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Abstract

In this paper we address the problem of the prohibitively large computational cost of existing
Markov chain Monte Carlo methods for large–scale applications with high dimensional parame-
ter spaces, e.g. in uncertainty quantification in porous media flow. We propose a new multilevel
Metropolis-Hastings algorithm, and give an abstract, problem dependent theorem on the cost of the
new multilevel estimator based on a set of simple, verifiable assumptions. For a typical model prob-
lem in subsurface flow, we then provide a detailed analysis of these assumptions and show significant
gains over the standard Metropolis-Hastings estimator. Numerical experiments confirm the analysis
and demonstrate the effectiveness of the method with consistent reductions of more than an order of
magnitude in the cost of the multilevel estimator over the standard Metropolis-Hastings algorithm
for tolerances ε < 10−2.

Keywords. Elliptic PDES with random coefficients, log-normal coefficients, finite element analysis,
Bayesian approach, Metropolis-Hastings algorithm, multilevel Monte Carlo.

Mathematics Subject Classification (2000). 35R60, 62F15, 62M05, 65C05, 65C40, 65N30

1 Introduction

The parameters in mathematical models for many physical processes are often impossible to determine
fully or accurately, and are hence subject to uncertainty. It is of great importance to quantify the
uncertainty in the model outputs based on the (uncertain) information that is available on the model
inputs. A popular way to achieve this is stochastic modelling. Based on the available information, a
probability distribution (the prior in the Bayesian framework) is assigned to the input parameters. If
in addition, some dynamic data (or observations) Fobs related to the model outputs are available, it is
possible to reduce the overall uncertainty and to get a better representation of the model by conditioning
the prior distribution on this data (leading to the posterior).

In most situations, however, the posterior distribution is intractable in the sense that exact sampling
from it is impossible. One way to circumvent this problem, is to generate samples using a Metropolis–
Hastings–type Markov chain Monte Carlo (MCMC) approach [22, 28, 30], which consists of two main
steps: (i) given the previous sample, a new sample is generated according to some proposal distribution,
such as a random walk; (ii) the likelihood of this new sample (i.e. the model fit to Fobs) is compared to
the likelihood of the previous sample. Based on this comparison, the proposed sample is either accepted

∗Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07A27344. LLNL-JRNL-630212-DRAFT
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and used for inference, or rejected and the previous sample is used again, leading to a Markov chain. A
major problem with MCMC is the high cost of the likelihood calculation for large–scale applications,
e.g. in subsurface flow where, for accuracy reasons, a partial differential equation (PDE) with highly
varying coefficients needs to be solved numerically on a fine spatial grid. Due to the slow convergence
of Monte Carlo averaging, the number of samples is also large and moreover, the likelihood has to
be calculated also for all the samples that are rejected in the end. Altogether, this often leads to an
intractably high overall complexity, particularly in the context of high-dimensional parameter spaces
(typical in subsurface flow), where the acceptance rate of MCMC methods can be very low.

We show here how the computational cost of the standard Metropolis-Hastings algorithm can be
reduced significantly by using a multilevel approach. This has already proved highly successful in the
context of standard Monte Carlo estimators based on independent and identically distributed (i.i.d.)
samples [9, 1, 19, 6, 34] for subsurface flow problems. The multilevel Monte Carlo (MLMC) method was
first introduced by Heinrich for the computation of high-dimensional, parameter-dependent integrals
[25], and then rediscovered by Giles [18] in the context of stochastic differential equations in finance.
Similar ideas were also used in [2, 3] to accelerate statistical mechanics calculations. The basic ideas
are to (i) exploit the linearity of expectation, (ii) introduce a hierarchy of computational models that
converge (with increasing model resolution) to some limit model (e.g. the original PDE), and (iii) build
estimators for the differences of output quantities instead of the quantities themselves. In the context
of PDEs with random coefficients, the multilevel estimators use a hierarchy of spatial grids and exploit
that the numerical solution of a PDE, and thus the evaluation of the likelihood, is computationally much
cheaper on coarser spatial grids. In that way, the individual estimators will either have small variance,
since differences of output quantities from consecutive models go to zero with increased model resolution,
or they will require significantly less computational work per sample for low model resolutions. Either
way the cost of all the individual estimators is significantly reduced, easily compensating for the cost
of having to compute L+ 1 estimators instead of one, where L is the number of levels.

However, the application of the multilevel approach in the context of MCMC is not straightforward.
The posterior distribution, which depends on the likelihood, has to be level-dependent, since otherwise
the cost on all levels would be dominated by the evaluation of the likelihood on the finest level, leading
to no real cost reduction. In order to avoid introducing extra bias in the estimator, we construct
instead two parallel Markov chains {θn` }n≥0 and {Θn

`−1}n≥0 on levels ` and `− 1 each from the correct
posterior distribution on the respective level. The coarser of the two chains is constructed using the
standard Metropolis–Hastings algorithm, for example using a (preconditioned) random walk. The main
innovation is a new proposal distribution for the finer of the two chains {θn` }n≥0. Although similar two-
level sampling strategies have been investigated in other applications [7, 15, 16], the computationally
cheaper coarse models were only used to accelerate the MCMC sampling and not as a variance reduction
technique in the estimator. Some ideas on how to obtain a multilevel version of the MCMC estimator
can also be found in the recent work [26] on sparse MCMC finite element methods.

The central result of the paper is a complexity theorem (cf. Theorem 3.4) that quantifies, for an
abstract large–scale inference problem, the gains in the ε-cost of the multilevel Metropolis–Hastings
algorithm over the standard version, i.e. the cost to achieve a root mean square error less than ε, in
terms of powers of the tolerance ε. For a particular application in stationary, single phase subsurface
flow with log-normal permeability prior and exponential covariance, we then verify the assumptions of
Theorem 3.4. We show that the ε-cost of our new multilevel version is indeed one order of ε lower than
its single-level counterpart (cf. Theorem 4.9), i.e. O(ε−(d+1)−δ) instead of O(ε−(d+2)−δ), for any δ > 0,
where d is the spatial dimension of the problem. The numerical experiments for d = 2 in Section 5
confirm the theoretical results. In fact, in practice the cost for the multilevel estimator grows only like
O(ε−d), but this seems to be a pre–asymptotic effect. The absolute cost is about O(10–50) times lower
than for the standard estimator for values of ε around 10−3, which is a vast improvement and brings
the cost of the multilevel MCMC estimator down to a similar order of the cost of standard multilevel
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MC estimators based on i.i.d. samples. This provides real hope for practical applications of MCMC
analyses in subsurface flow and other large scale PDE applications.

The outline of the rest of the paper is as follows. In Section 2, we recall, in a very general context, the
Metropolis Hastings algorithm, together with results on its convergence. In Section 3, we then present
a new multilevel version and give a general convergence analysis under a set of problem-dependent, but
verifiable assumptions. A typical model problem arising in subsurface flow modelling is then presented
in Section 4. We briefly describe the application of the new multilevel algorithm to this application,
and give a rigorous convergence analysis and cost estimate of the new multilevel estimator by verifying
the abstract assumptions from Section 3. Finally, in Section 5, we present some numerical results for
the model problem discussed in Section 4.

2 Standard Markov chain Monte Carlo

We will start with a review of the standard Metropolis Hastings algorithm, described in a general
context. For ease of presentation, we leave a precise mathematical description of our model problem until
Section 4. We denote by θ := (θi)

R
i=1 the RR–valued random input vector to the model, and denote by

X := (Xj)
M
j=1 = X(θ) the RM–valued random output. Let further QM,R = G(X) be some linear or non–

linear functional of X. In the context of groundwater flow modelling, this could for example be the value
of the pressure or the Darcy flux at or around a given point in the computational domain, or the outflow
over parts of the boundary. In practice, both θ and X are often finite dimensional approximations of
infinite dimensional objects, and an underlying ”true” model is recovered as M,R → ∞. We shall
therefore refer to M as the discretisation level of the model. For more details see Section 4.

We consider the setting where we have some real-world data (or observations) Fobs available, and
want to incorporate this information into our simulation in order to reduce the overall uncertainty. The
data Fobs is assumed to be finite dimensional, with Fobs ∈ Rm for some m ∈ N, and usually corresponds
to another linear or non-linear functional F(X) of the model output.

Let us denote the density of the conditional distribution of θ given Fobs by P(θ |Fobs). Using Bayes’
Theorem, we have

P(θ |Fobs) =
L(Fobs | θ)πR0 (θ)

P(Fobs)
h L(Fobs | θ)πR0 (θ).

In the Bayesian framework, one usually refers to the conditional distribution P(θ |Fobs) as the posterior
distribution, to L(Fobs | θ) as the likelihood and to πR0 (θ) as the prior distribution. Since the normalising
constant P(Fobs) is not known in general, the conditional distribution P(θ |Fobs) is generally intractable
and exact sampling not available.

The likelihood L(Fobs | θ) gives the probability of observing the data Fobs given a particular value of
θ. In practice, this usually involves computing the model response FM,R := F (X(θ)) and comparing this
to the observed data Fobs. Note that since the model response depends on the discretisation parameter
M , in practice we compute an approximation LM (Fobs | θ) of the true likelihood L(Fobs | θ). We will
denote the corresponding density of the approximate posterior distribution by

πM,R(θ) h LM (Fobs | θ)πR0 (θ).

Let now νM,R(θ) := πM,R(θ) dθ denote the probability measure corresponding to the density πM,R.
We assume that as M,R→∞, we have EνM,R [QM,R]→ Eρ [Q], for some (inaccessible) random variable
Q and measure ρ. The goal of the simulation is to estimate EνM,R [QM,R], for M , R sufficiently large.

Hence, we compute approximations (or estimators) Q̂M,R of EνM,R [QM,R]. To estimate this with a
Monte Carlo type estimator, or in other words by a finite sample average, we need to generate samples
from the conditional distribution νM,R, which is usually intractable, as already mentioned. Instead, we
will use the Metropolis Hastings MCMC algorithm in Algorithm 1.
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ALGORITHM 1. (Metropolis Hastings MCMC)

Choose θ0. For n ≥ 0:

• Given θn, generate a proposal θ′ from a given proposal distribution q(θ′|θn).

• Accept θ′ as a sample with probability

αM,R
(
θ′|θn

)
= min

{
1,
πM,R(θ′) q(θn|θ′)
πM,R(θn) q(θ′|θn)

}
(2.1)

i.e. θn+1 = θ′ with probability αM,R and θn+1 = θn with probability 1− αM,R.

Algorithm 1 creates a Markov chain {θn}n∈N, and the states θn are used as samples for inference
in a Monte Carlo sampler in the usual way. The proposal distribution q(θ′|θn) is what defines the
algorithm. A common choice is a simple random walk. However, as outlined in [21], the basic random
walk does not lead to a convergence that is independent of the input dimension R. A better choice
is a preconditioned Crank-Nicholson (pCN) algorithm [11], which is also a crucial ingredient in the
multilevel Metropolis-Hastings algorithm applied to the subsurface flow model problem below.

Under reasonable assumptions, one can show that θn ∼ νM,R, as n→∞, and that sample averages
computed with these samples converge to expected values with respect to the desired target distribution
νM,R (see Theorem 2.2). The first few samples of the chain, say θ0, . . . , θn0 , are not usually used for
inference to allow the chain to get close to the target distribution νM,R. This is referred to as the burn–
in of the MCMC algorithm. Although the length of the burn-in is crucial for practical purposes, and
largely influences the behaviour of the resulting MCMC estimator for finite sample sizes, asymptotic
statements about the estimator are usually independent of the burn-in. We will denote our MCMC
estimator by

Q̂MC
N :=

1

N

N+n0∑
n=n0+1

QnM,R =
1

N

N+n0∑
n=n0+1

G (X(θn)) , (2.2)

for any n0 ≥ 0, and only explicitly state the dependence on n0 where needed.

2.1 Convergence analysis of standard Metropolis-Hastings MCMC

Let us give a brief overview of the convergence properties of Algorithm 1, which we will need below in
the analysis of the multilevel variant. For more details we refer the reader, e.g., to [30]. Let

K(θ′|θ) := αM,R(θ′|θ) q(θ′|θ) +

(
1−

∫
RR
αM,R(θ′′|θ) q(θ′′|θ) dθ′′

)
δ(θ − θ′)

denote the transition kernel of the Markov chain {θn}n∈N, with δ(·) the Dirac delta function, and

E = {θ : πM,R(θ) > 0},
D = {θ : q(θ|θ∗) > 0 for some θ∗ ∈ E}.

The set E contains all parameter vectors which have a positive posterior probability, and is the set
that Algorithm 1 should sample from. The set D, on the other hand, consists of all samples which can
be generated by the proposal distribution q, and hence contains the set that Algorithm 1 will actually
sample from. For the algorithm to fully explore the target distribution, we therefore crucially require
E ⊂ D. The following results are classical, and can be found in [30].
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Lemma 2.1. Provided E ⊂ D, νM,R is a stationary distribution of the chain {θn}n∈N.

Note that the condition E ⊂ D is also sufficient for the transition kernel K(·|·) to satisfy the usual
detailed balance condition K(θ|θ∗)πM,R(θ∗) = K(θ∗|θ)πM,R(θ).

Theorem 2.2. Suppose that EνM,R [|QM,R|] <∞ and

q(θ|θ∗) > 0, for all (θ, θ∗) ∈ E × E . (2.3)

Then
lim
N→∞

Q̂MC
N = EνM,R [QM,R] , for any θ0 ∈ E and n0 ≥ 0.

The condition (2.3) is sufficient for the chain {θn}n∈N to be irreducible, and it is satisfied for example
for the random walk sampler or for the pCN algorithm (cf. [21]). Lemma 2.1 and Theorem 2.2 above
ensure that asymptotically, sample averages computed with samples generated by Algorithm 1 converge
to the desired expected value. In particular, we note that stationarity of {θn}n∈N is not required in
Theorem 2.2, and the estimator converges for any burn–in n0 ≥ 0 and for all initial values θ0 ∈ E .

Now that we have established the (asymptotic) convergence of the MCMC estimator (2.2), let us
bound its cost. We will quantify the accuracy of our estimator via the mean square error (MSE)

e(Q̂MC
N )2 := EΘ

[(
Q̂MC
N − Eρ(Q)

)2]
, (2.4)

where EΘ denotes the expected value with respect to the joint distribution of Θ := {θn}n∈N as gen-
erated by Algorithm 1 (not with respect to the target measure νM,R). We denote by Cε(Q̂MC

N ) the
computational ε-cost of the estimator, i.e. the number of floating point operations needed to achieve a
MSE e(Q̂MC

N )2 < ε2.
Classically, the MSE can be written as the sum of the variance of the estimator and its bias squared,

e(Q̂MC
N )2 = VΘ

[
Q̂MC
N

]
+
(
EΘ

[
Q̂MC
N

]
− Eρ [Q]

)2
.

Here, VΘ is again the variance with respect to the approximating measure generated by Algorithm 1.
Using the triangle inequality and linearity of expectation, we can further bound this by

e(Q̂MC
N )2 ≤ VΘ

[
Q̂MC
N

]
+ 2

(
EΘ

[
Q̂MC
N

]
− EνM,R

[
Q̂MC
N

])2
+ 2 (EνM,R [QM,R]− Eρ [Q])2 (2.5)

The three terms in (2.5) correspond to the three sources of error in the MCMC estimator. The third
(and last) term in (2.5) is the discretisation error due to approximating Q by QM,R and ρ by νM,R.
The other two terms are the errors introduced by using an MCMC estimator for the expected value;
the first term is the error due to using a finite number of samples and the second term is due to the
samples not all being perfect (i.i.d.) samples from the target distribution νM,R.

Let us first consider the two MCMC related error terms. Quantifying, or even bounding, the variance
and bias of an MCMC estimator in terms of the number of samples N is not an easy task, and is in fact
still a very active area of research. The main issue with bounding the variance is that the samples used
in the MCMC estimator are not independent, which means that knowledge of the covariance structure is
required in order to bound the variance of the estimator. Asymptotically, the behaviour of the MCMC
related errors (i.e. Terms 1 and 2 on the right hand side of (2.5)) can be described using the following
Central Limit Theorem, which can again be found in [30].

Let θ̃0 ∼ νM,R. Then the auxiliary chain Θ̃ := {θ̃n}n∈N constructed by Algorithm 1 starting from θ̃0

is stationary, i.e. θ̃n ∼ νM,R for all n ≥ 0. The covariance structure of Θ̃ is still implicitly defined by
Algorithm 1 as for Θ. However, now V

Θ̃
[Q̃nM,R] = VνM,R [Q̃M,R], E

Θ̃
[Q̃nM,R] = EνM,R [Q̃M,R] and

Cov
Θ̃

[
Q̃0
M,R, Q̃

n
M,R

]
= E

Θ̃

[(
Q̃0
M,R − EνM,R [QM,R]

)(
Q̃nM,R − EνM,R [QM,R]

)]
,
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for any n ≥ 0, where Q̃nM,R := G(X(θ̃n)). The so-called asymptotic variance of the MCMC estimator is
now defined as

σ2
Q := VνM,R

[
Q̃M,R

]
+ 2

∞∑
n=1

Cov
Θ̃

[
Q̃0
M,R, Q̃

n
M,R

]
. (2.6)

Note that stationarity of the chain is assumed only in the definition of σ2
Q, i.e. for Θ̃, and it is not

necessary for the samples Θ actually used in the computation of Q̂MC
N .

Theorem 2.3 (Central Limit Theorem). Suppose (2.3) holds, σ2
Q <∞, and

P
[
αM,R = 1

]
< 1. (2.7)

Then we have, for any n0 ≥ 0 and θ0 ∈ E,

√
N
(
Q̂MC
N − EνM,R [QM,R]

)
D−→ N (0, σ2

Q),

where
D−→ denotes convergence in distribution.

The condition (2.7) is sufficient for the chain Θ to be aperiodic. It is difficult to prove theoretically.
In practice, however, this condition is always satisfied, since not all proposals in Algorithm 1 will agree
with the observed data and thus be accepted. Theorem 2.3 shows that asymptotically, the sampling
error of the MCMC estimator decays at the same rate as the sampling error of an estimator based on
i.i.d. samples. Note that this includes both sampling errors, and so the constant σ2

Q is in general larger
than in the i.i.d. case where it is simply VνM,R [QM,R].

Since we are interested in a bound on the MSE of our MCMC estimator for a fixed number of
samples N , we make the following assumption:

A1. For any N ∈ N,

VΘ

[
Q̂MC
N

]
+
(
EΘ

[
Q̂MC
N

]
− EνM,R

[
Q̂MC
N

])2
.

VνM,R [QM,R]

N
, (2.8)

with a constant that is independent of M , N and R.

Such non-asymptotic bounds on the sampling errors are difficult to obtain, but have recently been
proved for certain Metropolis–Hastings algorithms, see e.g. [21, 31, 26], provided the chain is sufficiently
burnt–in. The implied constant in Assumption A1 usually depends on quantities such as the covariances
appearing in the asymptotic variance σ2

Q and will in general only be independent of the dimension R
for judiciously chosen proposal distributions such as the pCN algorithm. For the simple random walk,
for example, the hidden constant grows linearly in R. It is possible to relax Assumption A1 and prove
convergence for algorithms also in this case, but we choose not to do this for ease of presentation.

To complete the error analysis, let us now consider the last term in the MSE (2.5), the discretisation
bias. As before, we assume EνM,R [QM,R]→ Eρ [Q] for M,R→∞ with a certain order of convergence

|EνM,R [QM,R]− Eρ [Q]| .M−α +R−α
′
, (2.9)

for some α, α′ > 0. The rates α and α′ will be problem dependent. Let now R = Mα/α′ , such that the
two error contributions in (2.9) are balanced. Then it follows from (2.5), (2.8) and (2.9) that the MSE
of the MCMC estimator can be bounded by

e(Q̂MC
N )2 .

VνM,R [QM,R]

N
+M−α. (2.10)
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Under the assumption that VνM,R [QM,R] is approximately constant, independent of M and R, it is
hence sufficient to choose N & ε−2 and M & ε−1/α to get a MSE of O(ε2).

To bound the computational cost to achieve this error, the so called ε-cost, we assume that one
sample QnM,R can be obtained at cost C(QnM,R) . Mγ , for some γ > 0. Thus, with N & ε−2 and

M & ε−1/α, the ε–cost of our MCMC estimator can be bounded by

Cε(Q̂MC
N ) . NMγ . ε−2−γ/α. (2.11)

In many practical applications, especially in subsurface flow, both the discretisation parameter M
and the length of the input R need to be very large in order for EνM,R [QM,R] to be a good approximation
to Eρ [Q]. Moreover, as outlined, we need to use a large number of samples N in order to get an
accurate MCMC estimator with a small MSE. Since each sample requires the evaluation of the likelihood
LM (Fobs|θn), and this is very expensive when M and R are large, the standard MCMC estimator (2.2)
is often too expensive in practical situations. Additionally, the acceptance rate of the algorithm can be
very low when R is large. This means that the covariance between the different samples will decay more
slowly, which again makes the hidden constant in Assumption A1 larger, and the number of samples
we have to take increases even further.

To overcome the prohibitively large computational cost of the standard MCMC estimator (2.2), we
will now introduce a new multilevel version of the estimator.

3 Multilevel Markov chain Monte Carlo algorithm

The main idea of multilevel Monte Carlo (MLMC) simulation is very simple. We sample not just from
one approximation QM,R of Q, but from several. Let us recall the main ideas from [18, 9].

Let {M`}L`=0 ⊂ N be an increasing sequence in N, i.e. M0 < M1 < . . . < ML =: M , and assume for
simplicity that there exists an s ∈ N\{1} such that

M` = sM`−1 , for all ` = 1, . . . , L. (3.1)

We also choose a (not necessarily strictly) increasing sequence {R`}L`=0 ⊂ N, i.e. R` ≥ R`−1, for all
` = 1, . . . , L. For each level `, denote correspondingly the parameter vector by θ` ∈ RR` , the quantity
of interest by Q` := QM`,R` , the posterior distribution by ν` := νM`,R` and the posterior density by
π` := πM`,R` . For simplicity we assume that the parameter vectors {θ`}L`=0 are nested, i.e. that θ`−1 is
a subset of θ`, and that the elements of θ` are independent.

As for multigrid methods applied to discretised (deterministic) PDEs, the key is to avoid estimating
the expected value of Q` directly on level `, but instead to estimate the correction with respect to the
next lower level. Since in the context of MCMC simulations, the target distribution ν` depends on `,
the new multilevel MCMC (MLMCMC) estimator has to be defined carefully. We will use the identity

EνL [QL] = Eν0 [Q0] +

L∑
`=1

(Eν` [Q`]− Eν`−1 [Q`−1]) (3.2)

as a basis. Note that in the case where the distributions are the same, the above reduces to the
telescoping sum used for multilevel Monte Carlo estimators based on i.i.d samples.

The idea is now to estimate each of the terms on the right hand side of (3.2) separately, in such
a way that the variance of the resulting multilevel estimator is small. In particular, we will estimate
each term in (3.2) by an MCMC estimator. The first term Eν0 [Q0] can be estimated using the standard
MCMC estimator in Algorithm 1, i.e. Q̂MC

0,N0
as in (2.2) with N0 samples. We need to be more careful in

7



estimating the differences Eν` [Q`]−Eν`−1 [Q`−1], and build an effective two-level version of Algorithm 1.
For every ` ≥ 1, we denote Y` := Q` −Q`−1 and define the estimator on level ` as

Ŷ MC
`,N`

:=
1

N`

n`0+N`∑
n=n`0+1

Y n
` =

1

N`

n`0+N`∑
n=n`0+1

Q`(θ
n
` )−Q`−1(Θn

`−1), (3.3)

where n`0 again denotes the burn-in of the estimator, N` is the number of samples on level ` and Θ`−1

has the same dimension as θ`−1. The main ingredient in this two–level estimator is a judicious choice
of the two Markov chains {θn` } and {Θn

`−1} (see Section 3.1). The full MLMCMC estimator is defined
as

Q̂ML
L,{N`} := Q̂MC

0,N0
+

L∑
`=1

Ŷ MC
`,N`

, (3.4)

where it is important that the two chains {θn` }n∈N and {Θn
` }n∈N, that are used in Ŷ MC

`,N`
and in Ŷ MC

`+1,N`+1

respectively, are drawn from the same posterior distribution ν`, so that Q̂ML
L,{N`} is an unbiased estimator

of EνL [QL].
There are two main ideas in [18, 9] underlying the reduction in computational cost associated with

the multilevel estimator. Firstly, samples of Q`, for ` < L, are cheaper to compute than samples of QL,
reducing the cost of the estimators on the coarser levels for any fixed number of samples. Secondly,
if the variance of Y` = Q`(θ`) − Q`−1(Θ`−1) tends to 0 as ` → ∞, we need only a small number of
samples to obtain a sufficiently accurate estimate of the expected value of Y` on the fine grids, and so
the computational effort on the fine grids is also greatly reduced.

By using the telescoping sum (3.2) and by sampling from the posterior distribution ν` on level `, we
ensure that a sample of Q`, for ` < L, is indeed cheaper to compute than a sample of QL. It remains
to ensure that the variance of Y` = Q`(θ`) − Q`−1(Θ`−1) tends to 0 as ` → ∞. This will be ensured
by the choice of θ` and Θ`−1. Note that crucially, this requires the two chains {θn` } and {Θn

`−1} to be

correlated. However, as long as the stationary marginal distributions of {θn` } and {Θn
`−1} are ν` and

ν`−1 respectively, this correlation does not introduce any bias in the telescoping sum (3.2).

3.1 The estimator for Q` −Q`−1

Let us fix 1 ≤ ` ≤ L. The challenge is now to generate the chains {θn` }n∈N and {Θn
`−1}n∈N such that

the variance of Y` is small. To this end, we partition the chain θ` into two parts: the entries which are
present already on level `− 1 (the “coarse” modes), and the new entries on level ` (the “fine” modes):

θ` = [θ`,C , θ`,F ],

where θ`,C has length R`−1, i.e. the same length as Θ`−1. The vector θ`,F has length R` −R`−1.
An easy way to construct θn` and Θn

`−1 such that the variance of Y` is small, would be to generate θn`
first, and then simply use Θn

`−1 = θn`,C . However, since we require Θn
`−1 to come from a Markov chain

with stationary distribution ν`−1, and θn` comes from the distribution ν`, this approach would lead to
additional bias. We do, however, use a similar idea in Algorithm 2.

Let us for the moment assume that we have a way of producing i.i.d. samples from the posterior
distribution ν`−1. Since the distributions ν`−1 and ν` are both approximations of the true posterior
distribution ρ, and differ only in the choice of approximation parameters M and R, the distributions
ν`−1 and ν` will, for sufficiently large `, be very similar. The distribution ν`−1 is hence an ideal candidate
for the proposal distribution on level `, and this is what is used in Algorithm 2. First, we generate a
sample Θn+1

`−1 from the distribution ν`−1, which is independent of the previous sample Θn
`−1. We will use

the independence of these samples in Lemma 3.1. Based on Θn+1
`−1 , we then generate θn+1

` using a new

8



ALGORITHM 2. (Metropolis Hastings MCMC for Q` −Q`−1)

Choose initial states Θ0
`−1 ∼ ν`−1 and θ0

` := [Θ0
`−1 , θ

0
`,F ]. For n ≥ 0:

• On level `− 1: Generate an independent sample Θn+1
`−1 from the distribution ν`−1.

• On level `: Given θn` and Θn+1
`−1 , generate θn+1

` using Algorithm 1 with the specific proposal

distribution q`ML(θ′` | θn` ) induced by taking θ′`,C := Θn+1
`−1 and by generating a proposal for θ′`,F

from some proposal distribution q`,FML(θ′`,F | θn`,F ) that is independent of the coarse modes. The
acceptance probability is

α`ML(θ′` | θn` ) = min

{
1,
π`(θ′`) q

`
ML(θn` |θ′`)

π`(θn` ) q`ML(θ′`|θn` )

}
.

two-level proposal density q`ML in conjunction with the usual Metropolis-Hastings accept/reject step
in Algorithm 1. In particular, to make a proposal on level `, we take θ′`,C = Θn+1

`−1 and independently

generate θ′`,F from a proposal distribution q`,FML for the fine modes, which can again be a simple random
walk or the pCN algorithm.

At each step in Algorithm 2, there are two different outcomes, depending on whether we accept
or reject on level `. The different possibilities are given in Table 1. Observe that when we accept on
level `, we have θn+1

`,C = Θn+1
`−1 , i.e. the coarse modes are the same. If, on the other hand, we reject on

level `, we crucially return to the previous state θn` on that level, which means that the coarse modes
of the two states may differ.

Level ` test Θn+1
`−1 θn+1

`,C

accept Θn+1
`−1 Θn+1

`−1

reject Θn+1
`−1 θn`,C

Table 1: Possible states of Θn+1
`−1 and θn+1

`,C in Algorithm 2.

In general, this “divergence” of the coarse modes may mean that the variance of Y` does not go
to 0 as ` → ∞ for a particular application. But provided the modes are ordered according to their
relative “influence” on the likelihood L(Fobs|θ), we can guarantee that α`ML(θ′`|θn` ) → 1 and thus that
the variance of Y` does in fact tend to 0 as `→∞. We will show this for a subsurface flow application
in Section 4.

The specific proposal distribution q`ML in Algorithm 2 can be computed very easily and at no
additional cost, leading to a simple formula for the “two-level” acceptance probability α`ML.

Lemma 3.1. Let ` ≥ 1. Then

α`ML(θ′` | θn` ) = min

{
1,
π`(θ′`)π

`−1(θn`,C) q`,FML(θn`,F |θ′`,F )

π`(θn` )π`−1(θ′`,C) q`,FML(θ′`,F |θn`,F )

}

and the induced transition kernel K`
ML satisfies detailed balance.
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Furthermore, if the distribution q`,FML is either (i) symmetric, or (ii) the pCN proposal distribution,
then

α`ML(θ′` | θn` ) =


min

{
1,
π`(θ′`)π

`−1(θn`,C)

π`(θn` )π`−1(θ′`,C)

}
, Case (i),

min

{
1,
L`(Fobs | θ′`)L`−1(Fobs | θn`,C)

L`(Fobs | θn` )L`−1(Fobs | θ′`,C)

}
, Case (ii).

Proof. Since the proposals for the coarse modes θ`,C and for the fine modes θ`,F are generated in-
dependently, the proposal density q`ML(θ′` |θn` ) can be written as a product of densities on the two

parts of θ`, i.e. q`,CML and q`,FML. For the coarse part of the proposal distribution, we simply have

q`,CML(θ′`,C |θn`,C) = π`−1(θ′`,C) and q`,CML(θn`,C |θ′`,C) = π`−1(θn`,C).

This completes the proof of the first result. Detailed balance for K`
ML follows trivially due to

the Metropolis-Hastings construction. The corollary for symmetric distributions q`,FML follows by def-

inition. The corollary for pCN proposals follows from the identity q`,FML(θn`,F |θ′`,F )/q`,FML(θ′`,F |θn`,F ) =

π`,F0 (θn`,F )/π`,F0 (θ′`,F ) (see, e.g. [11]), together with the factorisation π`0(θ`) = π`−1
0 (θ`,C)π`,F0 (θ`,F ).

3.2 Recursive sub-sampling to generate i.i.d. samples from ν`−1

In practice, it will not be possible to generate independent samples of the coarse level posterior distri-
bution ν`−1 directly. We instead suggest approximating independent samples of ν`−1 using Algorithm 1
in the following manner: After a sufficiently long burn-in period, Algorithm 1 will produce samples
which are (approximately) distributed according to ν`−1. Although the samples produced in this way
are correlated, the correlation between the nth and (n + j)th sample decays as j increases, and for
sufficiently large j, the samples Θn

`−1 and Θn+j
`−1 will be nearly uncorrelated. Hence, an i.i.d sequence

of samples of ν`−1 can be approximated by subsampling a chain {Θn
`−1}n∈N generated by Algorithm 1

with, e.g., the pCN proposal distribution.
This procedure can be applied very naturally in a recursive manner. Starting on the coarsest level,

burning in a Markov chain of samples and subsampling this chain to produce (nearly) independent
samples from ν0 we can then apply Algorithm 2 to produce a Markov chain of samples from ν1. This
can then be subsampled again to apply Algorithm 2 on level 2. Continuing in this way, we can recursively
produce independent samples from ν`−1 for any ` > 0. See Algorithm 3 in Section 5 for details.

Although, in general the i.i.d. samples of ν`−1 will in practice have to be approximated, for the
analysis of our multilevel algorithm we will assume that the chains {Θn

`−1}n∈N and {θn` }n∈N are generated
as in Algorithm 2. The additional bias introduced in the practical Algorithm 3 below is in fact so small
that we did initially not detect it in our numerical experiments, even for very short subsampling rates.

3.3 Convergence analysis of the multilevel MCMC estimator

Let us now move on to convergence properties of the multilevel estimator. As in Section 2.1, we define,
for all ` = 0, . . . , L, the sets

E` = {θ` : π`(θ`) > 0},
D` = {θ` : q`ML(θ` | θ∗` ) > 0 for some θ∗` ∈ E`}.

The following convergence results follow from the classical results, due to the telescoping sum
property (3.2) and the algebra of limits.

Lemma 3.2. Provided E` ⊂ D`, ν` is a stationary marginal distribution of the chain {θn` }n∈N.
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Theorem 3.3. Suppose that for all ` = 0, . . . , L, Eν` [|Q`|] <∞ and

q`ML(θ` | θ∗` ) > 0, for all θ`, θ
∗
` ∈ E`. (3.5)

Then
lim

{N`}→∞
Q̂ML
L,{N`} = EνL [QL] , for any θ0

` ∈ E` and n`0 ≥ 0.

Let us have a closer look at the irreducibility condition (3.5). As in the proof of Lemma 3.1, we
have

q`ML(θ`|θ∗` ) = π`−1(θ`,C) q`,FML(θ`,F |θ∗`,F )

and thus (3.5) holds, if and only if π`−1(θ`,C) and q`,FML(θ`,F |θ∗`,F ) are both positive, for all (θ`, θ
∗
` ) ∈

E` × E`. Both terms are positive for common choices of likelihood, prior and proposal distributions.
We finish the abstract discussion of the new, hierarchical multilevel Metropolis-Hastings MCMC

algorithm with the main theorem that establishes a bound on the ε-cost of the multilevel estimator
under certain assumptions on the MCMC error, on the (weak) model error, on the strong error between
the states on level ` and on level ` − 1 (in the two-level estimator for Y`), as well as on the cost C`
to advance Algorithm 2 by one state from n to n + 1 (i.e. one evaluation of the likelihood on level `
and one on level ` − 1). As in the case of the standard MCMC estimator, this bound is obtained by
quantifying and balancing the decay of the bias and the sampling errors of the estimator.

To state our assumption on the MCMC error and to define the mean square error of the estimator, we
introduce the following notation. We define Θ` := {θn` }n∈N∪{Θn

`−1}n∈N, for ` ≥ 1, and Θ0 := {θn0 }n∈N ,
and define by EΘ`

(respectively VΘ`
) the expected value (respectively variance) with respect to the

distribution of Θ` generated by Algorithm 2. Furthermore, let us denote by ν`,`−1 the joint distribution
of θ` and Θ`−1, for ` ≥ 1, which is defined by the marginals of θ` and Θ`−1 being ν` and ν`−1, respectively,
and the correlation being determined by Algorithm 2. For convenience, we define Y0 := Q0, ν0,−1 := ν0

and M−1 = R−1 = 1.

Theorem 3.4. Let ε < exp[−1] and suppose there are positive constants α, α′, β, β′, γ > 0 such that
α ≥ 1

2 min(β, γ). Under the following assumptions, for ` = 0, . . . , L,

M1. |Eν` [Q`]− Eρ[Q]| ≤ CM1

(
M−α` +R−α

′

`

)
M2. Vν`,`−1 [Y`] ≤ CM2

(
M−β`−1 +R−β

′

`−1

)
M3. VΘ`

[Ŷ MC
`,N`

] +
(
EΘ`

[Ŷ MC
`,N`

]− Eν`,`−1 [Ŷ MC
`,N`

]
)2
≤ CM3 N

−1
` Vν`,`−1 [Y`]

M4. C` ≤ CM4 M
γ
` ,

and provided R` &M
max{α/α′,β/β′}
` , there exists a number of levels L and a sequence {N`}L`=0 such that

e(Q̂ML
L,{N`})

2 := E∪`Θ`

[(
Q̂ML
L,{N`} − Eρ[Q]

)2]
< ε2,

and

Cε(Q̂ML
L,{N`}) ≤ CML


ε−2 | log ε|, if β > γ,

ε−2 | log ε|3, if β = γ,

ε−2−(γ−β)/α | log ε|, if β < γ.

Proof. The proof of this theorem is very similar to the proof of the complexity theorem in the case of
multilevel estimators based on i.i.d samples (cf. [9, Theorem 1]), which can be found in the appendix

of [9]. First note that by assumption we have R−α
′

` .M−α` and R−β
′

` .M−β` .
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Furthermore, in the same way as in (2.5), we can expand

e(Q̂ML
L,{N`})

2 ≤ V∪`Θ`

[
Q̂ML
L,{N`}

]
+ 2

(
E∪`Θ`

[
Q̂ML
L,{N`}

]
− EνL

[
Q̂ML
L,{N`}

])2

︸ ︷︷ ︸
(I)

+2
(
EνL [QL]− Eρ[Q]

)2
.

It follows from the Cauchy Schwarz inequality that

V∪`Θ`

[
Q̂ML
L,{N`}

]
=

L∑
l=0

VΘ`
[Ŷ MC
`,N`

] + 2
∑

0≤`<`′≤L
Cov∪`Θ`

[Ŷ MC
`,N`

, Ŷ MC
`′,N`′

] . (L+ 1)

L∑
l=0

VΘ`
[Ŷ MC
`,N`

].

We can bound the second term in the MSE above by

(I) =

( L∑
l=0

(
EΘ`

[
Ŷ MC
`,N`

]
− Eν`,`−1

[
Ŷ MC
`,N`

]))2

≤ (L+ 1)
L∑
l=1

(
EΘ`

[
Ŷ MC
`,N`

]
− Eν`,`−1

[
Ŷ MC
`,N`

])2
,

and thus it follows from Assumption M3 that

e(Q̂ML
L,{N`})

2 . (L+ 1)
L∑
`=0

N−1
` Vν`,`−1 [Y`] +

(
EνL [QL]− Eρ[Q]

)2
. (3.6)

In contrast to i.i.d case, we have an additional factor (L + 1) multiplying the sampling error term on
the right hand side of (3.6). Hence, in order to make this term less than ε2/2, the number of samples
N` needs to be increased by a factor of (L + 1) compared to the i.i.d. case, which also increases the
cost of the multilevel estimator by a factor of (L+ 1). The remainder of the proof remains identical.

Since L is chosen such that the second term in (3.6) (the bias of the multilevel estimator) is less
than ε2/2, it follows from Assumption M1 that L + 1 . | log ε|. The bounds on the ε-cost then follow
as in [9, Theorem 1], but with an extra | log ε| factor.

Note that in our proof we do not require the estimators Ŷ MC
`,N`

, ` = 0, . . . , L, to be independent.
However, in practice we found that independent estimators lead to a faster absolute performance of the
multilevel estimator (in terms of cost versus error).

Assumptions M1 and M4 are the same assumptions as in the single–level case, and are related to
the bias in the model (e.g. due to discretisation) and to the cost per sample, respectively. Assumption
M3 is similar to assumption A1, in that it is a non-asymptotic bound for the sampling errors of the
MCMC estimator Ŷ MC

`,N`
. For this assumption to hold, it is in general necessary that the chains have

been sufficiently burnt in, i.e. that the values n`0 are sufficiently large.

4 Model Problem

In this section, we will apply the proposed MLMCMC algorithm to a simple model problem arising in
subsurface flow modelling. Probabilistic uncertainty quantification in subsurface flow is of interest in
a number of situations, as for example in risk analysis for radioactive waste disposal or in oil reservoir
simulation. The classical equations governing (steady state) single–phase subsurface flow consist of
Darcy’s law coupled with an incompressibility condition (see e.g. [14, 10]):

w + k∇p = g and div w = 0, in D ⊂ Rd, d = 1, 2, 3, (4.1)

subject to suitable boundary conditions. In physical terms, p denotes the pressure head of the fluid, k
is the permeability tensor, w is the filtration velocity (or Darcy flux) and g is the source term.
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4.1 Uncertainty quantification

A typical approach to quantify uncertainty in p and w is to model the permeability as a random field
k = k(x, ω) on D × Ω, for some probability space (Ω,A,P). The mean and covariance structure of k
has to be inferred from the (limited) geological information available. This means that (4.1) becomes
a system of PDEs with random coefficients, which can be written in second order form as

−∇ · (k(x, ω)∇p(x, ω)) = f(x), in D, (4.2)

with f := −div g. This means that the solution p itself will also be a random field on D × Ω. For
simplicity, we shall restrict ourselves to Dirichlet conditions p(ω, x) = ψ(x) on ∂D, and assume that
the boundary data ψ and the source term g are known (and thus deterministic).

In this general form solving (4.2) is extremely challenging computationally, and so in practice it is
common to use relatively simple models for k that are as faithful as possible to the measurements. One
model that has been studied extensively is a log-normal distribution for k, i.e. replacing the permeability
tensor by a scalar valued field whose log is Gaussian. It guarantees that k > 0 almost surely (a.s.) in Ω,
and it allows the permeability to vary over many orders of magnitude, which is typically the case.

When modelling a whole oil reservoir or a sufficiently large region around a potential radioactive
waste repository, the correlation length scale for k is typically significantly smaller than the size of the
computational region. In addition, typical sedimentation processes lead to fairly irregular structures
and pore networks. Faithful models should therefore also only assume limited spatial regularity of k.
A covariance function that has been proposed in the application literature (cf. [27]) is the following
exponential two-point covariance function for log k:

C(x, y) := σ2exp

(
−‖x− y‖r

λ

)
, x, y ∈ D, (4.3)

where ‖ · ‖r denotes the `r-norm in Rd and typically r = 1 or 2. The parameters σ2 and λ denote
variance and correlation length, respectively. In subsurface flow applications typically only σ2 ≥ 1 and
λ ≤ diamD will be of interest. The choice of covariance function in (4.3) implies that k is homogeneous
and it follows from Kolmogorov’s theorem [29] that k(·, ω) ∈ C0,t(D) a.s., for any t < 1/2.

For the purpose of this paper, we will assume that k is a log-normal random field, where log k has
mean zero and exponential covariance function (4.3) with r = 1. However, other models for k are
possible, and the required theoretical results can be found in [6, 34, 33].

Let us now put model problem (4.2) into context for the MCMC and MLMCMC methods described
in sections 2 and 3. The quantity of interest Q is in this case some functional G of the PDE solution p,
and QM,R is the same functional G evaluated at a discretised solution pM,R. The discretisation level M
denotes the number of degrees of freedom for the numerical solution of (4.2) for a given sample and the
parameter R denotes the number of random variables used to model the permeability k. The random
vector X will contain the M degrees of freedom of the discrete pressure pM,R.

For the spatial discretisation of model problem (4.2), we will use standard, continuous, piecewise
linear finite elements (FEs), see e.g. [4, 8] for more details. Other spatial discretisation schemes are
possible, see for example [9] for a numerical study with finite volume methods and [20] for a theoretical
treatment of mixed finite elements. We choose a regular triangulation Th of mesh width h of our spatial
domain D, which results in M = O(h−d) degrees of freedom for the numerical approximation.

In order to apply the proposed MCMC methods to model problem (4.2), we need to represent the
permeability k in terms of a set of random variables. For this, we will use the Karhunen-Loève (KL-)
expansion. For the Gaussian field log k, this is an expansion in terms of a countable set of independent,
standard Gaussian random variables {ξn}n∈N. It is given by

log k(ω, x) =

∞∑
n=1

√
µnφn(x)ξn(ω),
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where {µn}n∈N are the eigenvalues and {φn}n∈N the corresponding L2-normalised eigenfunctions of the
covariance operator with kernel function C(x, y). For more details on its derivation and properties, see
e.g. [17]. We will here only mention that the eigenvalues {µn}n∈N are non–negative with

∑
n≥0 µn <∞.

For the particular covariance function (4.3) with r = 1, we have µn . n−2 and hence there is an
intrinsic ordering of importance in the KL-expansion. Truncating the KL-expansion after R terms,
gives an approximation of k in terms of R standard normal random variables,

kR(ω, x) = exp

[
R∑
n=1

√
µnφn(x)ξn(ω)

]
. (4.4)

Denote by ϑ := {ξn}n∈N ∈ RN the vector of independent random variables appearing in the KL-
expansion of log k. We will work with prior and posterior measures on the space RN. To this end, we
equip RN with the product sigma algebra B :=

⊗
n∈N B1(R), where B1(R) denotes the sigma algebra of

Borel sets of R. We denote by ρ0 the prior measure on RN, defined by {ξn}n∈N being independent and
identically distributed (i.i.d) N (0, 1) random variables, such that

ρ0 =
⊗
n∈N

g(ξn) dξn, (4.5)

where g : R → R+ is the Lebesgue density of a N (0, 1) random variable and dξn denotes the one
dimensional Lebesgue measure.

We assume that the observed data is finite dimensional, i.e. Fobs ∈ Rm for some m ∈ N, and that

Fobs = F(p(ϑ)) + η, (4.6)

where F : H1(D)→ Rm is a continuous function of p, the (weak) solution to model problem (4.1) which
depends on ϑ through k. The observational noise η is assumed to be a realisation of a N (0, σ2

F Im)
random variable (independent of ϑ). The parameter σ2

F is a fidelity parameter that indicates the level
of observational noise present in Fobs.

With ρ0 as in (4.5), we have ρ0(RN) = 1. Furthermore, since p depends continuously on ϑ (see [5,
Propositions 3.6 and 4.1] or [35, Lemmas 2.20 and 5.13]), the map F ◦ p : RN → Rm is also continuous
(by assumption). The posterior distribution, which we will denote by ρ, is then known to be absolutely
continuous with respect to the prior and satisfies

∂ρ

∂ρ0
(ϑ) h exp

[
−‖Fobs −F(p(ϑ))‖2

2σ2
F

]
=: exp [−Φ(ϑ;Fobs)] , (4.7)

where ‖ · ‖ denotes the Euclidean norm on Rm. The hidden constant depends only on Fobs and is
generally not known (for more details see [32] and the references therein). The right hand side of (4.7)
is referred to as the likelihood.

Since the exact solution p(ϑ) is not available, the likelihood exp [−Φ(ϑ;Fobs)] needs to be approxi-
mated in practical computations. We use a truncation of the KL-expansion of log k after R terms and
a spatial approximation pM,R of p(ϑ) by piecewise linear FEs. The value of σ2

F may also be changed to
σ2
F,M . We denote the resulting approximate posterior measure correspondingly by ρM,R, with

∂ρM,R

∂ρ0
(ϑ) h exp

[
−
‖Fobs −F(pM,R(ϑ))‖2

2σ2
F,M

]
=: exp

[
−ΦM,R(ϑ;Fobs)

]
. (4.8)

Since F ◦ pR,M only depends on θ := {ξn}Rn=1, the first R components of ϑ, and since the prior measure
factorises as ρ0 = ρR0 ⊗ ρ⊥0 , the approximate posterior measure also factorises as ρM,R = νM,R ⊗ ρ⊥,
where

∂νM,R

∂ρR0
(θ) h exp

[
−ΦM,R(θ;Fobs)

]
, (4.9)
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and ρ⊥ = ρ⊥0 [12]. Note that νM,R is a measure on the finite dimensional space RR. Denoting by πM,R

and πR0 the densities with respect to the R dimensional Lebesgue measure of νM,R and ρR0 , respectively,
it follows from (4.9) that

πM,R(θ) h exp
[
−ΦM,R(θ;Fobs)

]
πR0 (θ) . (4.10)

Our goal is to approximate the expected value of a quantityQ = G(p(ϑ)) with respect to the posterior
ρ, for some continuous G : H1(D) → R. We denote this expected value by Eρ[Q] :=

∫
RN G(p(ϑ)) ρ(dϑ)

and assume that, as M,R→∞,
EνM,R [QM,R]→ Eρ[Q],

where EνM,R [QM,R] :=
∫
RR G(pM,R(θ)) νM,R(dθ) is a finite dimensional integral.

Finally, let us set the notation for our MLMCMC algorithm. To achieve a level-dependent repre-
sentation of k, we simply truncate the KL-expansion after a sufficiently large, level-dependent number
of terms R`, such that the truncation error on each level is bounded by the discretisation error, and set
θ` := {ξn}R`n=1. A sequence of discretisation levels M` satisfying (3.1) can be constructed by choosing a
coarsest mesh width h0 for the spatial approximation, and choosing h` := s−`h0. A common (but not
necessarily optimal) choice is s = 2 and uniform refinement between the levels. We denote the resulting
(truncated) FE solution by p` := pM`,R` .

The prior density π`0 of θ` is simply a standard R`-dimensional Gaussian:

π`0(θ`) =
1

(2π)R`/2
exp

− R∑̀
j=1

ξ2
j

2

 . (4.11)

For the likelihood, we have

L`(Fobs | θ`) h exp

[
−‖Fobs − F `(θ`)‖2

2σ2
F,`

]
, (4.12)

where F `(θ`) = F(p`(θ`)). Recall that the coarser levels in our multilevel estimator are introduced
only to accelerate the convergence and that the multilevel estimator is still an unbiased estimator of
the expected value of QL with respect to the posterior νL on the finest level L. Hence, the posterior
distributions on the coarser levels ν`, ` = 0, . . . , L − 1, do not have to model the measured data as
faithfully as νL. In particular, this means that we can choose larger values of the fidelity parameter σ2

F,`

on the coarse levels, which will increase the acceptance probability on the coarser levels. The growth
in σ2

F,` has to be controlled, as we will see below (cf. Assumption A3).

4.2 Convergence analysis

We now perform a rigorous convergence analysis of the MLMCMC estimator Q̂ML
L,{N`} introduced in

Section 3 applied to model problem (4.1). We will first verify that the multilevel estimator is indeed
an unbiased estimator of EνL [QL]. To achieve this, we only need to verify the irreducibility condition
(3.5) in Theorem 3.3. As already noted, for common choices of proposal distributions, the condition
holds true if π`−1(θ`,C) > 0, for all θ` s.t. π`(θ`) > 0. The conclusion follows, since both the prior and
the likelihood were chosen as normal distributions and normal distributions have infinite support.

Theorem 4.1. Suppose that for all ` = 0, . . . , L, Eν` [|Q`|] <∞. Then

lim
{N`}→∞

Q̂ML
L,{N`} = EνL [QL] , for any θ0

` ∈ E` and n`0 ≥ 0.
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Let us now move on to quantifying the cost of the multilevel estimator, and verify the assumptions in
Theorem 3.4 for our model problem. As mentioned earlier, assumption M3 involves bounding the mean
square error of an MCMC estimator, and a proof of M3 is beyond the scope of this paper. Results of
this kind can be found in e.g. [31, 21]. We will also not address M4, which is an assumption on the cost
of obtaining one sample of Q`. In the best case, with an optimal linear solver to solve the discretised
(FE) equations for each sample, M4 is satisfied with γ = 1.

We will address assumptions M1 and M2, which are the assumptions related to the discretisation
errors in the quantity of interest Q and the measure ρ. For ease of presentation, we will for the remainder
of this section assume that log k has mean zero and exponential covariance function (4.3) with r = 1,
and that ψ and f in (4.2) are deterministic, with ψ ∈ H1(∂D) and f ∈ H−1/2(D). This implies that the
solution p to (4.2) is in Lq(Ω, H3/2−δ), for any δ > 0 and q <∞ (cf. [34]). In the Metropolis-Hastings
algorithm we will only consider symmetric proposal distributions or the pCN algorithm.

Since they will become useful later, let us recall some of the main results in the convergence analysis
of (“plain vanilla”) multilevel Monte Carlo estimators based on independent and identically distributed
(i.i.d.) samples. An extensive convergence analysis of FE multilevel estimators based on i.i.d. samples
for model problem (4.2) with log–normal coefficients can be found in [6, 34, 33]. We firstly have the
following result on the convergence of the FE error in the natural H1–norm.

Theorem 4.2. Let g be a Gaussian field with constant mean and covariance function (4.3) with r = 1,
and let k = exp[g] in model problem (4.2). Suppose D ⊂ Rd is Lipschitz polygonal (polyhedral). Then

Eρ0
[
|p− p`|qH1(D)

]1/q
≤ Ck,f,ψ,q (M

−1/2d+δ
` +R

−1/2+δ
` ),

for any q < ∞ and δ > 0, where the (generic) constant Ck,f,ψ,q (here and below) depends on the data
k, f , ψ and on q, but is independent of any other parameters.

Proof. This follows from [34, Proposition 4.1].

Convergence results for functionals of the solution p can now be derived from Theorem 4.2 using
a duality argument. We will here for simplicity only consider bounded, linear functionals, but the
results extend to continuously Frèchet differentiable functionals (see [34, §3.2]). We make the following
assumption on the functional G (cf. Assumption F1 in [34]).

A2. Let G : H1(D)→ R be linear, and suppose there exists CG ∈ R, such that

|G(v)| ≤ CG‖v‖H1/2−δ , for all δ > 0.

An example of a functional which satisfies A2 is a local average of the pressure, 1
|D∗|

∫
D∗ p dx for some

D∗ ⊂ D. The main result on the convergence for functionals is the following.

Corollary 4.3. Let the assumptions of Theorem 4.2 be satisfied, and suppose G satisfies A2. Then

Eρ0 [|G(p)− G(p`)|q]1/q ≤ Ck,f,ψ,q
(
M
−1/d+δ
` +R

−1/2+δ
`

)
,

for any q <∞ and δ > 0.

Proof. This follows from [34, Corollary 4.1].

Note that assumption A2 is crucial in order to get the faster convergence rates of the spatial
discretisation error in Corollary 4.3. For multilevel estimators based on i.i.d. samples, it follows
immediately from Corollary 4.3 that the (corresponding) assumptions M1 and M2 are satisfied, with
α = 1/d+ δ, α′ = 1/2 + δ and β = 2α, β′ = 2α′, for any δ > 0 (see [34] for details).
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The aim is now to generalise the result in Corollary 4.3 to the new MLMCMC estimator. Two issues
need to be addressed. Firstly, the bounds in assumptions M1 and M2 in Theorem 3.4 involve moments
with respect to the posterior distributions ν` and ρ, which are not known explicitly, but are related to
the prior distributions ρ`0 and ρ0 through Bayes’ Theorem. Secondly, the samples on levels ` and `− 1
that are used to compute samples of the differences Y` = Q` − Q`−1 are generated by Algorithm 2,
and may differ not only due to discretisation and truncation order, but also because they come from
different Markov chains (i.e. Θn

`−1 is not necessarily equal to θn`,C , as seen in Table 1).
To circumvent the problem of the intractability of the posterior distribution, we have the following

lemma, which relates moments with respect to the posterior distribution to moments with respect to
the prior distribution.

Lemma 4.4. For any random variable Z = Z(θ`) and for any q s.t. Eρ`0 [|Z|q] <∞, we have

|Eν` [Zq] | . Eρ`0 [|Z|q] .

Similarly, for any random variable Z = Z(ϑ) and for any q s.t. Eρ0 [|Z|q] <∞, we have∣∣Eρ` [Zq]
∣∣ . Eρ0 [|Z|q] .

Proof. Using (4.10), we have

|Eν` [Zq] | h
∣∣∣∣∫

RR`
Zq(θ`) exp

[
−ΦM,R(θ`;Fobs)

]
π`0(θ`) dθ`

∣∣∣∣
. sup

θ`

{
exp

[
−ΦM,R(θ`;Fobs)

]} ∫
RR`
|Z(θ`)|q π`0(θ`) dθ`.

The first claim of the Lemma then follows, since the above supremum can be bounded by 1. The proof
of the second claim is analogous, using the Radon-Nikodym derivative (4.7).

We are now ready to prove assumption M1, under the following assumption on the parameters σ2
F,`

in the likelihood model (4.12):

A3. The sequence of fidelity parameters {σ2
F,`}∞`=0 satisfies

σ−2
F − σ

−2
F,` . max

(
R
−1/2+δ
` ,M

−1/d+δ
`

)
, for all δ > 0.

Lemma 4.5. Let the assumptions of Corollary 4.3 be satisfied. Suppose F satisfies A2, and A3 holds.
Then

|Eν` [Q`]− Eρ[Q]| ≤ Ck,f,ψ
(
M
−1/d+δ
` +R

−1/2+δ
`

)
.

Proof. Since Q` only depends on θ` we have Eν` [Q`] = Eρ` [Q`] and so, using the triangle inequality,

|Eν` [Q`]− Eρ[Q]| ≤ |Eρ` [Q`]− Eρ` [Q]|+ |Eρ` [Q]− Eρ[Q]|. (4.13)

The first term can be bounded using Corollary 4.3 and Lemma 4.4, i.e.

|Eρ` [Q`]− Eρ` [Q]| ≤ Ck,f,ψ
(
M
−1/d+δ
` +R

−1/2+δ
`

)
.

For the second term, we will prove a bound on the Hellinger distance dHell(ρ, ρ
`). This proof follows

closely the proof of [26, Proposition 10]. Denote by Z and Z` the normalising constants of ρ and ρ`:

Z =

∫
RN

exp

[
−1

2
Φ(ϑ;Fobs)

]
dρ0(ϑ) and Z` =

∫
RN

exp

[
−1

2
Φ`(ϑ;Fobs)

]
dρ0(ϑ), respectively.
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Since F satisfies Assumption A2, it follows from the results in [32] that both Z and Z` can be bounded
away from zero. Next, we have

2 d2
Hell(ρ, ρ

`) =

∫
RN

(
Z−1/2 exp

[
−1

2
Φ(ϑ;Fobs)

]
− Z−1/2

` exp

[
−1

2
Φ`(ϑ;Fobs)

])2

dρ0(ϑ) ≤ I + II,

where

I :=
2

Z

∫
RN

(
exp

[
−1

2
Φ(ϑ;Fobs)

]
− exp

[
−1

2
Φ`(ϑ;Fobs)

])2

dρ0(ϑ),

II := 2 |Z−1/2 − Z−1/2
` |2

∫
RN

exp
[
−Φ`(ϑ;Fobs)

]
dρ0(ϑ).

To estimate I, note that both exp
[
−1

2Φ(ϑ;Fobs)
]

and exp
[
−1

2Φ`(ϑ;Fobs)
]

are bounded above by 1, so
that

exp

[
−1

2
Φ(ϑ;Fobs)

]
− exp

[
−1

2
Φ`(ϑ;Fobs)

]
≤ |Φ(ϑ;Fobs)− Φ`(ϑ;Fobs)|.

Denoting F := F(p(ϑ)) and F` := F(p`(θ)), and using the triangle inequality, we have that∣∣∣∣∣‖Fobs − F‖2

σ2
F

− ‖Fobs − F`‖2

σ2
F,`

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
(
‖Fobs − F`‖+ ‖F − F`‖

)2

σ2
F

− ‖Fobs − F`‖2

σ2
F,`

∣∣∣∣∣∣∣
= ‖Fobs − F`‖2

(
σ−2
F − σ

−2
F,`

)
+

2‖Fobs − F`‖+ ‖F − F`‖
σ2
F

‖F − F`‖.

Since F was assumed to satisfy A2, it follows from Corollary 4.3 that

Eρ0 [‖F − F`‖q]1/q ≤ Ck,f,ψ

(
M
−1/d+δ
` + R

−1/2+δ
`

)
.

Moreover, since ‖F`‖ can be bounded independently of ` (again courtesy of Assumption A2), and since
‖Fobs − F`‖ ≤ ‖Fobs‖+ ‖F`‖, we can deduce that

I . Eρ0 [|Φ(ϑ;Fobs)− Φ`(ϑ;Fobs)|2] ≤ Ck,f,ψ

(
M
−1/d+δ
` + R

−1/2+δ
`

)2
.

using Assumption A3. For the second term II, we note that |Z−1/2−Z−1/2
` |2 . max{Z−3, Z−3

` } |Z−Z`|
2,

and an analysis similar to the above shows that

II . Eρ0 [|Φ(ϑ;Fobs)− Φ`(ϑ;Fobs)|]2 ≤ Ck,f,ψ

(
M
−1/d+δ
` + R

−1/2+δ
`

)2
.

The claim of the Theorem then follows, since |Eρ` [Q]− Eρ[Q]| ≤ Ck,f,ψdHell(ρ, ρ
`).

In order to prove M2, we further have to analyse the situation where the two samples θn+1
` and

Θn+1
`−1 used to compute Y n+1

` “diverge”, i.e. when Θn+1
`−1 6= θn+1

`,C .
For the remainder we will consider only symmetric or pCN proposal distributions.

Lemma 4.6. Let θn+1
` and Θn+1

`−1 have joint distribution ν`,`−1, and set Y n+1
` = Q`(θ

n+1
` )−Q`−1(Θn+1

`−1 ).

If q`,FML is a pCN proposal distribution, then

Vν`,`−1

[
Y n+1
`

]
≤ Ck,f,ψ

(
M
−1/d+δ
`−1 +R

−1/2+δ
`−1

)
, for any δ > 0.

This bound also holds for a symmetric proposal distribution q`,FML under the additional assumption that

(R` −R`−1)(2π)−
R`−R`−1

2 . R
−1/2+δ
`−1 , for all δ > 0. (4.14)
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For the growth condition (4.14) to be satisfied, it suffices that R`−R`−1 grows logarithmically with
R`−1. To prove Lemma 4.6, we first need some preliminary results. Firstly, note that Θn+1

`−1 6= θn+1
`,C only

if the proposal θ′` generated for θn+1
` was rejected. Given the states θn` and θ′`, the probability of this

rejection is given by 1− α`ML(θ′`|θn` ). The total probability of a rejection is then Eζ [(1− α`ML], where ζ
denotes the joint distribution of the two variables. We need to quantify this probability.

Before we can do so, we need to specify the (marginal) distribution of the proposal θ′`, which
we denote by ζ ′`. The first R`−1 entries of θ′` are distributed as ν`−1, since they come from Θ`−1.

The remaining R` −R`−1 dimensions are distributed according to the proposal density q`,FML(θ′`,F | θn`,F )
(independent of the first R`−1 dimensions). The same proof technique as in Lemma 4.4 shows again
that |Eζ′` [Z

q]| . Eρ`0 [|Z|q], for any random variable Z = Z(θ′`).

Lemma 4.7. Let θn` and θ′` be as generated by Algorithm 2 at the (n + 1)th step. Denote their joint
distribution by ζ, with marginal distributions ν` and ζ ′`, respectively. Suppose F satisfies A2, and A3

and the assumptions of Corollary 4.3 hold. If q`,FML is a pCN proposal distribution, then

Eζ

[
(1− α`ML(θ′`|θn` ))

]
≤ Ck,f,ψ

(
M
−1/d+δ
`−1 +R

−1/2+δ
`−1

)
, for any δ > 0.

This bound also holds for a symmetric proposal distribution q`,FML under the additional assumption (4.14).

Proof. We will start by assuming that q`,FML is a pCN proposal distribution. For brevity, denote
L`(Fobs | ·) =: L`(·). We will first derive a bound on 1 − α`ML(θ′` | θn` ), for ` > 1 and for θ′` and θn`

given. First note that if
L`(θ′`)L`−1(θn`,C)

L`(θn` )L`−1(θ′`,C)
≥ 1, then 1− α`(θ′` | θn` ) = 0. Otherwise, we have

1− α`ML(θ′` | θn` ) =

(
1−

L`(θ′`)
L`−1(θ′`,C)

)
+

(
L`(θ′`)L`−1(θn`,C)

L`(θn` )L`−1(θ′`,C)

)(
1−

L`(θn` )

L`−1(θn`,C)

)

≤

∣∣∣∣∣1− L`(θ′`)
L`−1(θ′`,C)

∣∣∣∣∣+

∣∣∣∣∣1− L`(θn` )

L`−1(θn`,C)

∣∣∣∣∣ . (4.15)

Let us consider either of these two terms and set θ` = (ξj)
R`
j=1 to be either θ′` or θn` . Using the definition

(4.12) of the likelihood, we have

L`(θ`)
L`−1(θ`,C)

= exp

(
− ‖Fobs − F`(θ`)‖2

σ2
F,`

+
‖Fobs − F`−1(θ`,C)‖2

σ2
F,`−1

)
. (4.16)

Denoting F` := F (θ`) and F`−1 := F (θ`,C), we get as in the proof of Lemma 4.5 that∣∣∣∣∣‖Fobs − F`‖2

σ2
F,`

− ‖Fobs − F`−1‖2

σ2
F,`−1

∣∣∣∣∣ ≤ ‖Fobs − F`−1‖2
∣∣∣σ−2
F,` − σ

−2
F,`−1

∣∣∣
+

2‖Fobs − F`−1‖+ ‖F` − F`−1‖
σ2
F,`

‖F` − F`−1‖. (4.17)

Using the inequality |1− exp(x)| ≤ |x|, for 0 ≤ |x| ≤ 1, it follows immediately from (4.17), Assumption
A3, Corollary 4.3, Lemma 4.4 and Hölders inequality that

Eζ

[∣∣∣∣1− L`(θ`)
L`−1(θ`,C)

∣∣∣∣] ≤ Ck,f,ψ

(
M
−1/d+δ
`−1 + R

−1/2+δ
`−1

)
. (4.18)

A bound on the expected value of 1− α`ML(θ′` | θn` ) now follows from Minkowski’s inequality.
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The proof in the case of a symmetric proposal distribution is analogous. The bound (4.15) is replaced
by

1− α`ML(θ′` | θn` ) ≤

∣∣∣∣∣1− π`(θ′`)

π`−1(θ′`,C)

∣∣∣∣∣+

∣∣∣∣∣1− π`(θn` )

π`−1(θn`,C)

∣∣∣∣∣ .
Using the definition of π` in (4.10), as well as the models (4.11) and (4.12) for the prior and the
likelihood, respectively, we have instead of (4.16) that

π`(θ`)

π`−1(θ`,C)
=

π`0(θ`) L`(θ`)
π`−1

0 (θ`,C)L`−1(θ`,C)
(4.19)

= exp

− (2π)−
R`−R`−1

2

R∑̀
j=R`−1+1

ξ2
j

2
− ‖Fobs − F`(θ`)‖2

σ2
F,`

+
‖Fobs − F`−1(θ`,C)‖2

σ2
F,`−1

 .

Since
∑R`

j=R`−1+1 ξ
2
j is χ2-distributed with R` −R`−1 degrees of freedom, we have

Eρ`0
[∑

j ξ
2
j

]
= 2

Γ
(

1
2(R` −R`−1) + 1

)
Γ
(

1
2(R` −R`−1)

) . R` −R`−1.

Together with the assumption in (4.14) this implies that the expected value of the additional term in

(4.19) is bounded by R
−1/2+δ
`−1 . The proof then reduces to that in the pCN case above.

We will further need the following result.

Lemma 4.8. For any θ`, let k`(θ`) := exp
(∑R`

j=1
√
µjφj(θ`)j

)
and κ(θ`) := minx∈D k`(·, x). Then

|p`(θ`)− p`(θ∗` )|H1(D) .
‖f‖H−1(D)

κ(θ`)κ(θ∗` )
‖k`(θ`)− k`(θ∗` )‖C0(D), for almost all θ`, θ

∗
` , (4.20)

and Eρ`0
[
|p`(θ`)|qH1(D)

]
≤ constant, (4.21)

for any q <∞, where the hidden constants are independent of ` and p`.

Proof. Using the definition of κ(θ`), as well as the identity∫
D
k`(θ`)∇p`(θ`) · ∇v dx =

∫
D
fv dx =

∫
D
k`(θ

∗
` )∇p`(θ∗` ) · ∇v dx, for all v ∈ H1

0 (D),

we have

κ(θ`)|p`(θ`)− p`(θ∗` )|2H1(D) ≤
∫
D
k`(θ`)∇ (p`(θ`)− p`(θ∗` )) · ∇ (p`(θ`)− p`(θ∗` )) dx

≤
∫
D

(k`(θ`)− k`(θ∗` )) ∇p`(θ∗` ) · ∇ (p`(θ`)− p`(θ∗` )) dx.

Due to the standard estimate |p`(θ∗` )|H1(D) ≤ ‖f‖H−1(D)/κ(θ∗` ), (4.20) follows from an application of the
Cauchy-Schwarz inequality, and (4.21) follows from the fact that Eρ`0 [κ(·)−q] is bounded independent

of ` ([5, Prop. 3.10]).

Using Lemmas 4.7 and 4.8, we are now ready to prove Lemma 4.6.
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Proof of Lemma 4.6. Let θn+1
` and Θn+1

`−1 be as generated by Algorithm 2 at the (n+1)th step, with joint

distribution ν`,`−1. As before, denote the proposal generated for θn` by θ′`. Firstly, since θ′`,C = Θn+1
`−1 ,

it follows from Minkowski’s inequality that

Vν`,`−1

[
Y n+1
`

]
≤ Eν`,`−1

[(
Q`(θ

n+1
` )−Q`−1(Θn+1

`−1 )
)2]

. E
ζ̃

[(
Q`(θ

n+1
` )−Q`(θ′`)

)2]
+ Eζ′`

[(
Q`(θ

′
`)−Q`−1(θ′`,C)

)2]
. (4.22)

Here, ζ̃ denotes the joint distribution of θ′` and θn+1
` and ζ ′` is the marginal distribution of θ′`. A bound

on the second term follows immediately from Corollary 4.3 and Lemma 4.4, i.e.

Eζ′`
[(
Q`(θ

′
`)−Q`−1(θ′`,C)

)2]
. Eρ`0

[(
Q`(θ

′
`)−Q`−1(θ′`,C)

)2] ≤ Ck,f,ψ

(
M
−1/d+δ
`−1 +R−1+δ

`−1

)
. (4.23)

The first term in (4.22) is nonzero only if θn+1
` 6= θ′`. We will now use Lemmas 4.7 and 4.8, as well as

the characteristic function I{θn+1
` 6=θ′`}

∈ {0, 1} to bound it. Firstly, Hölder’s inequality gives

E
ζ̃

[(
Q`(θ

n+1
` )−Q`(θ′`)

)2]
= E

ζ̃

[(
Q`(θ

n+1
` )−Q`(θ′`)

)2 I{θn+1
` 6=θ′`}

]
≤ E

ζ̃

[(
Q`(θ

n+1
` )−Q`(θ′`)

)2q1]1/q1
E
ζ̃

[
I{θn+1

` 6=θ′`}

]1/q2
, (4.24)

for any q1, q2 s.t. q−1
1 + q−1

2 = 1. Since G satisfies assumption A2, it follows from Lemmas 4.4 and 4.8

that the term E
ζ̃

[ (
Q`(θ

n+1
` )−Q`(θ′`)

)2q1 ]1/q1 in (4.24) can be bounded by a constant independent of
`, for any q1 <∞:

E
ζ̃

[ (
Q`(θ

n
` )−Q`(θ′`)

)2q1 ] . Eν`
[
(Q`(θ

n+1
` ))2q1

]
+ Eζ′`

[
(Q`(θ

′
`))

2q1
]
. Eρ`0

[
|p`(θ`)|2q1H1(D)

]
≤ constant.

Since θn+1
` 6= θ′` only if the proposal θ′` has been rejected on level ` at the (n+1)th step, the probability

that this happens can be bounded by Eζ [1−α`ML(θ′`|θn` )], where the joint distribution ζ is as in Lemma
4.7. It follows by Lemma 4.7 that

E
ζ̃

[
I{θn+1

` 6=θ′`}

]
= P[θn+1

` 6= θ′`] ≤ Ck,f,ψ

(
M
−1/d+δ
`−1 +R−1+δ

`−1

)
. (4.25)

Combining (4.22)-(4.25) the claim of the Lemma then follows.

We now collect the results in the preceding lemmas to state our main result of this section.

Theorem 4.9. Under the same assumptions as in Lemma 4.6, Assumptions M1 and M2 of Theorem 3.4
are satisfied, with α = β = 1/d− δ and α′ = β′ = 1/2− δ, for any δ > 0.

If we assume that we can obtain individual samples in optimal cost C` . M` log(M`), e.g. via a
multigrid solver, we can satisfy Assumption M4 with γ = 1+δ, for any δ > 0. It follows from Theorems
3.4 and 4.9 that we can get the following theoretical upper bounds for the ε-costs of classical and
multilevel MCMC applied to model problem (4.2) with log-normal coefficients k:

Cε(Q̂MC
N ) . ε−(d+2)−δ and Cε(Q̂ML

L,{N`}) . ε−(d+1)−δ, for any δ > 0. (4.26)

We clearly see the advantages of the multilevel method, which gives a saving of one power of ε−1

compared to the standard MCMC method. Note that for multilevel estimators based on i.i.d samples,
the savings of the multilevel method over the standard method are two powers of ε−1, for d = 2, 3.
The larger savings stem from the fact that β = 2α in this case, compared to β = α in the MCMC
analysis above. The numerical results in the next section for d = 2 show that in practice we do seem to
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observe β ≈ 1 ≈ 2α, leading to Cε(Q̂ML
L,{N`}) = O(ε−2). However, we do not believe that this is a lack of

sharpness in our theory, but rather a pre-asymptotic phase. The constant in front of the leading order

term in the bound of Vν`,`−1 [Y n
` ], namely the term Eζ̃

[ (
Q`(θ

n+1
` )−Q`(θ′`)

)2q1 ]1/q1 in (4.24), depends

on the difference between Q`(θ
n+1
` ) and Q`(θ

′
`). In the case of the pCN algorithm for the proposal

distributions q`−1 and q`,FML (as used in Section 5 below) this difference will be small, since θn` and θ′`
will in general be very close to each other. However, the difference is bounded from below and so we
should eventually see the slower convergence rate for the variance as predicted by our theory.

5 Numerics

In this section we describe the implementation details of the MLMCMC algorithm and examine the
performance of the method in estimating the posterior expectation of some quantity of interest for
our model problem (4.2). We consider (4.2) on the domain D = (0, 1)2 with f ≡ 1. On the lateral
boundaries of the domain we choose Dirichlet boundary conditions; on the top and bottom we choose
Neumann conditions:

p|x1=0 = 0, p|x1=1 = 1,
∂p

∂n

∣∣∣
x2=0

= 0 and
∂p

∂n

∣∣∣
x2=1

= 0. (5.1)

The quantity of interest is the flux across the boundary at x1 = 1, given by

Q := −
∫ 1

0
k
∂p

∂x

∣∣∣
x1=1

dx2. (5.2)

The (prior) permeability field k is modelled as a log-normal random field, with covariance function (4.3)
with r = 1, σ2 = 1 and λ = 0.5. The log-normal distribution is approximated using truncated KL-
expansion (4.4) with an increasing number R` of terms as ` increases. For r = 1, the KL eigenfunctions
in (4.4) are known explicitly [9].

The model problem is discretised using piecewise linear FEs on a uniform triangular mesh. The
coarsest mesh consists of m0 + 1 grid points in each direction, with refined meshes containing m` + 1 =
2`m0 +1 points, so that the total number of grid points on level ` is M` = (m`+1)2. All our algorithms
have been implemented within freeFEM++ [23]. As the linear solver for the resulting linear equation
system for each sample we used UMFPACK [13].

5.1 Implementation Details

Let us first define two important quantities for the convergence analysis of Metropolis-Hastings MCMC.

Effective sample size and integrated autocorrelation time. Let {θn}n≥0 be the Markov chain produced by

Algorithm 1 and Q̂MC
N the resulting MCMC estimator defined in (2.2). The integrated autocorrelation

time τQ of the correlated samples QnM,R := G(X(θn)) produced by Algorithm 1 is defined to be the ratio

of the asymptotic variance σ2
Q of the MCMC estimator Q̂MC

N , defined in (2.6), and the actual variance
VνM,R [QM,R] of QM,R. If

s2
Q :=

1

N

N∑
j=0

(
QnM,R − Q̂MC

N

)2

denotes the sample variance, then a good estimate for τQ, used e.g. in R, is given by τQ = s2
Q/ρ(0),

where ρ(0) is the so-called spectral density at frequency zero. Details of a method for approximating
the spectral density are given in [24] (included in R under the package ‘coda’). The effective sample
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ALGORITHM 3. (Recursive independence sampling)

Choose initial states Θ0
`−1 = Θ̃0

`−1, . . . , Θ̃
0
0 such that Θ̃0

k,C = Θ̃0
k−1 and subsampling rates tk, for all

k = 1, . . . , `− 1. Then, for j ≥ 0:

• On level 0:

– Given Θ̃j
0, generate Θ̃′0 from a pCN proposal distribution.

– Compute

α0(Θ̃′0|Θ̃
j
0) = min

{
1,
L0(Fobs | Θ̃′0)

L0(Fobs | Θ̃j
0)

}
.

– Set Θ̃j+1
0 = Θ̃′0 with probability α0(Θ̃′0|Θ̃

j
0). Set Θ̃j+1

0 = Θ̃j
0 otherwise.

• On level k = 1, . . . , `− 1:

– Given Θ̃j
k, let Θ̃′k,C = Θ̃

(j+1)tk−1

k−1 and generate Θ̃′k,F from a pCN proposal distribution.

– Compute

α`ML(Θ̃′k | Θ̃
j
k) = min

{
1,
Lk(Fobs | Θ̃′k)Lk−1(Fobs | Θ̃j

k,C)

Lk(Fobs | Θ̃j
k)Lk−1(Fobs | Θ̃′k,C)

}
.

– Set Θ̃j+1
k = Θ̃′k with probability αkML(Θ̃′k|Θ̃

j
k). Set Θ̃j+1

k = Θ̃j
k otherwise.

• Set Θj+1
`−1 = Θ̃

(j+1)t`−1

`−1 .

size is defined as N eff := N/τQ. It represents the number of i.i.d. samples from νM,R that would lead

to a Monte Carlo estimator with the same variance as Q̂MC
N .

Recursive independence sampling. The final ingredient for our hierarchical multilevel MCMC algo-
rithm is an efficient practical algorithm to obtain independent samples Θn

`−1 from the coarse posterior

ν`−1 which we need in Algorithm 2 in Section 3 to estimate Eν` [Q`] − Eν`−1 [Q`−1]. The algorithm is
summarised in Algorithm 3.

We start on level 0 by creating a sufficiently long Markov chain {Θ̃j
0}j≥0 using Algorithm 1 with

pCN proposal distribution q0 [11] (see (5.3) below for details). Let Q̃j0 := G(p0(Θ̃j
0)) be the sample of

the output quantity of interest associated with the jth sample of the auxiliary chain {Θ̃j
0}j≥0 on level 0.

The samples in this chain are correlated, but by subsampling it with a sufficiently large rate t0 ∈ N, we
obtain independent samples. The typical rule in statistics to achieve independence is to choose t0 to be
twice the integrated autocorrelation time τ̃0 of the Markov chain {Q̃j0}j≥0. In practice, we found that
much shorter subsampling rates were sufficient (see below).

Then, on level 0 < k ≤ `− 1, we use the independent samples created on level k− 1 in Algorithm 2,
to recursively create a Markov chain {Θ̃j

k}j≥0 on level k. The proposal distribution qk,F for the modes
that are added on level k is again chosen to be a pCN random walk (see (5.4) below for details).
We subsample this chain again with sufficiently large rate tk ∈ N to obtain independent samples on
level k. Finally, we set Θn

`−1 := Θ̃
nt`−1

`−1 . In summary, to produce one independent sample Θn
`−1 on

level ` − 1, we need to compute Tk :=
∏`−1
k′=k tk′ samples, on each of levels k = 0, . . . , ` − 1. Since the
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acceptance probability αkML(Θ̃′k|Θ̃
j
k) converges to 1, as k increases (cf. Lemma 4.7), and since we are

using independent proposals from level k − 1, the integrated autocorrelation times τ̃k of the auxiliary
chains {Θ̃j

k}j≥0, k = 1, . . . , `− 1, converge to 1, i.e. the samples are essentially independent for large k.
As a consequence Tk is actually of the same order as the autocorrelation time of samples that Algorithm 1
with pCN proposals would produce on level k (see below for more details).

At the jth state of the auxiliary chain on level 0, the pCN proposal from the standard multivariate
normal prior distribution is generated as follows:

(Θ̃′0)i =
√

1− β2
0 (Θ̃j

0)i + β0 Ψi , i = 1, . . . , R0 . (5.3)

Here, Ψi ∼ N (0, 1) and β0 is a tuning parameter used to control the size of the step in the pCN random
walk [11]. Similarly, the proposal Θ̃′k,F for the fine modes at the jth state of the auxiliary chain on level
k ∈ {1, . . . , L} is generated by

(Θ̃′k,F )i =
√

1− β2
k (Θ̃j

k,F )i + βk Ψi , i = 1, . . . , Rk −Rk−1 . (5.4)

The actual values of βk = 0.1, for all k = 0, . . . , L, that are used in all the calculations that follow were
chosen after carrying out a series of preliminary tests to achieve “good” mixing properties.

As in (2.2), in practice, the first j0
k samples from each of the auxiliary chains are discarded by

prescribing a “burn-in” period. We choose the length j0
k of the “burn-in” period on level k to be twice

the integrated autocorrelation time τ̃k.

Multilevel estimator. We can now use the independent samples Θn
`−1 ∼ ν`−1 produced by Algorithm 3

above in Algorithm 2 to produce samples θn` of the fine chain on level `, and thus samples Y n
` :=

G(p`(θ
n
` )) − G(p`−1(Θn

`−1)) for the estimator Ŷ MC
`,N`

of Eν` [Q`] − Eν`−1 [Q`−1] in (3.3). The samples

for the estimator Q̂MC
0,N0

on level 0 are produced with Algorithm 1 using again pCN-proposals. This

completes the definition of the multilevel MCMC estimator Q̂ML
L,{N`} in (3.4). It only remains to decide

on an optimal sample size N` on each level that will ensure that the total sampling error is below the
prescribed tolerance and that the total cost of the estimator is minimised.

Let τ` be the integrated autocorrelation time of the chain Y n
` (resp. Qn0 ), for ` = 1, . . . , L (resp.

` = 0), and let s2
` be the sample variance on level `. Then N eff

` := N`/τ` is the effective sample size

on level ` and s2
`/N

eff
` is an estimate of the variance of the estimator Ŷ MC

`,N`
. Our aim is to achieve the

following bound on the total sampling error for the multilevel MCMC estimator:

L∑
`=0

s2
`

N eff
`

≤ ε2

2
, (5.5)

for some prescribed tolerance ε. In what follows, we will choose ε such that the bias error on level L is
ε2

2 and thus the two contributions to the mean square error in (3.6) are balanced.
To decide on a cost-optimal strategy for the choice of the N`, we first need to discuss the cost per

sample. Recall that C` denotes the cost to evaluate Q` for a single sample Θ` from the prior on level `.
However, to quantify the cost of the estimator Ŷ MC

`,N`
on level `, we also need to take all the samples

in the auxiliary chains on the coarser levels in Algorithm 3 into account, as well as the integrated
autocorrelation time τ` of the chain {Y n

` }. Recalling that tk is the subsampling rate on level k in

Algorithm 3 and that Tk =
∏`−1
k′=k tk′ , the total cost to produce one independent (effective) sample is

Ceff
` := dτ`e

(
C` +

`−1∑
k=1

Tk Ck

)
. (5.6)

24



Lag
0 100 200 300 400 500 600

A
ut

oc
or

re
la

tio
n 

F
un

ct
io

n

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60
Sub-Sampling Rate, t0

80 100

Tw
o-

le
ve

l e
st

im
at

or
 fo

r E
[Y

1]

0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

Figure 1: Left: Autocorrelation function for a typical (burnt-in) coarse level chain {Qn0} with an

integrated autocorrelation time of τ0 ≈ 86. Right: Plot of E
[
Ŷ MC

1

]
against subsampling rate t0; the

solid line shows the computed results whilst the dashed lines give the two-sided 95% confidence interval.

As in the case of standard multilevel MC with i.i.d. samples, the total cost of the multilevel estimator
is minimised, subject to the constraint (5.5), when the effective number of samples on each level satisfies

N eff
` =

2

ε2

(
L∑
`=0

√
s2
`Ceff
`

)√
s2
`

Ceff
`

(5.7)

as described in [18, 9]. In practice, the optimal number of samples can be estimated adaptively after
an initial number of samples to get an estimate for s2

` (see again [18, 9] for standard MLMC).
In all calculations which follow we simultaneously run P parallel chains. This allows for an efficient

parallelisation and aids exploration of multi-modal posterior distributions. Furthermore the calculation
of the total sampling error (5.5) is simplified. The parallel chains provide P independent estimates for
Ŷ MC
` . Therefore, using standard statistical tools, the sampling error on each level can be calculated

without the need for accurate estimates of the integrated autocorrelation times. For the implementation
considered here we chose P = 128 and distributed the computations across 128 processors.

5.2 Two-Level Results

We start with a two level test to investigate the additional bias created in Algorithm 2 due to the
dependence of the coarse samples from the recursive subsampling procedure in Algorithm 3 and how
that bias depends on the subsampling rate tk. We choose two grids with m0 = 8 and m1 = 16 and fix the
numbers of KL modes to be R0 = R1 = 20. The data is generated synthetically from a single random
sample from the prior distribution computed on grid level 4, i.e. with m4 = 128. The observations Fobs
are taken to be the pressure values at 16 uniformly spaced points interior to the domain. The data
fidelity is set to σ2

F = 10−4 on both levels.
We first computed the autocorrelation function for a typical (burnt-in) coarse level chain {Qn0} (see

Fig. 1(left)) and note that the integrated autocorrelation time is approximately τ0 ≈ 86 in this case. We
then ran Algorithms 2 and 3, for different subsampling rates from t0 = 1 to 100 > τ0, until the standard
error for the estimator Ŷ MC

1 reached a prescribed tolerance of ε = 2.5 × 10−4. Fig. 1(right) shows the

expected value of EΘ1 [Ŷ MC
1 ] as a function of t0, as well as the two-sided 95% confidence interval, i.e.

EΘ1 [Ŷ MC
1 ]± 1.96 ε. We note that Eν1 [Q1]− Eν0 [Q0] ≈ E{Θn1 }[Q̂

MC
1 ]− E{Θn0 }[Q̂

MC
0 ] ≈ 0.0222, calculated

from two independent standard MCMC runs to a tolerance of ε = 2.5× 10−5 on each level.
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Figure 2: Left: Synthetic data used in Section 5.3. Right: Posterior sample created by our algorithm
on grid level 4. For both plots, data points are marked by crosses.

We note that, for the example considered here, the additional bias error due to the dependence of
the samples is less than 30% even if no subsampling is used (i.e. t0 = 1). In practice, a value of t0 = 50
would be sufficient to reduce the bias to a negligible amount (< 1%), given all the other bias errors
due to FE discretisation, KL truncation and Metropolis-Hastings sampling. However, to be on the safe
side for all the calculations that follow we take the subsampling rate equal to the smallest integer that
is bigger than our estimate of the integrated autocorrelation time, i.e. t` = dτ̃`e.

5.3 Comparison of MLMCMC with a standard single-level MCMC estimator

We now test the full MLMCMC Algorithm, using the same coarsest grid with m0 = 8 and considering
up to five levels in our method with a uniformly increasing number of KL modes across the levels from
R0 = 50 to R4 = 150. As for the two level example, the data is generated synthetically from a single
random sample from the prior distribution on level 4, see Fig. 2(left). We note that since R4 = 150
here, the data differs slightly from that used in the two-level results in Sect. 5.2 (although we used
the same random numbers for the first 20 KL modes). The fidelity parameter was again chosen to
be σ2

F,` = 10−4, for all ` = 0, . . . , 4. A typical sample from the posterior distribution on grid level 4,
produced by our multilevel algorithm, is shown in Fig. 2(right).

We compare the performance of our new multilevel method to standard Metropolis-Hastings MCMC
with pCN proposal distribution (again with tuning parameter β` = 0.1). The cost C` to compute one
individual sample of Q` on level ` with our code is shown in actual CPU time in Fig. 3(left), obtained
on a 2.4GHz Intel Core i7 processor. The cost in FreeFEM++ is dominated by the assembly of the FE
stiffness matrix and so it grows like O(h−2

` ) = O(M`). We believe that this behaviour is representative
for problems of this size when the uniform grid structure is not exploited in the assembly process
and that these CPU times are competitive. For larger problem sizes, the cost of the linear solver will
become the dominant part. However, for the MLMCMC algorithm we are really interested in the cost
Ceff
` defined in (5.6) to compute one independent sample on level ` using Algorithms 2 and 3 with
tk = dτ̃ke. These times are shown in Fig. 3(right). They are compared to the cost to produce one
independent sample on level ` using the standard MCMC Algorithm 1. The integrated autocorrelation
times τ̃` for the auxiliary chains {Q̃n` } on each level in our example are given in Tab. 2. Note that since
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Figure 3: Left: Cost (CPU time in seconds) to compute one sample of Qh as a function of h. Right:
Cost Ceff

` per independent sample on level `.

the coarse samples are (essentially) independent, the integrated autocorrelation times τ` for the chains
{Y n

` } are almost identical, i.e. τ` ≈ τ̃`.

Level 0 1 2 3 4

τ̃` 136.23 3.66 2.93 1.46 1.23

Table 2: Integrated autocorrelation times of the auxiliary chains {Q̃n` } on levels ` = 0, . . . , 4.

In Fig. 4 we now compare the performance of our MLMCMC method with finest level L varying
from 1 to 4 with standard MCMC on the same level. The tolerance εL for each of the cases is chosen
such that the the bias error is less than εL/

√
2, leading to ε1 = 0.04, ε2 = 0.017, ε3 = 0.013 and

ε4 = 0.0067, respectively. The estimated bias error decays with about O(h) which is faster than what
we would expect for the functional in (5.2) which does not satisfy Assumption A2 (see [34]). It is
likely that this is because the second term in (4.13), i.e. the bias error in the posterior distribution,
dominates. That bias error is due to the FE approximation of pressure evaluations at points here, which
are expected to converge with O(h log |h|)) (see [35]). The slight variation in the convergence rate could
mean that some features in the posterior were only picked up on a sufficiently fine grid. The optimal
numbers N eff

` of (independent) samples on each level are chosen according to formula (5.7). They are
plotted in Fig. 4(left). Please note that these are numbers of independent samples. The total number
of samples computed on the coarser levels is much larger. For example, for the four level estimator
we needed about 4× 107 actual PDE solves for all the auxiliary chains on level 0 combined. However,
each of these solves is about 250 times cheaper than a solve on level 4. Because τ4 ≈ τ̃4 = 1.23, we see
from Fig. 4(left) that we need only about 562 PDE solves on level 4. These are huge savings against
standard MCMC which requires about 4×106 solves on level 4 to achieve the same sampling error. We
can see this clearly in the overall cost comparison in Fig. 4(right). The gains are even more pronounced
if we relax the overly conservative choice of tk = dτ̃ke for the subsampling rates.

In our final Fig. 5, we confirm our theoretical results and plot our estimates for Vν`,`−1 [Y n
` ] (left)

and for Eζ

[
(1 − α`ML(θ′`|θn` ))

]
(right). Ignoring the last data point in each of the plots, which seem to

be outliers, the variance seems to converge with almost O(h2) and the multilevel rejection probability
slightly faster than O(h). We are not sure whether this means that the bounds in Lemma 4.6 and in
Lemma 4.7 are both slightly pessimistic or whether this is just some pre-asymptotic behaviour.
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.

Remark 5.1. It is worth to point out that the recursive independence sampling in Algorithm 3 also
brings significant savings if used to produce proposals for a standard MCMC algorithm, as the com-
parison of the cost per independent sample in Fig. 3(right) clearly shows. This is related to the delayed
acceptance method of [7]. The multilevel approach also provides a very efficient burn-in method, due
to the significantly reduced integrated autocorrelation times on the finer levels and since most of the
burn-in happens on the coarsest level. This is related to the approach in [15].

6 Conclusion

Bayesian inverse problems in large scale applications are often too costly to solve using conventional
Metropolis-Hastings MCMC algorithms due to the high dimension of the parameter space and the large
cost of computing the likelihood. In this paper, we employed a hierarchy of computational models to
define a novel multilevel version of a Metropolis-Hastings algorithm, leading to significant reductions in
computational cost. The main idea underlying the cost reduction is to build estimators for the difference
in the quantity of interest between two successive models in the hierarchy, rather than estimators for

28



the quantity itself. The new algorithm was then analysed and implemented for a single-phase Darcy
flow problem in groundwater modelling, confirming the effectiveness of the algorithm.

The algorithm presented in this paper is not reliant on the specific computational model underly-
ing the simulations, and is generally applicable. The underlying computational model will in general
influence the convergence rates α, α′, β and β′ of the discretisation errors, and the growth rate γ of
the cost of the likelihood computation (cf Theorem 3.4), which in turn govern the cost of the standard
and multilevel Metropolis-Hastings algorithms. The gain to be expected from employing the multilevel
algorithm is always significant, and the gain is in fact larger for more challenging model problems, where
the values of α, α′, β and β′ are small and γ is large.

The algorithm also allows for the use of a variety of proposal distributions. The crucial result in
this context is the convergence of the multilevel acceptance probability to 1 (cf. Lemma 4.7), which in
general has to be verified for each proposal distribution individually, but is expected to hold for most
proposal distributions.
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