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Discussion of “Of quantiles and expectiles: consistent scoring

functions, Choquet representations and forecast rankings” by

W. Ehm, T. Gneiting, A. Jordan and F. Krüger

J. R. Statist. Soc. B, Vol. 78, Issue 3 (2016, to appear)

Miguel de Carvalho (Pontificia Universidad Católica de Chile),
António Rua (Banco de Portugal, NOVA School of Business and Economics).

We congratulate the authors for this thought-provoking lesson for forecasters. In the space avail-
able we focus on discussing the possibility of using summary measures based on Murphy diagrams
for suggesting ‘optimal’ ways of combining forecasts. In principle one would expect that in many set-
tings of applied interest the performance of competing forecasters would be more like the inflation ex-
ample in Section 4.1, where the SPF dominates for some values of⇥ = {x11, x12, y1, . . . , xn1, xn2, yn}
but not on others. Typically in cases where there is no clear cut forecast dominance, one could
wonder how does the Murphy diagram of forecast combinations compares. For example, how does
the Murphy diagram of the average of both forecasts, xi3 = xi1/2 + xi2/2, compares with the SPF
(xi1) and Michigan (xi2) forecasts? As can be seen in Fig. 1 (a), the average of forecasts performs
better on some values on some regions of ⇥ but not on others. One could ask: “Is there any other
convex combination performing ‘better’? How to define ‘better’ in terms of the Murphy diagram?”
To approach these questions consider the forecast combination xi3(w) = wxi1 + (1� w)xi2, and—
extending ideas from Section 3.3—define the area under the Murphy diagram and the maximum of

the Murphy diagram respectively as

A(w) =

Z ✓+

✓�
s3(✓, w) d✓, B(w) = max

✓2[✓�,✓+]
s3(✓, w),

where ✓

� and ✓

+ respectively denote the min and max of {x11, x12, x13, y1, . . . , xn1, xn2, xn3, yn},
and s3(✓, w) = n

�1
Pn

i=1 S✓(xi3(w), yi) with w 2 [0, 1]. Smaller values of these summaries of
the Murphy diagram are compatible with a good forecast accuracy. Indeed, if there was a value
of w = w

0 for which the combination of forecasts coincided with the data, then A(w0) = 0 and
B(w0) = 0. Thus, a natural way of defining the ‘best’ convex linear combination of forecasts
using Murphy diagrams is as xi3(w⇤

· ), where w

⇤
A = argminw2[0,1] A(w), or through the minimax

criteria w

⇤
B = argminw2[0,1] B(w). We call to xi3(w⇤

· ) as a Murphy optimal combination forecast.
For example, for the inflation forecasts w

⇤
A = 0.65 and w

⇤
B = 0.94; also, A(w⇤

A) = 0.38, whereas
A(1) = 0.41 (SPF), A(0) = 0.49 (Michigan), and A(1/2) = 0.39 (mean of forecasts); in addition,
B(w⇤

B) = 0.162, B(1) = 0.163, B(0) = 0.195, and B(1/2) = 0.176. See Fig. 1 (b) and (d) for the
plots of A(w) and B(w) over the [0, 1] interval.
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Figure 1: (a) Murphy diagrams for inflation example (orange: SPF; blue: Michigan; dashed black: average

combination forecast; solid black: Murphy optimal combination forecast, w⇤
A = 0.65). (b) Area under the Murphy

diagram. (c) Murphy diagrams for inflation example (orange: SPF; blue: Michigan; solid black: Murphy optimal

combination forecast, w⇤
B = 0.94). (d) Maximum of the Murphy diagram.
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