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What Makes Petri Nets Harder to Verify:
Stack or Data?�

Ranko Lazić1 and Patrick Totzke2

1 DIMAP, Department of Computer Science, University of Warwick, UK
2 LFCS, School of Informatics, University of Edinburgh, UK

Abstract. We show how the yardstick construction of Stockmeyer, also
developed as counter bootstrapping by Lipton, can be adapted and ex-
tended to obtain new lower bounds for the coverability problem for two
prominent classes of systems based on Petri nets: Ackermann-hardness
for unordered data Petri nets, and Tower-hardness for pushdown vector
addition systems.

1 Introduction

Unordered Data Petri Nets (UDPN [15]) extend Petri nets by decorating
tokens with data values taken from some countable data domain D, broadly in
the vein of coloured Petri nets [13]. These values act as pure names: they can only
be compared for equality or non-equality upon firing transitions. Such systems
can model for instance distributed protocols where process identities need to be
taken into account [24]. UDPNs also coincide with the natural generalisation
of Petri nets in the framework of sets with atoms [3]. In spite of their high
expressiveness, UDPNs fit in the large family of Petri net extensions among the
well-structured ones [1,8]. As such, they still enjoy decision procedures for several
verification problems, prominently safety through the coverability problem.

UDPNs have an interesting position in the taxonomy of well-structured Petri
net extensions (see Figure 1). Indeed, all their extensions forgo the decidability
of the reachability problem (whether a target configuration is reachable) and
of the place boundedness problem (whether the number of tokens in a given
place can be bounded along all runs): this is the case of ν-Petri nets [24] that
allow to create fresh data values, of ordered data Petri nets [15] that posit a
dense linear ordering on D, and of unordered data nets [15] that allow to per-
form ‘whole-place’ operations, which move and/or duplicate all the tokens from
a place to another. By contrast, it is currently open whether reachability is de-
cidable for UDPNs, but recent results on computing their coverability trees [11]
and on linear combinations of unordered data vectors [12] suggest to conjecture
decidability.

� Supported by the EPSRC, grants EP/M011801/1 and EP/M027651/1, and by the
Royal Society, grant IE150122.
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ordered data Petri nets [15]
Fωωω -complete [10]

decidable coverability ordered data nets [15]
Fωωω -complete [10]

ν-Petri nets [24]
Fω·2-complete [17] unordered data nets [15]

Fωω -complete [23]

affine nets [7]
Fω-complete [27,6]

unordered data Petri nets [15]
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Fig. 1. A short taxonomy of some well-structured extensions of Petri nets. The com-
plexities refer to the coverability problems, and can be taken as proxies for expressive-
ness; the new lower bound in this paper is displayed in blue, and the exact complexity
for UDPNs remains open. Place boundedness is decidable below the yellow line and
undecidable above. As indicated by the dashed arrows, freshness can be enforced using
a dense linear order or whole-place operations.

The Power of Well-Structured Systems. This work is part of a general
programme that aims to understand the expressive power and algorithmic com-
plexity of well-structured transition systems (WSTS), for which the complexity
of the coverability problem is a natural proxy. Besides the intellectual satisfac-
tion one might find in classifying the worst-case complexity of this problem, we
hope indeed to gain new insights into the algorithmics of the systems at hand,
and into their relative ‘power’. A difficulty is that the generic backward algo-
rithm [1,8] developed to solve coverability in WSTS relies on well-quasi-orders
(wqos), for which complexity analysis techniques are not so widely known.

Nevertheless, in a series of recent papers, the exact complexity of coverabil-
ity for several classes of WSTSs has been established. These complexities are
expressed using ordinal-indexed fast-growing complexity classes (Fα)α [25], e.g.
Tower complexity corresponds to the class F3 and is the first non elementary
complexity class in this hierarchy, Ackermann corresponds to Fω and is the
first non primitive-recursive class, hyper-Ackermann to Fωω and is the first
non multiply-recursive class, etc.; see Figure 2. To cite a few of these complex-
ity results, coverability is Fω-complete for reset Petri nets and affine nets [27,6],
Fω·2-complete for ν-Petri nets [17], Fωω -complete for lossy channel systems [4,26]
and unordered data nets [23], and even higher complexities appear for timed-arc
Petri nets and ordered data Petri nets (Fωωω -complete [10]) and priority channel
systems and nested counter systems (Fε0 -complete [9,5]); see the complexities
in violet in Figure 1 for the Petri net extensions related to UDPNs.
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Elementary

F3 = Tower

⋃
kFk=Primitive-Recursive

Fω
Fω+1

Fω·2

⋃
α<ωω Fα = Multiply-Recursive

Fωω

Fig. 2. Some complexity classes beyond Elementary. The two new lower bounds in
this paper are F3 (Section 3) and Fω (Section 7), whereas the best known upper bound
for UDPN coverability is Fω·2 [17].

New Lower Bound for UDPNs. In this paper, we tackle the huge gap in what
is known about the worst-case complexity of the coverability problem for UDPNs:
between the Tower, i.e. F3, lower bound established in [15] and the Fω·2 upper
bound that holds even for the more general class of ν-Petri nets [17]. Our main
result is an increased Fω lower bound, making it known that coverability for
UDPNs cannot be decided in primitive recursive time or space.

For this Ackermann lower bound, we follow the pattern of Stockmeyer’s
yardstick construction [28] and Lipton’s classical proof of ExpSpace-hardness
for Petri nets [21], in that we design an ‘object-oriented’ implementation of
the Ackermann function in UDPNs. By this, we mean that the implementation
provides an interface with increment, decrement, zero, and max operations on
larger and larger counters up to an Ackermannian value. This allows then the
simulation of a Minsky machine working in Ackermann space.

The difficulty is that the bootstrapping implementation in UDPNs of the
hierarchy of counters requires an iteration operator on ‘counter libraries’—of
the kind employed recently in the context of channel systems with insertion
errors to obtain Fω-hardness [16] and in the context of ν-Petri nets to obtain
Fω·2-hardness [17]—but UDPNs have fundamentally unordered configurations
as well as no basic mechanism for creating fresh data values. To overcome that
obstacle—and this is the key technical idea in the paper—we enrich the inter-
faces of the counter implementations by a local freshness test : verifying that a
given data value is distinct from all data values that the implementation (and,
recursively, the implementations of all lesser counters in the hierarchy) currently
employs internally; see Sections 5 and 6.

Pushdown Vector Addition Systems. Motivations for considering exten-
sions of Petri nets by a pushdown stack include verifying procedural programs
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with unbounded integer variables [2] and optimising two-variable queries on XML
documents with unbounded data at leaf nodes [14]. The boundedness problem,
as well as the coverability and counter-boundedness problems in the restricted
setting of pushdown vector addition systems (PVAS) of dimension 1, have re-
cently been shown decidable [18,20,19]. However, the coverability and reachabil-
ity problems are interreducible for PVASs in general [14,20], and the whether
they are decidable remains a challenging open question.

Partly in order to introduce the bootstrapping technique that is the basis of
our Fω lower bound for UDPN coverability, we present a proof that the reach-
ability problem for PVASs (also the coverability and boundedness problems) is
F3-hard; this Tower lower bound means that the latter problems cannot be
decided in elementary time or space.

Outline. In the two sections, we introduce the bootstrapping technique using
pushdown vector addition systems and obtain Tower-hardness of their reacha-
bility problem. The four sections that follow develop the more involved Acker-
mann-hardness of the coverability problem for unordered data Petri nets. The
latter lower bound still leaves a gap to the best known Fω·2 upper bound, and
we finish with some remarks about that in the concluding section.

2 Pushdown Vector Addition Systems

It is convenient for our purposes to formalise PVASs as programs that operate
on non-negative counters and a finite-alphabet stack. More precisely, we define
them as finite sequences of commands which may be labelled, where a command
is one of:

– an increment of a counter (x := x+ 1),
– a decrement of a counter (x := x− 1),
– a push (push a),
– a pop (pop a),
– a nondeterministic jump to one of two labelled commands (goto L or L′),
– or termination (halt).

Initially, all counters have value 0 and the stack is empty. Whenever a decrement
of a counter with value 0 or an erroneous pop is attempted, the program aborts.
In every program, halt occurs only as the last command.

Example 2.1. We display in Figure 3 a PVAS fragment, which will be useful
in the next section. It is shown diagramatically, where multiple outgoing edges
from a node are to be implemented by the nondeterministic jumps.

The reachability problem for PVASs can now be stated as follows:

Input: A PVAS P.
Question: Does P have a computation which reaches the halt command with
all counters being 0 and the stack being empty?
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push 0;
sk := sk + 1;
s̄k := s̄k − 1

Deck

pop 1;
sk := sk + 1;
s̄k := s̄k − 1

Deck;
sk+1 := sk+1 − 1;
s̄k+1 := s̄k+1 + 1

pop 0;
sk+1 := sk+1 − 1;
s̄k+1 := s̄k+1 + 1;

push 1

push 0;
sk := sk − 1;
s̄k := s̄k + 1

Deck

Fig. 3. PVAS procedure Deck+1. The calls of procedures Deck and Deck use the stack
in the standard manner. The latter is the variant of Deck that decrements s̄k exactly
tower(k) times, i.e. with sk and s̄k swapped.

3 Tower-Hardness

Theorem 3.1. The reachability problem for PVASs is Tower-hard.

Proof. We reduce from the tower(n)-bounded halting problem for Minsky pro-
grams with n commands, where:

– for k ∈ N, the ‘tetration’ operation is defined by

tower(0) = 1 and tower(k + 1) = 2tower(k) ;

– the Minsky programs are defined like PVASs, except that they have no stack,
have only deterministic jumps (goto L), but can test counters for zero (if x =
0 then L else L′).

The following problem is Tower-hard [25, Section 2.3.2 and Theorem 4.1]:

Input: A Minsky program M with n commands.

Question: Can M reach the halt command by a computation during which
all counter values are at most tower(n)?

Given such a Minsky program M, we construct in time polynomial in n a
PVAS P(M) that simulates M as long as its counters do not exceed tower(n).
Similarly to Stockmeyer’s yardstick construction [28] and Lipton’s proof of Ex-
pSpace-hardness for Petri nets [21], the idea is to bootstrap the ability to simu-
late zero tests of counters that are bounded by tower(1), tower(2), . . . , tower(n).
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More precisely, for each counter x ofM, P(M) have a pair of counters x and
x̄, on which it maintains the invariant x+ x̄ = tower(n). Thus, every increment
of x in M is translated to x := x + 1; x̄ := x̄ − 1 in P(M), and similarly for
decrements.

For every zero test of x in M, P(M) uses auxiliary counters sn and s̄n, for
which it also maintains sn + s̄n = tower(n). Moreover, we assume that sn =
0 at the start of each zero-test simulation. The simulation begins by P(M)
transferring some part of x̄ to sn (while preserving the invariants). It then calls
a procedure Decn that decrements sn exactly tower(n) times. For the latter to
be possible, x must have been 0. Otherwise, or in case not all of x̄ was transferred
to sn, the procedure can only abort. When Decn succeeds, the initial values of
x and x̄ are reversed, so to finish the simulation, everything is repeated with x
and x̄ swapped.

The main part of the construction is implementing Deck for k = 1, 2, . . . , n.
Assuming that Deck which decrements sk exactly tower(k) times and maintains
sk + s̄k = tower(k) has been implemented for some k < n, Deck+1 consists of
performing the following by means of sk, s̄k and Deck, cf. Figure 3:

– push exactly tower(k) zeros onto the stack;
– keep incrementing the tower(k)-digit binary number that is on top of the

stack until no longer possible, and decrement sk+1 for each such increment;
– pop tower(k) ones that are on top of the stack, and decrement sk+1 once

more.

Following the same pattern: starting with all counters having value 0, P(M)
can initialise each auxiliary counter s̄k to tower(k), and each x̄ to tower(n); also
provided M reaches its halt command, P(M) can empty all its counters, as
required. ��

4 Unordered Data Petri Nets

This extension of classical Petri nets is by decorating tokens with data values
taken from some countably infinite data domain D. These values act as pure
names: they can only be compared for equality or non-equality upon firing tran-
sitions. We recall the definition from [24,23].

A multiset over set X is a function M : X → N. The set X⊕ of all multisets
over X is ordered pointwise, and the union of M,M ′ ∈ X⊕ is (M ⊕M ′) ∈ X⊕

with (M ⊕M ′)(α) def
= M(α) +M ′(α) for all α ∈ X. If M ≥ M ′ holds then the

difference (M �M ′) is defined as the unique M ′′ ∈ X⊕ with M = M ′ ⊕M ′′.

Definition 4.1. An unordered data Petri net (UDPN) over domain D consists
of finite sets P, T,Var of places, transitions and variables, respectively, and a
flow function F : (P × T ) ∪ (T × P )→ Var⊕ that assigns each place p ∈ P and
transition t ∈ T a finite multiset of variables.

A marking is a function M : P → D
⊕. Intuitively, M(p)(α) denotes the

number of tokens of type α in place p. A transition t ∈ T is enabled in marking
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p1

t

p2

xxy

y
z

Fig. 4. An UDPN with places p1, p2, variables x, y, z and a single transition t. The
transition t takes 〈2, 0〉 tokens of type x and 〈1, 0〉 tokens of type y in places 〈p1, p2〉.
It puts 1 token of type z onto p2 and 1 token of type y onto p1.

M with mode σ if σ : Var → D is an injection such that σ(F (p, t)) ≤M(p) for
all p ∈ P . There is a step M −→M ′ between markings M and M ′ if there exists
t and σ such that t is enabled in M with mode σ, and for all p ∈ P ,

M ′(p) = M(p)� σ(F (p, t))⊕ σ(F (t, p)) .

For notational convenience we will sometimes write that a marking M has
tokens 〈n1, n2, . . . , nk〉 of type α in places 〈p1, p2, . . . , pk〉 if M(pi)(α) = ni holds
for all 1 ≤ i ≤ k. Similarly, we write that a transition t takes (resp. puts)
〈n1, n2, . . . , nk〉 tokens of type α in places 〈p1, p2, . . . , pk〉 if for all 1 ≤ i ≤ k it
holds that F (pi, t)(α) = ni (resp. F (t, pi)(α) = ni).

Notice that UDPN are a generalization of ordinary P/T nets, which have
only one type of token, i.e. D = {•}. See Figure 4 for a depiction of an UDPN
in the usual Petri net notation.

The Coverability Problem for UDPN is the following decision problem where
∗−→ denotes the transitive and reflexive closure of the step relation.

Input: An UDPN (P, T,Var , F ) and two markings I, F : P → D
⊕.

Question: Does there exist a marking F ′ ≥ F such that I
∗−→ F ′?

The following example shows that three places and a simple addressing mech-
anism are enough to simulate ordinary Petri nets with an arbitrary number of
places. This suggests that UDPN are more succinct than Petri nets and indeed,
as we shall see in Section 6, UDPN can be used to design more involved ad-
dressing mechanisms. This will allow us to push the classical approach of [21]
to simulate bounded counter machines from a double exponential bound to an
Ackermannian bound.

Example 4.2. Given a Petri net with places P = {p0, . . . , pn−1}, we build a
UDPN with three places a, ā, and v and variables Var = {x0, . . . , xn−1}.

The intuition is for a and ā to maintain an addressing mechanism for the
original places in P , while v maintains the actual token counts of the original
net. The places a and ā hold n− 1 different data values such that all reachable
configurations are of the form

⊕n−1
i=0 Mi where Mi(a) = i and Mi(ā) = n− 1− i

for all 0 ≤ i < n.
Each partial marking Mi represents a marking of the place pi in the original

net by holding in Mi(v) the number of tokens in place pi. Each transition of the
original net translates into a UDPN transition where the flows of the variables



8 R. Lazić and P. Totzke

p0

p1

p2

p3

2 �
a

ā

v

x1x2
2x3

3

x
3
0
x
2
1
x2

x0x1x3

x1x
2
2

Fig. 5. Simulation of a Petri net transition (left) by a UDPN (right).

with places a and ā identify uniquely the places of the original net, while the
flows with place v update the token counts accordingly.

Figure 5 shows how a transition of a Petri net with 4 places (on the left) is
simulated with this construction (on the right).

5 Counter Libraries in UDPNs

To present our lower bound construction, we indirectly describe UDPNs in terms
of sequential programs. For this purpose we will now develop a simple but con-
venient language for programming with UDPNs.

Routines, Libraries, and Programs. Let a library mean a sequence of named
routines

�1 :R1, . . . , �K :RK

where �1, . . . , �K are pairwise distinct labels. In turn, a routine is a sequence
of commands c1, . . . , cK′ , where the last command cK′ is return and each ci for
i < K ′ is one of the following:

– a UDPN transition,

– a nondeterministic jump goto G for a nonempty subset G of {1, . . . ,K ′}, or
– a subroutine invocation call �′.

When a library contains no subroutine calls, we say it is a program. The
denotation of a program L is a UDPN N (L) constructed so that:

– The places of N (L) are all the places that occur in transition commands
of L, and four special places p, p, p′, p′. Places 〈p, p〉 are used to store the
pair of numbers 〈i,K − i〉 where �i :Ri is the routine being executed, and
then places 〈p′, p′〉 to store the pair of numbers 〈i′,K ′ − i′〉 where i′ is the
current line number in routine Ri and K ′ is the maximum number of lines
in any R1, . . . , RK .

– Each transition of N (L) either executes a transition command ci′ inside
some Ri ensuring that 〈p, p〉 contains 〈i,K − i〉 and modifying the contents
of 〈p′, p′〉 from 〈i′,K ′ − i′〉 to 〈i′ + 1,K ′ − (i′ + 1)〉, or similarly executes a
nondeterministic jump command.
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We shall refer to the special places p, p, p′, p′ as control places, to the rest as
tape places, and to markings of the latter places as tape contents.

For two tape contents M and M ′, we say that a routine �i :Ri in a program
L can compute M ′ from M if and only if N (L) can reach in finitely many steps
M ′ with the control at the last line of Ri from M with the control at the first
line of Ri. When �i :Ri cannot compute any M ′ from M , we say that it cannot
terminate from initial tape content M .

Note that there are two sources of nondeterminism in routine computations:
choosing how to instantiate the variables in the commands that are UDPN tran-
sitions, and resolving the destinations of the jump commands. The computations
can also become blocked, which happens if they reach a UDPN transition that
is disabled due to insufficient tokens being available in the current tape content.

Interfaces and Compositions of Libraries. For a library L, let us write
Λin(L) and Λout(L) for the set of all routine labels that are invoked in L and
provided by L, respectively. We say that libraries L0 and L1 are compatible if and
only if Λin(L0) is contained in Λout(L1). In that case, we can compose them to
produce a library L0 ◦L1 in which tape contents of L1 persist between successive
invocations of its routines, as follows:

– Λin(L0 ◦ L1) = Λin(L1) and Λout(L0 ◦ L1) = Λout(L0).
– L0 ◦L1 has an additional place w used to store the name space of L0 (i.e., for

each name manipulated by L0, one token labelled by it) and an additional
place w for the same purpose for L1.

– For each routine � : R of L0, the corresponding routine � : R◦L1 of L0 ◦L1 is
obtained by ensuring that the transition commands in R (resp., L1) maintain
the name space stored on place w (resp., w), and then inlining the subroutine
calls in R.

Example 5.1. Suppose that in L1 the routine with label �1 consists only of the
transition command a b

y y
followed by return. Suppose further

that L0 has a routine with label �0 and commands a cx x followed
by call �. Then the corresponding routine �0 in the composition L0 ◦ L1 is

a c

w w

x x

x followed by
a b

w w

y y

y .

Notice that, in the above definition of N (L0 ◦ L1), the places of N (L0) and
N (L1) are not duplicated: a transion command in L0 may operate on some place
which is also used in L1. The name space places w and w and the way transition
commands translate into actual UDPN transitions in N (L0 ◦ L1) ensure that
the commands of the two libraries do not interfere. However, this relies on an
additional mechanism for preventing the same name to be used by both L0 and
L1—unless disjointness of corresponding places is guaranteed—and that is what
the local freshness checks developed in the sequel provide.
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Counter Libraries. We aim to write programs that simulate bounded two-
counter Minsky machines. For this purpose we will now focus on libraries that
provide the necessary operations to manipulate a pair of counters. Letting Γ
denote the set of labels of operations

Γ
def
= {init , fresh, eq , i.inc, i.dec, i.iszero, i.ismax : i ∈ {1, 2}} ,

we regard L to be a counter library if and only if Λout(L) = Γ and Λin(L) ⊆ Γ .
When L is also a program, and N is a positive integer, we say that L is N -

correct if and only if the routines behave as expected with respect to the bound
N and correctly implement a freshness test on a special tape place ν. Namely,
for every tape content M that can be computed from the empty tape content by
a sequence σ of operations from Γ , provided init occurs only as the first element
of σ, every routine in Γ \ {init} either does not terminate or computes a unique
tape content from M . If ni is the difference between the numbers of occurrences
in σ of i.inc and i.dec, we must have for both i ∈ {1, 2}:
– i.inc can terminate from M if and only if ni < N − 1;
– i.dec can terminate from M if and only if ni > 0;
– eq can terminate from M (and compute M) if and only if n1 = n2;
– i.iszero can terminate from M (and compute M) if and only if ni = 0;
– i.ismax can terminate from M (and compute M) if and only if ni = N − 1.

Moreover, N -correctness requires that L behaves with respect to fresh and ν so
that:

– only transition commands in the routines init and fresh use the place ν;
– if M is computed from the empty tape content by init , then M has no tokens

on place ν;
– for every tape content A that has one token of type α on place ν and is

otherwise empty, and for every tape content M computed by a sequence
σ as above, we have that fresh can terminate from M ⊕ A (and compute
M ⊕A) if and only if α is not in the support of M(p) for all places p �= ν.

We also need a notion of correctness for counter libraries that may not be
programs, i.e. may invoke operations on another pair of counters (which we call
auxiliary). Given a counter library L, and given a function F : N+ → N

+, we
say that L is F -correct if and only if, for all N -correct counter programs C, the
program L ◦ C is F (N)-correct.

We now present two example counter libraries, which will be used in our later
constructions.

Example 5.2 (An Enumerated Counter Program). For every positive integer N ,
one can implement a pair of N -bounded counters by manipulating the values
and their complements directly as follows. Let Enum(N) be the counter program
which uses four places e1, e1, e2, e2 and such that for both i ∈ {1, 2}:
– routine init chooses a datum β, and puts N − 1 tokens onto e1 and N − 1

tokens onto e2, all carrying β;
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1: call fresh

2: goto {3, 5}
3: ν b0

x y

4: goto {6}
5: ν b1

x y

6: return

Fig. 6. The routine fresh of the counter library Double. Here, the numbers on the left
of the commands are line numbers to be referenced in goto commands.

– routine fresh takes one token from e1 or e1, and checks it for inequality with
the token on ν;

– routine eq guesses n ∈ {0, . . . , N − 1}, takes 〈n,N − 1 − n, n,N − 1 − n〉
tokens from places 〈e1, e1, e2, e2〉, and then puts them back;

– routine i.inc moves a token from ei to ei;
– routine i.dec moves a token from ei to ei;
– routine i.iszero takes N − 1 tokens from place ei and then puts them back;
– routine i.ismax takes N − 1 tokens from place ei and then puts them back.

It is simple to verify that Enum(N) is computable in space logarithmic in N ,
and that:

Lemma 5.3. For every N , the counter program Enum(N) is N -correct.

Example 5.4 (A Counter Library for Doubling). Let Double be a counter library
which uses four places b1, b1, b2, b2, is such that:

– routine init first initialises the auxiliary counters (call init), then chooses a
datum β and checks that it is fresh with respect to the auxiliary counters
(call fresh), and finally puts one token carrying β onto both b1 and b2;

– routine fresh checks that the given datum (on the special place ν) is both
fresh with respect to the auxiliary counters, and distinct from the datum on
b1 or b1 (equivalently, b2 or b2), see Figure 6 for the code that implements
this;

– routine eq first calls eq on the auxiliary counters, then either takes 〈1, 0, 1, 0〉
or 〈0, 1, 0, 1〉 tokens from places 〈b1, b1, b2, b2〉, and finally puts them back;

and for both i ∈ {1, 2}:
– routine i.inc calls i .inc, or calls i .ismax and moves a token from bi to bi;
– routine i.dec calls i .dec, or calls i .iszero and moves a token from bi to bi;
– routine i.iszero calls i .iszero, takes a token from bi and puts it back;
– routine i.ismax calls i .ismax , takes a token from bi and puts it back.

Given a correct program C that provides counters bounded by N , the library
Double essentially uses two extra bits (each represented by a pair 〈bi, bi〉 of
places) to implement a program Double ◦ C , where the bound on the provided
counters is 2N .

Lemma 5.5. The counter library Double is λx.2x-correct.
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Proof. When the control reaches the end of the init routine, Double ◦ C has as
tape content a marking M ⊕MC , where MC is a marking of N (C ) representing
two 0-valued counters with bound N , and M has 〈0, 1, 0, 1〉 tokens of some type
β on places 〈b1, b̄1, b2, b̄2〉. So by adding two new most significant bits, this tape
content represents two 0-counters with bound 2N . Notice that all routines apart
from init preserve the invariant that tape contents have exaxtly two tokens of
type β on the places b1, b̄1, b2, b̄2. We can easily check that those routines satisfy
the respective correctness criteria.

For example, take the routine eq and let n1, n2 ∈ N denote the values of the
counters represented by the current tape content M . If n1 = n2, then M ⊕MC

has 〈1, 0, 1, 0〉 or 〈0, 1, 0, 1〉 tokens on places 〈b1, b̄1, b2, b̄2〉 and the numbers n′
1, n

′
2

represented by MC are the same. Since C is N -correct, the command call eq ter-
minates. Moreover, one of the two operations to take 〈1, 0, 1, 0〉 or 〈0, 1, 0, 1〉 from
〈b1, b̄1, b2, b̄2〉 is possible. So eq terminates. Conversely, if n1 �= n2, then either
the content of places 〈b1, b̄1, b2, b̄2〉 is 〈0, 1, 1, 0〉 or 〈1, 0, 0, 1〉, or the values repre-
sented by the auxiliary counters are not equal. In the first case, the commands to
take 〈1, 0, 1, 0〉 or 〈0, 1, 0, 1〉 are disabled; in the latter case, the command call eq
does not terminate, by the correctness assumption on C .

In a similar fashion we can see that the routine fresh (see Figure 6) is correct:
suppose the current tape content is M ⊕MC and A is the tape content that has
one token α on place ν and is otherwise empty. If α is different from β (used on
places bi, b̄i) and also different from all data values in the configuration of C ,
then the routine must terminate without changing the tape content. If α = β
then then both commands in lines 3 and 5 will block. If α appears in MC then
the command call fresh in line 1 must block. ��

6 Bootstrapping Counter Libraries

The most complex part of our construction is an operator −∗ whose input is
a counter library L. Its output L∗ is also a counter library which behaves like
an arbitrary number of copies of L composed in sequence. Namely, for every
N -correct counter program C, the counter operations provided by L∗ ◦C behave
in the same way as those provided by

N︷ ︸︸ ︷
L ◦ · · · ◦ L ◦Enum(1).

Hence, when L is F -correct, we have that L∗ is F ′-correct, where F ′(x) = F x(1).
The main idea for the definition of L∗ is to combine a distinguishing of

name spaces as in the composition of libraries with an arbitrarily wide indexing
mechanism like the one employed in Example 4.2. The key insight here is that
a whole collection of ‘addressing places’ 〈ai, āi〉i as used in Example 4.2 can be
simulated by adding one layer of addressing. We will use the routine fresh to set
up this addressing mechanism during initialisation, recursively.

Let us write here I, I ′ for the two N -bounded auxiliary counters and number
the copies of L by 0, . . . , N−1, writing �1 :R1 up to �K :RK for the routines of L
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w, w̄ contain the addressing mechanism for recording the current control informa-
tion of the Li

w′, w̄′ contain the name spaces of the Li, where the multiplicities of tokens identify
the indices i

p, p̄ identify the currently active routines of the Li

p′, p̄′ identify the currently active commands of the Li

f temporarily stores a guessed datum for comparison
ν stores the datum to be checked for freshness

Table 1. A glossary of tape places in L∗. Not listed are places that are internally used
in transition commands of L, nor the control places of N (L∗ ◦ C ).

and K ′ for the maximum number of commands in a routine. Since L is a counter
library, it has K = |Γ ′| = 11 routines, and we assume without loss of generality
that �1 = init and �2 = fresh. The net for L∗ can maintain the control and the
tape of each copy of L in the implicit composition as follows.

– To record that the program counter of the ith copy of L is currently in
routine �j :Rj at line j′, 〈i, N − 1− i, j,K − j, j′,K ′ − j′〉 tokens carrying a
separate name αi are kept on special places 〈w,w, p, p, p′, p′〉.

– The current height i of the stack of subroutine calls is kept in one of the
auxiliary counters, and we have that:

• for all i′ < i, the program counter of the i′th copy of L is at some sub-
routine invocation call �′ such that the program counter of the (i′ + 1)th
copy of L is in the routine named �′;

• for all i′ > i, there are 〈i′, N − 1 − i′, 0, 0, 0, 0〉 tokens carrying αi′ on
places 〈w,w, p, p, p′, p′〉.

– For every name manipulated by the ith copy of L, 〈i, N − 1 − i〉 tokens
carrying it are kept on special places 〈w′, w′〉.

To define L∗, its places are all the places that occur in L, plus nine special
places w, w, w′, w′, p, p, p′, p′ and f . All routines of the library L∗ end in the
same sequence of commands, which we will just call the simulation loop. This
uses I ′ and place f repeatedly to identify numbers j′ and j′′ such that there are
exactly 〈I,N−1−I, j′,K−j′, j′′,K ′−j′′〉 tokens carrying αI on 〈w,w, p, p, p′, p′〉,
and then advance the Ith copy of L by performing its command c at line j′′ in
routine �j′ :Rj′ of L as follows.

– If c is a UDPN transition, use I ′ and place f to maintain the Ith name space,
i.e. to ensure that all names manipulated by c have 〈I,N − 1− I〉 tokens on
places 〈w′, w′〉.

– If c has put a datum β on place ν, invoke routine fresh of the auxiliary
counters.

– If c is a nondeterministic jump goto G, choose j‡ ∈ G and ensure that there
are 〈j‡,K ′ − j‡〉 tokens carrying αI on places 〈p′, p′〉.
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1: call I.inc

2:
w f

x x

3: call I ′.inc

4: goto {5, 8}

5:
w f

x

x

x

6: call I ′.inc

7: goto {4}
8: call eq

9: goto {10, 13}

10:

w f
x

x

x

11: call I ′.inc

12: goto {9}
13: call I ′.ismax

14:
p

p

f p′

p′

x (j †
)

x(K−j†)

x

x(K′−1)

x x

15: goto {16, 19}

16:

w f
x

x

x

17: call I ′.dec

18: goto {15}
19: call eq

20: goto {21, 24}

21:
w f

x

x

x

22: call I ′.dec

23: goto {20}
24:

w f
x x

25: call I ′.dec

26: call I ′.iszero

Fig. 7. Performing a call �j† provided I < N − 1. At the beginning, I ′ is assumed to
be zero, and the same is guaranteed at the end.

– If c is a subroutine invocation call �j† and I < N−1, put 〈j†,K−j†, 1,K ′−1〉
tokens carrying αI+1 on places 〈p, p, p′, p′〉, and increment I. Example code
that implements this can be found in Figure 7.

– If c is a subroutine invocation call �′, I = N − 1 and �′ is not an increment
or a decrement (of the trivial counter program Enum(1)), simply increment
the program counter by moving a token carrying αI from place p′ to place
p′. When �′ is an increment or a decrement, L∗ blocks.

– In the remaining case, c is return. Remove the tokens carrying αI from places
〈p, p, p′, p′〉. If I > 0, move a token carrying αI−1 from p′ to place p′ and
decrement I. Otherwise, exit the loop and return.

The code of this simulation loop is used (inlined) in the actual code for the
routines R∗

j of L∗, which simulate the routines of the outmost copy L0 as follows.

Initialization (�j = �1 = init): – call init to initialise the auxiliary counters;
– for each i ∈ {0, . . . , N − 1}, put 〈i, N − 1 − i〉 tokens carrying a fresh

name αi onto places 〈w,w〉 (this uses the auxiliary counters, their fresh
routine, and place f);

– put 〈1,K− 1, 1,K ′− 1〉 tokens carrying name α0 onto places 〈p, p, p′, p′〉
to record that the first routine (init) of L0 should be simulated from
line 1;

– enter the simulation loop.
Freshness test (�j = �2 = fresh): – call fresh to check that the datum β on

place ν is distinct from all data used in the auxiliary counters;
– verify that β �= αi for all i ∈ {0, . . . , N − 1};
– put 〈2,K− 2, 1,K ′− 1〉 tokens carrying name α0 onto places 〈p, p, p′, p′〉

to record that the 2nd routine (fresh) of L0 should be simulated from
line 1;
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– enter the simulation loop.
Routines �j :R

∗
j for j > 2: – put 〈2,K − j, 1,K ′ − j〉 tokens carrying name

α0 onto places 〈p, p, p′, p′〉 to record that the jth routine of L0 should be
simulated from line 1;

– enter the simulation loop.

Notice that these routines do not actually call routines of L but simulate them
internally and terminate only after the whole simulation loop terminates.

Observe that L∗ is computable from L in logarithmic space.

Lemma 6.1. For every function F : N → N and F -corrent counter library L,
the couner library L∗ is λx.F x(1)-correct.

Proof. Recall that for any N ∈ N, the program LN ◦ Enum(1), the N -fold
composition of L with itself and the trivial 1-bounded counter program, is F k(1)-
correct by our assumption on L and Lemma 5.3.

We need to show that L∗ ◦ C is FN (1)-correct for every N -correct counter
program C. We argue that, after initialisation and with respect to termina-
tion/nontermination of the counter routines Γ \ {init}, the program L∗ ◦ C
behaves just as LN ◦ Enum(1).

Fix k ≤ {1, . . . , N}. We say a tape content M of Lk ◦Enum(1) is represented
by a tape content M† of L∗ ◦ C if, for all i ∈ {0, . . . , k − 1},
1. there is a unique name αN−k+i that labels 〈N − k + i, k − i− 1〉 tokens on

places 〈w, w̄〉 in M†, and
2. the restriction Mi of M to the names in the name space to the ith copy of

L equals the restriction M†
N−k+i of M† to the names that label 〈N − k +

i, k − i− 1〉 tokens on places 〈w′, w′〉 and to the places of L.

Let us now look at how the code of the simulation loop in L∗ acts on repre-
sentations of tape contents of Lk ◦ Enum(1).

For two tape contents M and M ′ of Lk ◦Enum(1), we say that the simulation
loop 〈j, j′〉-computes M ′ fromM if from a tape content (of L∗◦C ) that represents
M , where the stack height stored in the first auxiliary counter is N − k and
there are 〈j,K − j, j′,K ′ − j′〉 tokens carrying αN−k on places 〈p, p̄, p′, p̄′〉, the
net N (L∗ ◦C ) can reach, by simulating a single command and without reducing
the stack height below N − k, a tape content that represents M ′.

The following claim can be shown by induction on k ≤ N .

Claim. For two tape contents M,M ′ of Lk ◦ Enum(1), command j′ of routine
�j :Rj computes M ′ from M in Lk ◦Enum(1), if and only if, the simulation loop
in L∗ ◦ C 〈j, j′〉-computes M ′ from M .

This in particular (for k = N) implies that, after correct initialisation and
with respect to termination of routines other than init , L∗ ◦C bahaves just like
LN ◦ Enum(1). Notice that if L∗ ◦ C computes a fresh command within the
init routine of LN ◦ Enum(1), the simulation loop ensures that the new datum
is also distinct from all values used in the auxiliary counters of L∗. It remains
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to show that, for any tape content M that is computed from the empty tape
content by the init routine of LN ◦ Enum(1), there is a tape content of L∗ ◦ C
that represents M and that is computed from the empty tape content by the
init routine of L∗ ◦ C .

To see this, observe that the first command of init in L∗◦C calls the initialisa-
tion routine of C , providing the auxiliary counters. By the assumption that C is
N -correct, this allows to place exactly 〈i, N−1− i〉 tokens carrying a fresh name
αi onto places 〈w,w〉 for each i ∈ {0, . . . , N − 1}. Thus, after these commands,
the tape content of L∗ ◦C represents the empty tape content of LN ◦Enum(1).
The rest of the initialisation routine contains the code of the simulation loop, so
the conclusion follows from the claim above, where k = N . ��

7 Ackermann-Hardness

We work with a hierarchy of functions Ai, defined as follows for all k and x in N:

A1(x)
def
= 2x and Ak+2(x)

def
= Ax

k+1(1) .

The Ackermann function is then defined as Aω(x)
def
= Ax+1(x), and by [25, Sec-

tion 2.3.2 and Theorem 4.1], we have that the next problem is Ackermann-
complete (cf. Section 3) and that the class Ackermann is closed under primitive
recursive reductions:

Input: A 2-counter Minsky program M with n commands.

Question: Can M reach the halt command by a computation during which
both counter values are less than Aω(n)?

Theorem 7.1. The coverability problem for UDPNs is Ackermann-hard.

Proof. Suppose M is a 2-counter Minsky program with n commands.

By Lemmas 6.1, 5.3 and 5.5, we have that the counter program

Acker(n)
def
= (· · · (Double

n︷ ︸︸ ︷
∗)∗ · · · )∗ ◦Enum(n)

is Aω(n)-correct.

Since the star operator is computable in logarithmic space and increases the
number of places by adding a constant, we have that Acker(n) is computable in
time elementary in n, and that its number of places is linear in n.

It remains to simulate M by a one-routine library that uses the two Aω(n)-
bounded counters provided by the counter program Acker(n). The resulting one-
routine program can terminate if and only if its UDPN can cover the marking
in which the two line-number places point to the last command. ��



What Makes PN Harder: Stack or Data? 17

8 Conclusion

We have shown that the reachability, coverability and boundedness problems
for pushdown vector addition systems are F3-hard. Whether they are decidable
remains unknown, in the case of reachability even with only one counter, i.e. in
dimension 1. The best known lower bound for the latter problem is NP [20].

For unordered data Petri nets, we have advanced the state-of-the-art lower
bound of the coverability (and thus also reachability) problem from F3 [15] to Fω.
A gap therefore remains to the best known Fω·2 upper bound [17]. We conjecture
Fω-completeness, which would complement nicely the Fω·2-completeness [17]
and Fωω -completeness [23] results for the extensions of UDPN by fresh name gen-
eration and whole-place operations, respectively. However, the tightening from
Fω·2 to Fω membership seems a considerable challenge for the following reason:
by providing UDPNs with an initial supply of N fresh names on some auxiliary
place, they can operate for N steps indistinguishably from ν-Petri nets, and so
the classical backward coverability algorithm [1,8] cannot terminate for UDPNs
in only Ackermann many iterations.
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17. Ranko Lazić and Sylvain Schmitz. The complexity of coverability in ν-Petri nets.
In LICS, pages 467–476. ACM, 2016.
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