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Spectral Density Ratio Models for Multivariate Extremes

Miguel de Carvalho and Anthony C. Davison

Abstract

The modeling of multivariate extremes has received increasing recent attention because of its

importance in risk assessment. In classical statistics of extremes, the joint distribution of two or

more extremes has a nonparametric form, subject to moment constraints. This paper develops

a semiparametric model for the situation where several multivariate extremal distributions are

linked through the action of a covariate on an unspecified baseline distribution, through a so-

called density ratio model. Theoretical and numerical aspects of empirical likelihood inference for

this model are discussed, and an application is given to pairs of extreme forest temperatures.

key words: Air temperature; Empirical likelihood; Exponential tilting; Forest microclimate; Multi-

variate extreme values; Semiparametric modeling; Spectral distribution.

1 INTRODUCTION

As human society becomes more complex, it becomes more vulnerable to rare but catastrophic events,

such as the Fukushima nuclear accident, widespread flooding, or turbulence in financial markets. As-

sessment of the risks of such events involves the estimation of small probabilities and hence entails
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extrapolation into the tails of multivariate distributions, often beyond any existing data. The mathe-

matical basis for such extrapolation is the statistics of extremes, which is an active domain of current

research. Published applications include air quality monitoring (He↵ernan and Tawn 2004), wave

surge analysis (Ramos and Ledford 2009), aviation safety (Einmahl et al. 2009), precipitation studies

(Jarušková 2009) and finance (Embrechts et al. 2009). A central concept in classical multivariate ex-

treme value theory is the so-called spectral distribution, which determines the degree of dependence

among extremes of di↵erent variables. Such a distribution must satisfy certain moment constraints,

and it is awkward both to devise suitable models and to find estimators that obey the constraints. A

variety of parametric models have been proposed, for small to moderate numbers of dimensions (Tawn

1988; Coles and Tawn 1991; Ballani and Schlather 2011; Cooley et al. 2010; Kotz and Nadarajah 2000,

chap. 3). Boldi and Davison (2007) introduced a constrained mixture of Dirichlet distributions which

is weakly dense in the class of all possible spectral measures (see also Sabourin and Naveau, 2013), and

Einmahl and Segers (2009) proposed a nonparametric estimator that imposes the marginal constraints

using empirical likelihood (Owen 1988, 2001).

However, all these approaches consider only a single spectral distribution, whereas it is sometimes

necessary to consider a family of spectral measures, H
0

, . . . , HK , in order to capture the e↵ect of

explanatory variables on joint extremes. In this paper, we discuss the joint modeling of extremal events

when data are gathered from several populations, to each of which corresponds a vector of covariates.

The work is motivated by bivariate data on air temperatures at several sites around Switzerland,

collected in order to understand how extremely high temperatures under the forest canopy relate to

those in a nearby the open field (Renaud and Rebetez, 2009; Ferrez et al., 2011; Renaud et al., 2011).

Each site is characterized by features such as its altitude, the soil type and dominant tree species, and

the scientific questions require not merely the fitting of distributions to the extreme temperatures, but

also quantification of how their joint distribution depends on the features. This is of interest for reasons

such as maximizing the shelter o↵ered by di↵erent types of forest during heat waves or the design of

wooded parks in urban areas.

A simple approach to the modeling of such data would be to fit parametric distributions to the

individual subpopulations, with the parameters depending on the covariates through some form of

regression model. We take a di↵erent approach, for several reasons. First, the number of flexible
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parametric models is limited, so that a good fit to all the subpopulations is not assured by any single

model; moreover the interpretation of single parameters in terms of the distributional shape may be

indirect. Second, the focus of interest in our application is on the e↵ects of the covariates, so we prefer

to avoid choosing a particular parametric model. Third, just as there are e�ciency gains from using

threshold exceedances rather than block maxima when modeling extrema (Coles, 2001), it seems less

wasteful of data to attempt to combine the models for the individual subpopulations. Our strategy

allows us to estimate each of the spectral distribution functions Hk using all the samples. Beyond the

obvious e�ciency gains, this borrowing of strength also allows improved estimation for subpopulations

whose samples are too small to be individually informative about their tails.

The key innovation here is a semiparametric spectral density ratio model, wherein the spectral

distribution functions are unspecified but related through a known weight function modulated by so-

called tilting parameters. In a second step a regression is conducted, where the tilting parameters

themselves are dependent variables. Related models have been applied in logistic discrimination (Qin

and Zhang 1997), kernel density estimation (Fokianos 2004), case-control studies (Kedem et al. 2009),

and instrumental variable methods (Cheng et al. 2009). The model proposed here di↵ers from these

because of the imposition of marginal moment conditions, the inclusion of covariates, and the setting

of rare event modeling. One issue is that in the extremal context the multivariate model applies only

as a limit, which is not attained in finite samples, so it cannot be true that our model, or indeed any

other simple formulation, applies exactly. In common with much of the extremal literature we ignore

this issue in the main development, but discuss it in Section 5.

The structure of our paper is as follows. In the next section we introduce our model and corre-

sponding inference methods. In Section 3 we assess the performance of our methods by simulation, and

in Section 4 we provide a real data application on extreme forest temperatures. The appendix includes

proofs of the main results; further details can be found in the online Supplementary Material.
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2 SPECTRAL DENSITY RATIO MODEL

2.1 Background on Statistics of Extremes

Before introducing models for multivariate extremes, we start with basic notions on univariate extremes.

Let Y
1

, . . . , YN be independent and identically distributed random variables with distribution function

F . A central result is the extremal types theorem, which states that if there exist sequences of constants

{aN > 0} and {bN}, such that as N ! 1 the distribution of the rescaled sample maximum MN =

a�1

N {max(Y
1

, . . . , YN)�bN} converges to a non-degenerate limit, then this limit must be the generalized

extreme value distribution (Coles, 2001, Theorem 3.1)

G(y) = exp


�
⇢
1 + ⇠

✓
y � µ

�

◆��1/⇠

+

�
. (1)

Here we write x
+

= max(x, 0), and µ 2 R, � > 0, and ⇠ 2 R are respectively location, scale, and

shape parameters. If ⇠ > 0, ⇠ = 0, or ⇠ < 0 we say that F is in the domain of attraction of a Fréchet,

Gumbel, or reverse Weibull distribution; the unit Fréchet distribution has ⇠ = � = µ = 1.

The analogue of the extremal types theorem in the D-dimensional setting is Pickands’ (1981) repre-

sentation theorem. Let Y
1

, . . . ,YN be independent and identically distributed vectors of continuous ran-

dom variables on RD. Pickands’ result states that if there exist sequences of vector constants {aN > 0}

and {bN} such that the rescaled component-wise maximum MN = a

�1

N {max(Y
1

, . . . ,YN) � bN} con-

verges in distribution as N ! 1, then its limiting distribution must be a multivariate extreme value

distribution (Beirlant et al., 2004, p. 254), i.e.,

P (MN  y) ! G(y), y 2 [�1,1]D.

It is convenient to transform this limiting distribution to have unit Fréchet marginal distributions,

exp(�1/yd), for yd > 0 and d = 1, . . . , D; since the univariate margins must be of form (1), this is

always possible using the inverse of the transformation y 7! {1 + ⇠(y � µ)/�)}1/⇠
+

. It then turns out

that G has the form

GH(y) = exp

⇢
�D

Z

SD

max

✓
w

1

y
1

, . . . ,
wD

yD

◆
dH(w)

�
, y = (y

1

, . . . , yD) 2 [0,1]D, (2)

where H is the so-called spectral distribution function, or spectral measure, which has support in the

unit simplex SD =
�
w 2 RD :

PD
d=1

wd = 1, wd � 0, d = 1, . . . , D
 
. Comparison of (1) and (2) reveals
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that a major di↵erence between the limiting distributions of univariate and multivariate maxima is

that (1) is parametric, whereas (2) depends upon a probability measure H. The measure H determines

the degree of association between the extremes of the D random variables, and must only satisfy the

normalization and moment conditions

Z

SD

dH(w) = 1,

Z

SD

w dH(w) = D�1

1D, (3)

where 1D is the D-vector of ones. The moment constraint in (3) can be obtained by letting yd ! 1,

for d 6= d0, in equation (2), and noting that GH has unit Fréchet margins; analogous constraints would

be produced by transformation to any other set of known marginal distributions.

A pseudo-polar transformation is helpful for describing the level of dependence between the extremes

of two random variables, and hence for grasping the role played by H: if we map Yi into the pseudo-

polar coordinates (Wi = R�1

i Yi, Ri =
PD

d=1

Yi,d), where Ri is the pseudo-radius, then the pseudo-angle

Wi has measure H on SD in the limit as Ri ! 1. When D = 2, the unit simplex SD is simply the

unit interval, so we may write w
1

= w, w
2

= 1�w, where w 2 [0, 1]. Then if extreme values of the two

variables tend to occur individually, H places most of its mass close to the limits w = 0 and w = 1,

whereas if the extremes tend to occur together then H places mass mainly near w = 1/2; w = 0 and

w = 1 correspond to the axes y
1

= 0 and y
2

= 0, whereas w = 1/2 corresponds to the bisector of

the first quadrant. In the multivariate setting the interpretation is analogous: extremal independence

corresponds to a spectral distribution placing equal masses D�1 at the vertices of SD, giving GH(y) =

exp(�
PD

d=1

y�1

d ), whereas perfect extremal dependence corresponds to a spectral distribution having

unit mass at the barycenter D�1

1D of SD, giving GH(y) = exp{�1/min(y
1

, . . . , yD)}.

This pseudo-polar representation also arises in a point process characterization (Coles, 2001, sec. 8.3),

under which the rescaled observations converge in distribution to a Poisson process whose intensity

measure on R
+

⇥ SD factorizes as

⇤(dr ⇥ dw) = D
dr

r2
⇥ dH(w); (4)

the angular dispersion of its points is controlled by H, independent of the pseudo-radial component r.

In our setting we assume that we have independent sets of observations {wk,1, . . . ,wk,nk
} (k =

0, . . . , K) from K + 1 unknown spectral distributions H
0

, . . . , HK . The measures must satisfy the
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normalization and moment constraints
Z

SD

dHk(w) = 1,

Z

SD

w dHk(w) = D�1

1D, k = 0, . . . , K. (5)

The next section introduces the spectral density ratio model for modeling multi-sample multivariate

extremes.

2.2 Spectral Density Model

Later we focus our attention on the simplex SD on which spectral measures are defined, but for now

we let Hk denote any distribution function. Our interest lies in the measures H
0

, . . . , HK , which are

assumed to be linked through a positive function g of known form,
⇢
(H

0

, . . . , HK) :
dHk(w)

dH
0

(w)
= g(w, k), for some g(w, k) > 0; k = 0, . . . , K

�
. (6)

Here  = ( 
0

, . . . , K)T is a finite-dimensional parameter vector, and we set g(w, 
0

) ⌘ 1 for identifi-

ability. The specification (6) is common to many models (Efron and Tibshirani, 1996; Qin and Zhang,

1997; Fokianos et al., 2001; Fokianos, 2004; Cheng et al., 2009). Under (6) the distributions Hk are

left unspecified but are related through a known weight function, with the measure H
0

acting as a

reference from which the other K measures are obtained through a distortion controlled by g and  k.

This type of semiparametric approach provides gains in e�ciency by estimating each of the Hk on the

basis of the entire dataset (Gilbert et al., 1999; Fokianos, 2004; Kedem et al., 2009).

To motivate this approach, consider the two-sample univariate case in which g(w;↵, �) = exp{↵+

�c(w)}, where ↵ and � are called tilting parameters and c(w) is a known distortion function; for

concreteness, let c(w) = w. Then the log-ratio of the densities log{dH
1

(w)/dH
0

(w)} = ↵+�w is linear

in the parameters, and thus H
1

(w) is a linear exponential family with baseline distribution H
0

(w)

and canonical parameter and statistic � and w respectively; �↵ ⌘ �↵(�) is the cumulant generator.

This model has links to the logistic regression model, and an important property, the independence of

irrelevant alternatives, implies that inferences are independent of the baseline (Fokianos, 2004).

Specification (6) turns out to be natural for modeling the multi-sample multivariate extreme value

framework discussed in Section 2.1, with the constraints (5) restated as
Z

SD

g(w, k) dHk(w) = 1,

Z

SD

w g(w, k) dHk(w) = D�1

1D, k = 0, . . . , K. (7)
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Below we refer to the general semiparametric setting (6), subject to the normalization and marginal

moment constraints (7), as the spectral density ratio model. We propose to fit it through empirical

likelihood methods (Owen, 1988, 2001).

2.3 Estimation

For simplicity below we sometimes denote the combined sample {w
0,1, . . . ,w0,n0 , . . . ,wK,1, . . . ,wK,nK}

by {v
1

, . . . ,vn}. The likelihood of the (K +1)-sample multivariate extreme value problem under (6) is

L ( , H
0

) =
KY

k=0

nkY

j=1

dHk(wk,j) =
nY

i=1

pi

KY

k=0

nkY

j=1

g(wk,j, k), (8)

where pi = dH
0

(vi) denotes the size in the jump of the baseline spectral distribution function H
0

at

the observed vi.

We restrict our attention to the tilting function g(w, k) = exp{↵k+�kc(w)}, where  k = (↵k, �k)T,

and for identifiability set ↵
0

= �
0

= 0. We suppress the dependence of ↵ = (↵
1

, . . . ,↵K)T on � =

(�
1

, . . . , �K)T, and vice versa, though the normalization constraints in (7) link these parameters. Thus

the loglikelihood obtained from (8) is

`(↵,�, H
0

) =
nX

i=1

log pi +
KX

k=0

nkX

j=1

{↵k + �kc(wk,j)}. (9)

Empirical likelihood estimation of the spectral density ratio model involves maximizing (9), subject to

the empirical versions of constraints (7), viz,

pi � 0, vi 2 SD,
nX

i=1

pi = 1,
nX

i=1

pivi = D�1

1D,

nX

i=1

pi exp{↵k + �kc(vi)} = 1,
nX

i=1

pivi exp{↵k + �kc(vi)} = D�1

1D, k = 1, . . . , K.

(10)

Using an approach similar to that of Qin and Lawless (1994), it is shown in Appendix A.1 that if we

use Lagrange multiplier procedures to profile pi subject to the normalization and marginal moment
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constraints (10), then the jump sizes for the baseline spectral distribution function can be written as

pi ⌘ pi(↵,�,�) =
1

n

1
PK

k=0

exp{↵k + �kc(vi)}{⇢k + �T
k(vi �D�1

1D)}

=
1

n

1

⇢
0

+ �T
0

(vi �D�1

1D) +
PK

k=1

exp{↵k + �kc(vi)}{⇢k + �T
k(vi �D�1

1D)}
,

(11)

where ⇢k = nk/n, and � = (�
0

, . . . ,�K)T denotes the Lagrange multipliers corresponding to the

constraints in (10). Thus apart from a constant the profile empirical loglikelihood for � can be written

as

`
p

(�) = max
↵,�,H0

`(↵,�,�, H
0

)

= �
nX

i=1

log


⇢
0

+ b
�

T
0

(vi �D�1

1D) +
KX

k=1

exp{b↵k + �kvi}{⇢k + b
�

T
k(vi �D�1

1D)}
�

+
KX

k=1

nkX

j=0

{b↵k + �kc(wk,j)},

(12)

where b
↵ = b

↵(�) and b
� = b

�(�) are the joint solutions to the equations
8
>>><

>>>:

1

n

nX

i=1

exp{↵k + �kc(vi)}PK
k=0

exp{↵k + �kc(vi)}{⇢k + �T
k(vi �D�1

1D)}
= 1,

1

n

nX

i=1

vi exp{↵k + �kc(vi)}PK
k=0

exp{↵k + �kc(vi)}{⇢k + �T
k(vi �D�1

1D)}
= D�1

1D,

k = 0, . . . , K. (13)

Setting b
� = argmax� `p(�), the maximum likelihood estimator of the size of the jump of the

baseline spectral density function turns out to be

bpi =
1

n

1

⇢
0

+ b
�

T
0

(vi �D�1

1D) +
PK

k=1

exp{b↵k + b�kc(vi)}{⇢k + b
�

T
k(vi �D�1

1D)}
,

so the maximum likelihood estimator of the baseline spectral measure is

bH
0

(·) =
nX

i=1

bpi�vi(·)

=
1

n

nX

i=1

�vi(·)
⇢
0

+ b
�

T
0

(vi �D�1

1D) +
PK

k=1

exp{b↵k + b�kc(vi)}{⇢k + b
�

T
k(vi �D�1

1D)}
,

(14)

where �·(·) denotes the Dirac measure. The other spectral distributions are estimated as

bHk(·) =
nX

i=1

bpi exp{b↵k + b�kc(vi)}�vi(·)

=
1

n

nX

i=1

exp{b↵k + b�kc(vi)}�vi(·)
⇢
0

+ b
�

T
0

(vi �D�1

1D) +
PK

k=1

exp{b↵k + b�kc(vi)}{⇢k + b
�

T
k(vi �D�1

1D)}
,

(15)
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for k = 1, . . . , K.

2.4 Inference

The following result establishes the asymptotic normality of the semiparametric empirical likelihood

estimator and a version of Wilks’ theorem for the spectral density ratio model; throughout all asymp-

totic considerations, we assume that ⇢k = nk/n ! ⇢⇤k 2 (0, 1), so that every population is non-trivially

represented as the total sample size n = n
0

+ · · · + nK ! 1. Proofs may be found in the Appendix

and online Supplementary Material.

Theorem 1. Suppose that the density ratio model applies with data generated using ‘true’ parameter

� = �⇤, and that
R
SD

v

T
v dHk(v),

R
SD

c(v)2 dHk(v) < 1, for k = 0, . . . , K. Then:

(a) the equation @`
p

/@� = 0 admits a solution b
� that is weakly consistent for �⇤, and

p
n(b� � �⇤)

d! N(0,⌃�1), n ! 1,

where
d! denotes convergence in distribution, b� = argmax�2RK `

p

(�) is the maximum empirical

likelihood estimator of �, and the symmetric positive definite matrix ⌃ is defined in (35); and

(b) the empirical likelihood ratio statistic satisfies 2{`
p

(b�)� `
p

(�⇤)} d! �2

K as n ! 1.

A corollary gives the limiting distribution of the empirical likelihood ratio statistic for � 2 B, where

B = {� 2 RK : �
1

= · · · = �m = 0} and m < K. Although this B is likely to be the most used in

practice, it is easy to check that the result also holds for null hypotheses of the form �k = �0

k , for

k = 1, . . . ,m.

Corollary 2. Under the conditions of Theorem 1 and if �⇤ 2 B, then 2{`
p

(b�) � `
p

(b�B)}
d! �2

m as

n ! 1, where b
�B = argmax�2B `p(�) is the maximum empirical likelihood estimator of � restricted

to B.

Although Theorem 1 and Corollary 2 assure us that the usual properties of maximum likelihood

estimators and likelihood ratio tests apply in large samples, it will often be wiser to base inference on

bootstrap resamples. Empirical likelihood estimators and test statistics based on finite samples are
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known to deviate further from their asymptotic distributions than do their parametric counterparts,

and use of the bootstrap provides some insurance against this.

The one-sample empirical likelihood estimator Ḧk (Einmahl and Segers, 2009) provides a benchmark

to verify whether the specification of the weight function g(w, k) is appropriate. When modeling

bivariate extremes, we suggest following Qin and Zhang (1997) and using the statistics

�k = n1/2 sup
w2[0,1]

| bHk(w)� Ḧk(w)|, k = 0, . . . , K, (16)

to assess whether bHk and Ḧk di↵er significantly: if so, then this suggests that the weight function

is badly chosen. A p-value can be obtained by generating bootstrap samples {w?(b)
k,1 , . . . , w

?(b)
k,nk

} from

g(w, b k)d bH0

, and using the combined bootstrap sample V ?(b) = {v?(b)
1

, . . . , v?(b)n } to compute

�?(b)
k = n1/2 sup{| bHk(w)� Ḧk(w)| : w 2 V ?(b)}, k = 0, . . . , K, b = 1, . . . , B. (17)

We then compare the B bootstrapped statistics �?(b) with the values of (16) obtained with the combined

sample V = {v
1

, . . . , vn}, i.e., �obs

k = sup{| bHk(w)� Ḧk(w)| : w 2 V }. The p-value for the goodness of

fit test is then given, using the indicator function I, as

bPk =
1

B

BP
b=1

I(�?(b)
k � �obs

k ), k = 0, . . . , K.

Related approaches are believed to be among the best techniques for testing the tilt model (Cheng

et al., 2009, sec. 4), so their performance has been widely studied.

In principle it would be natural to extend (16) to the D-dimensional setting by replacing the

sup-norm with the multivariate Kolmogorov–Smirnov statistic of Justel et al. (1997), though its com-

putation seems di�cult for D > 2.

2.5 Covariates

To avoid complex model selection problems, we introduce covariate modeling only in a second stage. If

covariates had been introduced earlier, it could be troublesome to identify whether poor fit of a model

was due to the tilting function or to the covariate structure. Hence, after empirical likelihood inference

for the tilting parameters has been conducted, we study their association with p covariates of interest
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stored in a K⇥p design matrix X = (x
1

�x

0

, . . . ,xK �x

0

)T; here x
0

is the covariate associated to the

baseline population, for which �
0

= 0. Motivated by the asymptotic normality of the semiparametric

empirical likelihood estimator b�, we use a simple regression model wherein only b
� = (b�

1

, . . . , b�K)T ⇠ Q

is considered, so that

E(b� | X) = Xb, b = (b
1

, . . . , bp)
T, p = 1, . . . , K. (18)

Using the data {(xk, b�k)}Kk=0

, we propose to assess the e↵ect of each of the p covariates on the extremal

dependence by conducting inference using b. Consider the auxiliary variable Zk(b) = (xk �x

0

)T{b�k �

(xk � x

0

)Tb} and let pk = dQ(b�i). The empirical likelihood of b is

`(b) = sup

⇢
KP
k=0

log pk : pk � 0,
KP
k=0

pk = 1,
KP
k=0

pkZk(b) = 0

�
.

We choose model (18) for its simplicity but more general models could be used to describe the degree

of association between extremal dependence, as measured by the tilting parameters, and the covariates

of interest. Inference for the maximum empirical likelihood estimator eb = argmaxb2Rp `(b) can then

be performed using a Wilks’ theorem, which suggests a �2 calibration with coverage error of order

O(K�1) (Owen, 1991), though bootstrap calibration is preferable when K is small.

3 SIMULATION STUDY

3.1 Bivariate Spectral Density Ratio Model

We now set up a small simulation study on the properties of our procedures. To model the spectral

density corresponding to each subpopulation, we consider a family of symmetric Beta distributions,

dHk(w) =
1

B(�k)
w�k�1(1� w)�k�1dw, �k > 0, k = 0, . . . , K, (19)

where B(�) =
R
1

0

{u(1 � u)}��1du. The mean for each spectral density equals 1/2, so the constraints

(7) are satisfied. Using the distortion function c(w) = log{w(1� w)} we can rewrite (19) as
8
><

>:

dHk(w) = exp{ak + bkc(w)}dw,

(ak, bk) = (� logB(�k),�k � 1), k = 0, . . . , K.

11



Hence, making use of (19), we obtain the following spectral density representation of the (K+1)-sample

bivariate extreme value beta model,

dHk(w)

dH
0

(w)
= exp {↵k + �kc(w)} , (20)

where the tilting parameters are

(↵k, �k) = (log {B(�
0

)/B(�k)} ,�k � �
0

) , k = 0, . . . , K. (21)

A consequence of (21) is that (↵
0

, �
0

) = (0, 0), so this parametrization of the spectral density ra-

tio model (20) is identifiable. This model is closed, since tilting always produces a symmetric beta

distribution.

3.2 Numerical Exercise

We now report computational experience with the model described in Section 3.1. We use 1000 sim-

ulated data sets with K = 2 and n
0

= n
1

= n
2

= 60, chosen for comparability with the data in

Section 3.3. Here we consider �
0

= 0.5, �
1

= 1 and �
2

= 2, but our conclusions also hold for other pa-

rameter values. Given the computational cost of obtaining full optimization estimates, we have found it

best to use a two-step strategy, wherein one maximizes the unconstrained outer objective function (9)

with respect to  and then minimizes the inner dual problem with respect to the nuisance parameter

�. For large n the inner dual problem not only has much lower dimensionality than the corresponding

primal problem, but also has the advantage of being subject to a set of linear constraints that can

be removed using a pseudo-logarithmic function (Owen, 2001, p. 62). A similar two-step estimation

strategy is used by Chaudhuri et al. (2007), and a more general discussion on two-step nearly optimal

estimators that behave asymptotically like M -estimators can be found in van der Vaart (1998, p. 71).

Table 1 shows a summary of the estimates; the true values of the tilting parameters were computed

using (21). The estimates of the exponential tilting parameters and the Lagrange multipliers are on

average close to their true values, but the latter are much more variable. Table 1 also shows that the

estimates from the two-step method are on average close to the average full optimization estimates.

QQ-plots of the estimates, not shown here, confirm the approximate normality of the tilting parameter

estimators claimed in Theorem 1. To illustrate the asymptotic results obtained in the previous section

12



Table 1: Average estimates of tilting parameters and Lagrange multipliers, and their root mean square

errors (RMSE), based on 1000 simulations

k

Tilting parameters 0 1 2

True values (0, 0) (1.14, 0.50) (2.94, 1.50)

Average full optimization estimates — (1.19, 0.53) (2.96, 1.52)

RMSE — (0.52, 0.24) (0.81, 0.45)

Average two-step estimates — (1.21, 0.53) (3.08, 1.59)

RMSE — (0.46, 0.21) (0.76, 0.43)

k

Lagrange multipliers 0 1 2

True values 0 0 0

Average full optimization estimate 0.04 �0.13 0.08

RMSE 2.03 3.03 2.26

Average two-step estimates 0.03 �0.09 0.04

RMSE 1.97 3.01 2.23

we tested the null hypothesis that the baseline sample and sample 1 have the same form of extremal

dependence as the baseline sample, i.e., we tested ↵
1

= �
1

= 0. The rejection rate for comparing the

empirical likelihood ratio statistic with the 95% quantile of a �2

1

distribution was 78.7%, so a bootstrap

approach is preferable; to illustrate the performance of the bootstrap-based goodness of fit test in

Section 2.4, the Supplementary Material reports the p-values obtained for each of the 1000 simulated

data sets.

Figure 1 compares semiparametric empirical likelihood estimates of the spectral measures with those

based on the empirical likelihood estimate of Einmahl and Segers (2009), for a run with (�
0

,�
1

,�
2

) =

(0.1, 1, 5) and (n
0

, n
1

, n
2

) = (25, 50, 25). This represents a situation where one of the samples has more

extremes, from which the others can borrow strength.
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Figure 1: Spectral distribution functions estimated by empirical likelihood (upper panels, solid lines)

and using the spectral density ratio model (lower panels, solid line); the dashed lines represent the true

spectral distribution functions.
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Figure 2: Empirical likelihood ratio functions for the intercept, slope and quadratic e↵ects, for a

run of the simulation model considered in Section 3.3. The grey vertical reference lines delimit the

95% empirical likelihood confidence intervals, given by the parameter values for which the empirical

likelihood ratio exceeds the horizontal dashed line.

3.3 Regression

We now concentrate on the regression step, considering a simulation model based on the specification

b�k = �k + "k, "k
iid⇠ N(0, 1), k = 0, . . . , K, (22)

with �k = 2 + 0.5xk + 0.3x2

k; hence, conditional on obtaining b�k, the estimation target becomes

(b
1

, b
2

, b
3

) = (2, 0.5, 0.3). This simple model has connections with that to be applied in Section 3.3,

and, motivated by our real data application, we focus on simulating and assessing performance on a

setting where the number of samples is small to moderate, with K+1 = 15, 20, 30. Figure 2 shows em-

pirical likelihood ratio functions for the intercept, slope and quadratic e↵ects, obtained by simulating

20-tuples of tilting parameters according to (22). The corresponding 95% confidence intervals for b
1

(intercept), b
2

(slope), and b
3

(quadratic) are respectively [1.53, 2.63], [0.15, 1.12], and [0.26, 0.61].

The average interval lengths and coverage probabilities were estimated from 250 independent repli-

cates of (K +1)-tuples of tilting parameters simulated according to (22); we focus on the 95% nominal

confidence level, but similar conclusions apply for the 90% and 99% nominal confidence levels. Table 2

shows that the average interval length tends to reduce with K, with this reduction being relatively

more marked for slope and the quadratic e↵ect. In all cases the coverage probability is lower than the

nominal level, but its accuracy tends to increase with K.
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Table 2: Average lengths and empirical coverage probabilities (%) for 95% nominal confidence intervals

based on 250 random (K+1)-tuples of tilting parameters, simulated according to the model considered

in Section 3.3.

Total number of samples (K + 1)

Average interval length 15 20 30

Intercept 1.15 1.05 0.89

Slope 1.04 0.87 0.74

Quadratic 0.83 0.69 0.57

Total number of samples (K + 1)

Coverage probabilities 15 20 30

Intercept 85 92 95

Slope 80 87 88

Quadratic 85 86 89

4 EXTREME TEMPERATURE ANALYSIS CASE STUDY

4.1 Description of the Analysis, Data, and Preprocessing

In this section we describe an application to modeling the dependence between extreme air temperatures

under the forest canopy and in a nearby open field at 14 sites in Switzerland (Fig. 3). Our aim is to

assess how extremely high temperatures in the open are related to those under the canopy, a topic of

interest in forestry and meteorology (Renaud and Rebetez, 2009; Ferrez et al., 2011; Renaud et al.,

2011). The raw data consist of two series of air temperatures (in �C) per site, measured in circular

metal shelters two meters above ground every 10 minutes since 1997. The slope of the forest ranges

from 3% to 80%, the smallest corresponding to Jussy and the largest to Visp, and will be the regressor

of interest in Section 4.3. The data are from the Long-term Forest Ecosystem Research database

maintained by LWF (Langfristige Waldökosystem-Forschung); see http://www.wsl.ch.

We use the same preprocessing steps as in Ferrez et al. (2011) and de Carvalho et al. (2013): we take

daily maxima of the residual series resulting from removal of the annual cycle in both location and scale,
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Figure 3: Location of the temperature monitoring stations; for each site, air temperature data under

the forest canopy and in a nearby open field are available, and we aim modeling extremal dependence

between both temperatures.

i.e., we subtract a periodic mean and divide by a periodic standard deviation. Related preprocessing

approaches for seasonal data are discussed in Gong et al. (2011), along with their consequences for

modeling extremes. After thresholding the residuals of each sample at its 98% quantile, we reduce

the initial 38,923 observations to n = 785 pairs of residuals, one of the pair being under the forest

canopy and the other being in the open. A sensitivity analysis is conducted in Section 4.2 to assess

the influence of the threshold on the analysis. We then use the pairs of residuals to construct the

samples of pseudo-angles, with the two largest samples corresponding to Novaggio and Visp, of sizes

65 and 64, and with the smallest ones, both of size 45, corresponding to Chironico and Isone. Our

model allows us to fit each of the 14 spectral distribution functions using all 785 pseudo-angles from

the combined sample; thus for Chironico and Isone we use roughly 17 times more data than with the

individual samples.

Data after transformation to unit Fréchet scale, and corresponding threshold boundaries {y 2

[0,1]2 : y
1

+ y
2

= bF�1

Rk (0.98)}, with Rk denoting the pseudo-radius of the kth sample, are reported in

the online Supplementary Material.
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Table 3: Characteristics of sites, estimated tilting parameters and standard errors. Beatenberg is the

baseline station

Location No. Slope Estimates Asymptotic S.E.

k nk (%) b↵k
b�k

b⌃b↵k
b⌃b�k

Beatenberg 57 33 — — — —

Bettlachstock 54 66 �1.26 �0.72 0.75 0.42

Celerina 53 34 �1.94 �1.08 0.70 0.39

Chironico 45 35 �1.41 �0.80 0.76 0.42

Isone 45 58 8.78 5.78 2.35 1.59

Jussy 62 3 5.07 3.26 1.48 0.97

Lausanne 63 7 0.07 0.04 0.83 0.49

National Park 59 11 1.47 0.91 1.00 0.61

Neunkirch 42 58 �2.00 �1.11 0.71 0.39

Novaggio 65 68 �0.26 �0.15 0.80 0.46

Othmarsingen 57 27 �1.65 �0.93 0.71 0.40

Schänis 58 60 �1.49 �0.85 0.72 0.40

Visp 64 80 0.11 0.06 0.83 0.49

Vordemwald 61 14 �2.26 �1.23 0.68 0.38

4.2 Dependence of Extreme Temperatures

The estimates of the tilting parameters when our model is applied using the distortion function c(w) =

log{w(1 � w)} are given in Table 3; the baseline sample is Beatenberg. To evaluate the fit of the

spectral density ratio model, 1000 bootstrap samples were generated and used to compute (17). All

p-values suggest that the spectral density ratio model is appropriate for the data; the smallest p-value

is 0.59 for Schänis and the largest is 0.72 for National Park.

The interpretation of the tilting parameters in Table 3 is as follows. A negative estimated tilt

parameter corresponds to lower extremal dependence than in the baseline sample. For example, since

(b↵
1

, b�
1

) = (�1.26,�0.72), Bettlachstock is interpreted as having weaker dependence of extremes during

heat waves than Beatenberg, though the standard errors suggest that this is not a significant e↵ect. All

forests with negative b↵k and b�k display weaker dependence of extremes than the baseline. The estimated
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Schänis: (α̂11, β̂11) = (−1.49,−0.85)
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Figure 4: Estimated spectral distribution functions obtained using the spectral density ratio model

(solid) and empirical likelihood for individual samples (grey).
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Figure 5: Trajectories of estimated tilting parameters for the 14 temperature monitoring stations

obtained by thresholding the data over di↵erent quantiles.
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spectral distributions are plotted in Figure 4. The more positive the estimated tilting parameters, the

more the distribution concentrates around 1/2. Two forests with much larger estimates, Isone and

Jussy, correspond to more ‘S-shaped’ spectral distributions.

To assess the sensitivity of the estimated tilting parameters to the threshold selected in Section 4.1,

Figure 5 shows trajectories of the b�k computed by thresholding the data at a grid around the 98%

quantile. The intersection of a vertical line at the 98% quantile with the trajectories in Figure 5 yields

the estimates in Table 3. The 99% quantile is the largest considered, and by thresholding the data

at this quantile the number of observations of the combined sample drops from 785 to 397. Due to a

bias–variance tradeo↵, some trajectories in Figure 5 wiggle more for higher thresholds; this is clearly

the case for Isone and Jussy. The number of crossings in Figure 5 is moderate, and thus, apart from

minor variation, the ranks of extremal dependence with respect to the baseline remain fairly constant

for di↵erent thresholds.

4.3 E↵ect of Slope on Extremal Dependence of Air Temperatures

We treat the pairs as mutually independent, and investigate how the dependence within them depends

on characteristics of the 14 samples, focusing here on the e↵ect of slope. Ferrez et al. (2011) found that

slope has a complex impact on the dependence of open-site and below-canopy extreme temperatures,

and here we assess this further. A plot of tilting parameters against slope in Figure 6 suggests that, with

the exception of Isone and Jussy, there may be a mild quadratic e↵ect of slope on extremal dependence;

this was also suggested by Ferrez et al. (2011), based on a parametric analysis. We assess the evidence

for this by dropping Isone and Jussy and conducting nonparametric inference by empirical likelihood

over the fitted linear model: E(b� | slope) = 0.62 � 7 ⇥ slope/100 + 7 ⇥ (slope/100)2. A bootstrap

calibration yields 95% confidence intervals approximately (�12, 1) and (�1, 2) for the coe�cients of

the linear and quadratic e↵ects of slope/100, thus casting doubt on the significance of a quadratic

association between the sheltering capacity of the forest and its slope. This doubt is strengthened by

the undercoverage displayed in the simulation results of Section 3.3.
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Figure 6: Slope of the forest plotted against estimated tilting parameters. The solid line corresponds

to the model without Isone and Jussy; the dashed line corresponds to the model with all forests. The

asterisk corresponds to the baseline sample.

5 DISCUSSION

This paper introduces the spectral density ratio model for multivariate extremes, designed for contexts

where K samples are available and there is the need to understand how extremal dependence is related

to covariates. The rich semiparametric formulation allows us to link a family of K unknown spectral

densities, subject to moment constraints, using a tilting function and regression specification that can be

tailored to the problem at hand. Although flexible, the approach requires a substantial computational

investment, and it would valuable to find faster algorithms, particularly as bootstrap resampling may

be needed for reliable inference in applications. Although in theory one should prefer having K as

large as possible, so to be able to more accurately describe how extremal dependence evolves over

the predictor of interest and to avoid possible numerical convergence issues in the second stage of the

approach, a larger K also involves more normalization and moment constraints, and hence it makes
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the first-stage optimization harder.

Our theoretical discussion treats the case with a single tilting function c(w), but clearly extends

to several tilting functions, g(w; k) = exp{↵k + �T
kc(w)}. Examination of the argument suggests

that the theoretical results will be essentially unchanged with a general function g(w; k), though the

argument will be much messier. Computational aspects however may be appreciably more challenging.

Our development assumes that the underlying data are known to have unit Fréchet marginal dis-

tributions, but in most cases a transformation to such margins must be estimated. Such estimation

induces dependence along the variables wk,1, . . . ,wk,nk
, for each k 2 {0, . . . , K}, so the asymptotic

development in Section 2.4 does not apply directly. In extremal analysis of dependence it is common to

ignore the e↵ect of marginal transformation, which is often found to introduce limited additional varia-

tion relative to that in the extremal model itself. From a formal mathematical viewpoint, however, this

is incorrect: to accommodate this extra uncertainty it would be necessary to modify the loglikelihood

(9) to allow for the unknown marginal transformation. While this would complicate the derivations of

the theoretical results, some sketch calculations suggest that limiting normality and chi-squared results

would continue to apply, though their proofs would be appreciably more complicated. One solution to

this is use of the bootstrap, as suggested above: variation in the margins would be included by boot-

strapping the original data and re-estimating the marginal transformations and dependence structure.

A second solution, used in the analysis in Section 4, is to apply di↵erent thresholds when estimating

the margins and dependence structure. To be concrete, suppose that the original sample is of size

N , and that marginal and dependence fitting for the extremes are based on mN and dN observations,

respectively. Then consistent estimation requires that mN , dN ! 1, and successful application of the

extremal models entails mN/N, dN/N ! 0. If, in addition, dN/mN ! 0, then in large samples the

uncertainty in estimating the marginal transformation will be negligible relative to that due to the

dependence estimation, and the theory described in Section 2.4 will apply. Such an approach matches

applications, where it is commonly found that the fit of marginal distributions is better than that of

the joint part of the model, and so a lower threshold can be used for the margins. In our application,

mN and dN were taken to correspond to 10% and 2% respectively, so it seems reasonable to apply our

theory.
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APPENDIX

A.1 Profiling the Baseline Spectral Distribution Function

The Lagrangian corresponding to the empirical likelihood optimization problem of interest here is

L =
nX

i=1

log pi +
KX

k=0

nkX

j=1

{↵k + �kc(wk,j)}

� n
KX

k=0

⌘k

 nX

i=1

pi exp{↵k + �kc(vi)}� 1

�
� n

KX

k=0

�

T
k

 nX

i=1

pivi exp{↵k + �kc(vi)}�D�1

1D

�
,

Setting to zero the derivative of L with respect to pi, we obtain

1

pi
� n

KX

k=0

⌘k exp{↵k + �kc(vi)}� n
KX

k=0

�

T
kvi exp{↵k + �kc(vi)} = 0, (23)

and hence

pi =
1

n

1
PK

k=0

exp{↵k + �kc(vi)}(⌘k + �T
kvi)

. (24)

We now profile with respect to ↵, and thus we set to zero the derivative of L with respect to ↵k, and

use (10) to obtain ⌘k = ⇢k �D�1

�

T
k1D. Thus (24) can be written as

pi =
1

n

1
PK

k=0

exp{↵k + �kc(vi)}{⇢k + �T
k(vi �D�1

1D)}
.

A.2 Auxiliary Function and Lemmas

Following Tan (2009) and Huang and Rathouz (2012), and with � = (↵,�)T, we define the auxiliary

function

(�,�) = �
nX

i=1

log

⇢ KX

k=0

exp{↵k + �kc(vi)}{⇢k +�T
k(vi �D�1

1D)}
�
+

KX

k=0

nkX

j=0

{↵k + �kc(wk,j)}. (25)

Equation (12) yields {�, b�(�)} = `
p

(�), where b�(�) = (b↵(�), b�(�)) are the joint solutions to (13).

Implicit di↵erentiation then gives

d`
p

(�)

d�
=

@

@�

����
�=b�(�)

,
d2`

p

(�)

d�d�T
=

⇢
@2

@�@�T
� @2

@�@�T

✓
@2

@�@�T

◆�1 @2

@�@�T

�����
�=b�(�)

. (26)

24



The following lemmas are used in the proof of Theorem 1. Lemmas 1 and 2 are essentially versions of

Lemmas 2 and 3 in Huang and Rathouz (2012, Supplementary Material, p. 2); details may be found

in the online Supplementary Material to the present paper.

Lemma 1. Let ✓ = (�,↵,�)T and ✓

⇤ = (�⇤,↵⇤,0)T, and suppose that the conditions of Theorem 1

hold. Then

� 1

n

@2

@✓@✓T

����
✓=✓⇤

p! S =

0

BBB@

S�� S�↵ S��

S↵↵ S↵�

S��

1

CCCA
, n ! 1,

where the matrix S is symmetric, and, with I(·) the indicator function and ⇢
0

= n
0

/n, . . . , ⇢K = nK/n,

we have

(S��)k,m = I(k = m)⇢kJ
cc
k � ⇢k⇢mJ

cc
k,m, (S�↵)k,m = I(k = m)⇢kJ

c
k � ⇢k⇢mJ

c
k,m,

(S��)k,m = I(k = m)⇢kJ
cv
k � ⇢kJ

cv
k,m, (S↵↵)k,m = I(k = m)⇢k � ⇢k⇢mJk,m,

(S↵�)k,m = �⇢kJ
v
k,m, (S��)k,m = �Jvv

k,m,

for k,m = 1, . . . , K when considering ↵, � and k,m = 0, . . . , K when considering �, where

J cc
k =

Z

SD

c2(v) exp{↵k + �kc(v)}dH0

(v),

J cc
k,m =

Z

SD

c2(v)
exp{↵k + �kc(v)} exp{↵m + �mc(v)}PK

l=0

⇢l exp{↵l + �lc(v)}
dH

0

(v),

J c
k =

Z

SD

c(v) exp{↵k + �kc(v)}dH0

(v),

J c
k,m =

Z

SD

c(v)
exp{↵k + �kc(v)} exp{↵m + �mc(v)}PK

l=0

⇢l exp{↵l + �lc(v)}
dH

0

(v),

J cv
k =

Z

SD

c(v)(v �D�1

1D) exp{↵k + �kc(v)}dH0

(v),

J cv
k,m =

Z

SD

c(v)(v �D�1

1D)
exp{↵k + �kc(v)} exp{↵m + �mc(v)}PK

l=0

⇢l exp{↵l + �lc(v)}
dH

0

(v),

Jk,m =

Z

SD

exp{↵k + �kc(v)} exp{↵m + �mc(v)}PK
l=0

⇢l exp{↵l + �lc(v)}
dH

0

(v),

Jv
k,m =

Z

SD

(v �D�1

1D)
exp{↵k + �kc(v)} exp{↵m + �mc(v)}PK

l=0

⇢l exp{↵l + �lc(v)}
dH

0

(v),

Jvv
k,m =

Z

SD

(v �D�1

1D)(v �D�1

1D)
T exp{↵k + �kc(v)} exp{↵m + �mc(v)}PK

l=0

⇢l exp{↵l + �lc(v)}
dH

0

(v).
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These expressions are understood to be evaluated at ↵k = ↵⇤
k, �k = �⇤

k, for k,m = 1, . . . , K.

The conditions of Theorem 1, the Cauchy–Schwarz inequality, and the fact that

exp{↵k + �kc(v)} exp{↵m + �mc(v)}PK
l=0

⇢l exp{↵l + �lc(v)}
 ⇢�1

m exp{↵k + �kc(v)}

imply that quantities such as Jv
k,m, J

cc
k,m, J

cv
k,m appearing in Lemma 1 are finite, and continuity implies

that they are also finite in a neighbourhood of ✓⇤.

Lemma 2. Let ✓ = (�,↵,�)T and ✓

⇤ = (�⇤,↵⇤,0)T, and suppose that the conditions of Theorem 1

hold. Then

1p
n

@

@✓

����
✓=✓⇤

d! N(0,V ), V = S � T

0

� T

1

� T

2

, n ! 1, (27)

where S is defined in Lemma 1, and, with R = diag(⇢
1

, . . . , ⇢K),

T

0

=

0

BBB@

0 0 S��

0 0 S↵�

S�� S�↵ 2S��

1

CCCA
, T

1

= S

0

BBB@

0 0 0

0 R

�1

0

0 0 0

1

CCCA
S, T

2

= ⇢�1

0

S

0

BBB@

0 0 0

0 11

T
0

0 0 0

1

CCCA
S.

Owing to their unfortunate omission of T
0

and some incorrect signs, the decomposition of V in (27)

di↵ers from that of Huang and Rathouz (2012, Lemma 3), but (27) also holds in their setting.

Lemma 3. Let S be as in Lemma 1, but partitioned according to � and � = (↵,�)T as

S =

0

@ S�� S��

S�� S��

1

A .

Then, provided the necessary inverses exist,

(I,�S��S
�1

�� )S(I,�S

�1

��S��)
T = S�� � S��S

�1

��S��, (28)

(I,�S��S
�1

�� )T0

(I,�S

�1

��S��)
T = 0, (29)

(I,�S��S
�1

�� )T1

(I,�S

�1

��S��)
T = 0, (30)

(I,�S��S
�1

�� )T2

(I,�S

�1

��S��)
T = 0. (31)
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A.3 Proof of Theorem 1

Proof. Our argument is similar to that of Huang and Rathouz (2012).

(a) We first establish that, as n ! 1,

1p
n

d`
p

d�

����
�=�⇤

d! N(0,⌃), (32)

� 1

n

d2`
p

d�d�T

����
�=�⇤

p! ⌃, (33)

where ⌃ = S�� � S��S
�1

��S��, with � = (↵,�)T. By the asymptotic theory of M -estimators (van der

Vaart, 1998, ch. 5), the equation 0 = @/@�|�=�⇤ admits a solution b
�(�⇤) = �

⇤ + o
p

(n�1/2), and in

particular we have the expansion

b
�(�⇤)� �⇤ = �

⇢✓
@2
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�����
�=�⇤,�=�⇤

+ o
p

(n�1/2).

Taylor expansion of (d`
p

/d�)(�⇤) in terms of �(�⇤) around �⇤ yields
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=
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n

⇢
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+
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=
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⇢
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p
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=

✓
I,� 1

n

@2
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✓
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n

@2
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◆
1p
n

✓
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,
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◆T

+ o
p

(n�1/2),

d!
✓
I,�S��S

�1

��

◆
Z, n ! 1, (34)

where Z has a N(0,V ) distribution, the last expression is evaluated at �⇤,�⇤, and we have used

Lemmas 1 and 2 and Slutsky’s lemma. Expression (32) follows from (34), since Lemma 3 yields
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�� )
T

= S�� � S��S
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��S��. (35)

In order to establish (33), we note that (26), Lemma 1 and the consistency of b� as n ! 1 yield
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Now b
� satisfies 0 = d`

p

/d� if and only if (b�, b�(b�)) satisfies (@/@�, @/@�) = 0, and by the asymptotic

theory of M -estimators such an equation admits a solution (b�, b�(b�)) = (�⇤,�⇤) + o
p

(n�1/2). Taylor

expansion yields

0 =
d`

p

d�

����
�=b�

=
d`

p

d�

����
�=�⇤

+
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(b� � �⇤) + o
p

(n�1/2),

so that, again by Lemmas 1 and 2 and Slutsky’s lemma,
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(b) By Taylor expansion, it holds that
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and hence by (33), (36) and Slutsky’s lemma,
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SUPPLEMENTARY MATERIAL

The online supplement to this article contains details on existing methods, further empirical results,

and the proofs of Lemmas 1–3 and Corollary 2.
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