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Effects of cell seeding density 
on real‑time monitoring of anti‑proliferative 
effects of transient gene silencing
Cigdem Selli1,2*  , Yasemin Erac2 and Metiner Tosun2,3

Abstract 

Background:  Real-time cellular analysis systems enable impedance-based label-free and dynamic monitoring of 
various cellular events such as proliferation. In this study, we describe the effects of initial cell seeding density on the 
anti-proliferative effects of transient gene silencing monitored via real-time cellular analysis. We monitored the real-
time changes in proliferation of Huh7 hepatocellular carcinoma and A7r5 vascular smooth muscle cells with differ-
ent initial seeding densities following transient receptor potential canonical 1 (TRPC1) silencing using xCELLigence 
system. Huh7 and A7r5 cells were seeded on E-plate 96 at 10,000, 5000, 1250 and 5000, 2500 cells well−1, respectively, 
following silencing vector transfection. The inhibitory effects of transient silencing on cell proliferation monitored 
every 30 min for 72 h.

Results:  TRPC1 silencing did not inhibit the proliferation rates of Huh7 cells at 10,000 cells well−1 seeding den-
sity. However, a significant anti-proliferative effect was observed at 1250 cells well−1 density at each time point 
throughout 72 h. Furthermore, significant inhibitory effects on A7r5 proliferation were observed at both 5000 and 
2500 cells well−1 for 72 h.

Conclusions:  Data suggest that the effects of transient silencing on cell proliferation differ depending on the initial 
cell seeding density. While high seeding densities mask the significant changes in proliferation, the inhibitory effects 
of silencing become apparent at lower seeding densities as the entry into log phase is delayed. Using the optimal 
initial seeding density is crucial when studying the effects of transient gene silencing. In addition, the results suggest 
that TRPC1 may contribute to proliferation and phenotypic switching of vascular smooth muscle cells.
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Background
Impedance-based real-time cellular analysis (RTCA) sys-
tems enable label-free, non-invasive and kinetic moni-
toring of cellular events in contrast to labour-intensive 
label-based end-point measurements [1]. The xCELLi-
gence RTCA system, developed by Roche Applied Sci-
ence (Penzberg, Germany) and currently marketed by 
the original inventor ACEA Biosciences (San Diego, 
USA), allows dynamic monitoring of various processes 

including proliferation, migration and invasion [2]. The 
system is also a powerful and reliable drug discovery tool 
for toxicological and pharmacological studies [3] includ-
ing cardiovascular safety testing [4–7] and drug screen-
ing [8–11]. Although xCELLigence system is originally 
designed to work with adherent cells, successful monitor-
ing of non-adherent cells such as cells from haematologi-
cal malignancies by pre-coating of the cell culture surface 
with specific adhesive substrates [12] has expanded its 
area of use.

Since each cell type has its own characteristic growth 
pattern, the optimum seeding concentration of each 
cell type gives a short lag period and early onset of 
logarithmic growth should be determined before the 
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proliferation assays using RTCA system. For this pur-
pose, performing preliminary experiments to obtain the 
cell growth patterns at different seeding densities is sug-
gested (xCELLigence Application Note No.7/January 
2009). We proposed that the optimum cell seeding den-
sity also depends on each experimental condition and the 
actual experiments should also be performed at different 
seeding densities in addition to the preliminary experi-
ments, especially for transiently-silenced cells.

Following its discovery in mammalian cells [13], RNA 
interference has been used as a powerful tool to study 
gene function by administration of small interfering 
RNA (siRNA) and short hairpin RNA (shRNA) [14]. A 
significant disadvantage of siRNA application is that its 
concentration becomes diluted as the cells divide result-
ing in transient silencing. It is possible to generate long-
term knockdown of the gene of interest by integration of 
shRNA into the host genome [15]; however, the creation 
of a stable shRNA cell line is time-consuming and may 
take months. Since stable knockdown requires longer 
subculturing process, it was not applicable to A7r5 cells 
because subculturing leads to alterations in A7r5 cell 
phenotype and proliferation [16]. Therefore, in the pre-
sent study, we performed transient silencing of transient 
receptor potential canonical 1 (TRPC1) levels in A7r5 
cells.

Although still controversial, TRPC1 has been suggested 
to be an essential component of store-operated Ca2+ 
(SOC) entry channels in heteromultimeric combinations 
with other TRPCs [17, 18]. SOC entry, a mechanism acti-
vated by emptying of intracellular Ca2+ stores [19], was 
suggested to maintain optimal sarcoendoplasmic reticu-
lum Ca2+ levels mediating Ca2+ signalling-related cellu-
lar processes including proliferation [20]. We previously 
demonstrated reciprocal changes in TRPC1 and TRPC6 
levels in A7r5 vascular smooth muscle cells [21] and in 
aging rat thoracic aorta [22]. Furthermore, downregu-
lation of TRPC1 significantly elevated SOC entry sug-
gesting the regulatory role of TRPC1 both in A7r5 [21] 
and Huh7 hepatocellular carcinoma cells [23]. TRPC1 
silencing also suppresses Huh7 cell proliferation without 
affecting cell migration in real-time cellular analyses sug-
gesting the role of TRPC1 in the regulation of hepatocel-
lular carcinoma cell proliferation [23].

Based on these data, we monitored the real-time 
changes in proliferation of Huh7 and A7r5 cells with dif-
ferent seeding densities following transient TRPC1 gene 
silencing using E-plate 96 and xCELLigence MP system.

Methods
Cell culture
Human hepatocellular carcinoma cell line, Huh7, cul-
tured in DMEM (Biological Industries, Cromwell, 

USA) supplemented with 10% fetal bovine serum (FBS, 
HyClone, Logan, USA), 2  mM l-glutamine (HyClone, 
Logan, USA) and 0.1  mM non-essential amino acid 
solution (Gibco, Waltham, USA). Vascular smooth 
muscle cell line (A7r5, an immortalized line derived 
from embryonic rat aorta) cultured in DMEM/Ham’s 
F12 (Gibco, Waltham, USA) supplemented with 10% 
FBS (Gibco, Waltham, USA) and 2  mM l-glutamine 
(Gibco, Waltham, USA). Cells were maintained in a 
humidified incubator at 37  °C and 5% CO2 and were 
subcultured using 0.5% trypsin–EDTA when reached 
70% confluency. Huh7 and A7r5 cells were subcultured 
with 1:2 and 1:3–1:4 split ratios, respectively, and pas-
sage numbers (P#) were recorded. Regular checks for 
mycoplasma contamination were performed using 
MycoAlert Mycoplasma Detection kit (Lonza, Basel, 
Switzerland). After freezing in feeding medium with 
5% DMSO, cells were stored in the vapour phase of liq-
uid nitrogen. A7r5 cell line purchased at P# 11 from 
the American Type Culture Collection (ATCC; CRL-
1444). Huh7 cells, originally from Jack Wands Labora-
tory at Massachusetts General Hospital, Boston, MA, 
were kindly provided by Professor Mehmet Ozturk 
(Dokuz Eylul University, Izmir, Turkey), considered 
to be at their first passage (P# 1) at the time of arrival 
to our laboratory and were tested for authenticity in 
2010.

Real‑time monitoring of proliferation
Real-time monitoring of cell proliferation performed 
using xCELLigence MP system. E-plate  96, used with 
xCELLigence system, is a single-use 96 well cell culture 
plate with bottom surfaces covered with microelectrode 
sensors (0.2 cm2 well surface area; 243 ± 5 µl maximum 
volume). Real-time changes in electrical impedance 
measured using the gold microelectrodes and expressed 
as “cell index” defined as (Rn-Rb)/15, where Rb is the 
background impedance and Rn is the impedance of the 
well with cells. Negative control groups (wells containing 
200 µl culture medium without cells with cell index val-
ues around 0) were tested in every experiment; however, 
they were not shown in figures in order to simplify the 
representations.

Before seeding cells into E-plate  96, the background 
impedance was measured after the addition of 100  µl 
medium and a 30  min-incubation period at room tem-
perature. Cell density was determined by using a haemo-
cytometer after methylene blue staining. Following the 
seeding of the appropriate number of cells into the wells, 
the plate incubated at room temperature for 30  min in 
order to allow cell settling. Cell proliferation monitored 
every 30 min for 72 h. Cells were fed with 200 µl well−1 
fresh medium every 48 h.
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Transient TRPC1 gene silencing
In silencing experiments, Huh7 cells were transfected in 
6-well plates with pSUPERIOR.shTRPC1, or empty vector 
as negative control, as described previously [23]. Briefly, to 
construct pSUPERIOR.shTRPC1 vector, TRPC1 silencing 
shRNA sequence (shTRPC1, with a 19 nucleotide-silencing 
sequence which targets 361–379th nucleotides of TRPC1 
mRNA) purchased and cloned into pSUPERIOR.retro.
neo + gfp vector (Oligoengine, Seattle, USA). After 48 h 
vector incubation, Huh7 cells were seeded into E-plate 96 
at different densities (10,000, 5000 and 1250 cells well−1).

In addition, A7r5 cells transfected with 2  µg 
pSUPERIOR.shTRPC1 or empty vector as nega-
tive control via 6  µl FugeneHD transfection reagent 
(Roche Applied Science, Penzberg, Germany) were 
seeded into E-plate  96 at different densities (5000 and 
2500 cells well−1) 48 h after the vector incubation.

Quantitative real‑time RT‑PCR
Effects of vector transfection on TRPC1 expression lev-
els in A7r5 cells were measured by quantitative real-
time RT-PCR using FastStart DNA Master SYBR Green 
I kit and LightCycler 1.5 (Roche Applied Science, Penz-
berg, Germany). High Pure RNA Isolation Kit (Roche 
Applied Science, Penzberg, Germany) and Dynamo 
cDNA Synthesis Kit (Finnzymes, Waltham, USA) used 
to perform total RNA isolation and reverse transcrip-
tion, respectively. Primers used for TRPC1 (NM_053558) 
and beta-actin (NM_031144) were as follows: forward 
5ʹTGGTATGAAGGGTTGGAAGACʹ3 [24], reverse 
5ʹTGCTGTTCACAGAAGATGCCʹ3 [25], and for-
ward 5ʹAGTGTGACGTTGACATCCGTʹ3 [26], reverse 
5ʹGACTCATCGTACTCCTGCTTʹ3 [26]. TRPC1 expres-
sion levels were normalized to that of internal β-actin 
and expressed as [TRPC1/β-actin × 100].

Data analysis
Data expressed as mean ±  standard deviation. “n” rep-
resents the number of samples. Statistical significance 
between the means of two groups was evaluated using 
Student’s t test, with p < 0.05 considered significant. Data 
analyses and graphical presentations performed using 
GraphPad Prism 5 (La Jolla, USA).

Results
Effects of cell seeding density on Huh7 proliferation 
following TRPC1 silencing
In order to determine the effects of seeding density on anti-
proliferative effects of transient gene silencing, real-time 
changes in proliferation were monitored in TRPC1-silenced 
Huh7 cells seeded at different densities into E-plate  96. 
Huh7 cells transfected with silencing vector that also emit 
GFP signal was observed using an inverted fluorescent 

microscope (Olympus IX71) and the transfection effi-
ciency was determined (70%) by monitoring GFP fluores-
cence emission at 520 nm with excitation at 460–490 nm 
(Fig.  1a). Huh7 cells were also observed on E-plate  96 at 
the end of each experiment. Although the non-transparent 
gold microelectrodes preclude the accurate prediction of 
the transfection efficiency, an apparent decrease in fluores-
cence signal was monitored due to dilution of transfected 
cells as the cells divide, as expected (Fig. 1b). The company 
(ACEA Biosciences, San Diego, USA) is currently market-
ing modified version of plates with a small opening in the 
electrode array, E-Plate VIEW, allowing the visual inspec-
tion the cells under an inverted microscope.
TRPC1 silencing did not inhibit the proliferation of 

Huh7 cells at 10,000 cells well−1 seeding density (n = 10, 
Fig. 2a). When seeded at 5000 cells well−1, proliferation 
was significantly suppressed for the first 24 h (p < 0.01; 
n =  9; Fig.  2b). Both control and silenced-cells reached 
plateau cell index after 30 h at 10,000 cells well−1 seed-
ing density. At 5000  cells  well−1 density, control and 
silenced-cells reached plateau cell index after 36 and 
42  h, respectively. After these steady-state time points, 
significant but incoherent increases in proliferation were 
observed at both seeding densities (p < 0.01; Fig. 2a, b). 
However, TRPC1 silencing significantly inhibited the 
proliferation of Huh7 cells compared to control cells in 
1250 cells well−1 seeding density at each time point for 
72 h (p < 0.01; n = 12; Fig. 2c).

Effects of cell seeding density on A7r5 proliferation 
following TRPC1 silencing
A7r5 proliferation curves at four different seeding den-
sities (10,000–1250  cells  well−1) were monitored before 
determining the effects of silencing on proliferation. Cell 
index increased proportionally to A7r5 cell densities as 
expected (Fig.  3a). Cells reached a plateau after 24 and 
48  h at 10,000 and 5000  cells  well−1 densities, respec-
tively. Cells at 2500 and 1250 cells well−1 seeding densi-
ties showed exponential increases in proliferation and did 
not reach the plateau after 72 h.

The effects of TRPC1 silencing on expression levels 
were determined using real-time qRT-PCR before per-
forming the proliferation assay. TRPC1 silencing sig-
nificantly inhibited the TRPC1 mRNA expression levels 
compared to control cells (p  <  0.05, n  =  3, Fig.  3b). 
Although the silencing partially (29%) inhibited TRPC1 
mRNA levels, its inhibitory effect on cell proliferation 
was significant.

Based on the proliferation curves previously per-
formed to determine the optimum cell density (Fig. 3a), 
real-time changes in proliferation were monitored at 
5000 and 2500  cells  well−1 seeding densities in TRPC1-
silenced A7r5 cells. TRPC1 silencing significantly 
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inhibited the proliferation of A7r5 cells at both 5000 
and 2500 cells well−1 seeding densities for 72 h (p < 0.01, 
n  =  8, Fig.  4). Both control and silenced cells did not 
reach the plateau cell index at either seeding densities.

Discussion
Since the initial seeding density is critical in functional tis-
sue engineering, the proliferation of human umbilical cord 
mesenchymal stem cells (hUCMSCs) seeded on calcium 
phosphate cement, a scaffold material used for bone tis-
sue engineering, at different densities has been investigated 
previously [27]. Zhou et al. showed that hUCMSC prolif-
eration and osteodifferentiation increased proportional to 
cell seeding density from 50,000 to the optimum value of 
300,000 (cells in a 24-well plate), with a decrease over this 
limit [27]. Furthermore, to determine the endothelial cell-
biomaterial interaction that had an impact on the devel-
opment of biomedical implants, the effects of cell-seeding 
density on the proliferation rate of human umbilical vein 
endothelial cells (HUVEC) seeded on different biomaterials 
including tissue culture polystyrene were investigated [28]. 
Maximal HUVEC proliferation was obtained at an initial 
seeding density of 1000  cells  cm−2 with a sharp decrease 
both above and below of this particular density [28].

Although cell proliferation is required for physiological 
processes such as renewal of intestinal epithelium [29] 
and wound healing [30], its abnormalities are associated 

with various diseases such as tumorigenesis [31]. The 
involvement of TRPC1 in cell proliferation in different 
types of cancers [32–34] as well as in endothelial progen-
itor cells [35] has been previously reported. In addition, 
Huh7 cell line was shown to have a subpopulation of cells 
with hepatic cancer stem cell-like properties that express 
alpha-fetoprotein and epithelial cell adhesion molecule 
(EPCAM), a hepatic stem cell biomarker [32].

In our previous study, inhibitory effects of silencing vec-
tor administration on TRPC1 expression levels in Huh7 
cells were determined by quantitative real-time RT-PCR 
and western blot analyses [23]. After TRPC1 silencing vec-
tor transfection, mRNA levels were shown to be inhibited 
reversibly with a significant decrease at 48 h and recovered 
at 72  h [23]. Furthermore, we observed significant sup-
pression in proliferation rates and increase in doubling 
time in TRPC1-silenced Huh7 cells at 2500  cells  well−1 
seeding density [23]. Based on these data, among the hepa-
tocellular carcinoma cell lines, Huh7 cells were chosen 
to further study the effects of cell seeding density on the 
proliferation of TRPC1-silenced cells. Inhibitory effects 
of transient TRPC1 silencing on Huh7 proliferation rates 
were masked at 10,000  cells  well−1 seeding density with 
a significant decrease only after 24 h at 5000 cells well−1 
seeding density. Moreover, the effects of silencing were 
much more significant at 1250 cells well−1 seeding density 
at each time point throughout the whole assay suggesting 

Fig. 1  Fluorescent microscopy images of Huh7 cells. a Silencing vector-transfected Huh7 cells were observed in a 6-well plate after 48 h incuba-
tion before seeding into E-plate 96. b At the end of the proliferation assay, Huh7 cells on E-plate 96 were visible between microelectrodes seen 
as aligned closed circles. The insert represents the gold microelectrode sensors covering the bottom surface of the well (from the manufacturer’s 
manual)

Fig. 2  Real-time proliferation of TRPC1-silenced Huh7 (P# 26) cells at different densities. At 48 h following shTRPC1 transfection, cells were seeded 
on E-plate 96 and cell proliferation monitored real-time for 3 days. The proliferation curves and cumulative data of cells at different densities 
(cells well−1); a 10,000, b 5000 and c 1250 are shown (**p < 0.01, n = 10, n = 9 and n = 12, respectively)
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the monitoring cells in very early points of log period as 
well as before reaching the plateau phase is essential to 
detect the effects of transient silencing. Therefore, the 
seeding density that allows cells to reach the plateau levels 
after 72 h or later should be used for Huh7 cells.

In addition to cancer cells, we also monitored the effects 
of seeding density on the proliferation of TRPC1-silenced 
A7r5 cells which has a significance in examining the vas-
cular contractile and proliferative phenotypes in  vitro 
[36]. It is known that vascular smooth muscle cells have 
the ability of plasticity with a wide range of phenotypes 
besides their primary contractile phenotype [37]. Evi-
dence suggests that switching from contractile to prolifer-
ating (non-contractile/synthetic) phenotype is associated 
with vascular diseases [38, 39]. Differential expression of 
calcium handling proteins including upregulated TRPC1 
and TRPC6 expression levels were associated with the 
proliferative phenotype [39, 40]. In our previous study 
investigating the effects of A7r5 passaging that may 
mimic the phenotypic switching of vascular smooth mus-
cle cells, we observed upregulated SERCA2b mRNA and 
SOC entry levels along with suppression of proliferation 
[16]. In the present study, knockdown of TRPC1 inhib-
ited A7r5 cell proliferation suggesting its possible contri-
bution to vascular smooth muscle cell proliferation and 
phenotypic switching. Furthermore, the inhibitory effect 
of transient TRPC1 silencing on A7r5 proliferation was 
observed at both seeding densities tested in our study 
(5000 and 2500 cells well−1, respectively) suggesting that 
the seeding density that allows cells to reach the plateau 

levels after 72 h or later is optimal for studying the effects 
of transient silencing on A7r5 cells.

In silencing experiments, at least 72  h incubation is 
required to observe the suppression of target protein 
and resulting phenotypic alterations. We have previously 
shown that TRPC1 mRNA levels were inhibited revers-
ibly with a significant decrease at 48 h and recovered at 
72 h in Huh7 cells [23]. In addition, TRPC1 protein lev-
els decreased significantly at 72  h after silencing vector 
transfection in A7r5 and Huh7 cells [23]. In the current 
study, cells were seeded on E-plate  96 after 48  h vec-
tor incubation and therefore, at least a 24-h period is 
required to observe an effect on protein levels and prolif-
eration. When cells were seeded in higher densities, they 
reached plateau proliferation levels at 24  h which may 
limit the production of siRNA. Significant changes in 
proliferation were observed if cells were seeded in opti-
mum densities possibly allowing sufficient time to down-
regulate target protein levels. Determination of mRNA 
and protein levels 24 h following seeding on E-plates at 
different densities requires further investigation.

Conclusions
The effects of transient silencing on cell proliferation vary 
depending on the cell seeding density at the start of the 
RTCA experiments. Higher seeding densities mask the 
significant changes in proliferation rates whereas they 
become clear at lower seeding densities as the log phase 
is delayed. Therefore, determination of optimal cell seed-
ing density for real-time monitoring of proliferation in 

Fig. 3  Real-time proliferation curves and cumulative mRNA expression data of A7r5 cells. The proliferation of A7r5 cells (P# 17) at different cell den-
sities were monitored for 72 h (a; n = 8). TRPC1 mRNA expression levels were determined 72 h following silencing vector transfection (b, *p < 0.05, 
n = 3)
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transiently-silenced cells is crucial for more accurate data 
acquisition and evaluation. We suggest that real-time 
monitoring studies should be performed using a range of 
cell type specific initial seeding densities in order to deter-
mine the effects of transient gene-knockdown. This would 
help to improve our knowledge about the outcome of tran-
sient gene silencing. Beyond the technical aspects, the data 
suggest that TRPC1 may contribute to proliferation and 
phenotypic switching of vascular smooth muscle cells.
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