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The Cohomology of Non-Locality and Contextuality

Samson Abramsky Shane Mansfield Rui Soares Barbosa
Department of Computer Science
University of Oxford

{samson.abramsky, shane.mansfield,rui.soaresbarbosa}@cs.ox.ac.uk

In a previous paper with Adam Brandenburger, we used sheafyho analyze the structure of
non-locality and contextuality. Moreover, on the basishi$ formulation, we showed that the phe-
nomena of non-locality and contextuality can be charamterprecisely in terms of obstructions to
the existence of global sections.

Our aim in the present work is to build on these results, angseothe powerful tools of sheaf
cohomology to study the structure of non-locality and centality. We use the Cech cohomology
on an abelian presheaf derived from the support of a prabtibiinodel, viewed as a compatible
family of distributions, in order to define a cohomologicélstruction for the family as a certain
cohomology class. This class vanishes if the family has bailsection. Thus the non-vanishing of
the obstruction provides a sufficient (but not necessamilition for the model to be contextual.

We show that for a number of salient examples, including PReboGHZ states, the Peres-
Mermin magic square, and the 18-vector configuration dueabeflo et al. giving a proof of the
Kochen-Specker theorem in four dimensions, the obstmchies not vanish, thus yielding cohomo-
logical witnesses for contextuality.

1 Introduction

Non-locality and contextuality are fundamental featurephysical theories, which contradict the intu-
itions underlying classical physics. They are, in paracuprominent features of quantum mechanics,
and the goal of the classic no-go theorems by Beéll [3], KoeBpacker/[10], et al. is to show that they are
necessary featuraxf any theory whose experimental predictions agree withalaf quantum mechanics.

Bell’'s insights into non-locality have been seminal to therent developments in quantum informa-
tion, where entanglement is viewed as a key informatic nesguand there has also been considerable
recent work on experimental tests for contextuality [2, 9].

In a previous paper with Adam Brandenburgelr [1], we used théhematics ofheaf theoryto
analyze the structure of non-locality and contextualitye&f theory is pervasive in modern mathematics,
allowing the passage from local to global [12]. Startingnira simple experimental scenario, and the
kind of probabilistic models familiar from discussions afIBs theorem, Popescu-Rohrlich boxes|[15],
etc., we gave a very direct, compelling formalization ostheotions in sheaf-theoretic terms. Moreover,
on the basis of this formulation, we showed that the phenanaénon-locality and contextuality can be
characterized precisely in termsalfstructions to the existence of global sections

Our aim in the present work is to build on these results, ands® the powerful tools ofheaf
cohomologyto study the structure of non-locality and contextualitheTpresent paper describes work
in progress, and only represents an initial step in thisctdma. Nevertheless, enough has been achieved
to indicate that this approach has some promise, and meritgef investigation.

We briefly summarize our results:
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2 The Cohomology of Non-Locality and Contextuality

e We use the formalization of no-signalling probabilistic aets as compatible families of sections
on a presheaf of distributions developed [in [1]; compatibitorresponds precisely to the no-
signalling condition. The family is defined on a cover cop@sding to the sets of compatible
measurements.

e The locality/non-contextuality of the model correspondghe existence of a global section for
this family, as shown ir_[1].

e We use th&€ech cohomology on an abelian presheaf derived from theostipfthe model in order
to define acohomological obstructionfor the family as a certain cohomology class. This class
vanishes if the family has a global section. Thus the nonstémgy of the obstruction provides a
sufficient (but not necessary) condition for the model to tatextual.

e We show that for a number of salient examples, including PRe®d15], GHZ states [7,]6],
the Peres-Mermin magic square [14] 13], and the 18-vectofigroration giving a proof of the
Kochen-Specker theorem in four dimensions froin [4], therolotion does not vanish, thus yield-
ing cohomological witnesses for contextuality.

The further contents of the paper are as follows. We reviemstieaf formulation froni[1] in Sec-
tion 2, andCech cohomology in Section 3. We define the cohomologicairotiion in Section 4, and
consider various examples in Sections 5 and 6. Finallytditioins of the current results and further
directions are discussed in Section 7.

2 Sheaf Formulation of Measurement Scenarios

We recall the basic ideas ofl[1].

We work over a finite discrete spage which we think of as a set aheasurement labels We fix
a coverll = {Cy,...,Cp}, with U = X, which represents the set cdbmpatible families of measure-
ments i.e. those which can be made jointly. Fixing a finite €ebf outcomes we have the presheaf of
sets€ on X, where& (U) := OV, and restriction is simply function restriction: givenC U’,

o 1 EWU) = £U) mse UL

SinceX is discrete#’ is (trivially) a sheaf. We think of it as the sheaf@fents

An empirical modek in the sense of [1] is a compatible fami{gc }ce, Whereec is a probability
distribution on&(C). Here compatibility uses the definition of restriction ostdbutions, which we
omit since we shall not need it. The supporeafetermines a sub-preshe&fof &

SU) :={se &) |sesupp(ey)}.

Hereey = ec|U for anyC € U such that) C C. The compatibility of the family{ec} ensures that this is
independent of the choice 6f

We have the following notions from[1].

e The modek is possibilistically extendableiff for every s€ S(C), sis a member of a compatible
family {s € S(Ci)} ;. It is possibilistically non-extendableif for somes, there is no such
family.

e The modek is strongly contextualif for every sthere is no such family.

The results from[]1] show that if a model is local or non-caital in the usual sense, then it is

possibilistically extendable. Thus possibilistic nontesdability is a sufficient condition faron-locality
or contextuality. Strong contextuality is a much stronger condition. Theséhproperties witness strong
forms of the non-classical behaviour exhibited by quantuacmanics.
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3 Cech Cohomology of a Presheaf

We are given the following:
e Atopological spac«.
e An open covefl of X.

e A presheaf% of abelian groups oiX. For each open sé&l of X, .#(U) is an abelian group,
and wherlJ C V, there is a group homomorphispy : # (V) — .Z(U). These assignments are
functorial: p§ = idy, and ifu CU’ CU”, then

Ul U// UII

Py °Py =Py

Thenerve N(U) of the coverll is defined to be the abstract simplicial complex comprishase finite
subsets otl with non-empty intersection. Concretely, we takg-simplex to be a list = (Uo,...,Uq)
of elements ofl, with |o| := N (U; # @. Thus a 0-simplexU ) is a single element of the covél: We
write N(U)9 for the set ofg-simplices.

Given ag+ 1-simplexog = (Uo, .. .,Uq+1), there areg-simplices

a](o-) = (Uo,...,U/\j,...,Uqul), 0§J<q

obtained by omitting one of the elements of the 1-simplex. Note that:
o] < [9j(a)].

We shall now define th€ech cochain complex For eachqg > 0, we define the abelian group
ci(u, #):
ci(U, 7) = U 7 (o))
oeN(U)d
We also define theoboundary maps
5%:ci(U,.7) — CHHU,.2).
Forw = (w(T))rena € CHU, F), ando € N(U)**?, we define:
g 1] 30
N w)(o) = J;(_l) Pig| w(d;0).

For eachy, 6% is a group homomorphism.
We shall also consider trugmented complex 0- CO(U,.7) — - --.

Proposition 3.1 For each q,06910 6% = 0.

We definez9(U, .%), theg-cocycles to be the kernel 0d9. We defineB(U,.# ), theg-coboundaries
to be the image oBd1. These are subgroups 6f(U,.7), and by Propositio 31189(U,.7) C
Z9(U,.#). We define the-th Cech cohomology groupH9(U,.%#) to be the quotient group

HYW, ) = 29U, 7)/BI(U, 7).

Note thatB(U,.#) = 0, soHO(U,.%) = ZO(U,.%).



4 The Cohomology of Non-Locality and Contextuality

Given a cocycle € Z9(U,.%), thecohomology clasgZ is the image ok under the canonical map
Z9(U,.7) — HI(U,.7).
A compatible family with respect to a covell is a family {r; € .7 (U;)} for U; € U, such that, for

alli, j:
ri|UiﬂUj :rj|UimUj.

Proposition 3.2 There is a bijection between compatible families and elésneinthe zeroth cohomol-
ogy groupH®(U,.%).
Proof  Cochainsc = (ri)y,cy in CO(U,.#) correspond to familiegr; € .7 (U;)}. For each 1-simplex
o= (Ci,Cj),

50(C)(0) = I’i|CiﬂCj — rj|CiﬁCj.

Henced®(c) = 0 if and only if the corresponding family is compatible. O

We shall also use thelative cohomologyf .% with respect to an open sub&etC X.
We define two auxiliary presheaves relatedo Firstly, #|U is defined by

FUNV):=ZFUnNV).
There is an evident presheaf morphism
p:.F — ZU:py:r—=riunv.
Then.Z is defined by#5(V) :=ker(py). Thus we have an exact sequence of presheaves

p

00— Fg—F Z|U.

The relative cohomology of* with respect tdJ is defined to be the cohomology of the preshé&gf.
We have the following refined version of Proposition] 3.2.

Proposition 3.3 For any U € U, the elements of the relative cohomology grdaV{PQu,ﬁ‘U—i) correspond
bijectively to compatible familiegrj} such that r = 0.

Proof By Proposition[32, compatible families correspond to cteyr = (rj) in CO(U,.7). B
compatibility, r;|C; N C;j = r;|C;NC; for all j. Hencer is in CO(U, %) if and only if rj = py, (r;) = 0.

0<

4 Cohomological Obstructions

Given a commutative rin§, we define a functoFg : Set— Set For any sek, thesupport supp(®)
of a functiong : X — Ris the set ok € X such thatp(x) # 0. We defing(X) to be the set of functions
@ : X — Rof finite support. There is an embeddixg- 1-x of X in Fr(X), which we shall use implicitly
throughout.

Givenf : X =Y, we define:

FRE:FRRX — RRY 2o [y— 5 (X)),
f(x)=y
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This assignment is easily seen to be functorial.

In fact, Fr(X) is thefree R-module generated byX, and in particular, it is an abelian group; while
Fr(f) is a group homomorphism for any function In particular, takingR = Z, Fz(X) is the free
abelian group generated byX.

Thus, given any presheaf of s@®n X, we obtain a presheaf of abelian grolp$ by composition:
FzPU) :=Fz(PU)). .

Given an empirical moded defined on the covat, we shall work with theCech cohomology groups
HY(U,.%) for the abelian presheaf := F;S. Note that, for any set of measuremetts.# (U) is the
set offormal Z-linear combinations of sectionsn the support of;.

To eachs € S(C), we shall associate an elemefis) of a conomology group, which can be regarded
as an obstruction te having an extension within the supportefo a global section. In particular, the
existence of such an extension implies that the obstruetimishes. In good cases, these two conditions
are equivalent, yieldingohomological characterizationsof contextuality and strong contextuality.

For notational convenience, we shall fix an elemenats; € S,(Cp). Because of the compatibility of
the family {ec}, which is equivalent to no-signallingl[1], there is a famfly € S(Ci) } with ;|C1NC; =
slCinG,i=2,...,n.

We define the cochaia:= (s;,...,s,) € C°(U,.%). The coboundary of this cochainzs= 6°(c).
Proposition 4.1 The coboundary z of ¢ vanishes under restriction {pahd hence is a cocycle in the
relative cohomology with respect tq C
Proof We writeC; j :==C;NC;j. For alli, j, we definez ; := z(C; ;) = 5|Ci ; — sj|Ci,;. Because of the
no-signalling assumption on the famisg }, for all i, j,

S|C1ﬁCi’j = (S]_|C1ﬁCi)|Cj = Sl|ClﬂCi.j.

Similarly, sj|C; NG j = s1|C1 NG j. Hencez j|C1NCij =0, andz j € F¢, (GNC)). Thusz= (7 j)ij €
CYU, Z¢).

Note thatd® : CH(U, F¢,) — C3(U, F¢,) is the restriction of the coboundary map Gh(U,.7).
Hencez = 5°(c) is a cocycle. O

We definey(s;) as the cohomology clasg Hl(u,ﬁ‘c—l).

Remark There is a more conceptual way of defining this obstructiemgithe connecting homomor-
phism from the long exact sequence of cohomology;(see [S]h&Ve given a more concrete formulation,
which may be easier to grasp, and is also convenient for ctatipo.

Note that, althougtz = 6°(c), it is not necessarily a coboundary @t(U, Z,), sincec is not a
cochain inC(U, ¢, ), aspg (s) = §/C1NCi # 0. Thus in general, we need not hgge= 0.
Proposition 4.2 The following are equivalent:

1. The cohomology obstruction vanishgss;) = 0.

2. Thereis a family{r; € . (Ci)} with s, =ry, and for all i, j:

I’i|Ci ﬂCj = rj|Ci ﬁCj.

Proof ~ The obstruction vanishes if and only if there is a cochgis (cy,...,c,) € CO(U,.Fg,) with
8%(c') = 8°%c), or equivalentlyd®(c — ¢’) = 0, i.e. such thatc — ¢’ is a cocycle. By Proposition 3.2,
this is equivalent to{r; := s — ¢/} forming a compatible family. Moreover’ € Co(u,ﬁc—l) implies
¢} =pc,(c}) =0, sory =s.
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For the converse, suppose we have a fafilye .%(C)} as in (2). We define’ := (c/,...,c),
wherec := s —rj. Sincery = sy, pc (¢/) = s1|C1j —r1|Cyj = 0 for all i, andc’ € Co(u,ﬁ’c—l). We must
show thatd®(c’) = z,i.e. thatz ; = ¢{|C; j — ¢} |C; ;. This holds since;|C; j = r;|Ci ;. a

As an immediate application to contextuality, we have thie¥ang.

Proposition 4.3 If the model e is possibilistically extendable, then thetmigtion vanishes for every
section in the support of the model. If e is not strongly cdut, then the obstruction vanishes for some
section in the support.
Proof If eis possibilistically extendable, then for evesy S;(Ci), there is a compatible familys; €
S(Cj)} with s=s. Applying the embedding o&(C;) into .#(C;j), by Propositiori_ 4J2 we conclude
that y(s) = 0. The same argument can be applied to a single section witigethe failure of strong
contextuality. d
Thus we have aufficient conditiorfor contextuality in the non-vanishing of the obstructiofhe
non-necessity of the condition arises from the possibiityfalse positives’: families{rj € .#(C)}
which do not determine lbona fideglobal section irf’(X).

5 Examples

Example: Hardy

We begin with an example to show that false positives do iddeise.
We consider the Hardy modéll [8]; the support is given as flo

0,0 (01 (L9 (11)
ab) | 1 1 1 1
(ab) | 0 1 1 1
@,b) | 0 1 1 1
@) 1 1 1 0

We enumerate the sections as follows:

| 00|01 ] @0 ||
(a,b) St S 3 S4
(a,b) S5 S6 S7 S8
(d,b) So Slo | S11 | Si2

(@,o) | si3 | s14 | s15 | S6
The sections; provides a witness for the non-locality of the Hardy modélisinot a member of
any compatible family of sections in the support. Howeveg, vave the following family ofzZ-linear
combinations of sections:

=%, lN=S+s—%, 3=%5S1 [I4=S5s.
One can check that
rpla = 1.(a—»0)+1-(a—1)—1-(a—1) = rqla
rp = 1.0—1)+1-(—0)—1-(b—1) = rab.
Thus this family meets the conditions of Proposifion 4.2 #ive obstructiory(s;) vanishes.
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Example: PR-Box

There is better news when we look at the PR-box:

(0,00 (01 (L0) (LY
(a,b) 1 0 0 1
(ab) | 1 0 0 1
(@,b) 1 0 0 1
(@,n) 0 1 1 0

This is a strongly contextual modél [1], so no section in tngp®rt is a member of a compatible family.
The coefficients for a candidate family;} can be displayed as follows:

00 01 10 11
AB |a 0 O b

AB | c 0O O d
AB|e 0 0 f
AB|O g h O

The constraints arising from the requirements th&; ; =r;|C; ; are:
a=c, b=d, a=e¢ b=f, c¢c=h d=g e=g f=h

These imply that all the variables are equal.

Checking that a section in the support is a member of such dyfamounts to assigning 1 to the
variable labelling that section, and O to the other variablé&s row. Clearly such an assignment is
incompatible with the above constraints, since it implies Q.

Hence there can be no such family, and the obstruction ddesnish for any section in the support,
witnessing the strong contextuality of the PR box.

Example: GHZ

The previous example suggests looking at GHZ, which is aismgly contextual, and of course is
realizable in quantum mechanics.
The support for (the relevant part of) GHZ is as follows:

000 001 010 011 100 101 110 111
ABC | 1 0 1 0 1 1
ABC' | 0 1 0 1 0 0
ABC | O 1 0 1 0 0
ABC| O 1 1 0 1 0 0

We display the coefficients for a candidate family as follows

000 001 010 011 100 101 110 111

P P O
N = = o)

ABC a 0 0 b 0 c d 0
ABC' | 0 e f 0 g 0 0 h
ABC| O i j 0O k 0 0 I
ABC| O m n 0 0 0 0 p
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The constraints arising from the requirements th&; ; =r;|C; ; are:

at+b = e+ f c+d = g-+h
at+c = i+k b+d = j+I
a+d = n+o b+c = m+p
f+g = j+k et+h = i+l
e+g = m+o f+h = n+p
I+] = m+n k+1 = o+p

Checking that a section in the support is a member of such dyfammounts to assigning 1 to the

variable labelling that section, and 0 to the other varisiets row.

It suffices to show that these constraints cannot be satigfiedthe integers mod 2; this implies that
they cannot be satisfied ovér since otherwise such a solution would descend via the harminsm
7 — 7./27.. Of course, this will also show that the cohomology obstaimctioes not vanish even if we
useZ/2Z as the coefficient group.

All cases for GHZ have been machine-checked in mod 2 aritiepreatd it has been confirmed that
the cohomology obstruction witnesses the impossibilityextending any section in the support to all
measurements; thuuohomology witnesses the strong contextuality of GHZ

6 Kochen-Specker

We shall now examine covers that can be used for Kochen-8pacguments. We shall show that the
obstructions do not vanish in these cases, providing colagioal proofs of Kochen-Specker theorems.

We introduce a general notion of Kochen-Specker-type nsodéle consider two outcomes, 0 and
1. For anyC € %, we definescm € &(C) to be the section that assigns 1rtoand O to all other
measurements i@. In a Kochen-Specker problem, we wish to assign the outcomeealsingle mea-
surement in each context. Thus, Kechen-Specker supportfor the coverll is the presheaf given by
S(C) ={scm|meC}.

Example: The Triangle

We shall begin with the simplest Kochen-Specker scenahie:triangle. This has previously been dis-
cussed in[[l], and in a somewhat different context if [11Eanot be realized in quantum mechanics,
but it is useful to set the scene.

The triangle is the following cover on three measuremehts, C:

{A,B}, {B,C}, {AC}.

We will be interested in th&ochen-Specker suppemhich contains those sections with exactly one 1
among the outcomes. Thus we have the following table:
o0 01 10 11
AB| O 1 1 O
BC|O0O 1 1 O
CA{O0O 1 1 O
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The content of the Kochen-Specker theorem is that thereéempatible family defining a global section
within this support. The cohomological statement is thait,any choice of sectiosin the support, the
obstructiony(s) does not vanish.

We label the coefficients for a candidate family as follows:

00 01 10 11
AB| O a b O
BC|O0O ¢ d O
CA|0O e f O

The constraints on the coefficients for a compatible famiéyas follows:
a=f, b=e a=d, b=c, d=e c=1f.

These equations imply that all the variables are equal.

Checking that a section in the support has a non-vanishistjuation amounts to setting the variable
labelling that section to 1, and the other variables in g 1@ 0. Clearly there is no solution for any such
assignment, which would imply that= 0.

Example: The 18-Vector Kochen-Specker Configuration

We look at the 18-vector constructionlkf from [4]. This uses the following measurement cover, where
the columns are the sets in the cover.

AlAIH|H|B|I |[P|P|Q
BIE|I |[K|E|K|Q|R|R
CIF|IC|GIM|N|D|F|M
D|G|J|L|N|]O|J|L|O

We label the coefficients for a candidate family as follows:

1000 0100 0010 0001

ABCD a b c d
AEFG a e f g
HICJ h [ c j

HKGL h k g I
BEMN b e m n
IKNO [ k n 0
PQDJ p q d j
PRFL p r f I

QRMO| ¢ r m 0

Note that some of the constraints on the coefficients takddim of simple equations between
variables, allowing us to reduce from 36 to 18 variables; axehused this reduction in the table.
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The remaining constraints are expressed by the followingéons.

b+c+d = e+f+g at+tb+d = h+i+]
a+c+d = e+m+n atb+c = p+qg+]j
at+f+g = b+m+n ate+f = h+k+l
ate+g = p+r+l i+c+j = k+g+l
h+c+j = k+n+o h+i+c = p+qg+d
h+g+l = i+n+o h+k+g = p+r+f
b+e+n = qgq+r+o b+e+m = i+k+o
i+k+n = g+r+m g+d+j = r+f+l1
p+d+j = r+m+o p+f+l = g+m+o

Checking that a section in the support has a non-vanishistyuation amounts to setting the variable
labelling that section to 1, and the other variables in itg 1@ 0.

If the equations have no solution for all such assignmehis shows that the cohomology witnesses
the contextuality of the model.

This has been machine-checked for mod 2 arithmetic, confgrthat we have aohomological
witness for the Kochen-Specker theorem

A Class of Kochen-Specker-type Models

A necessary condition can be given for Kochen-Speckertypdels to have a global section is given in
[1].

Proposition 6.1 ([1]) The existence of a global section implies that
ged{dm [ me X} | U,
where ¢,:= |{C €U | meC}|.

We shall refer to this as th€CD condition. All models that do not satisfy ti&CD condition are
therefore strongly contextual. Using a similar argumerd, can show that the cohomology witnesses
strong contextuality of any model in this class, as long asggime a natural connectedness property.
In fact, it witnesses strong contextuality of some conrgect®dels outside of this class, so it captures
the property more finely than theCD condition.

A model is said to b&onnectedif, for any contextsC,C’ € U, one can find a a finite sequence of
contextsCyo = C,C1,Cy, ...,Cy,Chp =C' such thavi € {0,...,n}. CGNCiyq1 #0.

Proposition 6.2 If y(s) vanishes for some section s in the support of a connectedeiieBpecker-type
model, then th& CD condition holds for that model.

Proof Assume thay(sp) = O for some sectiosy € S:(Cop) in the support. This means that there is a
compatible family{rc € .#(C)}ceu of Z-linear combinations of sections &, with rc, = s. Recall
that the support of each contextS8§C) = {scm | me C}. Letcc m denote the coefficient corresponding
to sectionsc i in the linear combinationc.



Samson Abramsky, Shane Mansfield & Rui S. Barbosa 11

If me CNC/ for contextsC = {m,my,....m },C' = {m,m,,....,m,} € U, we get the following coho-
mology equations:

Ccm=Com CC7m1+"'+CC,m(:CC’.nfl+"’+CC’,n15

By using the equations of the first kind, we can identify adl tmefficients of the forne,c for the same
measurement, in much the same way as we did for the 18-vector Kochen-Speskample. So, we
can unambiguously denote these coefficientspglone. Summing the two equations above then gives

Zcx=Cm+Cm1+“'+Cm=Cm+le+"'+Cng= Cy
XE X' eC’
This means that the sums of the coefficientscofindrc are the same. By connectedness, and since the
sum is equal to 1 for the conte®} (where we take our starting sectisg), the coefficients must sum to
one in every context.

Hence, we have

Om
‘ ‘ cgu cgu me; " m%( o gm%( g "

wheredy, := |[{C € U | me C}| as before and := gcd{d, | me X}. Sinceg dividesd, for all m, we
conclude thag divides|U]|. O

7 Example: The Peres-Mermin Square
We now turn to an important example, the Peres-Mermin sqfiatg13], which can be realized in

guantum mechanics using two-qubit observables.
The structure of the square is as follows:

A|B|C
D|E|F
G| H|I

The compatible families of measurements are the rows anoiod of this table. The problem in ques-
tion differs from the usual Kochen-Specker type problemthat we don't ask for exactly one 1 at each
maximal context. Instead, we ask that each ‘row contextamsdd number of 1s whereas each ‘column
context’ has an even number 1s.

Hence, the support table is the following. Note that the finste lines correspond to the row contexts
and the remaining three to the column contexts.

000 001 010 011 100 101 110 111
ABC | O 1 1 0 1 0 0 1
DEF | O 1 1 0 1 0 0 1
GHI 0 1 1 0 1 0 0 1
ADG | 1 0 0 1 0 1 1 0
BEH | 1 0 0 1 0 1 1 0
CFlI 1 0 0 1 0 1 1 0
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We display the coefficients for a candidate family as follows

000 001 010 011 100 101 110 111
ABC | O C1 by 0 a 0 0 t1
DEF| O C2 b, 0 a 0 0 to
GHI 0 C3 b3 0 0

ADG | 14 0 0 & 0 by T4 0
BEH| & 0 0 a 0 bs T O

CFlI is 0 0 ag 0 bs Cs 0
The equations expressing the constraints are the following

ag

a+ty = b+t u+its = bi+c
bi+t; = Bs—l—Cs as+ils = g+
Ci+ti = bg+Ts a+fs = ai+bs
aptty = A+ ba+fs = bo+oc
b+t = @5+Cs bs+fs = ax+0
Co+ty = 3+Ts bs+ts = a+h
az+ty = a+ba Ci+ts = bs+cs
bs+ts = @+Dbs G+fs = az+cs
Ca+tz3 = ag+bg Ce+lg = ag+bs

We start by choosing a sectiegnWe set its coefficient to 1, and the coefficients of all otrestions
in the same context to 0. Then a solution to the equationseabvould give a compatible family i
containings, meaning that the cohomological obstruction vanishesadtlieen machine-checked using
mod-2 arithmetic that there is no solution to the system fgr@hoice of starting sectios

8 Limitations and Further Directions

There are two immediate limitations to the results we haseileed:

e The cohomological condition for contextuality is suffidiehut not necessary. It is interesting to
note that the example where a false positive does ariseareegly the Hardy model, is non-local
and hence contextual, but neitongly contextual
It has been possible to construct a strongly contextual hfodehich a false positive does arise.
This is the Kochen-Specker model for the cover

{A,B,C},{B,D,E},{C,D,E},{AD,F} {AE,G}
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However, unlike our earlier examples, this model does rtggfgaany reasonable criterion for sym-
metry, nor does it satisfy any strong form of connectedniestct, the existence of measurements
belonging to a single maximal context, namehandG, seems to be crucial in this example. It is
always possible to choose coefficients$gip r} r andsia e e} ¢ (Using the notation of sectién 6)
that will make the coefficients of the respective contexta $oione, without imposing constrains
on the other contexts.

Conjecture 8.1 Under suitable assumptions of symmetry and connectedttess;ohomology
obstruction is a complete invariant for strong contexttyali

In [16], Vorob’ev characterised the covers (or to be moreigeethe simplicial complexes these
generate) for which any model is extendable; i.e. non-ctnék These are exactly the complexes
which can be reduced to an empty complex by removing certdirermal maximal contexts. From
the proof of this result, one can see that the non-exteritjabfla model would be already noticed
in its reduced version, which allows us to focus on withagsion-contextuality for irreducible
covers. A necessary condition for a context to be extremiatit possesses measurements not
belonging to any other maximal context. Even though the alexample has no extremal contexts,
and thus is irreducible, it does have this weaker property.

e Thus far, we have simply been computing the obstructions rbyjetforce enumeration, so the
results we have obtained can only be considered a proof @epdnWhat one would like is to use
the machinery of homological algebra and exact sequenaastam more conceptual and general
results.

Overcoming these limitations is the main objective for fatwork. This may require refining the
abelian preshea# to yield a finer invariant.
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