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The Cohomology of Non-Locality and Contextuality

Samson Abramsky Shane Mansfield Rui Soares Barbosa
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In a previous paper with Adam Brandenburger, we used sheaf theory to analyze the structure of
non-locality and contextuality. Moreover, on the basis of this formulation, we showed that the phe-
nomena of non-locality and contextuality can be characterized precisely in terms of obstructions to
the existence of global sections.

Our aim in the present work is to build on these results, and touse the powerful tools of sheaf
cohomology to study the structure of non-locality and contextuality. We use the Cech cohomology
on an abelian presheaf derived from the support of a probabilistic model, viewed as a compatible
family of distributions, in order to define a cohomological obstruction for the family as a certain
cohomology class. This class vanishes if the family has a global section. Thus the non-vanishing of
the obstruction provides a sufficient (but not necessary) condition for the model to be contextual.

We show that for a number of salient examples, including PR boxes, GHZ states, the Peres-
Mermin magic square, and the 18-vector configuration due to Cabello et al. giving a proof of the
Kochen-Specker theorem in four dimensions, the obstruction does not vanish, thus yielding cohomo-
logical witnesses for contextuality.

1 Introduction

Non-locality and contextuality are fundamental features of physical theories, which contradict the intu-
itions underlying classical physics. They are, in particular, prominent features of quantum mechanics,
and the goal of the classic no-go theorems by Bell [3], Kochen-Specker [10], et al. is to show that they are
necessary featuresof any theory whose experimental predictions agree with those of quantum mechanics.

Bell’s insights into non-locality have been seminal to the current developments in quantum informa-
tion, where entanglement is viewed as a key informatic resource; and there has also been considerable
recent work on experimental tests for contextuality [2, 9].

In a previous paper with Adam Brandenburger [1], we used the mathematics ofsheaf theory to
analyze the structure of non-locality and contextuality. Sheaf theory is pervasive in modern mathematics,
allowing the passage from local to global [12]. Starting from a simple experimental scenario, and the
kind of probabilistic models familiar from discussions of Bell’s theorem, Popescu-Rohrlich boxes [15],
etc., we gave a very direct, compelling formalization of these notions in sheaf-theoretic terms. Moreover,
on the basis of this formulation, we showed that the phenomena of non-locality and contextuality can be
characterized precisely in terms ofobstructions to the existence of global sections.

Our aim in the present work is to build on these results, and touse the powerful tools ofsheaf
cohomologyto study the structure of non-locality and contextuality. The present paper describes work
in progress, and only represents an initial step in this direction. Nevertheless, enough has been achieved
to indicate that this approach has some promise, and merits further investigation.

We briefly summarize our results:

http://dx.doi.org/10.4204/EPTCS.95.1


2 The Cohomology of Non-Locality and Contextuality

• We use the formalization of no-signalling probabilistic models as compatible families of sections
on a presheaf of distributions developed in [1]; compatibility corresponds precisely to the no-
signalling condition. The family is defined on a cover corresponding to the sets of compatible
measurements.

• The locality/non-contextuality of the model corresponds to the existence of a global section for
this family, as shown in [1].

• We use thěCech cohomology on an abelian presheaf derived from the support of the model in order
to define acohomological obstructionfor the family as a certain cohomology class. This class
vanishes if the family has a global section. Thus the non-vanishing of the obstruction provides a
sufficient (but not necessary) condition for the model to be contextual.

• We show that for a number of salient examples, including PR boxes [15], GHZ states [7, 6],
the Peres-Mermin magic square [14, 13], and the 18-vector configuration giving a proof of the
Kochen-Specker theorem in four dimensions from [4], the obstruction does not vanish, thus yield-
ing cohomological witnesses for contextuality.

The further contents of the paper are as follows. We review the sheaf formulation from [1] in Sec-
tion 2, andČech cohomology in Section 3. We define the cohomological obstruction in Section 4, and
consider various examples in Sections 5 and 6. Finally, limitations of the current results and further
directions are discussed in Section 7.

2 Sheaf Formulation of Measurement Scenarios

We recall the basic ideas of [1].
We work over a finite discrete spaceX, which we think of as a set ofmeasurement labels. We fix

a coverU = {C1, . . . ,Cn}, with
⋃
U = X, which represents the set ofcompatible families of measure-

ments, i.e. those which can be made jointly. Fixing a finite setO of outcomes, we have the presheaf of
setsE on X, whereE (U) := OU , and restriction is simply function restriction: givenU ⊆U ′,

ρU ′

U : E (U ′)→ E (U) :: s 7→ s|U.

SinceX is discrete,E is (trivially) a sheaf. We think of it as the sheaf ofevents.
An empirical modele in the sense of [1] is a compatible family{eC}C∈U, whereeC is a probability

distribution onE (C). Here compatibility uses the definition of restriction on distributions, which we
omit since we shall not need it. The support ofedetermines a sub-presheafSe of E :

Se(U) := {s∈ E (U) | s∈ supp(eU )}.

HereeU = eC|U for anyC∈U such thatU ⊆C. The compatibility of the family{eC} ensures that this is
independent of the choice ofC.

We have the following notions from [1].
• The modele is possibilistically extendableiff for every s∈ Se(C), s is a member of a compatible

family {si ∈ Se(Ci)}
n
i=1. It is possibilistically non-extendableif for some s, there is no such

family.

• The modele is strongly contextual if for every s there is no such family.
The results from [1] show that if a model is local or non-contextual in the usual sense, then it is

possibilistically extendable. Thus possibilistic non-extendability is a sufficient condition fornon-locality
or contextuality. Strong contextuality is a much stronger condition. Thus these properties witness strong
forms of the non-classical behaviour exhibited by quantum mechanics.
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3 Čech Cohomology of a Presheaf

We are given the following:

• A topological spaceX.

• An open coverU of X.

• A presheafF of abelian groups onX. For each open setU of X, F (U) is an abelian group,
and whenU ⊆V, there is a group homomorphismρV

U : F (V) → F (U). These assignments are
functorial: ρU

U = idU , and ifU ⊆U ′ ⊆U ′′, then

ρU ′

U ◦ρU ′′

U ′ = ρU ′′

U .

ThenerveN(U) of the coverU is defined to be the abstract simplicial complex comprising those finite
subsets ofU with non-empty intersection. Concretely, we take aq-simplex to be a listσ = (U0, . . . ,Uq)
of elements ofU, with |σ | := ∩q

i=0Ui 6=∅. Thus a 0-simplex(U) is a single element of the coverU. We
write N(U)q for the set ofq-simplices.

Given aq+1-simplexσ = (U0, . . . ,Uq+1), there areq-simplices

∂ j(σ) := (U0, . . . ,Û j , . . . ,Uq+1), 0≤ j ≤ q

obtained by omitting one of the elements of theq+1-simplex. Note that:

|σ | ⊆ |∂ j(σ)|.

We shall now define thěCech cochain complex. For eachq ≥ 0, we define the abelian group
Cq(U,F ):

Cq(U,F ) := ∏
σ∈N(U)q

F (|σ |).

We also define thecoboundary maps

δ q : Cq(U,F )−→Cq+1(U,F ).

For ω = (ω(τ))τ∈N(U)q ∈Cq(U,F ), andσ ∈ N(U)q+1, we define:

δ q(ω)(σ) :=
q

∑
j=0

(−1) jρ |∂ j (σ)|

|σ | ω(∂ jσ).

For eachq, δ q is a group homomorphism.
We shall also consider theaugmented complex 0→C0(U,F )→ ··· .

Proposition 3.1 For each q,δ q+1◦δ q = 0.

We defineZq(U,F ), theq-cocycles, to be the kernel ofδ q. We defineBq(U,F ), theq-coboundaries,
to be the image ofδ q−1. These are subgroups ofCq(U,F ), and by Proposition 3.1,Bq(U,F ) ⊆
Zq(U,F ). We define theq-th Čech cohomology groupȞq(U,F ) to be the quotient group

Ȟq(U,F ) := Zq(U,F )/Bq(U,F ).

Note thatB0(U,F ) = 0, soȞ0(U,F ) ∼= Z0(U,F ).
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Given a cocyclez∈ Zq(U,F ), thecohomology class[z] is the image ofzunder the canonical map

Zq(U,F ) −→ Ȟq(U,F ).

A compatible family with respect to a coverU is a family{r i ∈ F (Ui)} for Ui ∈ U, such that, for
all i, j:

r i |Ui ∩U j = r j |Ui ∩U j .

Proposition 3.2 There is a bijection between compatible families and elements of the zeroth cohomol-
ogy groupȞ0(U,F ).

Proof Cochainsc= (r i)Ui∈U in C0(U,F ) correspond to families{r i ∈ F (Ui)}. For each 1-simplex
σ = (Ci ,Cj),

δ 0(c)(σ) = r i|Ci ∩Cj − r j |Ci ∩Cj .

Henceδ 0(c) = 0 if and only if the corresponding family is compatible. �

We shall also use therelative cohomologyof F with respect to an open subsetU ⊆ X.
We define two auxiliary presheaves related toF . Firstly, F |U is defined by

F |U(V) := F (U ∩V).

There is an evident presheaf morphism

p : F −→ F |U :: pV : r 7→ r|U ∩V.

ThenFŪ is defined byFŪ (V) := ker(pV). Thus we have an exact sequence of presheaves

0 ✲ FŪ
✲ F

p
✲ F |U.

The relative cohomology ofF with respect toU is defined to be the cohomology of the presheafFŪ .
We have the following refined version of Proposition 3.2.

Proposition 3.3 For any Ui ∈U, the elements of the relative cohomology groupȞ0(U,FŪi
) correspond

bijectively to compatible families{r j} such that ri = 0.

Proof By Proposition 3.2, compatible families correspond to cocycles r = (r j) in C0(U,F ). By
compatibility, r i |Ci ∩Cj = r j |Ci ∩Cj for all j. Hencer is inC0(U,FŪi

) if and only if r i = pUi (r i) = 0.�

4 Cohomological Obstructions

Given a commutative ringR, we define a functorFR : Set−→ Set. For any setX, thesupport supp(φ)
of a functionφ : X → R is the set ofx∈ X such thatφ(x) 6= 0. We defineFR(X) to be the set of functions
φ : X → Rof finite support. There is an embeddingx 7→ 1·x of X in FR(X), which we shall use implicitly
throughout.

Given f : X →Y, we define:

FR f : FRX −→ FRY :: φ 7→ [y 7→ ∑
f (x)=y

φ(x)].
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This assignment is easily seen to be functorial.
In fact, FR(X) is thefree R-module generated byX, and in particular, it is an abelian group; while

FR( f ) is a group homomorphism for any functionf . In particular, takingR= Z, FZ(X) is the free
abelian group generated byX.

Thus, given any presheaf of setsP onX, we obtain a presheaf of abelian groupsFZP by composition:
FZP(U) := FZ(P(U)).

Given an empirical modeledefined on the coverU, we shall work with thěCech cohomology groups
Ȟq(U,F ) for the abelian presheafF := FZSe. Note that, for any set of measurementsU , F (U) is the
set offormal Z-linear combinations of sectionsin the support ofeU .

To eachs∈ Se(C), we shall associate an elementγ(s) of a cohomology group, which can be regarded
as an obstruction tos having an extension within the support ofe to a global section. In particular, the
existence of such an extension implies that the obstructionvanishes. In good cases, these two conditions
are equivalent, yieldingcohomological characterizationsof contextuality and strong contextuality.

For notational convenience, we shall fix an elements= s1 ∈ Se(C1). Because of the compatibility of
the family{eC}, which is equivalent to no-signalling [1], there is a family{si ∈ Se(Ci)} with s1|C1∩Ci =
si |C1∩Ci, i = 2, . . . ,n.

We define the cochainc := (s1, . . . ,sn) ∈C0(U,F ). The coboundary of this cochain isz := δ 0(c).

Proposition 4.1 The coboundary z of c vanishes under restriction to C1, and hence is a cocycle in the
relative cohomology with respect to C1.

Proof We writeCi, j :=Ci ∩Cj . For all i, j, we definezi, j := z(Ci, j) = si |Ci, j − sj |Ci, j . Because of the
no-signalling assumption on the family{si}, for all i, j,

si |C1∩Ci, j = (s1|C1∩Ci)|Cj = s1|C1∩Ci, j .

Similarly, sj |C1∩Ci, j = s1|C1∩Ci, j . Hencezi, j |C1∩Ci, j = 0, andzi, j ∈ FC̄1
(Ci ∩Cj). Thusz= (zi, j)i, j ∈

C1(U,FC̄1
).

Note thatδ 1 : C1(U,FC̄1
) → C2(U,FC̄1

) is the restriction of the coboundary map onC1(U,F ).
Hencez= δ 0(c) is a cocycle. �

We defineγ(s1) as the cohomology class[z] ∈ Ȟ1(U,FC̄1
).

Remark There is a more conceptual way of defining this obstruction, using the connecting homomor-
phism from the long exact sequence of cohomology; see [5]. Wehave given a more concrete formulation,
which may be easier to grasp, and is also convenient for computation.

Note that, althoughz= δ 0(c), it is not necessarily a coboundary inC1(U,FC̄1
), sincec is not a

cochain inC0(U,FC̄1
), aspCi (si) = si |C1∩Ci 6= 0. Thus in general, we need not have[z] = 0.

Proposition 4.2 The following are equivalent:

1. The cohomology obstruction vanishes:γ(s1) = 0.

2. There is a family{r i ∈ F (Ci)} with s1 = r1, and for all i, j:

r i |Ci ∩Cj = r j |Ci ∩Cj .

Proof The obstruction vanishes if and only if there is a cochainc′ = (c′1, . . . ,c
′
n) ∈ C0(U,FC̄1

) with
δ 0(c′) = δ 0(c), or equivalentlyδ 0(c− c′) = 0, i.e. such thatc− c′ is a cocycle. By Proposition 3.2,
this is equivalent to{r i := si − c′i} forming a compatible family. Moreover,c′ ∈ C0(U,FC̄1

) implies
c′1 = pC1(c

′
1) = 0, sor1 = s1.
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For the converse, suppose we have a family{r i ∈ F (Ci)} as in (2). We definec′ := (c′1, . . . ,c
′
n),

wherec′i := si − r i . Sincer1 = s1, pCi (c
′
i) = s1|C1,i − r1|C1,i = 0 for all i, andc′ ∈C0(U,FC̄1

). We must
show thatδ 0(c′) = z, i.e. thatzi, j = c′i |Ci, j −c′j |Ci, j . This holds sincer i |Ci, j = r j |Ci, j . �

As an immediate application to contextuality, we have the following.

Proposition 4.3 If the model e is possibilistically extendable, then the obstruction vanishes for every
section in the support of the model. If e is not strongly contextual, then the obstruction vanishes for some
section in the support.

Proof If e is possibilistically extendable, then for everys∈ Se(Ci), there is a compatible family{sj ∈
Se(Cj)} with s= si . Applying the embedding ofSe(Cj) into F (Cj ), by Proposition 4.2 we conclude
that γ(s) = 0. The same argument can be applied to a single section witnessing the failure of strong
contextuality. �

Thus we have asufficient conditionfor contextuality in the non-vanishing of the obstruction.The
non-necessity of the condition arises from the possibilityof ‘false positives’: families{r i ∈ F (Ci)}
which do not determine abona fideglobal section inE (X).

5 Examples

Example: Hardy

We begin with an example to show that false positives do indeed arise.
We consider the Hardy model [8]; the support is given as follows.

(0,0) (0,1) (1,0) (1,1)

(a,b) 1 1 1 1

(a,b′) 0 1 1 1

(a′,b) 0 1 1 1

(a′,b′) 1 1 1 0

We enumerate the sections as follows:
(0,0) (0,1) (1,0) (1,1)

(a,b) s1 s2 s3 s4

(a,b′) s5 s6 s7 s8

(a′,b) s9 s10 s11 s12

(a′,b′) s13 s14 s15 s16

The sections1 provides a witness for the non-locality of the Hardy model. It is not a member of
any compatible family of sections in the support. However, we have the following family ofZ-linear
combinations of sections:

r1 = s1, r2 = s6+s7−s8, r3 = s11, r4 = s15.

One can check that

r2|a = 1· (a 7→ 0)+1· (a 7→ 1)−1· (a 7→ 1) = r1|a,

r2|b′ = 1· (b′ 7→ 1)+1· (b′ 7→ 0)−1· (b′ 7→ 1) = r4|b′.

Thus this family meets the conditions of Proposition 4.2, and the obstructionγ(s1) vanishes.
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Example: PR-Box

There is better news when we look at the PR-box:

(0,0) (0,1) (1,0) (1,1)

(a,b) 1 0 0 1

(a,b′) 1 0 0 1

(a′,b) 1 0 0 1

(a′,b′) 0 1 1 0

This is a strongly contextual model [1], so no section in the support is a member of a compatible family.
The coefficients for a candidate family{r i} can be displayed as follows:

00 01 10 11

AB a 0 0 b

AB′ c 0 0 d

A′B e 0 0 f

A′B′ 0 g h 0

The constraints arising from the requirements thatr i |Ci, j = r j |Ci, j are:

a= c, b= d, a= e, b= f , c= h, d = g, e= g, f = h.

These imply that all the variables are equal.
Checking that a section in the support is a member of such a family amounts to assigning 1 to the

variable labelling that section, and 0 to the other variablein its row. Clearly such an assignment is
incompatible with the above constraints, since it implies 1= 0.

Hence there can be no such family, and the obstruction does not vanish for any section in the support,
witnessing the strong contextuality of the PR box.

Example: GHZ

The previous example suggests looking at GHZ, which is also strongly contextual, and of course is
realizable in quantum mechanics.

The support for (the relevant part of) GHZ is as follows:

000 001 010 011 100 101 110 111

ABC 1 0 0 1 0 1 1 0

AB′C′ 0 1 1 0 1 0 0 1

A′BC′ 0 1 1 0 1 0 0 1

A′B′C 0 1 1 0 1 0 0 1

We display the coefficients for a candidate family as follows:

000 001 010 011 100 101 110 111

ABC a 0 0 b 0 c d 0

AB′C′ 0 e f 0 g 0 0 h

A′BC′ 0 i j 0 k 0 0 l

A′B′C 0 m n 0 o 0 0 p
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The constraints arising from the requirements thatr i |Ci, j = r j |Ci, j are:

a+b = e+ f c+d = g+h

a+c = i +k b+d = j + l

a+d = n+o b+c = m+ p

f +g = j +k e+h = i + l

e+g = m+o f +h = n+ p

i + j = m+n k+ l = o+ p

Checking that a section in the support is a member of such a family amounts to assigning 1 to the
variable labelling that section, and 0 to the other variables in its row.

It suffices to show that these constraints cannot be satisfiedover the integers mod 2; this implies that
they cannot be satisfied overZ, since otherwise such a solution would descend via the homomorphism
Z→ Z/2Z. Of course, this will also show that the cohomology obstruction does not vanish even if we
useZ/2Z as the coefficient group.

All cases for GHZ have been machine-checked in mod 2 arithmetic, and it has been confirmed that
the cohomology obstruction witnesses the impossibility ofextending any section in the support to all
measurements; thuscohomology witnesses the strong contextuality of GHZ.

6 Kochen-Specker

We shall now examine covers that can be used for Kochen-Specker arguments. We shall show that the
obstructions do not vanish in these cases, providing cohomological proofs of Kochen-Specker theorems.

We introduce a general notion of Kochen-Specker-type models. We consider two outcomes, 0 and
1. For anyC ∈ U , we definesC,m ∈ E (C) to be the section that assigns 1 tom and 0 to all other
measurements inC. In a Kochen-Specker problem, we wish to assign the outcome 1to a single mea-
surement in each context. Thus, theKochen-Specker supportfor the coverU is the presheaf given by
Se(C) = {sC,m | m∈C}.

Example: The Triangle

We shall begin with the simplest Kochen-Specker scenario: the triangle. This has previously been dis-
cussed in [1], and in a somewhat different context in [11]. Itcannot be realized in quantum mechanics,
but it is useful to set the scene.

The triangle is the following cover on three measurements,A, B, C:

{A,B}, {B,C}, {A,C}.

We will be interested in theKochen-Specker support, which contains those sections with exactly one 1
among the outcomes. Thus we have the following table:

00 01 10 11

AB 0 1 1 0

BC 0 1 1 0

CA 0 1 1 0
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The content of the Kochen-Specker theorem is that there is nocompatible family defining a global section
within this support. The cohomological statement is that, for any choice of sections in the support, the
obstructionγ(s) does not vanish.

We label the coefficients for a candidate family as follows:

00 01 10 11

AB 0 a b 0

BC 0 c d 0

CA 0 e f 0

The constraints on the coefficients for a compatible family are as follows:

a= f , b= e, a= d, b= c, d = e, c= f .

These equations imply that all the variables are equal.
Checking that a section in the support has a non-vanishing obstruction amounts to setting the variable

labelling that section to 1, and the other variables in its row to 0. Clearly there is no solution for any such
assignment, which would imply that 1= 0.

Example: The 18-Vector Kochen-Specker Configuration

We look at the 18-vector construction inR4 from [4]. This uses the following measurement cover, where
the columns are the sets in the cover.

A A H H B I P P Q

B E I K E K Q R R

C F C G M N D F M

D G J L N O J L O

We label the coefficients for a candidate family as follows:

1000 0100 0010 0001

ABCD a b c d

AEFG a e f g

HICJ h i c j

HKGL h k g l

BEMN b e m n

IKNO i k n o

PQDJ p q d j

PRFL p r f l

QRMO q r m o

Note that some of the constraints on the coefficients take theform of simple equations between
variables, allowing us to reduce from 36 to 18 variables; we have used this reduction in the table.
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The remaining constraints are expressed by the following equations.

b+c+d = e+ f +g a+b+d = h+ i + j

a+c+d = e+m+n a+b+c = p+q+ j

a+ f +g = b+m+n a+e+ f = h+k+ l

a+e+g = p+ r + l i +c+ j = k+g+ l

h+c+ j = k+n+o h+ i +c = p+q+d

h+g+ l = i +n+o h+k+g = p+ r + f

b+e+n = q+ r +o b+e+m = i +k+o

i +k+n = q+ r +m q+d+ j = r + f + l

p+d+ j = r +m+o p+ f + l = q+m+o

Checking that a section in the support has a non-vanishing obstruction amounts to setting the variable
labelling that section to 1, and the other variables in its row to 0.

If the equations have no solution for all such assignments, this shows that the cohomology witnesses
the contextuality of the model.

This has been machine-checked for mod 2 arithmetic, confirming that we have acohomological
witness for the Kochen-Specker theorem.

A Class of Kochen-Specker-type Models

A necessary condition can be given for Kochen-Specker-typemodels to have a global section is given in
[1].

Proposition 6.1 ([1]) The existence of a global section implies that

gcd{dm | m∈ X} | |U|,

where dm := |{C ∈U | m∈C}|.

We shall refer to this as theGCD condition. All models that do not satisfy theGCD condition are
therefore strongly contextual. Using a similar argument, we can show that the cohomology witnesses
strong contextuality of any model in this class, as long as weassume a natural connectedness property.
In fact, it witnesses strong contextuality of some connected models outside of this class, so it captures
the property more finely than theGCD condition.

A model is said to beconnectedif, for any contextsC,C′ ∈ U, one can find a a finite sequence of
contextsC0 =C,C1,C2, . . . ,Cn,Cn+1 =C′ such that∀ i ∈ {0, . . . ,n}. Ci ∩Ci+1 6= /0.

Proposition 6.2 If γ(s) vanishes for some section s in the support of a connected Kochen-Specker-type
model, then theGCD condition holds for that model.

Proof Assume thatγ(s0) = 0 for some sections0 ∈ Se(C0) in the support. This means that there is a
compatible family{rC ∈ F (C)}C∈U of Z-linear combinations of sections ofSe, with rC0 = s0. Recall
that the support of each context isSe(C) = {sC,m | m∈C}. Let cC,m denote the coefficient corresponding
to sectionsC,m in the linear combinationrC.
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If m∈C∩C′ for contextsC= {m,m1, . . . ,mr},C′ = {m,m′
1, . . . ,m

′
s} ∈U, we get the following coho-

mology equations:

cC,m = cC′,m cC,m1 + · · ·+cC,mr = cC′,m′
1
+ · · ·+cC′,m′

s

By using the equations of the first kind, we can identify all the coefficients of the formcm,C for the same
measurementm, in much the same way as we did for the 18-vector Kochen-Specker example. So, we
can unambiguously denote these coefficients bycm alone. Summing the two equations above then gives

∑
x∈C

cx = cm+cm1 + · · ·+cmr = cm+cm′
1
+ · · ·+cm′

s
= ∑

x′∈C′

cx′

This means that the sums of the coefficients ofrC andrC′ are the same. By connectedness, and since the
sum is equal to 1 for the contextC0 (where we take our starting sections0), the coefficients must sum to
one in every context.

Hence, we have

|U|= ∑
C∈U

1= ∑
C∈U

∑
m∈C

cm = ∑
m∈X

dmcm = g ∑
m∈X

dm

g
cm

wheredm := |{C ∈ U | m∈ C}| as before andg := gcd{dm | m∈ X}. Sinceg dividesdm for all m, we
conclude thatg divides|U|. �

7 Example: The Peres-Mermin Square

We now turn to an important example, the Peres-Mermin square[14, 13], which can be realized in
quantum mechanics using two-qubit observables.

The structure of the square is as follows:

A B C

D E F

G H I

The compatible families of measurements are the rows and columns of this table. The problem in ques-
tion differs from the usual Kochen-Specker type problems inthat we don’t ask for exactly one 1 at each
maximal context. Instead, we ask that each ‘row context’ hasan odd number of 1s whereas each ‘column
context’ has an even number 1s.

Hence, the support table is the following. Note that the firstthree lines correspond to the row contexts
and the remaining three to the column contexts.

000 001 010 011 100 101 110 111

ABC 0 1 1 0 1 0 0 1

DEF 0 1 1 0 1 0 0 1

GHI 0 1 1 0 1 0 0 1

ADG 1 0 0 1 0 1 1 0

BEH 1 0 0 1 0 1 1 0

CFI 1 0 0 1 0 1 1 0
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We display the coefficients for a candidate family as follows.

000 001 010 011 100 101 110 111

ABC 0 c1 b1 0 a1 0 0 t1

DEF 0 c2 b2 0 a2 0 0 t2

GHI 0 c3 b3 0 a3 0 0 t3

ADG t4 0 0 a4 0 b4 c4 0

BEH t5 0 0 a5 0 b5 c5 0

CFI t6 0 0 a6 0 b6 c6 0

The equations expressing the constraints are the following:

a1+ t1 = b4+c4 a4+ t4 = b1+c1

b1+ t1 = b5+c5 a5+ t5 = a1+c1

c1+ t1 = b6+c6 a6+ t6 = a1+b1

a2+ t2 = a4+c4 b4+ t4 = b2+c2

b2+ t2 = a5+c5 b5+ t5 = a2+c2

c2+ t2 = a6+c6 b6+ t6 = a2+b2

a3+ t3 = a4+b4 c4+ t4 = b3+c3

b3+ t3 = a5+b5 c5+ t5 = a3+c3

c3+ t3 = a6+b6 c6+ t6 = a3+b3

We start by choosing a sections. We set its coefficient to 1, and the coefficients of all other sections
in the same context to 0. Then a solution to the equations above would give a compatible family inF
containings, meaning that the cohomological obstruction vanishes. It has been machine-checked using
mod-2 arithmetic that there is no solution to the system for any choice of starting sections.

8 Limitations and Further Directions

There are two immediate limitations to the results we have described:

• The cohomological condition for contextuality is sufficient, but not necessary. It is interesting to
note that the example where a false positive does arise here,namely the Hardy model, is non-local
and hence contextual, but notstrongly contextual.

It has been possible to construct a strongly contextual model for which a false positive does arise.
This is the Kochen-Specker model for the cover

{A,B,C},{B,D,E},{C,D,E},{A,D,F},{A,E,G}



Samson Abramsky, Shane Mansfield & Rui S. Barbosa 13

However, unlike our earlier examples, this model does not satisfy any reasonable criterion for sym-
metry, nor does it satisfy any strong form of connectedness.In fact, the existence of measurements
belonging to a single maximal context, namelyF andG, seems to be crucial in this example. It is
always possible to choose coefficients fors{A,D,F},F ands{A,E,G},G (using the notation of section 6)
that will make the coefficients of the respective contexts sum to one, without imposing constrains
on the other contexts.

Conjecture 8.1 Under suitable assumptions of symmetry and connectedness,the cohomology
obstruction is a complete invariant for strong contextuality.

In [16], Vorob’ev characterised the covers (or to be more precise the simplicial complexes these
generate) for which any model is extendable; i.e. non-contextual. These are exactly the complexes
which can be reduced to an empty complex by removing certain extremal maximal contexts. From
the proof of this result, one can see that the non-extendability of a model would be already noticed
in its reduced version, which allows us to focus on witnessing non-contextuality for irreducible
covers. A necessary condition for a context to be extremal isthat it possesses measurements not
belonging to any other maximal context. Even though the above example has no extremal contexts,
and thus is irreducible, it does have this weaker property.

• Thus far, we have simply been computing the obstructions by brute force enumeration, so the
results we have obtained can only be considered a proof of concept. What one would like is to use
the machinery of homological algebra and exact sequences toobtain more conceptual and general
results.

Overcoming these limitations is the main objective for future work. This may require refining the
abelian presheafF to yield a finer invariant.
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