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REGULARITY FOR ENERGY-MINIMIZING AREA-PRESERVING DEFORMATIONS

ARAM L. KARAKHANYAN

Abstract. In this paper we establish the square integrability of the nonnegative hydrostatic pressure p, that

emerges in the minimization problem

inf
K

ˆ
Ω

|∇v|2, Ω ⊂ R2

as the Lagrange multiplier corresponding to the incompressibility constraint det∇v = 1 a.e. in Ω. Our

method employs the Euler-Lagrange equation for the mollified Cauchy stress C satisfied in the image domain

Ω⋆ = u(Ω). This allows to construct a convex function ψ, defined in the image domain, such that the measure of

the normal mapping of ψ controls the L2 norm of the pressure. As a by-product we conclude that u ∈ C
1
2
loc(Ω)

if the dual pressure (introduced in [6]) is nonnegative.

1. Introduction

Let Ω be a bounded smooth domain in R2 and K = {v ∈ W 1,2(Ω,R2),det∇v = 1 a.e. in Ω}. For v ∈ K we

define the stored energy as

(1.1) E[v] =

ˆ
Ω

|∇v|2, v ∈ K.

Let us recall the definition of local minimizers [1], [2], [6].

Definition 1.1. We say that an area-preserving deformation u ∈W 1,2(Ω,R2) is a local minimizer if for all area

preserving (or incompressible) deformations w ∈W 1,2(Ω,R2) with supp(w− u) ⊂ Ω the following holdsˆ
Ω

|∇u|2 ≤
ˆ
Ω

|∇w|2.(1.2)

Our primary interest is to analyze the properties of the local minimizers of E[·] and the integrability of

the hydrostatic pressure p sought as the Lagrange multiplier corresponding to the incompressibility constraint

det∇v = 1. The sufficiently regular local minimizers solve the system

(1.3)

{
divT = 0 in Ω,

det∇u = 1 a.e. in Ω,

where T = ∇u + p(∇u)−t is the first Piola-Kirchhoff tensor and (∇u)−t is the transpose of the inverse matrix,

see [7], pages 371 and 379. Since det∇u = 1 we have

(∇u)−1 =

(
u2
2 −u1

2

−u2
1 u1

1

)
, (∇u)−t =

(
u2
2 −u2

1

−u1
2 u1

1

)
.(1.4)

From (1.4) we deduce that (1.3) is equivalent to the system

(1.5)


div[∇u1 − pJ∇u2] = 0,

div[∇u2 + pJ∇u1] = 0,

det∇u = 1.

Here J is the 90◦ counterclockwise rotation
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2 ARAM L. KARAKHANYAN

(1.6) J =

(
0 −1
1 0

)
.

For u ∈ W 1,2(Ω) the equations (1.3) or (1.5) cannot be justified. In fact the term p(∇u)−t is not well-

defined unless ∇u is better than L2 integrable, see [2]. The lack of higher integrability of ∇u produces a number

of technical difficulties, see [6]. To circumvent them author and N. Chaudhuri succeeded to compute the first

variation of the energy (1.6) in the image domain Ω⋆ = u(Ω) under very weak assumptions (note that u is open

map [10]). For u ∈ W s,l(Ω) with s > 2
l
+ 1 this was done in [8], Theorem 5.1. Below we formulate one of the

main results from [2] relevant to the present work.

Proposition 1.2. Let u ∈ K be a local minimizer of (1.1). Consider the matrix

(1.7) σij(y) =
∑
m

uim(u−1(y))ujm(u−1(y))

where y ∈ u(Ω) = Ω⋆ and u−1 is the inverse of u (u−1 is well-defined see Remark 3.3 [10]). If ρε is a mollification

kernel and σε = σ ∗ ρε then there is a C∞ function qε such that

(1.8) div σε(y) +∇qε(y) = 0 y ∈ Ω⋆,

The regularized equation (1.8) in the image domain plays the crucial role in the proof of Theorem A (see

below), notably it links (1.3) to the Monge-Ampère equation and from there we infer that {qε} is uniformly

bounded in L2
loc(Ω

⋆).

Theorem A. Let u ∈ K be a local minimizer of E[·]. If there is a sequence of qεj ≥ 0 solving (1.8) such that

qεj converges to a nonnegative Radon measure in B1 ⊂ Ω⋆, then there is a convex function ψε defined in B1 such

that

D2ψε = adjσε + qεI

where adjσε = (σε)−1 detσε and I is the identity matrix. Moreover,

• there is a subsequence qεj(m) and q ∈ L2
loc(Ω

⋆) such that qεj(m) → q strongly in L2
loc(Ω

⋆),

• there is a convex function ψ : B1 7→ R such that ψεj(m) → ψ uniformly on the compact subsets of B1.

In [2] the authors found a representation for qε given by a sum of Calderón-Zygmund type singular integrals

of σεij(y). As a result qε inherits the ”half” of the integrability of ∇u. In other words {qε} is uniformly bounded

in L
1+ δ

2
loc (Ω⋆) if ∇u ∈ L2+δ(Ω), δ > 0 and in L1

loc(Ω
⋆) if |∇u|2 ∈ L log(2 + L)(Ω). This observation gives rise to

the following question: Does the higher integrability of the pressure q translate to ∇u?
Theorem A gives a partial answer to this question: if B1 ⊂ Ω⋆, q ∈ L2+δ(B1), δ > 0 and σ ∈ L2(B1) then

it follows from Lemma 7.1 1◦ that D2ψ = adjσ + qI and D2ψ ∈ L2(B 7
8
). Since by (1.7) σ(y) = [∇u(∇u)t] ◦

u−1(y), y ∈ Ω⋆ we infer that det adjσ = 1, which is equivalent to the Monge-Ampère equation

det
[
D2ψ − qI

]
= 1

satisfied a.e. in B1. Hence from the regularity theory available for the Monge-Ampére equation we will conclude

higher integrability for D2ψ in B 1
2
, which translates to ∇u in Ω through the equation D2ψ = adjσ + qI and the

inverse mapping theorem.

As one can observe from (1.8), the pressure qε is defined modulo a constant. The assumption qεj ≥ 0 seems

a natural one since from a purely physical point of view the pressure must be nonnegative. From Theorem A
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we can conclude that the first equation in (1.3) is well defined in Ω. Moreover applying the duality argument

from [6] we infer that there is a function P : Ω⋆ 7→ R such that the pair (u−1, P ) is a solution the corresponding

Euler-Lagrange equations in Ω⋆, see Theorem 2 [6]. Combining Theorem A with this observation we obtain

Theorem B. Let u : Ω 7→ Rn and q ∈ L2(Ω⋆) be as in Theorem A.

1◦ Then p(x) = q(u(x)), x ∈ Ω is locally L2 integrable in Ω, p(x)(∇u)−t ∈ L2
loc(Ω) and the pair (u, p) solves

the equation

div[∇u+ p(∇u)−t] = 0 in Ω

in the weak sense.

2◦ Let v = u−1 and Q be the dual pressure in Ω corresponding to v, Q(v(z)) = P (z). If Q ≥ 0 then

u ∈ C
1
2
loc(Ω).

The paper is organized as follows: Section 2 is devoted to the construction of the family of functions ψε. Then

we prove uniform estimates for this family using some geometric ideas and the Poincaré-Wirtinger’s theorem for

the functions of bounded variation (or BV−functions, see [4]). This is contained in Section 3. A lower estimate

for the det adjσε is established in Section 4. Next, in order to prove Theorem A, we recall the notion of generalized

solution of the Monge-Ampère equation and define the corresponding normal mapping in Section 5. The proof of

Theorem A is given in Section 6. Section 7 contains a brief discussion of the properties of the convex function ψ

and its Legendre-Fenchel transformation. Finally, Section 8 contains the proof of Theorem B.

2. The Euler-Lagrange equation in image domain

In this section we construct a convex function ψε such that the mollification of the Cauchy stress tensor

Cij = σij + qδij is the Hessian of ψε.

We start by recalling that if w is C∞ divergence free vectorfield in 2D then there is a scalar C∞ function φ

such that w = JDφ = (−D2φ,D1φ).

Suppose that B1 ⊂ Ω⋆. From the mollified equation (1.8) it follows that the vectorfields (σε11 + qε, σε12) and

(σε21, σ
ε
22+q

ε) are divergence free in Ω⋆. Hence there are two scalar functions φε1, φ
ε
2 such that φεi ∈ C∞(B1), i = 1, 2

and

(σε11 + qε, σε12) = JDφε1 = (−∂2φε1, ∂1φε1),(2.1)

(σε21, σ
ε
22 + qε) = JDφε2 = (−∂2φε2, ∂1φε2).

Since

[σij(z)] =

(
|∇u1(u−1(z))|2 ∇u1(u−1(z)) · ∇u2(u−1(z))

∇u1(u−1(z)) · ∇u2(u−1(z)) |∇u2(u−1(z))|2

)
(2.2)

and σεij = σij ∗ ρε, where ρε is a mollifying kernel, we conclude that σεij is symmetric. Moreover the gradient

matrix of the mapping Φε = (φε1, φ
ε
2) is

∇Φε =

(
∂1φ

ε
1 ∂2φ

ε
1

∂1φ
ε
2 ∂2φ

ε
2

)
=

(
σε12 −σε11 − qε

σε22 + qε −σε21

)
.(2.3)

Therefore the mapping Φ = (φε1, φ
ε
2) is divergence free, because

div Φε = ∂1φ
ε
1 + ∂2φ

ε
2 = σε12 − σε21 = 0

and the matrix σεij is symmetric.
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Thus, there is a scalar function ψε such that Φε = J∇ψε. In other words φε1 = −∂2ψε, φε2 = ∂1ψ
ε, which in

view of (2.1) implies the following identity for the Hessian of ψε

(2.4) D2ψε(y) =

(
σε22(y) + qε(y) −σε21(y)
−σε21(y) σε11(y) + qε(y)

)
.

Furthermore, detD2ψε = det adjσε+(qε)2+ qεTrσε and det(D2ψ− qεI) = det adjσε, where I = δij is the identity

matrix.

Lemma 2.1. If qε ≥ C for some C ∈ R, independent of ε, then ψε(y)− C
2
|y|2 are convex for any ε > 0.

Proof: Let e = (a, b) ∈ R2 and ∂e = a∂1 + b∂2. Then using (2.2) and (2.4) we conclude

∂eeψ
ε(z) = a2∂11ψ

ε + 2ab∂12ψ
ε + b2∂22ψ

ε

= a2σε22 + 2abσε12 + b2σε11 + qε(z)(a2 + b2)

=
∣∣a∇xu2(u−1(z) + b∇xu1(u−1(z))

∣∣2 + qε(z)(a2 + b2)

≥ C(a2 + b2).

Therefore ψ(z)− C
2
|z|2 is convex. �

Remark 2.2. The pressure qε(z) is defined modulo a constant as it is seen from the equation (1.8). In particular,

ψε is determined modulo a quadratic polynomial. Thus if qε0(z) = qε(z) − C then ψε0(z) = ψε(z) − C
2
|z|2 solves

det(D2ψε0 − qε0(z)I) = det adjσε and (2.4) holds with ψε and qε replaced by ψε0 and qε0 respectively.

3. Uniform estimates for ψε

Lemma 3.1. Suppose that the sequence qε converges to a nonnegative Radon measure q. Then there is a positive

constant C such that sup
∂B1

|ψε| ≤ C.

Proof: By Helmholtz-Weyl decomposition [3], Φε = Dhε + JDηε where hε solves the Neumann problem

(3.1)

{
∆hε = 0 in B1,

Dhε · ν = Φε · ν on ∂B1.

Moreover −∆ηε = curlΦε = σε11 + σε22 + 2qε and ηε = 0 on ∂B1.

By Poincaré-Wirtinger’s theorem Φ̃ε = Φε −
ffl
B1

Φε ∈ BV (B1,R2), i.e. φεi −
ffl
B1
φεi ∈ BV (B1), i = 1, 2. Since

Φε is defined modulo a constant (see (2.3)), in what follows, we take Φ̃ε = Φε −
ffl
B1

Φε. Thus the estimate

(3.2) ∥Φ̃ε∥L1(B1)
=

∥∥∥∥Φε −  
B1

Φε
∥∥∥∥
L1(B1)

≤ C sup

{∣∣∣∣ˆ
B1

Φε div ξ

∣∣∣∣ , ∀ξ ∈ C1
0 (B1,R2), |ξ| ≤ 1

}
is true, with C > 0 independent from ε.

On the other hand after integration by parts we get

ˆ
B1

Φ̃ε div ξ =

ˆ
B1

Φε div ξ = −
ˆ
B1

ξ∇Φε(3.3)

for any ξ ∈ C1
0 (B1,R2) which in conjunction with (2.3) gives
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∣∣∣∣ˆ
B1

φε1 div ξ

∣∣∣∣ =

∣∣∣∣− ˆ
B1

ξDφε1

∣∣∣∣(3.4)

=

∣∣∣∣ˆ
B1

ξ1σε12 − ξ2(σε11 + qε)

∣∣∣∣
≤

ˆ
B1

[|σε11|+ |σε12|+ qε] .

Similarly, one can check that
∣∣∣´B1

φε2 div ξ
∣∣∣ ≤ ´

B1
[|σε12|+ |σε22|+ qε]. Because σij ∈ L1 and qε converges to a

nonnegative Radon measure it follows that

∥Φ̃ε∥BV (B1) ≤ C
(
∥σij∥L1(B1)

+ ∥q∥M(B1)

)
,

where M (B1) is the space of measures in B1.

Using Theorems 2.10 and 2.11 from [4] we conclude that the trace Φε0 ∈ L1(∂B1) of Φ̃ε is well-defined and

satisfies the following uniform estimate

(3.5) ∥Φ̃ε0∥L1(∂B1)
≤ C∥Φ̃ε∥BV (B1) ≤ C

(
∥σij∥L1(B1)

+ ∥q∥M(B1)

)
.

In particular (3.5) implies that the Neumann problem (3.1) for hε is well-defined.

Next we have that Φε = J∇ψε = ∇hε + J∇ηε or equivalently

∇ψε −∇ηε = −J∇hε.

In particular ψε − ηε is harmonic in B1. We want to estimate the tangential component of ∇ψε on the boundary

∂B1. Let τ be a unit tangent vector to ∂B1, then

∇ψε · τ = ∇ηε · τ −J∇hε · τ = ∇hε · ν,

where ν = J τ is a unit vector normal to ∂B1. Using polar coordinates (r, θ), θ ∈ (0, 2π), we obtain that

ψε(θ) = ψε(0) +

ˆ θ

0

∇h · νdθ = ψε(0) +

ˆ θ

0

Φε0 · νdθ.(3.6)

Without loss of generality we assume that ψε(0) = 0 (see Remark 2.2). Thus

|ψε(θ)| ≤ C∥Φε0∥L1(∂B1), ∀θ ∈ (0, 2π).

The desired result now follows from (3.5). �

Lemma 3.2. Retain the assumptions of previous lemma. Then there is a constant C, such that inf
B1

ψε ≥ C

uniformly in ε.

Proof: It suffices to prove that ∇ψε ∈ L1(∂B1) uniformly in ε. Indeed, ψε is convex hence if ψε tends to −∞
then the ∇ψε becomes uniformly large on ∂B1.

From Lemma 3.5 we have that

∇ψε = ∇ηε −J∇hε = J (−J∇ηε −∇hε) = −J Φ̃ε

implying the estimate

∥∇ψε∥L1(∂B1)
≤ ∥Φ̃ε0∥L1(∂B1)

.

The proof now follows if we recall (3.5). �
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4. Lower estimate for det(adj σε)

Lemma 4.1. Let σε = σ ∗ ρε, where σ(z) = [∇u(∇u)t] ◦ u−1(z), z ∈ Ω⋆ then for any ε > 0

det(adj σε(z)) ≥ 1 z ∈ Ω⋆.

Proof: Using the definition of σε(z) and the Cauchy-Schwarz inequality we get

det(adj σε) = σε11σ
ε
22 − σε12σε21

=

ˆ
B1

σ11ρε

ˆ
B1

σ22ρε −
(ˆ

B1

σ12ρε

)2

≥
(ˆ

B1

√
σ11σ22ρε

)2

−
(ˆ

B1

σ12ρε

)2

=

ˆ
B1

(
√
σ11σ22 − σ12)ρε

ˆ
B1

(
√
σ11σ22 + σ12)ρε.

By definition we have σ11 = |∇u1|2, σ22 = |∇u2|2 and σ12 = σ21 = ∇u1 · ∇u2. Let α be the angle between

∇u1 and ∇u2. Recall that det∇u = |∇u1||∇u2| sinα = 1. Then

√
σ11σ22 − σ12 = |∇u1||∇u2|(1− cosα) = |∇u1||∇u2|2 sin2 α

2
= tan

α

2

and similarly have that

√
σ11σ22 + σ12 = |∇u1||∇u2|(1 + cosα) = |∇u1||∇u2|2 cos2 α

2
= cot

α

2
.

Applying the Cauchy-Schwarz inequality one more time we obtain

det(adj σε) ≥ 1.

�

5. Normal mapping of the convex function ψε

In this section we will employ some basic concepts from the theory of generalized solutions of Monge-Ampère

equation. Our notation follow that of the paper [11]. Let ψ be a convex function defined in B1 ⊂ R2. For x ∈ B1

we let

χψ(x) = {ξ ∈ R2 : ψ(y) ≥ ψ(x) + ξ · (y − x) ∀y ∈ B1}.

For a set E ⊂ B1 we define the mapping

(5.1) χψ(E) =
∪
x∈E

χψ(x).

χψ is called the normal mapping of ψ. For smooth convex ψ, χψ coincides with the gradient mapping of ψ.

Let

C = {E ⊂ B1 : χψ(E) is Lebesgue measurable}.

Then C is a σ−algebra containing the Borel subsets of B1, see [11]. For each E ∈ C we define the set function

ω(E) = |χψ(E)|

i.e. the Lebesgue measure of the normal mapping of E. It is easy to verify that for ψ ∈ C2(B1) we have

ω(E) =

ˆ
E

detD2ψ, for all Borel E ∈ B1.
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It follows from Aleksandrov’s theorem, see [11], that

|{ξ ∈ R2 : ξ ∈ χψ(x) ∩ χψ(y), for x ̸= y, x, y ∈ B1| = 0.

As a consequence, we get that ω is countably additive Radon measure.

Moreover, we have weak convergence for measure ω. Indeed, let ψj be a sequence of convex functions and

ψj → ψ uniformly on compact subsets of B1. Let ωj and ω be the Radon measures associated with ψj and ψ

respectively. Then ωj converges weakly on B1 to ω in the space of measures M (B1) [11], i.e.

(5.2) lim sup
j→∞

ωj(K) ≤ ω(K)

for any compact set K ⊂ B1, and

(5.3) lim inf
j→∞

ωj(U) ≥ ω(U)

for any open set U ⊂ B1.

6. Proof of Theorem A

Let ωj be the Radon measure corresponding to ψεj , for some sequence {εj}. By Lemmas 3.1 and 3.2 the

sequence of convex functions {ψεj} is uniformly bounded in B1. Thus for a subsequence, again denoted by {ψεj}
we have ψεj → ψ uniformly on the compact subsets of B1. Clearly ψ is convex. Let ω be the Radon measure

corresponding to ψ. By Lemma 4.1 we have that

ωj(Br(x0)) =

ˆ
Br(x0)

detD2ψεj(6.1)

=

ˆ
Br(x0)

det(adj σεj (z)) + qεj (z)
[
|∇u(u−1(z))|2 ∗ ρεj

]
+ (qεj (z))2dz

≥ |Br(x0)|+
ˆ
Br(x0)

(qεj (z))2dz

for any open ball Br(x0) ⊂ B1.

Now utilizing the weak convergence of the measures ωj ⇀ ω and (5.2) we obtain the following uniformˆ
K

(qεj (z))2dz ≤ C + ω(K)

for any compact set K ⊂ B1. Then a customary compactness argument in L2 finishes the proof. �

7. Properties of ψ

The convex function ψ enjoys a number of remarkable properties which are summarized in the following

Lemma 7.1. Let ψ be as in Theorem A. Then

1◦ ψ is strictly convex and ψ ∈W 2,1
loc (B1),

2◦ ψ∗ ∈ C1,1 where ψ∗ is the Legendre-Fenchel transformation of ψ in B 1
2
.

Proof: 1◦ Recall that qε is defined modulo a constant summand, see Remark 2.2. Thus, without loss of

generality, we assume that qε ≥ 1. Let y0 be an arbitrary point in B1, then by Lemma 4.1 detD2ψε ≥ (qε)2 ≥ 1.

Thus we conclude that

ωj(U) ≥ |U |, ∀ open U ⊂ B1.
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Since ωj ⇀ ω weakly and in view of (5.3) the above inequality implies

ω(U) ≥ |U |.

Now the strict convexity of ψ follows from Aleksandrov’s theorem, see [9], Chapter 2.3 Theorem 2.

The mollified matrices σ
εj
km → σkm strongly in L1

loc(B1) as εj ↓ 0 and qεj → q in L2
loc at least for a subsequence.

Moreover {ψεj} is uniformly bounded thanks to Lemmas 3.1 and 3.2, hence for a suitable subsequence ψεj will

uniformly converge to a convex function ψ in any compact subset of B1. Let us show that D2ψ = adjσ + qI a.e

in B1.

Indeed, let η ∈ C∞
0 (B1) and compute

ˆ
∂kψ∂iη =

ˆ
∂kψ

εj∂iη + o(1)

= −
ˆ
∂ikψ

εjη + o(1)

= −
ˆ
[(adjσεj )ik + qεj δik]η + o(1)

−→ −
ˆ
[(adjσ)ik + qδik]η.

Hence ψ has generalized second order derivatives in L1
loc(B1) and D

2ψ = adjσ + qI a.e in B1.

2◦ Recall that the Legendre-Fenchel transformation ψ∗ of ψ in B 1
2
is given by

ψ∗(z) = sup
y∈B 1

2

(z · y − ψ(y)), z ∈ χψ(B 1
2
).

Notice that by part 1◦ ψ is strictly convex, hence it can be shown that ψ∗ is C1 in the domain of ψ∗, see Chapter

D of [5].

Let us denote B = B 1
2
and B∗ = χψ(B) where χψ is the normal mapping of ψ. Notice that B∗ is bounded be-

cause ψ ∈ C0,1(B 1
2
). Denote (Bε)∗ = χψε(B), then (ψε)∗(z), z ∈ (Bε)∗ is smooth because ψε is C∞. Furthermore

from (2.4) we obtain

D2(ψε)∗ = [D2ψε]−1 =
1

detD2ψε
(σε + qI)

or equivalently

∂ij(ψ
ε)∗ =

σεij + qδij

det adjσ + qεTrσε + (qε)2

≤ 1

qε
σεij + qδij

1
qε

+Trσε + qε

≤ 1

qε
≤ 1, i = j

if we assume that qε ≥ 1, see Remark 2.2.

As for i ̸= j, we use Lemma 4.1 to conclude

|σε12| ≤
√
σε11σ

ε
22 − 1 ≤

√
σε11σ

ε
22 + 1 ≤ σε11 + σε22

2
+ 1.

Thus |D2(ψε)∗| ≤ C uniformly in ε.

Next, we extend (ψε)∗ to BR by the formula supz∈BR
(y · z − ψε(y)) with z ∈ BR and R = sup

ε
∥∇ψε∥L∞(B 1

2
).

Thus in BR we have a sequence of convex functions (ψε)∗ with uniformly bounded Hessian matrices. By a
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customary compactness argument we can show that for at least a subsequence we have (ψεj )∗ → ψ for some

convex function ψ. It remains to show that ψ∗ = ψ in B∗.

From the definition of (ψε)∗ we have that (ψε)∗(z) + ψε(y) ≥ y · z and after passing to the limit we obtain

ψ(z) + ψ(y) ≥ y · z implying that ψ(z) ≥ ψ∗(z). To get the converse inequality we use the uniform convergence

ψ(z)←− (ψε)∗(z) = sup
y∈B

(y · z − ψε(y)) ≤ sup
y∈B

(y · z − ψ(y)) + sup
y∈B
|ψ(y)− ψε(y)| −→ ψ∗(z).

This completes the proof. �

Remark 7.2. At each point z ∈ intB∗, B∗ = χψ(B 1
2
) we can define the lower Gauss curvature [9]

ω∗(z0) = lim inf
r→0

|χψ∗(Br(z0))|
|Br(z0)|

.

If there is a constant m > 0 such that ω∗(z0) ≥ m > 0 for a.e. z0 ∈ B∗ then σ and q are bounded in B 1
2
. In

particular this will imply that u is Lipschitz in u−1(B 1
2
) ⊂ Ω.

8. Proof of Theorem B

The part 1◦ follows from change of variable formula [10] and Theorem A. To prove part 2◦ we employ the

duality principle of u and its inverse v = u−1 in [6], i.e. v is a local minimizer of the dual problem in the image

domain Ω⋆ = u(Ω). Hence we can apply Theorem A to the pair (v, P ) where v = u−1. Thus, there is a convex

function ηε such that D2ηε = adjσ̃ε +QεI where

σ̃ij(z) =
∑
m

vim(v−1(z))vjm(v−1(z)), z ∈ Ω

and σ̃ε = σ̃ ∗ ρε and Qε are the mollifications of σ̃ and Q respectively. Note that Q(v(z)) = P (z), z ∈ Ω. In

particular, for any Br(x0) ⊂ B1 ⊂ Ω we haveˆ

Br(x0)

|∇u(x)|2dx =

ˆ

Br(x0)

Trσ̃ij(x)dx

=

ˆ

Br(x0)

∆ηε − 2Qε

≤
ˆ

Br(x0)

∆ηε

=

ˆ

∂Br(x0)

∇ηε · ν

≤ Cr

with some tame constant C depending on the Lipschitz norms of ηε, which is bounded by Lemmas 3.2 and 3.1.

Now the result follows from Morrey’s estimate. �
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