

Edinburgh Research Explorer

Towards Composable GPU Programming: Programming GPUs
with Eager Actions and Lazy Views
Citation for published version:
Haidl, M, Steuwer, M, Dirks, H, Hummernbrum, T & Gorlatch, S 2017, Towards Composable GPU
Programming: Programming GPUs with Eager Actions and Lazy Views. in PMAM'17 Proceedings of the 8th
International Workshop on Programming Models and Applications for Multicores and Manycores. ACM, pp.
58-67, 8th International Workshop on Programming Models and Applications for Multicores and Manycores,
Austin, United States, 4/02/17. DOI: 10.1145/3026937.3026942

Digital Object Identifier (DOI):
10.1145/3026937.3026942

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
PMAM'17 Proceedings of the 8th International Workshop on Programming Models and Applications for
Multicores and Manycores

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1145/3026937.3026942
https://www.research.ed.ac.uk/portal/en/publications/towards-composable-gpu-programming-programming-gpus-with-eager-actions-and-lazy-views(fff66ade-3077-40d0-ac28-5851a7d7f938).html

Towards Composable GPU Programming:
Programming GPUs with Eager Actions and Lazy Views

Michael Haidl* Michel Steuwer† Hendrik Dirks* Tim Humernbrum* Sergei Gorlatch*

*University of Münster, Germany †University of Edinburgh, UK

{ michael.haidl, hendrik.dirks, t.hume, gorlatch }@wwu.de michel.steuwer@ed.ac.uk

Abstract
In this paper, we advocate a composable approach to pro-

gramming systems with Graphics Processing Units (GPU):

programs are developed as compositions of generic, reusable

patterns. Current GPU programming approaches either rely

on low-level, monolithic code without patterns (CUDA and

OpenCL), which achieves high performance at the cost of

cumbersome and error-prone programming, or they improve

the programmability by using pattern-based abstractions

(e.g., Thrust) but pay a performance penalty due to ineffi-

cient implementations of pattern composition.

We develop an API for GPUs based programming on C++

with STL-style patterns and its compiler-based implemen-

tation. Our API gives the application developers the native

C++ means (views and actions) to specify precisely which

pattern compositions should be automatically fused during

code generation into a single efficient GPU kernel, thereby

ensuring a high target performance. We implement our ap-

proach by extending the range-v3 library which is currently

being developed for the forthcoming C++ standards. The

composable programming in our approach is done exclu-

sively in the standard C++14, with STL algorithms used as

patterns which we re-implemented in parallel for GPU. Our

compiler implementation is based on the LLVM and Clang

frameworks, and we use advanced multi-stage programming

techniques for aggressive runtime optimizations.

We experimentally evaluate our approach using a set of

benchmark applications and a real-world case study from the

area of image processing. Our codes achieve performance

competitive with CUDA monolithic implementations, and

we outperform pattern-based codes written using Nvidia’s

Thrust.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Graphics Processing Units (GPUs) are nowadays an inher-

ent part of computing at small and large scale: from robotics

applications accelerated with embedded GPUs up to large

scientific simulations. Developing such applications is chal-

lenging as GPU code is often developed separately from the

main CPU application, in a low-level programming language

such as CUDA. Achieving high performance on GPUs is de-

manding even for experienced programmers; it is currently

achieved by writing low-level, hand-optimized kernel func-

tions. It would be highly desirable to use a single program-

ming language and take advantage of convenient program-

ming abstractions while achieving high performance.

The research community has recognized this challenge

and moved towards unified CPU/GPU programming in C++

in the newest versions of CUDA and projects like C++

AMP [12] and SYCL [16]. At the same time higher-level

abstractions have been proposed in form of libraries such as

Thrust [2] and SkelCL [19] which provide reusable program-

ming patterns, customizable by developers for particular ap-

plications. Unfortunately, these libraries introduce signifi-

cant overhead when applications are composed of multiple

patterns, each executed in a separate kernel, while in low-

level code a single efficient kernel would be used. Therefore,

programmers currently either benefit from the composable

high-level patterns but pay a performance penalty for using

these abstractions, or they achieve high efficiency for the

cost of writing low-level and non-composable code.

In this paper, we present a composable GPU program-

ming approach which enables developers to compose their

applications from simple and reusable patterns. The main

contribution of our approach is the implementation of pattern

composition that guarantees that composed patterns are ex-

ecuted in a single efficient GPU kernel. Our implementation

is a compiler-supported library that extends the range-v3 li-

brary [13] which is currently developed as the next gener-

ation of the C++ Standard Template Library (STL). In our

approach, programmers obtain full control to either a) use

patterns expressed as STL algorithms and actions which are

computed eagerly on the GPU or b) use views which our im-

plementation guarantees to fuse during code generation and

execute in a single GPU kernel.

1 2016/12/16

Our LLVM-based, C++-to-GPU code generator uses

multi-staging optimizations to embed values only known

at CPU runtime into the kernel code which is then JIT com-

piled and executed on the GPU. This allows to specialize

the kernel code for the particular input size and particular

number of threads executing the kernel.

Our experimental evaluation demonstrates that compos-

able code written using our approach achieves the same

performance as low-level monolithic implementations in

CUDA and outperforms composable code written using

Thrust.

This paper makes the following main contributions:

• Enabling composable GPU programming by enriching

the range-v3 library with GPU-enabled algorithms;

• Giving programmers full control and better predictability

about kernel fusion by choosing between eager actions

and algorithms and lazy views;

• Implementing JIT code generation which takes advan-

tage of multi-staging to optimize GPU code based on val-

ues known at runtime of the CPU program.

The remainder of the paper is organized as follows: In

Section 2 we recap related work on GPU programming and

we motivate the necessity for writing efficient composable

GPU code. Section 3 introduces our API with ranges and

GPU-enabled algorithms. Section 4 introduces actions and

views and show how these give the programmer precise con-

trol over kernel fusion. Section 5 explains our C++-to-GPU

code generation process and our enhanced compiler opti-

mizations (in particular multi-staging). Section 6 evaluates

our approach, and Section 7 concludes the paper.

2. Background and Related Work
GPU programming using the current low-level programming

models such as OpenCL and CUDA is challenging. Special

kernel functions are executed in parallel on the GPU by ex-

plicitly specifying the number of executing threads running

in parallel. OpenCL and CUDA clearly separate the host pro-
gram running on the CPU from the GPU program (kernel)

which is written in a subset of the C/C++ programming lan-

guage with GPU-specific extensions.

1 __global__ void partialDotProduct(float* a,
2 float* b,
3 float* res){
4 extern __shared__ float* tmp;
5 int lid = threadIdx.x;
6 int gid = lid + blockIdx.x * blockDim.x;
7 tmp[lid] = a[gid] * b[gid];
8 __syncthreads ();
9 for (int i = get_local_size (0) /2; i>0; i*=2) {

10 if (lid < i) tmp[lid] += tmp[lid + i];
11 __syncthreads (); }
12 if (lid == 0) res[blockIdx.x] = tmp[lid];}

Listing 1: GPU Kernel in CUDA computing a dot product.

Listing 1 shows a simple, unoptimized CUDA kernel,

adopted from the Nvidia toolkit [14] that computes a dot

product of vectors a and b. In line 7 each thread multiplies

the corresponding elements of the two vectors with each

other. A tree-based reduction is performed by a group of

threads (called block in CUDA): in each iteration of the loop

in line 9 the number of active threads which add up two el-

ements (line 10) is halved. Finally, one thread of each block

writes the computed result back into memory (line 12). The

barriers in lines 8 and 11 ensure a consistent view of the

memory across all threads. As synchronization across blocks

is not possible, the summation of all results computed by the

blocks cannot be performed in this kernel and must either

be done on the host or in another CUDA kernel. The imple-

mentation in Listing 1 is not very efficient on modern GPUs

and can be significantly optimized [9] which makes the code

significantly more complex. But even the simple dot product

code is not trivial: it works in a hierarchical CUDA address

space (global and shared memory) and requires barrier syn-

chronization, making it prone to subtle bugs like deadlocks

and race conditions.

One popular way to overcome this low-level program-

ming style is to provide reusable generic parallel patterns,

also known as algorithmic skeletons. Thrust [2], Bolt [1],

Accelerate [11], and SkelCL [19] follow this approach.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 thrust :: device_vector <float > d_a = a;
4 thrust :: device_vector <float > d_b = b;
5 return thrust :: inner_product(
6 d_a.begin(), d_a.end(), d_b.begin(), 0.0f); }

Listing 2: Optimal dot product implementation in Thrust

using a domain-specific library function.

Listing 2 shows the implementation of the dot product

in Thrust using a single library call. This implementation is

straightforward and relies on an optimized GPU pattern writ-

ten by experts and tuned for performance. Unfortunately, it

uses a very domain-specific library function (inner_product)

which limits its applicability for other applications.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 thrust :: device_vector <float > d_a = a;
4 thrust :: device_vector <float > d_b = b;
5 thrust :: device_vector <float > tmp(a.size());
6 thrust :: transform(d_a.begin(), d_a.end(),
7 d_b.begin(), tmp.begin(),
8 thrust ::multiplies <floal >());
9 return thurst :: reduce(tmp.begin(), tmp.end());}

Listing 3: Generic and composable, but non-optimal Thrust

implemenation of dot product

In Listing 3, the dot product is implemented in Thrust us-

ing two smaller but more universal patterns: transform and

reduce. However, here we pay a performance penalty for

2 2016/12/16

pattern composition: two kernels are launched and a tem-

porary vector tmp is required to store the intermediate re-

sult of transform. This loss of efficiency is the reason why

Thrust offers the specific inner_product function: high per-

formance is not achievable by composing universal patterns.

In the next sections, we present our approach where

higher-level programs can be expressed as a composition

of universal patterns without a performance loss.

3. Programming with Ranges and
GPU-Enabled Algorithms

Our suggested composable API for GPUs is inspired by

the Standard Template Library (STL) which is widely used

in C++ programming. The STL consists of three main

components: 1) containers: collection data types such as

std::vector or std::set, 2) algorithms: reusable operations

on containers such as std::accumulate or std::sort, 3) it-
erators: glue containers with algorithms, such that the same

algorithm is reusable for different containers. This library

design has proven to be highly flexible and is one of the

main reasons of the STL’s success.

3.1 From Iterators to Ranges
The existing STL with iterators does not allow to compose

algorithms easily. Listing 4 shows the dot product example

using two STL algorithms with iterators: transform to ap-

ply the binary mult function to the corresponding elements

of the input containers a and b, and accumulate to sum up

all the values of a sequence. These two algorithms do not

compose nicely, because transform returns only a single it-

erator, while accumulate expects a pair of iterators as its first

two arguments describing the start and end of the input con-

tainer. Furthermore, a temporary vector tmp is required, as

the transform algorithm has to write the computed interme-

diate result into a container. The algorithm cannot allocate

this temporary container itself, because the iterator abstrac-

tion hides the type of container (in this case a vector) from

the algorithm.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 auto mult = [](auto x, auto y){return x * y;};
4

5 vector <float > tmp(a.size());
6 transform(a.begin(), a.end(), b.begin(),
7 tmp.begin(), mult);
8 return accumulate(tmp.begin(), tmp.end() ,0.0f);
9 }

Listing 4: Dot product implementation using iterators.

Listing 5 shows how we can overcome these composability

problems using the recent range-v3 library [13] that replaces

iterators with ranges. The accumulate call now takes its input

as the single first argument compared to two separate itera-

tors in Listing 4. Ranges are composable, because they carry

information about the start and end points of a container, i.e.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 auto mult = [](auto p){
4 return get <0>(p) * get <1>(p); };
5

6 return
7 accumulate(
8 view:: transform(view::zip(a,b),mult) ,0.0f); }

Listing 5: Dot product implementation using composable

ranges.

ranges combine the information scattered across the first two

arguments of accumulate into a single value. This change,

together with the introduction of views — lazily computed

ranges, which we will discuss in more detail in Section 4

— allows to write the dot product example in a concise and

composable style in Listing 5. Here the zip function creates

pairs of elements from vectors a and b which are then mul-

tiplied and summed up. Composability is a central feature

of the range-v3 library: it allows and encourages developers

to use the pipe symbol | to denote composition (similar to

the bash shell). Therefore, we can also rewrite lines 7–8 of

Listing 5 as explicit composition of patterns:

view::zip(a,b) | view::transform(mult) | accumulate(0.0f)

The idea of our approach is to bring this range-based ab-

straction to GPU programming.

3.2 GPU-enabled containers and algorithms
We extend the range-v3 library with a GPU-enabled con-

tainer and GPU-enabled algorithms to allow programmers

to write GPU applications in a composable way.

For storing data on the GPU we introduce the gpu::vector

container which provides a range-based interface to access

its elements. We use type traits to ensure statically that the

GPU-enabled algorithms only operate on data stored in a

gpu::vector. Data is transferred to the GPU by copying data

into a gpu::vector, e.g., by using the gpu::copy function as

in Listing 6, and transferred back by copying such a con-

tainer into a regular STL vector.

Our algorithm implementations for the GPU using ranges

currently covers the three central algorithms – gpu::for_each,

gpu::transform, and gpu::reduce – and is currently being

extended to cover all algorithms of the recently standardized

parallel STL [10]. The for_each and transform algorithms

apply a given function to every element of the input range in

parallel. The transform writes the result of each function ap-

plication into an output range (this algorithm is also known

as map in functional programming). The for_each algorithm

produces no result directly, but is executed for its side ef-

fects. This allows, for example, to write computed values to

memory in a less structured fashion than using transform.

The reduce algorithm performs a parallel reduction using a

given binary operator which has to be associative. We will

3 2016/12/16

see that already using these three algorithms as patterns al-

lows us to express many interesting applications, especially

when combined with views (lazily evaluated ranges) as dis-

cussed in Section 4.

3.3 First GPU example
Listing 6 shows a code of the dot product using our API with

the gpu::reduce algorithm. Notice how close the implemen-

tation is compared to Listing 5. In line 6 the input vectors a

and b are copied to the GPU, and then their pairwise multi-

plication results (line 7) are summed up in line 8. Our API

implementation (described in Section 5) guarantees to fuse

the operations expressed as views into a single efficient GPU

kernel. In the example, the zip and the vector multiplica-

tion in lines 6 and 7 are fused together with the reduction

in line 8. We will discuss the implementation of views in the

next section.

1 float dotProduct(const vector <float >& a,
2 const vector <float >& b) {
3 auto mult = [](auto p){
4 return get <0>(p) * get <1>(p); };
5

6 return view::zip(gpu::copy(a), gpu::copy(b))
7 | view:: transform(mult)
8 | gpu:: reduce (0.0f); }

Listing 6: GPU dot product using composable patterns.

3.4 Summary
In our API, ranges combined with GPU algorithms and GPU

containers enable a natural way to program GPUs in C++

similar to the programming approach widely known from

the STL. To achieve composability, programs are written by

combining small and simple-to-understand patterns which

greatly simplify programming as compared to traditional

low-level programming approaches like CUDA. Next we

discuss the key idea for achieving high performance in our

composable approach: guaranteed kernel fusion using views.

4. Eager Actions and Lazy Views
The range-v3 library introduces two new consructs to the

STL — actions and views — which enhance the compos-

ability. We exploit views and actions for GPU programming:

by using them programmers can control the fusion of com-

putations expressed by patterns into a single GPU kernel.

4.1 Actions
Actions perform (potentially mutating) in-place operations

on containers, i.e., actions do not require an externally pro-

vided output container, such as the temporary vector tmp

in Listing 4. Actions are implemented with the STL algo-

rithms and, therefore, we implemented corresponding ac-

tions for our GPU-enabled algorithms. Actions return a ref-

erence to the modified container and, therefore, compose

nicely with other actions.

4.2 Views
Views are the counterpart to actions and describe non-

mutating operations on ranges. Views, like actions, compose

nicely and are designed to be used together with each other

and with the algorithms described earlier.

An example for a view is view::transform(mult) in List-

ing 6. It applies a given function (in this case mult) to its

input range. When executed on the CPU, this computation

is not performed eagerly by writing the computed result to

some (temporary) memory location, but rather an object (the

view) is created which behaves like a range and performs

the computation lazily, i.e., on-demand once an element in

the range is requested. The view object holds references to

its input range and the function to be called. When the view

is iterated over, it evaluates the requested elements. Views

are implemented as first class objects which can be stored in

variables and passed to and returned from functions.

When views are composed with each other or with algo-

rithms, they are evaluated only when the finally computed

range is accessed. For example, in Listing 6 the zip and

transform views are composed with the gpu::reduce algo-

rithm. The implementation of reduce iterates over the input

range to sum up all of its elements. Inside of this iteration,

the pairwise multiplication expressed by the two views is

performed, i.e., it is automatically fused by our API imple-

mentation into the implementation of the reduce algorithm.

When we compile this code for the GPU, as described in

Section 5 this API design ensures that only a single GPU ker-

nel is emitted which performs the zip and transform compu-

tations inside of the iteration code of the reduce algorithm.

Together with our GPU-enabled algorithms, this guaran-

teed behavior of the views let programmers reason precisely

about the cost of operations and the number of GPU kernels

launched. Views allow to write composable and elegant code

without paying a performance penalty, as we will see in our

experimental evaluation.

4.3 Provided Views
The range-v3 library offers currently over 40 views (e.g.,

filter or generate) which can be used together with our

GPU algorithms. This greatly enhances the flexibility of our

GPU programming approach. Interestingly, some views such

as repeat represent infinite ranges; the take and take_while

views can be used to limit such infinite ranges. In our ap-

proach kernel fusion is directly tied to the available views.

The possibility to fuse two kernels corresponds to the ability

to express a computation as a view which can be performed

lazily and, therefore, folded into another computation.

The benefit of reusing the existing views from the range-v3

library is ensured by our LLVM-based GPU code generator

which compiles arbitrary C++ code for the GPU. There are

only minor not supported exemptions, such as virtual func-

tions or exceptions which are not used in the STL.

4 2016/12/16

4.4 GPU evaluation of views
Some computations can be expressed in our API only using

views and without ever using an action or algorithm. In such

cases, the evaluation will happen implicitly when the final

view is iterated over, e.g., when printing the result or copying

it into a data container. By default, this evaluation happens

sequentially on the CPU. To allow programmers to perform

such computations on the GPU, we implemented a variation

of the C++ standard async function. Our gpu::async function

takes an arbitrary function whose return value is fixed to be

a gpu::vector and, therefore, if in the function implementa-

tion a view is returned then it is implicitly evaluated on the

GPU in parallel and the result is written into a gpu::vector.

1 auto saxpy(float A, const vector <float >& X,
2 const vector <float >& Y) {
3 return gpu::async ([=](auto a, const auto& x,
4 const auto& y){
5 auto ax = view::zip(view:: repeat(a), x)
6 | view:: transform(mult);
7 return view::zip(ax,y)
8 | view:: transform(plus);}, A, X, Y) ;}

Listing 7: saxpy on GPU using views and gpu::async.

Listing 7 shows an implementation of the saxpy com-

putation which only uses views and no algorithms or ac-

tions. Our gpu::async function is used in line 3 to evalu-

ate the views on the GPU. First, a × x is computed where

a is a scalar and x is a vector, before the result is added

to the vector y. We use four views (twice zip and twice

transform) to describe the computation which is nested in-

side a gpu::async. All views are fused together during code

generation and evaluated in a single GPU kernel which pro-

duces a gpu::vector. The gpu::async function ensures that

all input containers are automatically copied to gpu::vector

objects if they are not already of that type. This ensures that

all data used in gpu::async is available on the GPU.

4.5 Summary
With the support of actions and views, our GPU extension of

the range-v3 library encourages a compositional program-

ming style. We make use of this style for GPU programming

by combining actions and views with our GPU-enabled al-

gorithms and providing a natural way to evaluate lazy views

in parallel on the GPU via gpu::async. The views provide a

simple mechanism for the programmer to express programs

compositionally while being guaranteed that the views are

fused together into a single GPU kernel. We will now look

at our GPU code generation and discuss optimizations ap-

plied when generating GPU kernel code.

5. Code Generation and Optimization
Our API with GPU-enabled algorithms and containers is

implemented as a C++ library compiled using PACXX [8]

— our LLVM-based compiler generating GPU code from

C++ code. In this section, we briefly describe the general

design of PACXX and then we focus on a particular feature,

called multi-staging, which allows us to optimize the GPU

code based on values only known at host runtime.

5.1 Overview of PACXX
PACXX transforms C++ code using a combination of offline

and online compilation to a representation executable on

different kinds of GPUs: PTX on Nvidia GPUs, and SPIR

on AMD GPUs.

Figure 1: Key components of PACXX.

Figure 1 shows an overview of the PACXX implementa-

tion which comprises two main components:

1) The PACXX Offline Compiler based on the open-source

Clang compiler, and

2) The PACXX Runtime library consisting of a just-in-time

compiler and a GPU execution runtime.

Correspondingly, C++ code is compiled by PACXX in

two stages: 1) the offline compilation stage separates GPU

and CPU code and prepares the executable for the PACXX

runtime, 2) the online compilation stage just-in-time com-

piles the GPU code during program execution using our

LLVM-based online compiler in the PACXX runtime library.

Stage 1: Offline Compilation In PACXX, code to be ex-

ecuted on a GPU is written as a pacxx::kernel function

supported by PACXX. Based on this kernel function, the

PACXX offline compiler marks the code executed on the

GPU by annotating every function called from inside the

kernel function with a PACXX-specific C++ 11 generalized

attribute. Using generalized attributes of C++ has the advan-

tage that the code remains valid C++ and other compilers

have the freedom to ignore PACXX custom annotations.

After the annotations are added, two passes are per-

formed: the first pass prepares the GPU kernel generation

at runtime, and the second pass compiles the CPU program.

In the kernel compilation pass, the program’s abstract

syntax tree (AST) is lowered to the LLVM intermediate

representation (IR), and functions with the PACXX-specific

attribute are marked as kernel code in the IR. Then the

following steps transform and optimize the IR:

1) dead code elimination removes all IR nodes beside the

code reachable from the kernel;

5 2016/12/16

2) function calls are inlined into the kernel functions;

3) -O3 equivalent optimizations are performed;

4) the IR is embedded in the executable.

At runtime the prepared IR is loaded, then JIT-compiled and

optimized for the target GPU before execution.

In the host compilation pass, the PACXX offline com-

piler lowers the AST to LLVM IR a second time, but this

time replacing calls to kernel functions with PACXX run-

time calls which manage data transfers and launch the corre-

sponding kernel. The compilation of the host C++ program

is performed as usual, by generating an executable which is

statically linked against the PACXX runtime library.

Stage 2: Online Compilation During program execution,

the PACXX runtime loads the IR previously embedded in the

executable by the PACXX offline compiler, performs addi-

tional, GPU-specific optimizations, such as loop-unrolling

and rearranging load instructions. Finally, the IR is com-

piled to GPU code using one of the two LLVM back-ends:

PTX [15] together with the CUDA runtime library when

targeting Nvidia GPUs, and SPIR [7] for GPUs with an

OpenCL implementation (e.g., from AMD or Intel).

5.2 GPU Algorithm Implementations
We implemented three GPU-enabled STL algorithms to be

used together with the range-v3 library. We are discussing

their efficient implementations for Nvidia GPUs here. This

implementation is not portable, but we intend to incorporate

recent related work in the future which uses a functional

techniques to generate efficient GPU implementations from

portable pattern-based representations [20].

Transform and For_Each The gpu::transform algorithm

applies a given function in parallel to every element of its

input range and stores the produced results in the output

range. The gpu::for_each algorithm is a special case of

transform, where its given function does not produce a result

directly but is rather executed for its side effects. Therefore,

we concentrate on the implementation of gpu::transform.

1 auto kernel = pacxx:: kernel(
2 [func](auto in, auto out , size_t size) {
3 auto id = Thread ::get().global;
4 if (id.x >= size) return;
5 *(out + id.x) = func (*(in + id.x));
6 },{{(distance + 127) / 128}, {128}});
7

8 kernel(in.begin(), out.begin (), size);

Listing 8: Implementation of gpu::transform.

Listing 8 shows the implementation of gpu::transform for

an Nvidia GPU. For each element of the input range, a GPU

thread is launched which: a) loads one element form the

global memory, b) applies the given function (func) to the

element, and c) stores the result back to the global memory

of the GPU. Our implementation configures the underlying

kernel to use 128 threads per block. This is a platform-

specific choice, and auto-tuning [4] or similar techniques can

be used to pick appropriate values.

Reduce To efficiently implement the gpu::reduce algo-

rithm, we make use of the multi-stage programming support

in PACXX [8] for embedding values known at the runtime

of the host program into the GPU code. This enables ad-

ditional optimization opportunities like aggressive loop un-

rolling. PACXX provides a dedicated function (stage) which

evaluates expressions prior to the GPU kernel execution and

the computed values are then automatically embedded into

the GPU program.

1 template <class InRng , class T, class Fun >
2 auto reduce(InRng&& in, T init , Fun&& fun) {
3 // 1. preparation of kernel call
4 ...
5 // 2. create GPU kernel
6 auto kernel = pacxx:: kernel(
7 [fun](auto&& in, auto&& out ,
8 int size , auto init) {
9 // 2a. stage elements per thread

10 int ept = stage(size / glbSize);
11 // 2b. start reduction computation
12 auto sum = init;
13 for (int x = 0; x < ept; ++x) {
14 sum = fun(sum , *(in + gid));
15 gid += glbSize; }
16 // 2c. perform reduction in shared memory
17 ...
18 // 2d. write result back
19 if (lid = 0) *(out + bid) = shared [0];
20 }, glbSize , lclSize);
21 // 3. execute kernel
22 kernel(in, out , distance(in), init);
23 // 4. finish reduction on the CPU
24 return std:: accumulate(out , init , fun); }

Listing 9: Implementation sketch of the gpu::reduce

algorithm making use of multi-staging.

Listing 9 shows a sketch of the implementation of the

gpu::reduce algorithm in PACXX. For brevity and clarity

we concentrate on the parts relevant for the multi-staging op-

timization. After some preparations, a GPU kernel is created

in line 6 using the PACXX-provided kernel function. The

following lambda expression contains the code executed on

the GPU which calls the reduction operation fun in line 14.

In line 10 we make use of the stage function: it indicates

that the expression passed as its argument is evaluated on

the CPU prior to the kernel call and that the evaluated value

is embedded into the GPU code as a compile-time constant.

Here this value is the number of elements processed per

thread which is used as the upper bound in the following

loop in line 13. As a consequence of the staging, this loop

can be completely unrolled, since the upper bound is now

known at the GPU compilation time, which results in a sig-

nificant performance gain as we will see in the evaluation

section. The kernel continues with a reduction performed

in shared memory, synchronized across all threads in the

6 2016/12/16

same block (indicated in line 17); finally, the first thread of

each block writes the computed result back to global mem-

ory (line 19). This kernel is launched in line 22, and in the

last line the results of all blocks are reduced to the final re-

sult on the CPU. Note that the user-provided function fun is

used seamlessly on both GPU and CPU. This is possible due

to the two-pass compilation approach performed by PACXX

when generating code for CPU and GPU (Section 5.1).

5.3 Implementation of Multi-Staging in PACXX
This section describes how the stage function is imple-

mented in PACXX. In the kernel compilation pass, the

staged code, e.g., size / glbSize in Listing 9, is separated

from the kernel code and used to generate a corresponding

function which is embedded in the binary and will be eval-

uated at runtime on the host prior to the execution of the

kernel. The stage function call is removed from the kernel

and replaced by a dummy call instruction which acts as a

placeholder and is replaced at runtime with the value ob-

tained from evaluating the staged function on the host.

When a kernel is executed at runtime, three steps are

performed:

1) the kernel’s parameters and launch configuration are set;

2) the staged functions are just-in-time compiled, evaluated,

and the kernel’s IR is modified;

3) the kernel is just-in-time compiled and launched.

To evaluate the staged function in step 2), its IR is loaded

from the executable and just-in-time compiled for the host

architecture. The function is then evaluated and in the ker-

nel’s IR the placeholder call instructions are replaced with

the evaluated constant value. After the staged values have

been embedded into the kernel program, PACXX performs

additional optimizations on the code such as aggressive un-

rolling to take advantage of the new knowledge introduced

by the staged values. Finally, the kernel program is lowered

to either PTX [15] or SPIR [7] code linked with the corre-

sponding CUDA or OpenCL runtime and executed.

The compiled kernel code is cached by PACXX to mini-

mize the just-in-time compilation overhead. All staged func-

tions are evaluated again if the kernel is launched multiple

times: PACXX checks if the staged values have changed and

only performs a kernel recompilation if necessary.

6. Experimental Evaluation
In this section we evaluate our composable GPU program-

ming approach. We are interested in the performance of

the composable C++ code compared to low-level monolithic

CUDA code and high-level Thrust code, as well as the per-

formance impact of multi-staging and the overhead caused

by our JIT compiler at runtime.

6.1 Experimental Setup
We evaluate our approach on a system equipped with one

Nvidia K20c GPU and an Intel Xeon E5-1620v2 CPU. The

operating system is Ubuntu 16.04.01 LTS, and CUDA ver-

sion 7.5 is used with the corresponding driver (version 361).

All benchmarks are compiled by Nvidia’s nvcc compiler

with -O3 and -arch=sm_35. In advance, a warm-up kernel is

executed to bring the GPU into the P0 state (highest perfor-

mance). The kernel execution timings are recorded using the

Nvidia command line profiler (nvprof). We perform 1000

iterations of each algorithm and report the average runtimes.

For benchmarks with multiple kernels (e.g., Thrust bench-

marks where reduce is used), we sum up the runtimes of

the individual kernels. Throughout the plots we show the

speedup S =
TThrust,CUDA

TPACXX
over Thrust and CUDA.

For benchmarks which study the advantage of multi-

staging in PACXX, we also compare to CUDA code which

is JIT compiled and has been optimized by applying the

same multi-stage optimization manually. We use the Nvidia

Runtime Compilation library (nvrtc) for the JIT compila-

tion which was introduced in CUDA 7.5. We also evaluate

against the most recent CUDA beta version 8.0.27.1.

6.2 Performance of Composable GPU Programming
In this subsection we evaluate the performance achieved for

code written with our composable API compared to code

written in Thrust and CUDA. We use four small bench-

marks: vector addition (vadd), saxpy, dot product, and a vec-

tor sum. We evaluate a larger application in Section 6.5.

Implementation of Benchmarks We showed the imple-

mentations of the dot product in Listing 6 and saxpy in

Listing 7. Both benchmarks are written as a composition of

views. In case of the dot product the views are fused with a

final gpu::reduce. The saxpy code uses only views and our

gpu::async function. The vadd benchmark uses view::zip

together with gpu::transform. The sum benchmarks makes

no use of views and only uses gpu::reduce.

The CUDA implementations of these benchmarks are

low-level codes operating on raw pointers and exploiting

the parallelism explicitly. The simple CUDA code of the

dot product shown in Listing 1 highlights additional prob-

lems, such as thread synchronization. Our pattern-based API

clearly avoids these pitfalls and raises the level of abstraction

significantly. We used an optimized CUDA version of List-

ing 1 for the performance comparison.

The Thrust implementations of our benchmark appli-

cations also avoid the pitfalls of CUDA, but do not al-

low for a composable programming style. The dot product
is implemented using the specialized inner_product func-

tion, as shown in Listing 2. The sum benchmark used the

thrust::reduce function and the vadd and saxpy bench-

marks are written using thrust::transform. Different to our

API, a monolithic style is used in the Thrust implementa-

tions.

7 2016/12/16

Performance Results We evaluate each benchmark with

11 input sizes of single precision floating point values. Fig-

ures 2 and 3 show the performance results compared to the

optimized CUDA code. The results for the vector addition

and saxpy benchmark (Figure 2) show that our API imple-

mented using PACXX achieves equal performance to the

low-level CUDA kernels. The transform implementation in

Thrust uses 1024 threads per block and launches a fixed

number of blocks. Using this strategy, each thread computes

multiple elements and Thrust achieves significantly better

performance for the 217 input size of the saxpy benchmark.

Figure 2: Speedup of our approach and Thrust compared to

CUDA for the vector addition and saxpy benchmark.

Figure 3 shows the performance of our approach for dot
product and sum in comparison to Thrust and CUDA. All

three approaches follow different implementation strategies

for these benchmarks. The CUDA version from Nvidia’s

SDK [14] uses a tree-based reduction in local memory and

avoids synchronization inside a warp. The Thrust reduction

algorithm computes the result in two GPU kernels while

the PACXX and the CUDA versions execute only one GPU

kernel and finish the computation on the CPU. Using two

kernels with Thrust yields a significant overhead for smaller

input sizes, which is clearly visible in the graph. The multi-

staging optimized gpu::reduce implementation in PACXX

clearly outperforms the Thrust reduction and even beats the

low-level CUDA code for larger input sizes.

Figure 3: Speedup of our approach and Thrust compared to

CUDA for the dot product and sum benchmarks.

Summary This section shows that our composable pro-

gramming style using views does not introduce a perfor-

mance overhead. In contrary, our optimized GPU-enabled

algorithms outperform the corresponding low-level CUDA

and Thrust code. Even the specialized inner_product im-

plementation of Thrust used in the dot product benchmark

is outperformed by our composable implementation where

views are fused with our generic reduction algorithm.

6.3 Performance Impact of Multi-Staging
We continue our evaluation by studying the multi-stage op-

timization applied in PACXX. As described in Section 5,

multi-staging is used in our gpu::reduce algorithm to spe-

cialize the generated GPU code at runtime for the particular

input size, which enables aggressive loop-unrolling.

Figure 4: Performance improvement via multi-stage (MS)

optimization for the dot product and sum benchmarks.

Figure 4 shows the relative performance improvement

when applying multi-staging in the gpu::reduce algorithm,

for the dot product benchmark shown in Listing 6 and for

the sum benchmark that adds up all elements of an array.

We observe that multi-staging improves performance by up

to 1.35× depending on the input size. For input sizes larger

than 224, the performance advantage declines, as the number

of threads in a block is increased and, therefore, the num-

ber of loop iterations executed by each individual thread de-

creases: the effect of unrolling the loop becomes less visible.

The improvements for the dot product are lower, because the

kernel performs more loads from the global memory which

dominate the kernel runtime, making the loop unrolling a

less important performance factor.

6.4 Just-in-time Compilation Overhead
PACXX performs an offline and an online compilation step.

In this section, we study the overhead introduced at runtime

by the PACXX JIT compiler by comparing the compilation

times of PACXX with the JIT compiler library nvtrc recently

introduced for CUDA.

Figure 5 shows the compilation time for the sum and the

dot product benchmarks. We compare PACXX with nvrtc

from CUDA 7.5 and 8.0 RC. The compilation of PACXX

is 15 times (for dot product) and almost 20 times (for sum)

faster as compared to CUDA 7.5, and 9-12 times faster com-

pared to CUDA 8.0 RC. This is because the PACXX offline

compiler prepares the GPU code generation and, therefore,

the PACXX JIT compiler operates directly on the LLVM IR.

8 2016/12/16

Figure 5: The just-in-time compilation overhead for the dot
product and sum benchmarks.

The costly front-end operations — parsing, semantic checks

and building of the abstract syntax tree — are not performed

in PACXX at runtime as done in nvrtc.

6.5 Application Study: FlexBox
FlexBox [5] is a flexible MATLAB image processing tool-

box for finite-dimensional convex variational problems which

often consist of non-differentiable parts with linear opera-

tors. FlexBox uses GPUs to accelerate the solution of such

image processing tasks. It offers a high-level notation famil-

iar to applied mathematicians. This notation is mapped in

FlexBox’s implementation to computational patterns which

are executed on the GPU.

FlexBox Background FlexBox takes advantage from the

fact that many variational problems in image processing can

be written in the form

argmin
x

G(x) + F (Ax), (1)

where A denotes a linear operator and both G and F are

proper, convex and lower-semicontinuous functions. Prob-

lem (1) refers to the so-called primal formulation of the min-

imization problem and x is known as the primal variable. It

can be shown (see [17]) that minimizing (1) is equivalent to

solving the primal-dual formulation

argmin
x

argmax
y

G(x)+ < y,Ax > −F ∗(y). (2)

FlexBox uses a primal-dual scheme [3] to avoid (compu-

tationally) inefficient operator inversion and to get reliable

error estimates. The primal-dual scheme can be sketched up

as follows: For τ, σ > 0 and a pair (x̂0, y0) ∈ X × Y we

iteratively (k denotes the iteration) solve:

yk+1 = proxσF∗(yk + σAx̂k) (3)

xk+1 = proxτG(x
k − τAT yk+1) (4)

x̂k+1 = 2xk+1 − xk (5)

Here, proxτG (resp. σF ∗) denotes the proximal operator:

proxτG(y) := argmin
v

||v − y||22
2

+ τG(v) (6)

which can be interpreted as a compromise between mini-

mizing G and being close to the input argument y. The ef-

ficiency of primal-dual algorithms relies on the fact that the

prox-problems are computationally efficient to solve.

In the primal-dual algorithm (5), the application of the

linear operator A can be decoupled as follows:

ỹ := yk + σAx̃k, and x̃ := xk − τAT yk+1. (7)

As stopping criterion, FlexBox uses the primal-dual

residual proposed in [6].

Image Denoising with FlexBox As an example we eval-

uate the Rudin-Osher-Fatemi (ROF) model [18] which has

very popular applications in image denoising. An example

image showing the effect of denoising is shown in Figure 6a.

The primal formulation reads

argmin
u

1

2
||u− f ||22 + α||Δu||1,2, (8)

where the first part fits the unknown u to the input image

f and the second part refers to the isotropic total variation,

which penalizes the total sum of jumps in the solution.

While originally implemented in MATLAB, FlexBox of-

fers an additional C++ backend to increase execution effi-

ciency. FlexBox was recently extended with GPU capabili-

ties based on Thrust. FlexBox is written in an object-oriented

and modular way. Throughout the code, algorithms such as

transform and reduce are used to implement the mathemat-

ical transformations which can be applied to an image in

any order (required by equations like (8)). Adding GPU ex-

ecution to FlexBox using Thrust is fairly easy: STL algo-

rithms are replaced by the Thrust equivalents and Thrust’s

thrust::device_vector is used instead of std::vector.

Profiling the Thrust version shows that 11 GPU kernels

are executed in each iteration of our denoising application. A

part of the data flow graph showing computations operating

on data is presented in Figure 6b (left). Following the modu-

lar implementation of FlexBox, the two computations shown

in the graph result in two kernel executions in Thrust with a

temporary vector required that stores the result of multiply-

ing each element of x̃ with σ.

We re-implemented FlexBox using our composable pro-

gramming approach. Only slight modifications to the source

code were required. Functions with Thrust algorithms now

use corresponding views from our API which are automati-

cally fused. Figure 6b (right) shows the data-flow graph with

our API. The two computations are fused into a single effi-

cient kernel, despite the fact that these two computations are

described in separate header files. We were able to reduce

the number of kernels executed in the denoising benchmark

from 11 to 9 kernels. Furthermore, no more temporary vec-

tors are needed which reduces the memory footprint on the

GPU.

9 2016/12/16

(a) Image used in the FlexBox evaluation:

the source image (left) and the denoised

image (right).

y

*

A

x̂

x̂

x̂ y

* *
A

(b) Data-flow graph of implementations in

Thrust (left) and our API (right) where

two operations are fused into a single kernel.

(c) Performance improvements

of PACXX: 1.6× compared to

Thrust.

Figure 6

Comparing the performance of the image denoising ap-

plication implemented with FlexBox, we see that the im-

plementation using views in our API outperforms Thrust

by 1.6×. This demonstrates the advantages of our approach

which improves composability and improves performance

due to the user-controlled fusion of views into efficient GPU

kernels.

7. Conclusion
This paper presented a composable GPU programming ap-

proach using C++ and the STL. Generic, reusable patterns

are composed to develop real-world GPU programs. This

raises the abstraction level and avoids many issues of low-

level coding in CUDA and OpenCL. In contrast to compa-

rable approaches, such as Thrust, our implementation com-

bines eager actions and algorithms with lazy views which

are guaranteed to be fused into efficient GPU kernels. Our

LLVM-based compiler uses multi-stage programming tech-

niques to aggressively optimize GPU code at runtime with

negligible runtime overhead. Our approach shows compa-

rable performance to low-level CUDA code and signifi-

cant performance improvements of up to 1.6× compared

to Thrust code, as demonstrated by our real-world image

denoising application.

Acknowledgments
We thank Nvidia Corp. for generously donating the hard-

ware used in our experiments.

References
[1] AMD. Bolt C++ template library. 2014. Version 1.2.

[2] N. Bell and J. Hoberock. Thrust: A productivity-oriented

library for CUDA. GPU Computing Gems Jade Edition, 2011.

[3] A. Chambolle and T. Pock. A first-order primal-dual algo-

rithm for convex problems with applications to imaging. J. of
Mathematical Imaging and Vision, 40(1):120–145, 2011.

[4] C. Cummins, P. Petoumenos, M. Steuwer, and H. Leather.

Autotuning OpenCL workgroup size for stencil patterns. In

ADAPT@HiPEAC 2016, 2016.

[5] H. Dirks. A flexible primal-dual toolbox. arXiv preprint
arXiv:1603.05835, 2016.

[6] T. Goldstein, M. Li, X. Yuan, E. Esser, and R. Baraniuk.

Adaptive primal-dual hybrid gradient methods for saddle-

point problems. arXiv preprint arXiv:1305.0546, 2013.

[7] K. O. W. Group. The SPIR specification. 2014.

[8] M. Haidl, M. Steuwer, T. Humernbrum, and S. Gorlatch.

Multi-stage programming for GPUs in C++ using PACXX.

In GPGPU@PPoPP. ACM, 2016.

[9] M. Harris. Optimizing parallel reduction in CUDA. 2007.

[10] isocpp. Technical Specification for C++ Extensions for Par-
allelism [N4578], 2015.

[11] T. L. McDonell, M. M. T. Chakravarty, G. Keller, and B. Lipp-

meier. Optimising purely functional GPU programs. In ICFP.

ACM, 2013.

[12] Microsoft. C++ AMP: Language and programming model.

2012. Version 1.0.

[13] E. Niebler and C. Carter. N4569: C++ extensions for ranges.

2016. https://github.com/ericniebler/range-v3.

[14] Nvidia. The CUDA software developer kit. . Version 7.5.

[15] Nvidia. PTX: Parallel thread execution ISA. . Version 4.2.

[16] R. Reyes and V. Lomüller. SYCL: Single-source C++ accel-

erator programming. In ParCo, volume 27 of Advances in
Parallel Computing. IOS Press, 2015.

[17] R. T. Rockafellar. Convex analysis. Princeton University

Press, 2015.

[18] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total varia-

tion based noise removal algorithms. Physica D: Nonlinear
Phenomena, 60(1):259–268, 1992.

[19] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL — A portable

skeleton library for high-level GPU programming. In IPDPS
Workshop Proceedings, pages 1176–1182. IEEE, 2011.

[20] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. Generat-

ing performance portable code using rewrite rules: from high-

level functional expressions to high-performance OpenCL

code. In ICFP 2015, pages 205–217. ACM, 2015.

10 2016/12/16

