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Abstract

We consider the problem of learning sparse additive models, i.e., functions of the
form: f(x) =

∑
l∈S φl(xl), x ∈ Rd from point queries of f . Here S is an un-

known subset of coordinate variables with |S| = k � d. Assuming φl’s to be
smooth, we propose a set of points at which to sample f and an efficient random-
ized algorithm that recovers a uniform approximation to each unknown φl. We
provide a rigorous theoretical analysis of our scheme along with sample complex-
ity bounds. Our algorithm utilizes recent results from compressive sensing theory
along with a novel convex quadratic program for recovering robust uniform ap-
proximations to univariate functions, from point queries corrupted with arbitrary
bounded noise. Lastly we theoretically analyze the impact of noise – either arbi-
trary but bounded, or stochastic – on the performance of our algorithm.

1 Introduction
Several problems in science and engineering require estimating a real-valued, non-linear (and of-
ten non-convex) function f defined on a compact subset of Rd in high dimensions. This chal-
lenge arises, e.g., when characterizing complex engineered or natural (e.g., biological) systems
[1, 2, 3]. The numerical solution of such problems involves learning the unknown f from point
evaluations (xi, f(xi))ni=1. Unfortunately, if the only assumption on f is of mere smoothness, then
the problem is in general intractable. For instance, it is well known [4] that if f is Cs-smooth then
n = Ω((1/δ)d/s) samples are needed for uniformly approximating f within error 0 < δ < 1. This
exponential dependence on d is referred to as the curse of dimensionality.

Fortunately, many functions arising in practice are much better behaved in the sense that they are
intrinsically low-dimensional, i.e., depend on only a small subset of the d variables. Estimating
such functions has received much attention and has led to a considerable amount of theory along
with algorithms that do not suffer from the curse of dimensionality (cf., [5, 6, 7, 8]). Here we focus
on the problem of learning one such class of functions, assuming f possesses the sparse additive
structure:

f(x1, x2, . . . , xd) =
∑
l∈S

φl(xl); S ⊂ {1, . . . , d} , |S| = k � d. (1.1)

Functions of the form (1.1) are referred to as sparse additive models (SPAMs) and generalize sparse
linear models to which they reduce to if each φl is linear. The problem of estimating SPAMs has
received considerable attention in the regression setting (cf., [9, 10, 11] and references within) where
(xi, f(xi))ni=1 are typically i.i.d samples from some unknown probability measure P. This setting,
however, does not consider the possibility of sampling f at specifically chosen points, tailored to
the additive structure of f . In this paper, we propose a strategy for querying f , together with an
efficient recovery algorithm, with much stronger guarantees than known in the regression setting. In
particular, we provide the first results guaranteeing uniformly accurate recovery of each individual
component φl of the SPAM. This can be crucial in applications where the goal is to not merely
approximate f , but gain insight into its structure.
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Related work. SPAMs have been studied extensively in the regression setting, with observations
being corrupted with random noise. [9] proposed the COSSO method, which is an extension of the
Lasso to the reproducing kernel Hilbert space (RKHS) setting. A similiar extension was considered
in [10]. In [12], the authors propose a least squares method regularized with smoothness, with
each φl lying in an RKHS and derive error rates for estimating f , in the L2(P) norm1. [13, 14]
propose methods based on least squares loss regularized with sparsity and smoothness constraints.
[13] proves consistency of its method in terms of mean squared risk while [14] derives error rates
for estimating f in the empirical L2(Pn) norm 1. [11] considers the setting where each φl lies in
an RKHS. They propose a convex program for estimating f and derive error rates for the same, in
the L2(P), L2(Pn) norms. Furthermore they establish the minimax optimality of their method for
the L2(P) norm. For instance, they derive an error rate of O((k log d/n) + kn−

2s
2s+1 ) in the L2(P)

norm for estimating Cs smooth SPAMs. An estimator similar to the one in [11] was also considered
by [15]. They derive similar error rates as in [11], albeit under stronger assumptions on f .

There is further related work in approximation theory, where it is assumed that f can be sampled
at a desired set of points. [5] considers a setting more general than (1.1), with f simply assumed
to depend on an unknown subset of k � d-coordinate variables. They construct a set of sampling
points of size O(ck log d) for some constant c > 0, and present an algorithm that recovers a uniform
approximation2 to f . This model is generalized in [8], with f assumed to be of the form f(x) =
g(Ax) for unknown A ∈ Rk×d; each row of A is assumed to be sparse. [7] generalizes this,
by removing the sparsity assumption on A. While the methods of [5, 8, 7] could be employed
for learning SPAMs, their sampling sets will be of size exponential in k, and hence sub-optimal.
Furthermore, while these methods derive uniform approximations to f , they are unable to recover
the individual φl’s.

Our contributions. Our contributions are threefold:

1. We propose an efficient algorithm that queries f atO(k log d) locations and recovers: (i) the
active set S along with (ii) a uniform approximation to each φl, l ∈ S. In contrast, the
existing error bounds in the statistics community [11, 12, 15] are in the much weaker L2(P)
sense. Furthermore, the existing theory in both statistics and approximation theory provides
explicit error bounds for recovering f and not the individual φl’s.

2. An important component of our algorithm is a novel convex quadratic program for estimat-
ing an unknown univariate function from point queries corrupted with arbitrary bounded
noise. We derive rigorous error bounds for this program in the L∞ norm that demonstrate
the robustness of the solution returned. We also explicitly demonstrate the effect of noise,
sampling density and the curvature of the function on the solution returned.

3. We theoretically analyze the impact of additive noise in the point queries on the perfor-
mance of our algorithm, for two noise models: arbitrary bounded noise and stochastic (iid)
noise. In particular for additive Gaussian noise, we show that our algorithm recovers a ro-
bust uniform approximation to each φl with at most O(k3(log d)2) point queries of f . We
also provide simulation results that validate our theoretical findings.

2 Problem statement

For any function g we denote its pth derivative by g(p) when p is large, else we use appropriate
number of prime symbols. ‖ g ‖L∞[a,b] denotes the L∞ norm of g in [a, b]. For a vector x we
denote its `q norm for 1 ≤ q ≤ ∞ by ‖ x ‖q .
We consider approximating functions f : Rd → R from point queries. In particular, for some
unknown active S ⊂ {1, . . . , d} with |S| = k � d, we assume f to be of the additive form:
f(x1, . . . , xd) =

∑
l∈S φl(xl). Here φl : R → R are the individual univariate components of the

model. Our goal is to query f at suitably chosen points in its domain in order to recover an estimate
φest,l of φl in a compact subset Ω ⊂ R for each l ∈ S. We measure the approximation error in
the L∞ norm. For simplicity, we assume that Ω = [−1, 1], meaning that we guarantee an upper

1 ‖ f ‖2L2(P)=
R
|f(x)|2 dP(x) and ‖ f ‖2L2(Pn)=

1
n

P
i f

2(xi)
2This means in the L∞ norm
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bound on: ‖ φest,l − φl ‖L∞[−1,1] ; l ∈ S. Furthermore, we assume that we can query f from a
slight enlargement: [−(1 + r), (1 + r)]d of [−1, 1]d for3 some small r > 0. As will be seen later,
the enlargement r can be made arbitrarily close to 0. We now list our main assumptions for this
problem.

1. Each φl is assumed to be sufficiently smooth. In particular we assume that φl ∈ C5[−(1 +
r), (1 + r)] where C5 denotes five times continuous differentiability. Since [−(1 + r), (1 +
r)] is compact, this implies that there exist constants B1, . . . , B5 ≥ 0 so that

max
l∈S
‖ φ(p)

l ‖L∞[−(1+r),(1+r)] ≤ Bp; p = 1, . . . , 5. (2.1)

2. We assume each φl to be centered in the interval [−1, 1], i.e.
∫ 1

−1
φl(t)dt = 0; l ∈ S.

Such a condition is necessary for unique identification of φl. Otherwise one could simply
replace each φl with φl + al for al ∈ R where

∑
l al = 0 and unique identification will not

be possible.
3. We require that for each φl, ∃Il ⊆ [−1, 1] with Il being connected and µ(Il) ≥ δ so that
|φ′l(x)| ≥ D ; ∀x ∈ Il. Here µ(I) denotes the Lebesgue measure of I and δ,D > 0 are
constants assumed to be known to the algorithm. This assumption essentially enables us
to detect the active set S. If say φ′l was zero or close to zero throughout [−1, 1] for some
l ∈ S, then due to Assumption 2 this would imply that φl is zero or close to zero.

We remark that it suffices to use estimates for our problem parameters instead of exact values. In
particular we can use upper bounds for: k, Bp; p = 1, . . . , 5 and lower bounds for the parameters:
D, δ. Our methods and results stated in the coming sections will remain unchanged.

3 Our sampling scheme and algorithm

In this section, we first motivate and describe our sampling scheme for querying f . We then outline
our algorithm and explain the intuition behind its different stages. Consider the Taylor expansion of
f at any point ξ ∈ Rd along the direction v ∈ Rd with step size: ε > 0. For any Cp smooth f ;
p ≥ 2, we obtain for ζ = ξ + θv for some 0 < θ < ε the following expression:

f(ξ + εv)− f(ξ)
ε

= 〈v,5f(ξ)〉+
1
2
εvT 52 f(ζ)v. (3.1)

Note that (3.1) can be interpreted as taking a noisy linear measurement of 5f(ξ) with the mea-
surement vector v and the noise being the Taylor remainder term. Importantly, due to the sparse
additive form of f , we have φl ≡ 0, l /∈ S, implying that 5f(ξ) = [φ′1(ξ1) φ′2(ξ2) . . . φ′d(ξd)] is
at most k-sparse. Hence (3.1) actually represents a noisy linear measurement of the k-sparse vector
: 5f(ξ). For any fixed ξ, we know from compressive sensing (CS) [16, 17] that 5f(ξ) can be
recovered (with high probability) using few random linear measurements4.

This motivates the following sets of points using which we query f as illustrated in Figure 1. For
integers mx,mv > 0 we define

X :=
{
ξi =

i

mx
(1, 1, . . . , 1)T ∈ Rd : i = −mx, . . . ,mx

}
, (3.2)

V :=
{
vj ∈ Rd : vj,l = ± 1√

mv
w.p. 1/2 each; j = 1, . . . ,mv and l = 1, . . . , d

}
. (3.3)

Using (3.1) at each ξi ∈ X and vj ∈ V for i = −mx, . . . ,mx and j = 1, . . . ,mv leads to:
f(ξi + εvj)− f(ξi)

ε︸ ︷︷ ︸
yi,j

= 〈vj ,5f(ξi)︸ ︷︷ ︸
xi

〉+
1
2
εvTj 52 f(ζi,j)vj︸ ︷︷ ︸

ni,j

, (3.4)

3In case f : [a, b]d → R we can define g : [−1, 1]d → R where g(x) = f( (b−a)
2

x+ b+a
2

) =
P

l∈S φ̃l(xl)

with φ̃l(xl) = φl(
(b−a)

2
xl + b+a

2
). We then sample g from within [−(1 + r), (1 + r)]d for some small r > 0

by querying f , and estimate φ̃l in [−1, 1] which in turn gives an estimate to φl in [a, b].
4 Estimating sparse gradients via compressive sensing has been considered previously by Fornasier et al.

[8] albeit for a substantially different function class than us. Hence their sampling scheme differs considerably
from ours, and is not tailored for learning SPAMs.
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where xi = 5f(ξi) = [φ′1(i/mx) φ′2(i/mx) . . . φ′d(i/mx)] is k-sparse. Let us denote V =
[v1 . . .vmv

]T , yi = [yi,1 . . . yi,mv
] and ni = [ni,1 . . . ni,mv

]. Then for each i, we can write (3.4) in
the succinct form:

yi = Vxi + ni. (3.5)

Here V ∈ Rmv×d represents the linear measurement matrix, yi ∈ Rmv denotes the mea-
surement vector at ξi and ni represents “noise” on account of non-linearity of f . Note that
we query f at |X | (|V| + 1) = (2mx + 1)(mv + 1) many points. Given yi,V we can re-
cover a robust approximation to xi via `1 minimization [16, 17]. On account of the struc-
ture of 5f , we thus recover noisy estimates to φ′l at equispaced points along the interval
[−1, 1]. We are now in a position to formally present our algorithm for learning SPAMs.

(−1− 1 . . .− 1)

(1 1 . . . 1)

Figure 1: The points ξi ∈
X (blue disks) and ξi + εvj

(red arrows) for vj ∈ V .

Our algorithm for learning SPAMs. The steps involved in our learn-
ing scheme are outlined in Algorithm 1. Steps 1-4 involve the CS-based
recovery stage wherein we use the aforementioned sampling sets to for-
mulate our problem as a CS one. Step 4 involves a simple thresholding
procedure where an appropriate threshold τ is employed to recover the
unknown active set S. In Section 4 we provide precise conditions on our
sampling parameters which guarantee exact recovery, i.e. Ŝ = S. Step
5 leverages a convex quadratic program (P), that uses noisy estimates of
φ′l(i/mx), i.e., x̂i,l for each l ∈ Ŝ and i = −mx, . . . ,mx, to return a
cubic spline estimate φ̃′l. This program and its theoretical properties are
explained in Section 4. Finally, in Step 6 we derive our final estimate
φest,l via piecewise integration of φ̃′l for each l ∈ Ŝ. Hence our final es-
timate of φl is a spline of degree 4. The performance of Algorithm 1 for
recovering S and the individual φl’s is presented in Theorem 1, which is
also our first main result. All proofs are deferred to the appendix.

Algorithm 1 Algorithm for learning φl in the SPAM: f(x) =
∑
l∈S φl(xl)

1: Choose mx, mv and construct sampling sets X and V as in (3.2), (3.3).
2: Choose step size ε > 0. Query f at f(ξi),f(ξi+εvj) for i = −mx, . . . ,mx and j = 1, . . . ,mv .

3: Construct yi where yi,j = f(ξi+εvj)−f(ξi)
ε for i = −mx, . . . ,mx and j = 1, . . . ,mv .

4: Set x̂i := argmin
yi=Vz

‖ z ‖1. For τ > 0 compute Ŝ = ∪mx
i=−mx

{l ∈ {1, . . . , d} : |x̂i,l| > τ}.
5: For each l ∈ Ŝ, run (P) as defined in Section 4 using (x̂i,l)mx

i=−mx
, τ and some smoothing

parameter γ ≥ 0, to obtain φ̃′l.
6: For each l ∈ Ŝ, set φest,l to be the piece-wise integral of φ̃′l as explained in Section 4.

Theorem 1. There exist constants C,C1 > 0 such that if mx ≥ (1/δ), mv ≥ C1k log d, 0 < ε <
D
√
mv

CkB2
and τ = CεkB2

2
√
mv

then with high probability, Ŝ = S and for any γ ≥ 0 the estimate φest,l

returned by Algorithm 1 satisfies for each l ∈ S:

‖ φest,l − φl ‖L∞[−1,1]≤ [59(1 + γ)]
CεkB2√
mv

+
87

64m4
x

‖ φ(5)
l ‖L∞[−1,1] . (3.6)

Recall that k,B2, D, δ are our problem parameters introduced in Section 2, while ε is the step size
parameter from (3.4). We see that withO(k log d) point queries of f and with ε < D

√
mv

CkB2
, the active

set is recovered exactly. The error bound in (3.6) holds for all such choices of ε. It is a sum of two
terms in which the first one arises during the estimation of 5f during the CS stage. The second
error term is the interpolation error bound for interpolating φ′l from its samples in the noise-free
setting. We note that our point queries lie in [−(1 + (ε/

√
mv)), (1 + (ε/

√
mv))]d. For the stated

condition on ε in Theorem 1 we have ε/
√
mv <

D
CkB2

which can be made arbitrarily close to zero
by choosing an appropriately small ε. Hence we sample from only a small enlargement of [−1, 1]d.
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4 Analyzing the algorithm

We now describe and analyze in more detail the individual stages of Algorithm 1. We first analyze
Steps 1-4 which constitute the compressive sensing (CS) based recovery stage. Next, we analyze
Step 5 where we also introduce our convex quadratic program. Lastly, we analyze Step 6 where we
derive our final estimate φest,l.

Compressive sensing-based recovery stage. This stage of Algorithm 1 involves solving a se-
quence of linear programs for recovering estimates of xi = [φ′1(i/mx) . . . φ′d(i/mx)] for
i = −mx, . . . ,mx. We note that the measurements yi are noisy linear measurements of xi with the
noise being arbitrary and bounded. For such a noise model, it is known that `1 minimization results
in robust recovery of the sparse signal [18]. Using this result in our setting allows us to quantify the
recovery error ‖ x̂i − xi ‖2 as specified in Lemma 1.
Lemma 1. There exist constants c′3 ≥ 1 andC, c′1 > 0 such that formv satisfying c′3k log d < mv <

d/(log 6)2 we have with probability at least 1− e−c′1mv − e−
√
mvd that x̂i satisfies ‖ x̂i − xi ‖2≤

CεkB2
2
√
mv

for all i = −mx, . . . ,mx. Furthermore, given that this holds and mx ≥ 1/δ is satisfied we

then have for any ε < D
√
mv

CkB2
that the choice τ = CεkB2

2
√
mv

implies that Ŝ = S.

Thus upon using `1 minimization based decoding at 2mx + 1 points, we recover robust estimates x̂i
to xi which immediately gives us estimates φ̂′l(i/mx) = x̂i,l of φ′l(i/mx) for i = −mx, . . . ,mx

and l = 1, . . . , d. In order to recover the active set S, we first note that the spacing between
consecutive samples in X is 1/mx. Therefore the condition mx ≥ 1/δ implies on account of
Assumption 3 that the sample spacing is fine enough to ensure that for each l ∈ S, there exists a
sample i for which |φ′l(i/mx)| ≥ D holds. The stated choice of the step size ε essentially guarantees

∀l /∈ S, i that
∣∣∣φ̂′l(i/mx)

∣∣∣ lies within a sufficiently small neighborhood of the origin in turn enabling
detection of the active set. Therefore after this stage of Algorithm 1, we have at hand: the active
set S along with the estimates: (φ̂′l(i/mx))mx

i=mx
for each l ∈ S. Furthermore, it is easy to see that∣∣∣φ̂′l(i/mx)− φ′l(i/mx)

∣∣∣ ≤ τ = CεkB2
2
√
mv

, ∀l ∈ S, ∀i.

Robust estimation via cubic splines. Our aim now is to recover a smooth, robust estimate to φ′l
by using the noisy samples (φ̂′l(i/mx))mx

i=mx
. Note that the noise here is arbitrary and bounded

by τ = CεkB2
2
√
mv

. To this end we choose to use cubic splines as our estimates, which are essentially
piecewise cubic polynomials that are C2 smooth [19]. There is a considerable amount of literature
in the statistics community devoted to the problem of estimating univariate functions from noisy
samples via cubic splines (cf., [20, 21, 22, 23]), albeit under the setting of random noise. Cubic
splines have also been studied extensively in the approximation theoretic setting for interpolating
samples (cf., [19, 24, 25]).

We introduce our solution to this problem in a more general setting. Consider a smooth function
g : [t1, t2] → R and a uniform mesh5:

∏
: t1 = x0 < x1 < · · · < xn−1 < xn = t2 with

xi − xi−1 = h. We have at hand noisy samples: ĝi = g(xi) + ei, with noise ei being arbitrary
and bounded: |ei| ≤ τ . In the noiseless scenario, the problem would be an interpolation one
for which a popular class of cubic splines are the “not-a-knot” cubic splines [24]. These achieve
optimal O(h4) error rates for C4 smooth g without using any higher order information about g as
boundary conditions. Let H2[t1, t2] denote the space of cubic splines defined on [t1, t2] w.r.t

∏
. We

then propose finding the cubic spline estimate as a solution of the following convex optimization
problem (in the 4n coefficients of the n cubic polynomials) for some parameter γ ≥ 0:

(P)


min

L∈H2[t1,t2]

∫ t2

t1

L′′(x)2dx

s.t. ĝi − γτ ≤ L(xi) ≤ ĝi + γτ ; i = 0, . . . , n,

L′′′(x−1 ) = L′′′(x+
1 ), L′′′(x−n−1) = L′′′(x+

n−1).

(4.1)

(4.2)

(4.3)

5We consider uniform meshes for clarity of exposition. The results in this section can be easily generalized
to non-uniform meshes.
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Note that (P) is a convex QP with linear constraints. The objective function can be verified to be
a positive definite quadratic form in the spline coefficients6. Specifically, the objective measures
the total curvature of a feasible cubic spline in [t1, t2]. Each of the constraints (4.2)-(4.3) along
with the implicit continuity constraints of L(p); p = 0, 1, 2 at the interior points of

∏
, are linear

equalities/inequalities in the coefficients of the piecewise cubic polynomials. (4.3) refers to the not-
a-knot boundary conditions [24] which are also linear equalities in the spline coefficients. These
conditions imply that L′′′ is continuous7 at the knots x1, xn−1. Thus, (P) searches amongst the
space of all not-a-knot cubic splines such that L(xi) lies within a ±γτ interval of ĝi, and returns
the smoothest solution, i.e., the one with the least total curvature. The parameter γ ≥ 0, controls
the degree of smoothness of the solution. Clearly, γ = 0 implies interpolating the noisy samples
(ĝi)ni=0. As γ increases, the search interval: [ĝi − γτ, ĝi + γτ ] becomes larger for all i, leading to
smoother feasible cubic splines. The following theorem formally describes the estimation properties
of (P) and is also our second main result.

Theorem 2. For g ∈ C4[t1, t2] let L∗ : [t1, t2]→ R be a solution of (P) for some parameter γ ≥ 0.
We then have that

‖ L∗ − g ‖∞≤
[

118(1 + γ)
3

]
τ +

29
64
h4 ‖ g(4) ‖∞ . (4.4)

We show in the appendix that if
∫ t2
t1

(L∗′′(x))2dx > 0, then L∗ is unique. Note that the error bound
(4.4) is a sum of two terms. The first term is proportional to the external noise bound: τ , indicating
that the solution is robust to noise. The second term is the error that would arise even if perturbation
was absent i.e. τ = 0. Intuitively, if γτ is large enough, then we would expect the solution returned
by (P) to be a line. Indeed, a larger value of γτ would imply a larger search interval in (4.2), which
if sufficiently large, would allow a line (that has zero curvature) to lie in the feasible region. More
formally, we show in the appendix, sufficient conditions: τ = Ω(n

1/2‖g′′‖∞
γ−1 ), γ > 1, which if

satisfied, imply that the solution returned by (P) is a line. This indicates that if either n is small or g
has small curvature, then moderately large values of τ and/or γ will cause the solution returned by
(P) to be a line. If an estimate of ‖ g′′ ‖∞ is available, then one could for instance, use the upper
bound 1 +O(n1/2 ‖ g′′ ‖∞ /τ) to restrict the range of values of γ within which (P) is used.

Theorem 2 has the following Corollary for estimation of C4 smooth φ′l in the interval [−1, 1]. The
proof simply involves replacing: g with φ′l, n + 1 with 2mx + 1, h with 1/mx and τ with CεkB2

2
√
mv

.
As the perturbation τ is directly proportional to the step size ε, we show in the appendix that if
additionally ε = Ω(

√
mxmv‖φ′′′l ‖∞

γ−1 ), γ > 1, holds, then the corresponding estimate φ̃′l will be a
line.

Corollary 1. Let (P) be employed for each l ∈ S using noisy samples
{
φ̂′l(i/mx)

}mx

i=−mx

, and

with step size ε satisfying 0 < ε <
D
√
mv

CkB2
. Denoting φ̃′l as the corresponding solution returned by

(P), we then have for any γ ≥ 0 that:

‖ φ̃′l − φ′l ‖L∞[−1,1]≤
[

59(1 + γ)
3

]
CεkB2√
mv

+
29

64m4
x

‖ φ(5)
l ‖L∞[−1,1] . (4.5)

The final estimate. We now derive the final estimate φest,l of φl for each l ∈ S. Denote x0(=
−1) < x1 < · · · < x2mx−1 < x2mx(= 1) as our equispaced set of points on [−1, 1]. Since
φ̃′l : [−1, 1] → R returned by (P) is a cubic spline, we have φ̃′l(x) = φ̃′l,i(x) for x ∈ [xi, xi+1]
where φ̃′l,i is a polynomial of degree at most 3. We then define φest,l(x) := φ̃l,i(x) + Fi for
x ∈ [xi, xi+1] and i = 0, . . . , 2mx − 1. Here φ̃l,i is a antiderivative of φ̃′l,i and Fi’s are constants
of integration. Denoting F0 = F , we have that φest,l is continuous at x1, . . . , x2mx−1 for: Fi =
φ̃l,0(x1) +

∑i−1
j=1(φ̃l,j(xj+1) − φ̃l,j(xj)) − φ̃l,i(xi) + F = F ′i + F ; 1 ≤ i ≤ 2mx − 1. Hence

by denoting ψl,i(·) := φ̃l,i(·) + F ′i we obtain φest,l(·) = ψl(·) + F where ψl(x) = ψl,i(x) for

6Shown in the appendix.
7f(x−) = limh→0− f(x+ h) and f(x+) = limh→0+ f(x+ h) denote left,right hand limits respectively.
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x ∈ [xi, xi+1]. Now on account of Assumption 2, we require φest,l to also be centered implying
F = − 1

2

∫ 1

−1
ψl(x)dx. Hence we output our final estimate of φl to be:

φest,l(x) := ψl(x)− 1
2

∫ 1

−1

ψl(x)dx; x ∈ [−1, 1]. (4.6)

Since φest,l is by construction continuous in [−1, 1], is a piecewise combination of polynomials of
degree at most 4, and since φ′est,l is a cubic spline, φest,l is a spline function of order 4. Lastly, we
show in the proof of Theorem 1 that ‖ φest,l − φl ‖L∞[−1,1]≤ 3 ‖ φ̃′l − φ′l ‖L∞[−1,1] holds. Using
Corollary 1, this provides us with the error bounds stated in Theorem 1.

5 Impact of noise on performance of our algorithm

Our third main contribution involves analyzing the more realistic scenario, when the point queries
are corrupted with additive external noise z′. Thus querying f in Step 2 of Algorithm 1 results in
noisy values: f(ξi) + z′i and f(ξi + εvj) + z′i,j respectively. This changes (3.5) to the noisy linear
system: yi = Vxi + ni + zi where zi,j = (z′i,j − z′i)/ε for i = −mx, . . . ,mx and j = 1, . . . ,mv .
Notice that external noise gets scaled by (1/ε), while |ni,j | scales linearly with ε.

Arbitrary bounded noise. In this model, the external noise is arbitrary but bounded, so that
|z′i| ,

∣∣z′i,j∣∣ < κ; ∀i, j. It can be verified along the lines of the proof of Lemma 1 that: ‖ ni + zi ‖2≤√
mv

(
2κ
ε + εkB2

2mv

)
. Observe that unlike the noiseless setting, ε cannot be made arbitrarily close to

0, as it would blow up the impact of the external noise. The following theorem shows that if κ is
small relative to D2 < |φ′l(x)|2, ∀x ∈ Il, l ∈ S, then8 there exists an interval for choosing ε, within
which Algorithm 1 recovers exactly the active set S. This condition has the natural interpretation
that if the signal-to-‘external noise’ ratio in Il is sufficiently large, then S can be detected exactly.
Theorem 3. There exist constants C,C1 > 0 such that if κ < D2/(16C2kB2), mx ≥ (1/δ), and
mv ≥ C1k log d hold, then for any ε ∈ D

√
mv

2CkB2
[1− A, 1 + A] where A :=

√
1− (16C2kB2κ)/D2

and τ =
√
mv

(
2κ
ε + εkB2

2mv

)
, we have in Algorithm 1, with high probability, that Ŝ = S and for any

γ ≥ 0, for each l ∈ S:

‖ φest,l − φl ‖L∞[−1,1]≤ [59(1 + γ)]
(

4C
√
mvκ

ε
+
CεkB2√
mv

)
+

87
64m4

x

‖ φ(5)
l ‖L∞[−1,1] . (5.1)

Stochastic noise. In this model, the external noise is assumed to be i.i.d. Gaussian, so that
z′i, z

′
i,j ∼ N (0, σ2); i.i.d. ∀i, j. In this setting we consider resampling f at the query point N

times and then averaging the noisy samples, in order to reduce σ. Given this, we now have that
z′i, z

′
i,j ∼ N (0, σ

2

N ); i.i.d. ∀i, j. Using standard tail-bounds for Gaussians, we can show that for
any κ > 0 if N is chosen large enough then: |zi,j | =

∣∣z′i − z′i,j∣∣ ≤ 2κ; ∀i, j with high probability.
Hence the external noise zi,j would be bounded with high probability and the analysis for Theorem
3 can be used in a straightforward manner. Of course, an advantage that we have in this setting is
that κ can be chosen to be arbitrarily close to zero by choosing a correspondingly large value of N .
We state all this formally in the form of the following theorem.
Theorem 4. There exist constants C,C1 > 0 such that for κ < D2/(16C2kB2), mx ≥ (1/δ), and

mv ≥ C1k log d, if we re-sample each query in Step 2 of Algorithm 1: N > σ2

κ2 log
(√

2σ
κp |X | |V|

)
times for 0 < p < 1, and average the values, then for any ε ∈ D

√
mv

2CkB2
[1 − A, 1 + A] where A :=√

1− (16C2kB2κ)/D2 and τ =
√
mv

(
2κ
ε + εkB2

2mv

)
, we have in Algorithm 1, with probability at

least 1− p− o(1), that Ŝ = S and for any γ ≥ 0, for each l ∈ S:

‖ φest,l − φl ‖L∞[−1,1]≤ [59(1 + γ)]
(

4C
√
mvκ

ε
+
CεkB2√
mv

)
+

87
64m4

x

‖ φ(5)
l ‖L∞[−1,1] . (5.2)

8Il is the “critical” interval defined in Assumption 3 for detecting l ∈ S.
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Note that we query f now N |X | (|V| + 1) times. Also, |X | = (2mx + 1) = Θ(1), and
κ = O(k−1), as D,C,B2, δ are constants. Hence the choice |V| = O(k log d) gives us N =
O(k2 log(p−1k2 log d)) and leads to an overall query complexity of: O(k3 log d log(p−1k2 log d))
when the samples are corrupted with additive Gaussian noise. Choosing p = O(d−c) for any con-
stant c > 0 gives us a sample complexity of O(k3(log d)2), and ensures that the result holds with
high probability. The o(1) term goes to zero exponentially fast as d→∞.

Simulation results. We now provide simulation results on synthetic data to support our theoretical
findings. We consider the noisy setting with the point queries being corrupted with Gaussian noise.
For d = 1000, k = 4 and S = {2, 105, 424, 782}, consider f : Rd → R where f = φ2(x2) +
φ105(x105) + φ424(x424) + φ782(x782) with: φ2(x) = sin(πx), φ105(x) = exp(−2x), φ424(x) =
(1/3) cos3(πx) + 0.8x2, φ782(x) = 0.5x4 − x2 + 0.8x. We choose δ = 0.3, D = 0.2 which
can be verified as valid parameters for the above φl’s. Furthermore, we choose mx = d2/δe = 7
and mv = d2k log de = 56 to satisfy the conditions of Theorem 4. Next, we choose constants
C = 0.2, B2 = 35 and κ = 0.95 D2

16C2kB2
= 4.24× 10−4 as required by Theorem 4. For the choice

ε = D
√
mv

2CkB2
= 0.0267, we then query f at (2mx + 1)(mv + 1) = 855 points. The function values

are corrupted with Gaussian noise: N (0, σ2/N) for σ = 0.01 and N = 100. This is equivalent to
resampling and averaging the points queries N times. Importantly the sufficient condition on N , as
stated in Theorem 4 is dσ2

κ2 log(
√

2σ|X ||V|
κp )e = 6974 for p = 0.1. Thus we consider a significantly

undersampled regime. Lastly we select the threshold τ =
√
mv

(
2κ
ε + εkB2

2mv

)
= 0.2875 as stated

by Theorem 4, and employ Algorithm 1 for different values of the smoothing parameter γ.
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Figure 2: Estimates φest,l of φl (black) for: γ = 0.3 (red), γ = 1 (blue) and γ = 5 (green).

The results are shown in Figure 2. Over 10 independent runs of the algorithm we observed that
S was recovered exactly each time. Furthermore we see from Figure 2 that the recovery is quite
accurate for γ = 0.3. For γ = 1 we notice that the search interval γτ = 0.2875 becomes large
enough so as to cause the estimates φest,424, φest,782 to become relatively smoother. For γ = 5,
the search interval γτ = 1.4375 becomes wide enough for a line to fit in the feasible region for
φ′424, φ

′
782. This results in φest,424, φest,782 to be quadratic functions. In the case of φ′2, φ

′
105, the

search interval is not sufficiently wide enough for a line to lie in the feasible region, even for γ = 5.
However we notice that the estimates φest,2, φest,105 become relatively smoother as expected.

6 Conclusion

We proposed an efficient sampling scheme for learning SPAMs. In particular, we showed that with
only a few queries, we can derive uniform approximations to each underlying univariate function
of the SPAM. A crucial component of our approach is a novel convex QP for robust estimation of
univariate functions via cubic splines, from samples corrupted with arbitrary bounded noise. Lastly,
we showed how our algorithm can handle noisy point queries for both (i) arbitrary bounded and (ii)
i.i.d. Gaussian noise models. An important direction for future work would be to determine the op-
timality of our sampling bounds by deriving corresponding lower bounds on the sample complexity.
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