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The double polarization observable E and the helicity dependent cross sections σ1=2 and σ3=2 were
measured for η photoproduction from quasifree protons and neutrons. The circularly polarized tagged
photon beam of the A2 experiment at the Mainz MAMI accelerator was used in combination with a
longitudinally polarized deuterated butanol target. The almost 4π detector setup of the Crystal Ball and
TAPS is ideally suited to detect the recoil nucleons and the decay photons from η → 2γ and η → 3π0. The
results show that the narrow structure previously observed in η photoproduction from the neutron is only
apparent in σ1=2 and hence, most likely related to a spin-1=2 amplitude. Nucleon resonances that contribute
to this partial wave in η production are only N1=2− (S11) and N 1=2þ (P11). Furthermore, the extracted
Legendre coefficients of the angular distributions for σ1=2 are in good agreement with recent reaction model
predictions assuming a narrow resonance in the P11 wave as the origin of this structure.

DOI: 10.1103/PhysRevLett.117.132502

Photoproduction of η mesons is important for the
investigation of the nucleon excitation spectrum.
Because of its isoscalar nature, the η only couples to
isospin I ¼ 1=2 N⋆ resonances. In the threshold region,

this reaction is completely dominated by the excitation of
the Nð1535Þ 1=2− resonance [1] and at higher incident
photon energies, contributions from several other excited
nucleon states have been identified [2]. Currently, a large
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effort is underway at modern photon-beam facilities (see
Ref. [2] for a recent summary) to study the γp → pη
reaction using both single and double polarization observ-
ables. However, during the last few years, photoproduction
of ηmesons off the neutron has attracted additional interest.
The reason is the discovery of an unusually narrow
structure in the excitation function at incident photon
energies of 1 GeV (corresponding to an η-neutron invariant
mass of W ≈ 1.67 GeV). This structure was first observed
by the GRAAL Collaboration [3] and confirmed by the
CBELSA/TAPS Collaboration [4,5] in Bonn, and at
LNS in Sendai [6]. Recent high-statistics measurements
at the MAMI facility in Mainz with deuterium and 3He
targets [7–9] have extracted a position of the narrow
structure of W ¼ ð1670� 5Þ MeV with a width of only
Γ ¼ ð30� 15Þ MeV. This structure is not observed in η
photoproduction off the proton [10]. The cross section of
γp → pη shows only a small dip at this energy [2,10].
However, recently, two narrow structures were observed in
the beam asymmetry Σ of Compton scattering of the proton
[11]. One of these structures appears close to the above
discussed peak in η production off neutrons and the other at
W ≈ 1.726 GeV. Meanwhile, a counterpart of the latter
peak was also unambiguously identified in the cross section
of the γn → nη reaction [12].
The nature of these structures has not yet been

established. The prominent peak observed in η production
off the neutron at W ≈ 1.67 GeV has been discussed as a
new narrow resonance (with exotic properties) [13–17]. It
is currently listed in the Review of Particle Physics (RPP)
[18] as a tentative Nð1685Þ state with unknown spin and
parity. However, other works suggest coupled-channel
effects of known nucleon resonances [19,20], or contri-
butions from intermediate strangeness states [21] as the
underlying cause. A fit [22] from the Bonn-Gatchina
(BnGa) group to the high statistics MAMI deuteron data
[7,9] suggests an interference in the JP ¼ 1=2− partial
wave between contributions from the well-known
Nð1535Þ and Nð1650Þ resonances. Fits of these unpo-
larized data with the BnGa model including a narrow
P11-like Nð1685Þ resonance were seen as inferior [22].
The aim of the present work is to determine the relevant

partial wave directly from experimental data. For this
purpose, the double polarization observable E was mea-
sured with a longitudinally polarized target and a circularly
polarized photon beam. It is defined as [23]

E ¼ σ1=2 − σ3=2
σ1=2 þ σ3=2

; ð1Þ

where σ1=2 and σ3=2 are the helicity dependent cross
sections with antiparallel or parallel photon and nucleon
spin, respectively. Nucleon resonances with spin J ¼ 1=2
contribute only to σ1=2, while states with spin J ≥ 3=2 can
also couple to σ3=2. Hence, structures in the S11 or P11

partial waves appear only in σ1=2, but not in σ3=2. So far, in

η production, this observable has only been explored for the
reaction with free protons [24], for which it turned out to be
very powerful in restricting parameters of reaction model
analyses.
The experiments were performed at the Mainz MAMI

accelerator [25]. Circularly polarized tagged photons [26]
were created via the bremsstrahlung process with longitu-
dinally polarized (Pe ∼ 80%) electrons. The beam helicity
was flipped once per second. The polarization of the
electron beam was measured daily with Mott scattering
(after the linac stage of the accelerator at electron energies
of 3.65 MeV) and constantly monitored with Møller
scattering of the high energy electrons from the brems-
strahlung radiator. The polarization of the photon beam was
deduced from the energy-dependent polarization transfer
factors given by Olsen and Maximon [27]. The deuterated
butanol (C4D9OD) target was polarized in the longitudinal
direction using dynamic nuclear polarization [28]. The
target polarization was measured before and after data
taking using an NMR measurement technique and was
interpolated by an exponential function. Because of small
inhomogeneities of the polarizing magnetic field, the target
was not homogeneously polarized across its diameter for
the initial beam times (so that the NMR measurements did
not correctly reflect the polarization degree in the target
area interacting with the beam). Therefore, results were
renormalized to the final data taking period for which this
problem was resolved.
The experimental setup combined the Crystal Ball (CB)

[29] and TAPS [30] calorimeters with additional detectors
for charged particle identification [31] and covered 98% of
4π. The photons from the η decays (results from η → γγ and
η → 3π0 → 6γ were consistent and have been averaged)
and the recoil nucleons were detected and analyzed. The
detector was identical to the setup used for the measure-
ments with unpolarized targets which is discussed in detail
in Refs. [8,9]. Also, all analysis procedures were identical
to those described in these references. This includes the
clean identification of η production off quasifree nucleons,
the Monte Carlo simulations of the detector response,
and the reconstruction of final-state kinematics used to
remove the effects from nuclear Fermi motion. The latter is
essential for the investigation of narrow structures.
The only complication resulted from the contribution

from nucleons bound in the unpolarized carbon (and
oxygen) nuclei in the butanol target. This background
contributes only in the denominator of Eq. (1). It was
determined from a measurement with a carbon foam target
(which had identical geometry and density to the butanol
target) and subtracted. Both measurements (butanol and
carbon target) were normalized absolutely to photon fluxes,
target surface densities, and detection efficiencies.
The double polarization observable E for η mesons in

coincidence with recoil protons and neutrons is shown in
Fig. 1. The systematic uncertainty was estimated from the
uncertainty of the target (�10%) and photon beam
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polarization (�2.7%). In addition, there is a small uncer-
tainty related to the subtraction of the carbon background
(all other uncertainties, e.g., from detection efficiencies,
cancel to a large extent in the ratio of Eq. (1). This
uncertainty was estimated from the precision of the photon
flux measurements and the determination of the target
surface densities. It is on the order of 2.5% and was added
quadratically to the polarization degree uncertainties. As a
cross check for the correct subtraction of the carbon
background an analysis was done for which the

denominator of the ratio in Eq. (1) was replaced by 2σ0,
where σ0 is the unpolarized total cross section measured
with a liquid deuterium target (so that no subtraction of
carbon data is necessary). The data for σ0 were taken from
Ref. [9]. The average deviation between the analyses using
the carbon subtracted butanol or the liquid deuterium data
in the denominator was 2.25% for recoil neutrons and 2.1%
for recoil protons. For the latter, only data above W ¼
1.6 GeV were used for the comparison because for lower
energies the detection efficiency for recoil protons [which
cancels as long as Eq. (1) is used with the carbon subtracted
butanol data] could not be determined precisely enough for
a comparison to the results of Ref. [9] on an absolute scale.
The neutron data are in quite good agreement with the

results from the BnGa model [22] and clearly rule out the
MAID predictions [32]. The disagreement between meas-
urement and MAID prediction can be easily traced to an
unrealistically large contribution of the Nð1675Þ 5=2− state
in the MAID model.
The helicity dependent cross sections σ1=2 and σ3=2 can

be extracted as

σ1=2 ¼ σ0ð1þ EÞ; σ3=2 ¼ σ0ð1 − EÞ; ð2Þ
from the asymmetry E and the unpolarized cross section σ0.
For the latter the results from Ref. [9] were used. The
results are summarized in Figs. 2 and 3. The systematic
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FIG. 1. Double polarization observable E for γp → pη (left-
hand side) and γn → nη (right-hand side). Gray shaded areas:
systematic uncertainties. Curves: predictions from MAID (green,
dashed) [32] and BnGa (model based on S11 interference) [22]
(black, solid line).
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uncertainties for E were propagated into Eq. (2). The
overall systematic uncertainty for the scale of σ0 from
Ref. [9] is on the order of 7%–15%. It is also possible to
construct σ1=2 and σ3=2 directly from the data measured
with the butanol target after subtraction of the carbon
background without using input from the independent
measurement of the unpolarized cross section. For the
measurement with recoil neutrons, excellent agreement was
found for all energies and center-of-momentum (c.m.)
angles of the η, for recoil protons deviations occurred
for W < 1.6 GeV due to the known inaccuracies of the
proton detection efficiency.
Figure 2 shows the excitation functions for five bins of

cosðθ⋆η Þ [θ⋆η polar angle in the photon-nucleon c.m. frame]
and the total cross sections in comparison to the pre-
dictions from the MAID [32] and BnGa [22] models. For
protons and neutrons, contributions from the helicity-3=2
amplitude are small, which means that nucleon resonances
with J ≥ 3=2 contribute little. For the proton target, the
σ1=2 results are in good agreement with model predictions.
The small σ3=2 part is in reasonable agreement with model
results. Details like the contribution of the Nð1720Þ 3=2þ
state (a small enhancement with respect to the model
results may be visible in the total σ3=2 cross section in this
energy range) will be subject to more refined partial wave
analysis.

The results for the quasifree neutron establish that
the narrow structure around W ≈ 1.67 GeV, listed as the
tentative N(1685) state in RPP, appears only in the helicity-
1=2 part of the reaction. This means that it is almost
certainly related to J ¼ 1=2 contributions (S11 and/or P11

partial waves). Although excited nucleon states with
J ≥ 3=2 can also contribute to helicity 1=2, it is unlikely
that they contribute only to helicity 1=2. The RPP [18] lists
only one state up to excitation energies of 2 GeV for which
the helicity coupling A1=2 is larger than A3=2 (the Nð1875Þ
3=2þ for the proton, but even in that case within uncer-
tainties A3=2 could be larger). There is no example for such
a state for which the helicity-3=2 contribution is negligible
compared to helicity 1=2. Since no trace of the structure is
observed in helicity 3=2, a contribution from J ≥ 3=2 states
is highly unlikely.
As mentioned above, a large contribution of theNð1675Þ

5=2− state, as in the MAID model, was ruled out. In
addition, the BnGa model with a narrow P11 resonance
with negative coupling disagrees with the experimental
results, while the other two BnGa model versions give
similar results. The angular distributions have been fitted
with third order Legendre expansion to allow for a more
detailed comparison to model predictions:

dσ
dΩ

(W; cosðθ⋆η Þ) ¼
q⋆η ðWÞ
k⋆γ ðWÞ

X3

i¼0

AiðWÞPi( cosðθ⋆η Þ); ð3Þ

where q⋆η and k⋆γ are the η and photon momenta in the c.m.
frame, respectively. The results are shown in Fig. 3. The A1

coefficient for the σ1=2 cross section is very interesting. An
interference between a P11 wave and the dominant S11
wave results in a cosðθ⋆η Þ term in the angular distribution,
which is reflected in the A1 coefficient. Depending on the
sign of the interference term, a narrow P11 resonance will
result in a sharp positive or negative peak in A1, as shown
by the model curves in Fig. 3, while interference effects in
the S11 wave produce different patterns. The results clearly
rule out the model version with a negative P11 − S11
interference sign. However, the model results with a
positive interference sign of P11 and S11 are more similar
to the measured data than the predictions without the
addition of a narrow P11 state.
In summary, the double polarization observable E and

the related helicity dependent cross sections σ1=2 and σ3=2
were measured for the first time for the photoproduction of
ηmesons on quasifree nucleons using a circularly polarized
photon beam and a longitudinally polarized target. The
measurement provided data of excellent quality, which are
important input for future partial wave analysis of photo-
production of η mesons off nucleons. Here, we report one
striking finding about the nature of the narrow structure
previously observed in the γn → nη reaction. The results
have unambiguously established that this structure is
related to the helicity-1=2 amplitude and a comparison
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of the angular dependence to different model predictions
favors a scenario with a contribution from a narrow P11

resonance.
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