20,000) were seeded (in 

triplicate) into each of a 96 well plate containing 200 µl of normal media (DMEM containing 

10% fetal bovine serum, FBS) and incubated for 24h. After this time, in each well were 

added 20 µl of each nanoformulation and of alkylglyceryl dextran formulations dispersed in 

PBS at specified concentrations prior to incubation for 24h at 37°C (5% CO2). After this 

time, to each well was added MTT working solution (50 µl) and the mixture was incubated 

for 2h at 37°C (5% CO2). The media was then removed from each well, replaced with 100 µl 

of DMSO and this mixture was agitated gently until the formazan crystals had dissolved. 

Each plate was inserted into the plate reader and the absorbance was read at 570 nm. The 

viability of cells was calculated (Equation 5.1) as percentage relative to PBS (negative 

control); Triton-X100 provided the positive control.  

 

 

100*
.

.
%..Re

controlA

testA
viabilitycelllative     (eq. 5.1) 
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S-3. GPC 
Table S3: Calibration - pullulan standards 

 Retention 

Time /min 

Elution 

Vol. (mL) 

Mol Wt Log (Mol 

Wt) 

Calculated 

Weight 

% 

Residual 

Standard 

Type 

Relative 

Weight 

1 9.549 9.549 805000 5.905796 790018 1.896 Narrow 1.00 

2 10.413 10.413 366000 5.563481 383256 -4.502 Narrow 1.00 

3 11.281 11.281 210000 5.322219 206578 1.657 Narrow 1.00 

4 12.219 12.219 113000 5.053078 109750 2.961 Narrow 1.00 

5 13.295 13.295 48800 4.688420 49454 -1.322 Narrow 1.00 

6 14.188 14.188 21700 4.336460 21831 -0.602 Narrow 1.00 

7 14.865 14.865 10000 4.000000 10136 -1.338 Narrow 1.00 

8 15.271 15.271 6000 3.778151 5914 1.459 Narrow 1.00 
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GPC chromatogram of (a) native dextran (Dex6) and (b) akyl glyceryl dextran (Dex6G4) 

 

Pullulan standard curve equation 

 R R^2 Standard Error Equation 

1 0.999902 0.999804 1.407507e-002 Log Mol Wt = 2.24e+001 - 3.87e+000 T^1 + 3.08e-001 T^2 - 8.84e-
003 T^3 
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S-4. Elemental analysis 
Equations used to calculate the polymer mass composition from the results of elemental 
analysis  
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S-5. Fluorescent labelling of modified dextran with N-Methylisatoic anhydride 

(MIA) 

 

Functionalization of PECA-Dex100G8 nanoparticles with MIA: confocal microscopy image 

of a PBS suspension of PECA-Dex100G8 nanoparticles tagged with MIA ((543 nm laser 

excitation; bandpass filter 350 - 445 nm). 

 

 

 

 


