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Advances in long-term fluorescent time-lapse microscopy have made it possible to study the expression of
individual genes in single cells. In a typical setting, the intensity of one or more fluorescently-labeled proteins
is measured at regular time intervals. Such time-courses are inherently noisy due to both measurement noise
and intrinsic stochasticity of the underlying gene expression regulation. Fitting stochastic models to time-series
data remains a difficult task, partly because analytical and tractable expressions for the transition probabilities
cannot usually be derived in closed form.

In the present work, we employ a recently developed approach that is based on geometric singular perturba-
tion theory, as applied to the chemical master equation of a simple two-stage gene expression model, to compute
parameter likelihoods using synthetic protein time-series. We study the identifiability of model parameters in
this simple setting, and compare the performance of the perturbative (uniform) propagator to a previously pub-
lished, idealized (zeroth-order) propagator that assumes perfect time-scale separation between degradation of
mRNA and protein. We find that both propagators are useful for parameter inference when the scale separation is
sufficiently large. However, with decreasing separation, the uniform propagator sometimes yields non-physical
negative transition probabilities which render parameter inference difficult. Finally, we discuss the utility of
both propagators, and possible extensions thereof, for inference. For computational efficiency, the propagators
were implemented in C++ and embedded in Matlab; the code is available upon request.

Keywords: Multi-scale gene expression dynamics. Propagator approximation. Parameter inference. Geometric

singular perturbation.

1. INTRODUCTION

Gene expression is a complex and highly regu-
lated multi-step process that is responsible for the
timely synthesis of proteins necessary for cellular
function. At the molecular level, gene expression is
inherently stochastic due to random binding events
of transcription factors and the transcriptional ma-
chinery, which ultimately leads to mRNA transcrip-
tion with probabilities depending on the concentra-
tion of the reaction educts. Protein synthesis re-
quires a chance encounter of mRNA with ribosomes,
and mRNA or protein degradation an encounter with
the degradation machinery. Thus, models for gene
expression have to capture the stochasticity at both
mRNA and protein levels.

A simple, “two-stage” model for stochastic gene
expression consists of a constitutively active gene
from which an mRNA molecule can be transcribed,
and protein, the production of which depends on the
instantaneous abundance of mRNA (see Fig. 1A).
Both mRNA and protein are subjected to stochas-
tic degradation. Such a qualitative model can

be described mathematically as a two-dimensional
Markov jump process in the copy numbers of mRNA
and protein, with reaction probabilities that are func-
tions of the current state only (hence the Markov
property), and suitably chosen kinetic constants [1}
2.

While the two-stage model is easily simulated us-
ing stochastic simulation algorithms such as Gille-
spie’s algorithm [3]], it is nonetheless a difficult task
to derive analytical expressions for the evolution of
mRNA and protein copy numbers with time. The
Markov process itself obeys the chemical master
equation (CME), an infinite-dimensional system of
ordinary differential equations, for which no exact
(closed-form) solutions are known in general. Nu-
merous approaches exist for the approximate solu-
tion of the CME, such as the linear noise approxi-
mation [4], a second-order Taylor series expansion
in the system size of the reaction volume; moment
equations and variants thereof [, 6], which capture
an arbitrary number of statistical moments of the
stochastic process; finite state projection [7], a trun-
cation of the state-space of possible copy number
combinations, and many others (for an overview, see
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[8]). We further note that this particular model has
been studied using a variety of analytical and com-
putational techniques, see e.g. [9H12] or [13] for a
review of related modelling approaches.

An alternative analytical approach was developed
by Shahrezaei and Swain [2]], wherein it is assumed
that mRNA molecules decay much faster than pro-
tein, a realistic assumption in many prokaryotic
cells. In the limit of a perfect scale separation in
which the decay of mRNA is instantaneous, the
CME underlying the two-stage model can be solved
analytically by the introduction of a generating func-
tion. The latter then obeys a first-order linear par-
tial differential equation, the solution of which can
be obtained via the method of characteristics. The
resulting analytical expression for the general time-
dependent joint probability density of mRNA and
protein, called the propagator of the system, is of
great utility for understanding its dynamics in time.
However, it is not valid when the assumption of
scale separation is violated, as is commonly the case
for eukaryotic cells. In recent work [14], the proce-
dure developed in [2] was extended to capture de-
parture from the assumption of perfect scale sepa-
ration: the ratio of degradation rates of protein and
mRNA, denoted ¢, was taken to be small and pos-
itive instead of zero, as was the case in [2]. The
presence of the (singular) perturbation parameter €
allows for the application of asymptotic techniques,
such as geometric singular perturbation theory [[15]]
and matched asymptotic expansions [[16].

In the present case study, we explore the util-
ity of this newly developed perturbative approach
for propagator-based parameter inference in systems
with varying degrees of scale separation. Specif-
ically, our goal is to estimate molecular parame-
ters in the model from observations of protein abun-
dance only. Trajectories are simulated via Gille-
spie’s stochastic simulation algorithm in a param-
eter regime in which mRNA and protein are pro-
duced continuously, i.e., not in translational bursts.
The protein time-courses are sampled at regular time
intervals, thus mimicking a typical time-lapse flu-
orescence microscopy setup [17, [18]. While fluo-
rescence microscopy yields only time-series for the
intensity, these can nonetheless be converted into
absolute protein numbers if a calibration factor of
molecules per unit intensity can be estimated, see
e.g. [19]. We note that mRNA time-courses are not
observed, and that they are hence not used for pa-
rameter inference.

The zeroth-order propagator obtained by setting
€ = 0 [2] is then compared to a first-order propaga-
tor (in € > 0) that is uniformly valid both on short
and on long time-scales [14]], in terms of the abil-
ity of each to capture the correct parameters — i.e.,

the kinetic constants in the underlying chemical re-
action network — in the two-stage model for gene
expression. For comparison, both propagators are
also contrasted with an approximate solution of the
CME that is computed using a finite state projection.
A number of simplifying assumptions are made; no-
tably, we ignore impeding factors such as measure-
ment noise, uncertainty in the conversion from flu-
orescence intensity to protein numbers or low sam-
pling frequency of fluorescent signal. Rather, our
focus in this case study is on assessing the general
efficiency and accuracy of the propagator-based ap-
proach for parameter inference.

2. METHODS
2.1. Two-stage Gene Expression Model

We model gene expression as a two-stage process,
whereby DNA is transcribed to mRNA, which is
then translated into protein (see Fig. 1A). Denoting
the probability of observing m molecules of mRNA
and n molecules of protein in the system at time 7
by P, »(7), we find that the latter evolves according
to the non-dimensionalized CME [2] 4]

0P
or

= a(mel,n - Pm,n)

+ ’me(Pm,n—l - Pm,n)
=+ 7[(m + I)Pm-i-l,n - mpm,n]
+ [(n + 1)Pm7n+1 - an,n]- (D

Here, m and n denote mRNA and protein copy num-
bers, respectively, a is the non-dimensional tran-
scription rate and b is the non-dimensional trans-
lation rate, while the degradation rates of mRNA
and protein are given by < and 1, respectively
(cf. Fig. 1A). Finally, 7 denotes a suitably non-
dimensionalized time variable.

As in [2}[14], we define the perturbation parame-
ter ¢ = v~ ! here. It follows that for ¢ sufficiently
small, the dynamics of Eq. (I)) will vary on two
distinct time-scales: the long-term behavior of the
system is naturally described on the “slow” 7-scale,
while the “fast” transients evolve according to the
rescaled time ¢ := I.

2.2. Propagator Expressions

In this section, we collect a number of analytical
results that underly the present case study; details
can be found in [2,[14].
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2.2.1. Zeroth-Order Propagator

The zeroth-order propagator for the two-stage
gene expression model (Fig. 1A) represents an ap-
proximation to the CME, Eq. (I), under the assump-

J

1+be "

tion of infinitely fast mRNA degradation. Math-
ematically speaking, it is obtained in the singular
limit of v — o0, ie., of ¢ — 0. Following [2],
we have

b (-1)¥ T(a+n-—k)I(ng+1)

Pn\no (Ta O) = (1 - eiT)nO (

) (

[l (e

140

for the zeroth-order marginal probability P, (7,0)
of observing n protein molecules after time 7, given
mgo = 0 molecules of mRNA and ng molecules of
protein initially. Here, 2 F7(a, b, ¢, 2) is the Gauss
hypergeometric function [20]. We remark that, by
construction, Py, |, (7,0) neglects any contributions
from the fast ¢-scale, as the decay of mRNA is in-
stantaneous to leading order in €.

2.2.2.  Uniform (First-Order) Propagator

The uniform propagator, denoted P, (7,t,€),
was derived as in [14]. Here, ¢ denotes the per-

J

Pn|n0 (7-7 t, E) = Pn\ng (Ta 5)
b
1+

1
(1+40)2

—I-Ea(

>n7n0

X {1F1(nn0 F1ln—no+2—(1 +b)t)t(1

to first order in ¢; here, 1 Fi(a,b, z) is the Kum-
mer function of the first kind (or confluent hyper-
geometric function) [20]. We remark that the transi-
tion probability P,|,,(7,¢) contributes on the slow
7-scale in Eq. (3), while the ¢-dependent contribu-
tion in Eq. (@) accounts for the transient dynamics
on the fast time-scale.

Specifically, P,n,(7,¢) denotes the marginal
probability, up to and including O(¢)-terms, of ob-
serving n protein molecules after time 7 given mg =
0 molecules of mRNA and ny molecules of protein

1+

X [n—ng—b—(1+b)t]+

P

(n—k)!

1+
"eT 4+ b

I'(a)l(ng —k+1)

)}

turbation parameter, as before, while ¢ is the fast
time variable. We emphasize that Py, describes
the probability of transitioning from ng protein
molecules initially to n molecules at time 7 = €t,
uniformly on the two time-scales. After some alge-
braic rearrangement, we find

,—a,l—a—n-+k

2

ea
F(TL —ng + 2)

)+

(bt)" 0t

7nfnofb
140

n—not 1l i
145
3)

initially:
Pn\ng (Ta E) = Z Pm,n|0,ng (Ta 5) (4)
m=0

As shown in [14], the probability of encountering
more than 1 molecule of mRNA at time 7 is negligi-
ble to first order in ¢; thus, Eq. @]) reduces to

Pn\nu (Tu 5) = PO,n\O,no (7—7 5) + Pl,n\O,no (7—7 5)~
(5)
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After some algebraic simplification, the two tran- above relation are found to be
sition probabilities Py j0,n, and P non, in the

J

Ponjo,ng(1:6) = (1 —e 7)™ (1 fu b)n(l —li—jieb_7>

XZ an_k)QFl(_n+k al—a—n—&—k,&%)
k:O
X {g(no, — W(k—i_l) |:2F1(_k, —no,—l—k,b(%ﬁ;)) (6)
n < ) e? o Fy (— k, —ng, —1 — k,b(ef_it’i))} }, with
0 for k > ng
n ’
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b \» 1 e (1 HbeTTNC
Praioan(7:€) = a7 ) g —e “(ﬁ)
- 1
Fi(k—n k—n+1,250
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3 beT -1 170 (7
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[
Here, B(a,b) := L(a)T®) §s the Beta function, with Finally, Eq. (3) can be simplified by substituting
T(a+b)
the proviso that m = 1whenn = k.
J
VFi(n—ng+1Lin—ng+2;—(1+b)t) = [(1+ b)t] "0+ DT(n — ng 4 2)
—(n=no+1)I'(n—no+1,(1+b)t) ()

to achieve the computationally more tractable for-
mulation

,Pn\no (T,t,E) = Pn|n0 (7—75)

+z—:a( b )n_no(12[nnob(1+b)t]+5at{(b)n_no(l

1+0b 1+0) 1+b 1+0)t
b+ng—n (bt)(n=mo) o= (14b)
— ) [1-Qn- 1,(1+b)t .
( 1+b )[ Qn = no +1,(1+ 0] + Tn—not1) ) @
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Here, Q(a,x) := FF(((”S) denotes the regularized up-

per incomplete gamma function.

2.3. Special Cases of the Hypergeometric Functions

Care must be taken when evaluating the hyperge-
ometric function o F} (a, b, ¢, z). The following spe-
cial cases are of use [20].

ea=—-k=c(keZ"):
oFi(a,b,¢,2) = o F1(—k, b, —k, 2)

Zn
=> O, (10)

n=0

where (z), = x(z+1)...(x +n—1)is the
rising factorial of z.

ea=—-kc=-k—-1kecZ"):

2F1<CL,b, C,Z) = 2F1(—]€,b, -k — 1,2’)

_min(i%—b)(b) ﬁa—&-n—l
B "nloa—1

n=0
(11)

ea>0,c>0,b=—-k(keZ"):

2F1(a7 b7 Cy Z) = QFl(a‘a _kv Cy Z)

k n
g @nOn
— () mnl

2.4. Stochastic Simulation

Stochastic simulations were performed using the
StochKit 2.0 [21] simulation framework and the
standard stochastic simulation algorithm [3]], with
a non-dimensionalized transcription rate a = 20
and a non-dimensionalized translation rate b = 2.5,
corresponding to “regime I” as defined in [14].
We considered mRNA degradation rates of v €
{10,20, 50,100} and a protein degradation rate of
1. Each value of v was simulated 20 times, and
the resulting trajectories were used for computing
the probability landscapes of the rescaled model pa-
rameters a and b. Protein quantities were observed
without measurement noise at intervals of 0.1 time
units. All simulation runs assumed zero molecules
of mRNA and protein initially, i.e., my = 0 = ny.

2.5. Implementation

Both the zeroth-order propagator P,,,,, Eq. (@),
and the uniform propagator P, ,,. Eq. (3), were
implemented in C++ with a Matlab mex-file inter-
face. Special functions were evaluated using the
GNU scientific library [22], the Hyp_2F1 function
implementation of the Gauss hypergeometric func-
tion [23], and the Algorithm 910 multiprecision
special function library [24]. It proved indispens-
able to use a high precision numerical library due to
several computations involving subtraction of very
large numbers. While the difference of such num-
bers is potentially below a double precision machine
error of approximately 103, they are nonetheless
essential in the correct computation of the transi-
tion probabilities. However, our C++ implementa-
tion is still inaccurate in some extreme cases, typ-
ically for very large protein numbers n, due to nu-
merical differences which are sometimes as small as
10737 in Eq. (7), but which unfortunately cannot
be neglected as they are inflated by the remaining
terms in the expression. Such inaccuracies are in-
frequent, though, and generally occur during transi-
tions for which the uniform propagator yields non-
physical values; thus, they do not substantially af-
fect our analysis, or the conclusions obtained in this
study.

The finite state projection algorithm was imple-
mented in Matlab, assuming no more than 2 mRNA
molecules and no more than 200 protein molecules,
in agreement with simulation.

3. RESULTS AND DISCUSSION

To assess the applicability of the zeroth-order
propagator P,|,,,(7,0), Eq. @), and the uniform
propagator Py, (7,1, ), Eq. (3), for parameter in-
ference in the two-stage gene expression model, we
simulated time-series with a specific parameter pair
(a*,b*). Then, we computed the likelihood of the
observed data set on the basis of the two propaga-
tors for a range of values for the parameters a and
b. For simplicity, we assumed the scale separation
~ between mRNA and protein lifetimes to be known
(see Methods for definitions).

3.1. Protein Time-Courses Simulated With
Gillespie’s Algorithm

We simulated mRNA and protein time-series for
the two-stage gene expression model (Fig. 1A) us-
ing Gillespie’s algorithm [3] (see Methods for de-
tails). Simulations were initialized with mg = 0
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mRNA molecules and ny = 0 protein molecules, al-
though the propagator-based approach is equally ap-
plicable to any initial number of proteins, as shown
in [14].

The generated protein time-courses were sampled
at N = 101 points in time, with fixed increments
of At = 0.1 to mimic the measurement of protein
abundance with time-lapse microscopy, see Fig. 1B.
For each transition in the observed time-series, we
computed the approximate probability on the basis
of the analytical propagators P, and Ppp,; cf.
Fig. 1B, inset. Notably, we ignored measurement
noise throughout, i.e., we only investigated the suit-
ability of the two propagators for synthetic “ideal”
data (see Discussion for possible extensions).

We note, moreover, that the expressions in
Egs. (@) and (@) can be used to visualize the like-
lihood of various sample paths in the underlying
stochastic networks for a given set of parameters and
conditional on the initial condition; see Fig. 1C.

3.2. Parameter Inference

Given the propagators Py, and P,,,, we com-
puted the log-likelihood L(a, b) of the simulated tra-
jectories for a range of parameter values (a, b) in the
subspace (a,b) € [1071,103] x [1073,103]. Here,
the log-likelihood is defined as

N
L(a,b) =Y log P, ., (13)
=1

where either Py~ = P, , asin Eq. ) for
the zeroth-order propagator or P\ = Ppjn,_,
as in Eq. (O) for the uniform propagator. We note
that both propagators depend on the parameters a
and b; moreover, the parameter ¢ = ! is assumed
to be known. The term n; represents the number
of proteins at measurement time ¢;. Thus, we com-
pute the logarithm of the probability of each tran-
sition, from n;_; protein molecules at time ¢;_; to
n; molecules at time ¢;, in the sequence of observed
measurements (see Fig. 1B, inset).

In order to estimate the parameters a and b from
simulated protein time-courses, Eq. (I3) has to be
evaluated very frequently. We thus developed a nu-
merically stable expression for the uniform propa-
gator Py, (see Section , and we used an ef-
ficient implementation in C++ for both propagators
that results in reasonable runtimes; see Section 22,3
for details.
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FIG. 1: A. The two-stage model for gene expression,
which captures stochastic birth and death of mRNA and
protein, with non-dimensionalized parameters a for tran-
scription, b for translation, and v for mRNA degradation.
B. Time-courses were simulated using the stochastic sim-
ulation algorithm, shown here for a = 20, b = 2.5, and
v = 10 or v = 100. Probabilities can be computed
for each protein transition from the analytical two-stage
propagators given in Egs. (2) and (@) (inset, probability
distributions shown in gray). C. Analytical propagators
can be used to compute the probability of observing a par-
ticular number of protein molecules at arbitrary points in
time, conditional on the initial conditions. The prediction
from the uniform propagator, Eq. (3) (blue background),
shows good qualitative agreement with stochastic simula-
tion (gray lines), as illustrated for v = 10 here.

3.3. Comparison of Propagator Accuracy and
Efficiency

We scanned the space of parameter values (a,b)
on a logarithmically spaced 44 x 45-grid with
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1071 < @ < 10% and 1073 < b < 103. For
each pair (a,b), we computed the log-likelihood
L(a,b), thus obtaining a likelihood landscape that
should ideally have its maximum, the maximum
likelihood estimator (MLE), at the true parameter
values (a*,b*). We immediately encountered the
obstacle that the uniform propagator P, yields
negative transition probabilities, or even probabili-
ties larger than one, for some choices of (a, b). The
resulting non-physicality is discussed in [14], and is
due to the fact that Py, is derived from an asymp-
totic approximation; nonetheless, it is problematic
when computing the overall log-likelihood, as the
definition in Eq. (I3) becomes meaningless. Thus
we introduce an “averaged log-likelihood”, L(a, b),
which removes all non-physical values (i.e., those
that are larger than one or less than or equal to zero):

L(a,b)
_EL{o<py,, , <1}[logP;
YN, 1{o< P <1}

ilni—l]

)
i‘ni—l

(14)

with P;i‘mil defined as in (T3). The averaged log-
likelihood represents the average log-likelihood for
a set of parameters (a, ), after removal of all non-
physical transition densities. The averaging com-
pensates for the fact that the number of non-physical
transitions may vary greatly for different values of
(a,b). Since each retained transition only decreases
the overall log-likelihood of the time-series, the log-
likelihood estimate without normalization would in-
herently be biased towards regions of (a,b)-space
for which many transitions were omitted.

Using (T4), we compute the log-likelihood land-
scapes (shown as contour plots) for the zeroth-order
and uniform propagators, obtained from a single
time-course simulated with v = 100, observed at
N = 101 points in time at intervals of At = 0.1.
Computing the MLE, we find that it deviates from
the true parameter values (a*,b*) = (20,2.5) in
(a,b)-space, both for the zeroth-order propagator
Pyn, (Fig. 2A) and for the uniform propagator
Prin, (Fig. 2B). For comparison, we also gener-
ated a finite state projection approximation (FSP) to
the log-likelihood landscape (Fig. 2C), which was
computed by solving the CME (I)), assuming that
mRNA has at most two copies (in agreement with
simulation), and that the number of proteins does not
exceed 200; see [[7] for details on the FSP.

The log-likelihood landscape generated using
each approach shows some bias in the MLE when
using only a single trajectory (Figs. 2A-C). How-
ever, for all three approaches, the MLE converges
to the true model parameters (a*,b*) as the num-
ber of simulation runs used increases from one to

20; see Figs. 2D-F, wherein we depict the sum of
the averaged log-likelihoods over each of the trajec-
tories. This convergence suggests that the bias is
largely due to the inherent stochasticity of the sys-
tem, which is averaged out as more data are incorpo-
rated. Thus, we conclude that for v = 100, both an-
alytical propagators provide a good approximation
to the underlying transition density, and may hence
be of use for parameter inference. However, the FSP
yields a log-likelihood landscape that is more tightly
peaked around (a*,b*), as is seen from a compari-
son of contour lines in Figs. 2D-F; the propagator-
based approaches are hence less able to distinguish
between combinations of a and b which lead to ap-
proximately equal dynamics in the observed time-
series.

The approximation provided by the propagators
Ppn, and Py, deteriorates as y decreases, Le.,
if the perturbation parameter ¢ = v~ is not suffi-
ciently small. Thus, in the case of v = 10, the uni-
form propagator generates many non-physical tran-
sition probabilities which heavily distort the log-
likelihood landscape, see Fig. 3A. These distortions
lead to a severe bias of the MLE with respect to the
true model parameters (a*, b*).

To understand the origins of this bias, it is helpful
to examine a representative time-series. In Fig. 3B,
a typical protein time-course with v = 10 is shown
(top), along with the log-likelihood (bottom) ob-
tained from the uniform propagator P, ,,, Eq. @),
for the true parameter values (black), and for the
MLE (cyan). Transitions for which Py, yields
non-physical values are shown as white squares
within the colored bars at the bottom of Fig. 3B.
We indicate one such transition with arrows in Fig.
3B, and compute the corresponding transition proba-
bility distribution using the uniform propagator, Fig.
3C. In this example, the protein time-course transi-
tions from 55 to 57 molecules within one time inter-
val. Examining the propagator evaluated for the true
model parameters (a*, b*) with initially 55 protein
molecules, i.e., calculating Ps7|55, we see that the
propagator becomes negative for 57 < n < 60 (Fig.
3C, arrow). We note that the corresponding nega-
tive values are of order O(y~2), and thus within the
error incurred by the expansion in Eq. (3), which is
accurate to O(y~1).

Using the uniform propagator P, ,,, we com-
puted a portion of the “transition matrix”, i.e.,
the probability of all transitions from n(t) €
{0,...,100} to n(t + At) € {0,...,100}, evalu-
ated at (a*b*), see Fig. 3D. From that plot, it is ob-
vious that large regions of the transition space yield
non-physical values, shown in gray. Similar distor-
tions were also found for y € {20, 50}.

To quantify the frequency of these non-physical
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FIG. 2: Averaged simulated log-likelihood landscapes for (a,b) = (20,2.5) and v = 100. Landscapes for single
time-courses (left) are shown with contour lines drawn at intervals of 1 unit; contours for landscapes obtained from
20 time-courses (right) are drawn at intervals of 10 units. The averaged log-likelihood landscapes generated using a
single time-course for the zeroth-order propagator, Eq. (), (A), the uniform propagator, Eq. (3), (B), and a finite state
projection approximation (C) for a single time-course each display a bias of the MLE with respect to the true model
parameters (a*, b"). Notably, the landscape of the uniform propagator (B) shows distortions arising from non-physical
transition probabilities for some parameter pairs (a,b). As the number of trajectories is increased to 20, the MLE
converges to (a™, b") for each of the zeroth-order propagator (D), uniform propagator (E), and the finite state projection
(F). The averaged log-likelihood resulting from the finite state projection seems to be most tightly-peaked around the true
parameter values (a*,b").

transitions, we calculated a “computability score” where the superscript k£ indicates the index of the
simulated trajectory. Thus, C(a,b) captures the

Cla,b) = 1 fraction of evaluated transitions for a given pair
N - Niraj (a,b) which were physically admissible (between

Nivaj N zero and one) for the uniform propagator P, ,,. A

X 3 Y {0 < Py <1}, (15)

k=1 =1
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plot of the computability score reveals that certain
regions of the parameter space suffer from low com-
putability, i.e., that they yield many non-physical
values, which are apparent as dark regions, see Fig.
3E. By contrast, P,,,, provides a better approxima-
tion to the true transition probability when evaluated
in the so-called “regime II” defined in [14], with
(a,b) = (0.5,100), which corresponds to contin-
uous protein synthesis. Correspondingly, examin-
ing the transition matrix, Fig. 3F, we found that all
transitions were computable and physically admissi-
ble, as opposed to the transition matrix obtained in
regime I, for (a,b) = (20,2.5).

Thus, we conclude that the uniform propagator
may provide a useful approximation to the stochas-
tic propagator in certain regions of parameter space,
in particular for low values of a and high ones of
b, such as in regime II. However, it breaks down
in large regions of parameter space for which the
computability is low. In such regions, the remaining
transitions may in fact have a higher likelihood than
the true model parameters (a*,b*) (see Fig. 3B),
which can lead to a biased estimate of the model pa-
rameters, as in Fig. 3A.

4. CONCLUSION

In this work, we have investigated the utility of
a propagator-based approach for approximating the
transition probabilities in a simple two-stage gene
expression model by attempting parameter inference
from protein time-series. The latter can be derived,
e.g., from time-lapse microscopy of fluorescently-
labeled proteins in single cells, and are thus of in-
terest for the study of regulation in gene expression.
Here, we only used simulated time-series measured
at regular intervals, without measurement noise. The
simulations were initialized with zero molecules of
both mRNA and protein; this simplification, as com-
pared to a typical biological setting, does not affect
the subsequent analysis.

We compared a newly developed uniform prop-
agator, Eq. (3), which was derived in [14] by ap-
plication of geometric singular perturbation tech-
niques, to a previously proposed propagator, Eq. (2))
[2l], which corresponds to the singular limit as the
perturbation parameter in the model is decreased to
zero. The comparison was performed on the ba-
sis of the probability landscapes of the two relevant
model parameters a and b, which represent rescaled
transcription and translation rates, respectively. For
reference, the two propagators were also compared
against another approximate solution of the CME,
corresponding to the finite state projection (FSP).
The FSP is a numerical method, and is a priori re-

stricted to a subspace of the possible configurations
of the system; nonetheless, it shows very good iden-
tifiability of the model parameters given sufficiently
many observed trajectories (see Fig. 2F).

The results of our investigation indicate that both
propagators perform well when the value of v —
the non-dimensionalized mRNA degradation rate —
is sufficiently large. In the case of v = 100, both
capture the true model parameters almost exactly,
as long as there are sufficiently many time-courses.
In our simulations, 20 time-courses — about 2000
observed transitions — were needed before con-
vergence to the true parameter values, a number
which is attainable in a real biological experiment.
However, for smaller values of +, that is, assum-
ing a decrease in scale separation between mRNA
and protein degradation, the uniform propagator be-
comes inconsistent, in that it generates negative tran-
sition probabilities for many segments of the pro-
tein time-course. This loss of positivity is a gen-
eral feature of asymptotic expansions for probabil-
ity distributions, which a priori only satisfy the non-
negativity required of the distributions provided the
corresponding perturbation parameter is sufficiently
small. While the occurrence of negative probabili-
ties for transient times, i.e., on the fast time-scale,
is irrelevant for the evaluation of the steady state of
the system, it is of extreme relevance to the utility of
the propagator for parameter inference. Although
the zeroth-order propagator is thus inherently less
accurate in an asymptotic sense, it may somewhat
counter-intuitively still prove more useful for param-
eter inference, as it does not yield negative transition
densities under any circumstances.

Since the majority of time-courses contained tran-
sitions for which the calculated probabilities were
negative, it was necessary to devise a better measure
which utilized as much information as possible. We
thus discarded all negative transitions, and used the
remaining non-negative transitions, normalized by
their numbers in each time-course, to obtain an aver-
aged likelihood for each pair (a, b) in the parameter
space. While this approach retains the maximum in-
formation possible from the trajectories, it nonethe-
less seemingly introduces distortions into the prob-
ability landscapes of the parameter space (see Fig.
3A). These distortions proved sufficient to shift the
MLE away from the true parameter values (a*, b*),
thus limiting the utility of the uniform propagator for
inference in regime L.

In the current analysis, we have restricted
ourselves to computing the log-likelihood land-
scape, i.e., the approximate averaged log-likelihood
L(a,b), for all parameter pairs (a,b) on a discrete
grid that was sampled uniformly in log-space (see

Methods). This approach is useful for visualiz-
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FIG. 3: A. The averaged log-likelihood landscape of (a, b) for v = 10 of the uniform propagator P,,,,,, shows prominent
distortions in the contours caused by frequent non-computable transitions. The MLE (cyan) exhibits an obvious bias with
respect to the true model parameters (a*,b*) (black). B. Inspection of a single time-course (shown on top), evaluated at
(a™,b") and at the MLE (bottom), reveals more non-computable transitions (indicated with white boxes below) for the
MLE than for the true parameters; however, for those points that can be computed, the MLE probability is higher than
for the true parameters, leading to a higher averaged probability and thus to a biased estimate of the parameters (a, b).
C. Transition probability in regime I, with (a,b) = (20, 2.5). The transition marked with arrows in (B), from 55 to 57
molecules, results in a negative transition probability. D. The transition matrix for the uniform propagator in regime I
from n(t) to n(t+ At) proteins reveals a large region of non-computable transitions, shown in gray. E. The computability
score C'(a, b) shows that the MLE is biased towards the region with the lowest computability, for which most transitions
are omitted from the averaged log-likelihood score L(a, b). F. By contrast, the transition matrix is fully computable in
regime II, with (a, b) = (0.5, 100), corresponding to the region of bursty protein synthesis, i.e., to translational bursting.
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ing the probability landscape, but is not ideal for
parameter inference. In a more realistic setting,
one would compute the maximum likelihood esti-
mator via numerical optimization, e.g., by applying
a finite-differencing scheme in conjunction with a
gradient descent algorithm; see, e.g., [25]. Alter-
natively, one could use Markov Chain Monte Carlo
(MCMC) techniques to sample directly from the
posterior in order to obtain the log-likelihood land-
scape [260]. The MCMC approach is particularly ad-
vantageous when the scale separation parameter vy
is not known a priori, as was assumed in the cur-
rent analysis, since the number of parameter combi-
nations increases exponentially with the number of
unknown parameters.

Thus far, we have not considered the effects of
measurement noise. In order to obtain the correct
parameter likelihoods in the presence of noisy mea-
surements, one would have to marginalize over all
possible paths, weighted by the probability of ob-
serving the measured values at each point along the
sampled path, according to an error model such as
normal or log-normal measurement noise. The vari-
ance of the noise then constitutes an additional un-
known parameter o which would have to be in-
ferred. Integrating over all possible sample paths
is of course computationally intractable due to the
enormity of the number of such paths, even if some
truncation of the possible path space is made, e.g.,
by neglecting paths for which the probability of ob-
serving the measured data points lies below some
arbitrarily small threshold. Alternatively, rather than
integrating over all possible paths to obtain the true
marginal parameter likelihoods, one could apply a
variant of the expectation maximization algorithm
[27] in which case the most likely parameter set
(a,b,7,0) is inferred along with the “true” latent
paths for mRNA and protein, respectively. A sim-
ilar approach was employed by Suter, et al. [28]],
wherein the zeroth-order approximation presented in
[2]] is used along with simplifying assumptions in
order to perform parameter inference from protein
time-series.

To improve the utility of the uniform propaga-
tor for parameter inference, it is necessary to elimi-

nate the non-physical transition probabilities, which
can possibly be achieved via the inclusion of higher-
order terms in the perturbation parameter ¢ in the
corresponding asymptotic expansion, as the current
approximation in Eq. (3) is accurate only up to and
including first order terms in . Alternatively, the
“fast” and “slow” propagators that were derived sep-
arately in [14]], at first order in €, could be “patched”
at some suitable point in time so that positivity is
ensured throughout. Further improvement is likely
possible for specific parameter regimes (a,b,~) in
which the relative orders of magnitude of the three
parameters naturally suggest a y-dependent rescal-
ing of a or b. Another possible application of the
uniform propagator would be to combine it with
other techniques, such as moment equations, in or-
der to perform approximate parameter inference by
attempting to match simultaneously the predicted
steady-state distributions and autocorrelation func-
tions of the model to empirical observations. The
uniform propagator provides a more accurate ap-
proximation of the steady-state distribution in the
two-stage model for gene expression, as is shown
in [14], and is thus potentially well suited to such an
approximate inference scheme.
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