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Abstract

This paper is concerned with the automatic mapping of array computation to processors
efficiently. One of the major overheads associated with the mapping of computation is
load imbalance. An optimising compiler should find a mapping such that this overhead is
minimised.

This paper describes formally the mapping of loop iterations to processors so as to
minimise load imbalance. The class of perfectly load balanced affine loops is defined
whereby using unimodular transformations, it is shown that a large class of loops are
equivalent.

An algorithm is detailed which can determine both whether a loop structure may be
load balanced, and the necessary transformations to do so. This algorithm has a worst
case complexity of O(m3) where m is the dimensionality of the iteration space. The ana-
lysis is extended to the case when many loops are to be partitioned where it is shown
that a transformation may be constructed which simultaneously balances all appropriate
loops. Finally it is shown that if a loop is perfectly load balanced, then there exists a
transformation such that it may be placed outermost so as to aid partitioning.
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1 Introduction

Compilation should minimise parallel time by utilising machine parallelism and reducing over-
head. The first stage of compilation is therefore to identify and match program parallelism to
machine parallelism. We define machine parallelism simply as the number of processors p. It
is necessary to identify and divide a nested loop array computation into p sub computations.

It is assumed that the range of any loop is greater than the number of processors, thus
compiling for load balancing is the task of selecting one or more iterators which are partitioned
into groups and scheduled across the processors. In effect each processor performs a sub-set
of some of the loop iterations. This sub-dividing of the iteration space has been referred to as
tiling [7]. A similar process has been called loop elimination by [2] when applied to distributed
memory multiprocessors.

Previous work on program restructuring has been mainly focused on revealing program
parallelism and exploiting a machine’s memory hierarchy efficiently [10]. In this paper it is
assumed that the program is already in a form where all parallelism has been revealed, and it is
now the task of the compiler to transform the program so as to minimise load imbalance. We
believe that this is the first paper to use unimodular program transformations for this purpose.

The contributions of this paper are as follows:

• Load Balancing can be completely automated for a sub-class of programs.

• Load Balancing of array computation is defined as an optimisation problem where perfect
load balance is described as an invariant condition.

• A necessary and sufficient condition for perfect load balance of parallel nested affine
loops is derived.

• An efficient polynomial algorithm to transform such a particular iterator in a loop nest
into a load balanced form is described.

• An algorithm to simultaneously transform several iterators into load balanced form is
presented.

• Reordering of load balanced parallel affine loops is shown to be always possible.

• An algorithm is presented whereby all load balanced iterators within a loop nest may be
moved outermost.

In this paper we focus on identifying the iterators to be partitioned, transforming them into
a suitable form and then reordering the iterators such that they are outermost. Moving the
iterators to be partitioned as far out of the loop nest as possible minimises the number of task
spawns required.

To motivate the rest of this paper consider the example in figure 1. Here we assume that
the number of processors p = 10. If the i loop is partitioned and statically scheduled across the
processors such that the first processor receives the first 10 iterations, the second processor the
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DOALL i = 1,100
DOALL j = 1,100
DOALL k =1,i

a[i,j] += b[i,k]+c[k,j]

Figure 1: A nested DOALL loop

next 10 etc., then the first processor will perform 5,500 iterations, the last processor will per-
form 95,500, with the average being 50,500. If however the j loop were chosen all processors
would perform 50,500 iterations. If it is assumed that the time to execute such a program is
dominated by the processor performing the most iterations, then clearly partitioning with re-
spect to j is preferable. If i were chosen to be partitioned then each processor would have to
just spawn one task, whilst choosing j would require 100 spawns. Ideally j should be chosen
to be partitioned, and placed outermost in the loop nest. This idea is the basis for this pa-
per. We make the following observation: The iterator that neither makes reference to any
other iterator in its loop bounds, nor is referenced by any other, may be partitioned to
give perfect load balance. Perfect load balance occurs when each iteration of a particular
iterator involves exactly the same amount of computation. Later sections formalise this idea
and provide mechanisms to transform loops accordingly.

This paper is divided into 7 sections. The second section introduces the notation used
throughout this paper and formally describes load balancing for parallel affine loops . The
third section describes the unimodular transformation used to transform the loops into load
balanced form. An existence condition is derived which forms the basis of the transformation
algorithm. The fourth section extends the ideas of section 3 to the case when multiple loops
are to be load balanced. The fifth section shows that a load balanced affine loop may always
be moved outermost and defines the necessary transformation. Section 6 reviews related work
and section 7 concludes this paper.

2 The Problem

2.1 Representation

In this paper we restrict our attention to parallel nested loops. The loop bounds and array
references are restricted to the affine form described in figure 2. The number of loops is m,
Lk and Uk are integer linear combinations of the iterators J = [j1, j2, … , jk−1]T, k ≤ m and H is
computation whose array occurrences make affine references to the enclosing iterators . It is
assumed the amount of work in H is invariant of the iteration space. In practice this means that
H contains no conditional evaluation. It follows that for perfect load balance, it is sufficient
that each processor receives the same number of computation points. More general forms of
H are considered in [6]. The lower and upper bounds of all loops described by figure 2 may
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DOALL j1 = ł1, u1

DOALL j2 = L2(j1) + l2, U2(j1) + u2
...
DOALL jm = Lm(j1, … , jm−1) + lm,

Um(j1, … , jm−1) + um

H(j1, … , jm)

Figure 2: Parallel Nested Affine Loops

be expressed in matrix form.
LJ ≥ l (1)

UJ ≤ u (2)

L and U are both (m × m) lower unit triangular integer matrices, l and u are (m × 1) integer
vectors and J = [j1, j2, … , jm]T.

Equations 1 and 2 can be reformed thus"
−L
U

#
Jm ≤

"
−l
u

#
(3)

which is in the general form of a polytope:

AJm ≤ b (4)

Within the polytope AJm ≤ b there exists a lattice of computation points Latt(A.b) with
integer co-ordinates, often referred to as the iteration space. Thus the points that Jm ranges
over are the integer lattice points enclosed by the above polytope [8]. Due to the restriction
on H, the amount of work associated with each point is uniform throughout the lattice. A load
balanced mapping is one where the number of computation points assigned to each processor
is the same.

Let q be any point in Latt(A.b) and |q|x be the number of such points assigned to a processor
x. As the points in this lattice may all be evaluated independently, we can state load balancing
in this case to be find a mapping, π , where :

π : q 7! x∀q ∈ Latt(Am.bm), x ∈ 1, … , p (5)

such that
|q|x = |q|y, ∀x, y ∈ 1, … , p (6)

In general this is not achievable and must be expressed as an optimisation problem where
6 is replaced by

Minimise(max
x

(|q|x) −
Pp

x=1 |q|x
p

) (7)

This paper determines the form of loops and the necessary transformations such that 5 and
6 may be satisfied.
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2.2 Perfect Load Balance as Invariance

We seek a method of partitioning the lattice into p subsections such that the number of points
scheduled to each is equal. Such a scheme provides perfect load balance. If we consider just
orthogonal partitions of the polytope (partitions that are perpendicular to an iterator axis), then
we seek the parallel iterator that may possess this property.

Each iterator j ∈ Jm has a lattice, Latt(Am−1.bm−1), of computation points associated with
it. We need to find a parallel iterator, jb ∈ Jm, such that the number of points in its associated
lattice is invariant of such an iterator.

We first formally present the invariance condition necessary for load balancing in terms of
the loop structure and provide an example to illustrate this.

Definition 1 Let eT
b be the bth row of the identity matrix, then we define the invariance con-

dition to be:
eT

b L = eT
b U = eT

b (8)

Leb = Ueb = eb (9)

The significance of the invariance condition is that the iterator jb satisfying 8 and 9 is
invariant if it does not make reference to other iterators nor is it referenced by any other
iterator. In general both L and Uwill be of the form264 Lƒ 0 0

yL 1 0
AL xL Lg

375264 Uƒ 0 0
yU 1 0
AU xU Ug

375 (10)

where Lƒ and Uƒ are (b − 1) × (b − 1) lower unit diagonal triangular matrices, Lg and Ug are
(m − b) × (m − b) lower unit diagonal triangular matrices, yL and yU are 1 × (b − 1) vectors, xL

and xU are (m − b) × 1 vectors and AL and AU are arbitrary integer (m − b) × (b − 1) matrices.
As stated previously a candidate iterator for partitioning is one which does not refer to the

bounds of any other loop. Therefore for an iterator jb ∈ Jm to satisfy 8 and 9 we require the
following:

yL = yU = 0 (11)

and
xL = xU = 0 (12)

Therefore it is necessary to search each row in L, U to see if these conditions are satisfied.
In general for a given set of loops this will not be true.

To illustrate these points, consider the following loop.

DOALL i = 1,n
DOALL j = 1, n
DOALL k = 2*i, 3*i

a[i,k] += b[i,i]-c[k-j]

Figure 3: Triple Loop
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The range of each of the iterators is represented by two matrix inequalities where each row
corresponds to a unique iterator, and each matrix corresponds to the lower and upper bounds
of the loop respectively : 264 1 0 0

0 1 0
−2 0 1

375264 i
j
k

375 ≥

264 1
1
0

375 (13)264 1 0 0
0 1 0

−3 0 1

375264 i
j
k

375 ≤

264 n
n
0

375 (14)

Here conditions 11 and 12 hold only for the second loop j.
However it is possible that none of the iterators have this form but may be transformed

(with corresponding adjustments to the array occurrences) to a load balanced form. This
is the subject of the next section.

3 Transformations

Legal transformations include any reordering of the computation that maintains the data de-
pendency of the original program. By restricting this reordering to DOALL loops which con-
tain no cross-iteration dependencies, all data dependencies are preserved. Additionally after
transformation the loop should be in the structure defined by 1 and 2. More general forms of
loop structure are studied in [6].

3.1 Change of Basis

Given an L, U and a form Lb, Ub, where the iterator jb is in a load balanced form satisfying 11
and 12, find a transformation, π , such that:

π : L 7! Lb (15)

π : U 7! Ub (16)

We look at a restricted set of unimodular transformations [1] which satisfy 15 and 16 by post
multiplication by a unit lower triangular matrix T, which changes the basis of J 7! TJb. The
system of inequalities defined by 1 and 2 remains unchanged by this transformation.

L(TT−1)J ≥ l (17)

U(TT−1)J ≤ u (18)

(LT)(T−1J) ≥ l (19)

(UT)(T−1J) ≤ u (20)
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If in addition an integer matrix T exists such that LT = Lb, UT = Ub, with Jb as the new
iterators, then 19 and 20 may be written:

LbJb ≥ l (21)

UbJb ≤ u (22)

3.2 Existence Condition

In this section the necessary and sufficient conditions for the existence of a unimodular unit
lower triangular matrix T is addressed.

Necessity: Assume there is a T such that LT = Lb, UT = Ub. The form of L, U, T is as
follows: 264 Lƒ 0 0

yL 1 0
AL xL Lg

375264 Uƒ 0 0
yU 1 0
AU xU Ug

375264 Tƒ 0 0
yT 1 0
AT xT Tg

375 (23)

To satisfy the invariance condition, we require Lb and Ub to be of the following form:264 Lb
ƒ 0 0

0 1 0
Ab

L 0 Lb
g

375264 Ub
ƒ 0 0

0 1 0
Ab

U 0 Ub
g

375 (24)

Condition 11 implies that:
yLTƒ + yT = 0 (25)

yUTƒ + yT = 0 (26)

Therefore
(yU − yL)Tƒ = 0 (27)

As Tƒ ⁄= 0 then
yU = yL (28)

This is the first condition for existence of T. Condition 12 implies that:

LgxT = −xL (29)

UgxT = −xU (30)

Thus the solutions for xT given by 29 and 30 must be consistent. Equations 29 and 30 may be
written:  "

1 0
xL Lg

#
−
"

1 0
xU Ug

#! "
1
xT

#
= 0 (31)"

1 0
xL Lg

# "
1
xT

#
=

"
1
0

#
(32)

6



Together these form the second and third condition for existence of T. Clearly 28,31 and 32
must hold if a transformation is to be determined. This establishes the necessity.

Sufficiency: Assume 28 holds, and there is xT satisfying 31 and 32 then:

T =

264 Ib−1 0 0
−yL 1 0
0 xT Im−b

375 (33)

is the desired unimodular transformation corresponding to iterator jb.2
3.3 Algorithm 1

The following algorithm determines whether a transformation T exists and if it does finds it.
In addition, the relationship between the new iteration space and the old one is determined, so
that the relevant array occurrences may be altered accordingly.

for each jb ∈ Jm

1. Check yL = yU. If not terminate.

2. Choose an arbitrary lower unit diagonal Tƒ e.g. unity.

3. Calculate yT = −yLTƒ

4. Solve

 "
1 0
xL Lg

#
−
"

1 0
xU Ug

#! "
1
xT

#
= 0

5. Check if consistent. If not terminate.

6. Solve

"
1 0
xL Lg

# "
1
xT

#
=

"
1
0

#
7. Check steps 4 and 6 are consistent. If not terminate.

8. Choose an arbitrary lower unit diagonal Tg e.g. unity.

9. Choose an arbitrary matrix AT e.g. the null matrix.

10. Construct T

11. Calculate Lb = LT, Ub = UT

12. For each j ∈ J in each array occurrence substitute J = TJb

The complexity of this algorithm is dominated by steps 4 and 6. Thus the upper bound
complexity is O(m2). If this process is repeated for all the iterators then the upper bound
complexity is O(m3). To illustrate this algorithm, consider the following program:

7



DOALL i = 1,n
DOALL j = n+i-1,2*n+i+1
DOALL k in 1+2*i+2*j , n+3*i+2*j

a[i,j] = Min(c[i,k]*d[i-j,k])

Figure 4: Nested DOALL Loop

In its present form it does not satisfy the invariance condition. The upper and lower bounds
for each of the iterators are as follows:264 1 0 0

−1 1 0
−2 −2 1

375264 i
j
k

375 ≥

264 1
n − 1

1

375 (34)264 1 0 0
−1 1 0
−3 −2 1

375264 i
j
k

375 ≤

264 n
2n + 1

n

375 (35)

By applying algorithm 1, it is possible to determine if this program may be transformed
into an invariant form. Test the first iterator i:

1. Not applicable.

2. Not applicable.

3. Not applicable.

4. Find xT where0B@264 1 0 0
−1 1 0
−3 −2 1

375 −

264 1 0 0
−1 1 0
−2 −2 1

3751CA264 1
x2

x3

375 =

264 0
0
0

375.

There is no xT.

5. Not consistent. 1 ≠ 0. Terminate.

Thus loop i is rejected.

Now try the second iterator j i.e. b = 2.

1. yU = −1 and yL = −1 therefore yU = yL is satisfied.

2. Tƒ = 1

3. yT = −(−1)1 = 1

4. Find xT where "
1 0

−2 1

#
−
"

1 0
−2 1

#! "
1
x

#
=

"
0
0

#
.

This is true for all x.
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5. No contradiction

6. Find xT where"
1 0

−2 1

# "
1
x

#
=

"
1
0

#
.

This implies x=2. No inconsistency

7. 5 and 6 give consistent results for x

8. Tg = 1

9. AT = 0

10. T =

264 1 0 0
1 1 0
0 2 1

375
11. Lb =264 1 0 0

−1 1 0
−2 −2 1

375264 1 0 0
1 1 0
0 2 1

375 =

264 1 0 0
0 1 0

−4 0 1

375
Ub =264 1 0 0

−1 1 0
−3 −2 1

375264 1 0 0
1 1 0
0 2 1

375 =

264 1 0 0
0 1 0

−5 0 1

375
12.

264 i
j
k

375 =

264 1 0 0
1 1 0
0 2 1

375264 i′

j′

k′

375 =

264 i′

j′ + i′

k′ + 2j′

375
If the same procedure is applied to iterator k ,b = 3, it is seen that it fails on the first step.
yL = [−2, −2], yU = [−3, −2], yU ⁄= yL. So loop k is not a candidate for partitioning for load
balancing.

As only loop j is in invariant form we rewrite the program as:

DOALL i = 1,n
DOALL j = n-1,2*n+1
DOALL k in 1+4*i , n+5*i
a[i,j+i] = Min(c[i,k+2*j]*d[-j,k+2*j])

Figure 5: Transformed DOALL Loop

Note that the constant terms in the loop are unaffected by the transformation. The array ref-
erences are adjusted in accordance with step 12. No other loop depends on the new j loop,
therefore parallelising and partitioning with respect to this loop will give a load balanced im-
plementation.
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4 Multiple Iterators

If each of the m parallel loops are successful candidates for load balancing, then there are
potentially 2m−1 permutations which may be used to partition the iteration space. To determine
whether a combination of iterators can partition the iteration space in a load balanced manner, a
modification of algorithm 1 is required. In this section we propose a new algorithm to construct
a new transformation T′

s which has the combined effect of transforming each load balanced loop
j = i1, … , is where s ≤ m is the number of invariant loops and i1 < ⋅ ⋅ ⋅ < is are the values of
loops to be load balanced.

Let Tk be the individual transformation on a particular iterator k as given by algorithm 1.
The first theorem below shows that given the transformation T′`−1 that makes invariant all loops
i1 < i2 < .. < i`−1 and the transformations Ti` determined by Algorithm 1 for iterator i` alone,
T′` can be constructed to include the new iterator i` . Two lemmas are required to prove this
theorem. The first is a technical condition to aid the proof, the second ensures that the form of
the transformation is legal.

T′
s is defined by a corollary to the main theorem and provides the basis for a simple algorithm

to simultaneously make invariant all load balanced loops.

Lemma 1 Given T′`−1 such that LT′`−1, UT′`−1 are jointly invariant for j ∈ i1, … , i`−1 i.e.

LT′`−1eik = UT′`−1eik = eik ∀k ∈ 1, … , ` − 1 (36)

eT
ik LT′`−1 = eT

ik UT′`−1 = eT
ik ∀k ∈ 1, … , ` − 1 (37)

Then T′`−1 can be chosen so that:
T′`−1eik = eik ∀k ≥ ` (38)

Proof of Lemma 1 This follows immediately by observing that invariance conditions 36,37
impose constraints only on elements in the m × (`− 1) sub-matrix of T′`−1 and hence the (m − `+
1) × (m − ` + 1) right hand corner sub-matrix of T′`−1 can be chosen as identity matrix without
violating conditions 36,37. 2
Theorem 1 Define T′` by:

T′` = T′`−1 − ei`eT
i`LT′`−1 + Ti`ei`eT

i` (39)

Then T′` is the transformation that satisfies the invariance condition for all load balanced loops
j ∈ i1, … , i` i.e.

LT′`eik = UT′`eik = eik ∀k ∈ 1, … , ` (40)

eT
ik LT′` = eT

ik UT′` = eT
ik ∀k ∈ 1, … , ` (41)

The proof needs the following preliminary Lemma.

Lemma 2 T′` given in 39 is unit lower triangular.

Only an outline of the proof is presented
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Proof of Lemma 2 Substitute for T′` from 39 and use 36 and 37 to show

eT
i T′`ej = 0 ∀i < j (42)

and
eT

i T′`ei = 1 (43)

Proof of Theorem 1 It is sufficient to show 40 and 41 for LT ′`.
step1. Show 40 and 41 are true ∀k ∈ 1, … , ` − 1 [Proof Omitted]
step2. Show 40 and 41 are true for k = `

LT′`ei` = L(T′`−1 − ei`eT
i`LT′`−1 + Ti`ei`eT

i` )ei` (44)

By Lemma 1 T′`−1ei` = ei`
LT′`ei` = Lei` − Lei`eT

i`Lei` + LTi`ei` (45)

Observe that ei`TLei` = 1 and LTi`ei` = ei` by invariance of i` for LTi`. Hence:

LT′`ei` = Lei` − Lei` + ei` = ei` (46)

Similarly:
eT

i`LT′` = eT
i`LT′`−1 − eT

i`Lei`eT
i`LT′`−1 + eT

i`LTi`ei`eT
i` (47)

Noting that eT
i`LTi` = eT

i` and simplifying the expression ⇒

eT
i`LT′` = eT

i`ei`eT
i` = eT

i` (48)

this is the invariance condition and thus T′` is the required transformation. 2
It has been shown that T′` is the transformation that load balances ` iterators provided T′`−1

is given. The following corollary constructs the transformation T′
s that load balances all s

iterators.

Corollary 1 T′
s = T′

s−1 − eise
T
is LT′

s−1 + Tiseise
T
is is the transformation for joint invariance of j ∈

i1, … , is

Proof of Corollary 1 set T′
1 = Ti1 and recursively apply theorem 1 for k = 2, … , s2

4.1 Algorithm 2

It is now possible to give a simple algorithm that uses the result of theorem 1 to construct a
transformation that transforms all load balanceable loops into invariant form.

1. Apply Algorithm 1 to give the invariant iterators j ∈ i1, … , is and the canonical trans-
formations Ti1 , … , Tis If s ≤ 1 Stop.

2. Set T′
1 = Ti1

11



3. For k ∈ 2, … , s

T′
k = T′

k−1 − eik e
T
ik LT′

k−1 + Tik eik e
T
ik (49)

Complexity: The extra cost of computing the transformation T′
s, step 3 of Algorithm 2 has

an upper bound less than O(s.is
2) ≤ O(m3). As Algorithm 1 has an upper bound complexity of

O(m3) this new algorithm does not alter the overall complexity of the scheme.
To illustrate this algorithm, consider the following slightly contrived example:

DOALL i = 1,n
DOALL j = -i+1,n-i
DOALL k in -1-i-j ,-j+3
DOALL l in 1-i-2*j-k , 2*n-2*j-k-i
DOALL m in 2*j+6*i+k-l-1 , i-k-l+n
a[i,j] +=2*(b[i,k] * c[k,l] + d[m,m-1])/b[j,j]
e[i,i+j,i] += f[i,j,k,l,m]* g[j,k,l,m]

Figure 6: Five Nested Loop

This example has been chosen to show that load balancing of parallel affine loops is non-
trivial in more complex cases, such as when more than one iterator is a candidate for load
balancing.

This loop nest has the following upper and lower bound matrices on J5:

L =

26666664 1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 2 1 1 0

−6 −2 −1 1 1

37777775 l =

26666664 1
1

−1
1

−1

37777775 (50)

U =

26666664 1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
1 2 1 1 0

−1 0 1 1 1

37777775 u =

26666664 n
n
3

2n
n

37777775 (51)

On applying algorithm 1, j2 and j4 are the only candidates for load balancing, s=2. The corres-
ponding transformation matrices for both iterators are as follows:

Tj2 =

26666664 1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 −1 0 1 0
0 2 0 0 1

37777775 (52)
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Tj4 =

26666664 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−1 −2 −1 1 0
0 0 0 0 1

37777775 (53)

To find the transformation T′
s, s = 2 for joint invariance of j2, j4, apply step 2 of Algorithm 2.

T′
1 = Tj2 (54)

T′
2 = T′

1 − ej4e
T
j4LT′

1 + Tj4ej4e
T
j4 (55)

This gives

T′
2 =

26666664 1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
1 −1 −1 1 0
0 2 0 −1 1

37777775 (56)

Applying T′
2 to L and U gives:

L =

26666664 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−3 0 −2 0 1

37777775 l =

26666664 1
1

−1
1

−1

37777775 (57)

U =

26666664 1 0 0 0 0
0 1 0 0 0

−1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

37777775 u =

26666664 n
n
3

2n
n

37777775 (58)

Note that rows and columns 2 and 4 are in invariant form for both upper and lower bounds.
The array occurrences must be expressed with respect to the new iteration basis26666664 i

j
k
l
m

37777775 =

26666664 1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
1 −1 −1 1 0
0 2 0 −1 1

3777777526666664 i′

j′

k′

l′

m′

37777775 (59)26666664 i
j
k
l
m

37777775 =

26666664 i′

j′ − i′

k′ − j′

l′ − k′ − j′ + i′

m′ − l′ + 2j′

37777775 (60)

This give the following transformed program:
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DOALL i = 1,n
DOALL j = 1,n
DOALL k in -1 ,i+3
DOALL l in 1 , 2*n

DOALL m in 3*i+2*k -1 , n
a[i,j-i] +=2*(b[i,k-j]*c[k-j,l-k-j+i]

+d[m-l+2*j,m-l+2*j-1])/b[j-i,j-i]
e[i,j,i] +=f[i,j-i,k-j,l-k-j+i,m-l+2*j]*

g[j-i,k-j,l-k-j+i,m-l+2*j]

Figure 7: Transformed Invariant DOALL Loop

Although loops j and l are in load balanced form, they are not outermost. The next section
describes a method whereby the loops may be always re-ordered so that they are outermost.

5 Reordering Iterators

Having determined which iterator(s) are to be used to partition the computation lattice, it is
desirable to have these iterators as far out as possible in the loop structure of the translated
form to reduce the number of spawned tasks. It can be shown that all perfectly load balanced
parallel affine iterators can be moved to the outermost scope and remain affine.

In this section we show that load balanced iterators can be moved to the outermost nest by
a sequence of unimodular transformations, whilst preserving the affine structure of the loop.

Theorem 2 shows that one invariant iterator can be moved one nest level up by a unim-
odular transformation. By extending this result it is possible to move multiple iterators to the
outermost nest by a succession of these unimodular transformations. To prove this theorem
some preliminary definitions and lemmas are first required.

Let Ei,k be the permutation of identity with row i and k interchanged. Ei,k is unimodular,
and Ei,k

−1 = Ei,k. Interchange of iterator ji with jk can be represented as:

J′ = Ei,kJ ji, jk ∈ J (61)

Let L, U be in load balanced form with iterator ji ∈ J invariant. Define:

L′ = Ei−1,iLEi−1,i (62)

U′ = Ei−1,iUEi−1,i (63)

J′ = Ei−1,iJ (64)

l′ = Ei−1,il (65)

u′ = Ei−1,iu (66)

Lemma 3 L′, U′ are unit lower triangular.
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The importance of Lemma 3 is in establishing that the unimodular transformation described in
62 and 63 preserve the affine structure of the loop.

Proof of Lemma 3 L, U are in load balanced form, and ji is the invariant iterator. Thus

eT
i Lei−1 = eT

i Uei−1 = 0 (67)

As loop interchange is restricted to neighbouring iterator of ji,in this case ji−1, the only possible
non-zeros in the upper triangular part of L′ and U′ are the (i − 1, i) elements. From 62 and 63
it is easily seen that

eT
i−1L′ei = eT

i Lei−1 (68)

eT
i−1U′ei = eT

i Uei−1 = 0 (69)

Combine with 67 and observe that the effect of transformations in 62 and 63 on the diagonal
elements of L, U are to interchange the (i, i) with (i − 1, i − 1) elements both equal to 1. This
establishes that L′, U′ are unit lower triangular. 2
Lemma 4 The iteration spaces represented by

LJ ≥ l (70)

UJ ≤ u (71)

and
L′J′ ≥ l′ (72)

U′J′ ≤ u′ (73)

are equivalent.

Proof of Lemma 4 By Lemma 3, 72 and 73 represent a legal affine loop. It remains to show
the equivalence of system of inequalities 70,71 and 72,73. To this end, we can observe that
inserting Ei−1,iEi−1,i =Identity in 70 and71 preserves the system of inequalities.

LEi−1,iEi−1,iJ ≥ l (74)

UEi−1,iEi−1,iJ ≤ u (75)

Now we substitute from 64:
LEi−1,iJ′ ≥ l (76)

UEi−1,iJ′ ≤ u (77)

Now multiply both sides of inequalities in 76 and 77 by Ei−1,i. This amounts to reordering the
inequalities, thus preserves the iteration space. Substitute from 62 to 66 ⇒:

L′J′ ≥ l′ (78)

U′J′ ≤ u′2 (79)
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Theorem 2 Let L′ ,U′ be defined as in 62 and 63. Then ji−1 ∈ J′ is an invariant iterator for
L′, U′.i.e.

L′ei−1 = U′ei−1 = ei−1 (80)

and
eT

i−1L′ = eT
i−1U′ = eT

i−1 (81)

Proof of Theorem 2 It suffices to show 80 and 81 for L′. By assumption, ji is an invariant
iterator for L, U. Thus

Lei = ei (82)

eT
i L = eT

i (83)

Observe the identities:
Ei−1,iei−1 = ei (84)

eT
i−1Ei−1,i = eT

i (85)

Substitute 84 in 82:
LEi−1,iei−1 = Ei−1,iei−1 (86)

Multiply both sides of 86 by Ei−1,i and substitute from 62:

L′ei−1 = ei−1 (87)

Similarly, substitute 85 in 83:
eT

i−1Ei−1,iL = eT
i−1Ei−1,i (88)

Multiply both sides of 88 by Ei−1,i and substitute from 62:

eT
i−1L′ = eT

i−1 (89)

which is the invariant condition and thus ji−1 is an invariant iterator. 2
Theorem 2 shows that the new transformed iterators have any one load balanced loop one

loop nest further out than before.

Observation 1 Similarly, it can be shown that any load balanced iterator ji can be moved one
loop nest further in by applying permutation transformation J′ = Ei,i+1J. Thus two neighbouring
iterators that are both load balanced will remain so upon interchange.

Given the set of iterators JB where iterators j = i1, i2, … , is are the values of the iterators in
load balanced form for

LBJB ≥ l (90)

UBJB ≤ u (91)

We propose to find a unimodular transformation E such that:

Jo = EJB (92)
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and Jo is the iteration vector with the first s iterators load balanced.
To this end let Ei be the transformation that moves a particular iterator ji to the outermost

scope. It is defined thus:
Ei = E1,2 × E2,3 × ⋅ ⋅ ⋅ × Ei−1,i (93)

It should be noted that in general
Ei ⁄= E1,i (94)

E is now defined as:
E = Eis × Eis−1 × ⋅ ⋅ ⋅ × Ei1 (95)

E is unimodular as it is the product of unimodular transformations.
Let

Lo = ELBE−1 (96)

Uo = EUBE−1 (97)

lo = El (98)

uo = Eu (99)

Lo, Uo, lo, uo are in the form described by figure 1. This is shown by repeated application
of lemma 3. The set of inequalities given by:

LoJo ≥ lo (100)

UoJo ≤ uo (101)

are equivalent to 90 and 91. This can be shown by observing that:

ELB(E−1E)JB ≥ El (102)

EUB(E−1E)JB ≤ Eu (103)

(ELBE−1)(EJB) ≥ El (104)

(EUBE−1)(EJB) ≤ Eu (105)

Substituting from 96 to 99 gives the required form of 100 and 101.
Finally by the repeated application of theorem 2, and using Observation 1 it can be shown

that the first s iterators of Jo are load balanced for 100 and 101.
This analysis gives the following algorithm to reorder the iterators.
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5.1 Algorithm 3

1. For ` ∈ 1, … , s

2. For k ∈ i` to 2 step -1

3. Interchange rows k and k − 1 of U, L, l, u

4. Interchange columns k and k − 1 of U, L, and rows k , k − 1 of J

5. End For

6. End For

To illustrate this algorithm consider the matrix form of the program given in figure 4 after
transforming to invariant form.264 1 0 0

0 1 0
−4 0 1

375264 i
j
k

375 ≥

264 1
n − 1

1

375 (106)264 1 0 0
0 1 0

−5 0 1

375264 i
j
k

375 ≤

264 n
2n + 1

n

375 (107)

There is only one loop j to move out, i.e. s = 1, i = 2, ji = j2 = j. On interchanging rows we
have 264 0 1 0

1 0 0
−4 0 1

375264 i
j
k

375 ≥

264 n − 1
1
1

375 (108)264 0 1 0
1 0 0

−5 0 1

375264 i
j
k

375 ≤

264 2n + 1
n
n

375 (109)

Interchanging columns of U, L and rows of J gives264 1 0 0
0 1 0
0 −4 1

375264 j
i
k

375 ≥

264 n − 1
1
1

375 (110)264 1 0 0
0 1 0
0 −5 1

375264 j
i
k

375 ≤

264 2n + 1
n
n

375 (111)

which finally gives the following program:
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DOALL j = n-1,2*n+1
DOALL i = 1,n
DOALL k in 1+4*i , n+5*i
a[i,j+i] = Min(c[i,k+2*j]*d[-j,k+2*j])

Figure 8: Load Balanced Loop Outermost

This program has a load balanced loop which is outermost. Each iteration of j will have
exactly the same amount of work to perform and all that is now required is for the n+3 iterations
to be divided amongst the processors.

6 Review

The properties of unimodular transformations for doubly nested loops with constant bounds
have been covered by [1]. It has also shown that existing transformations such as the wavefront
method [4] can be described in terms of unimodular transformations [3].

Program transformations have mainly been focused on revealing program parallelism,
however in [5] unimodular transformations are used as a mechanism to describe distribution
of loops across distributed processors. They study the effect of unimodular transformations
by giving a measure of parallelism, load imbalance and volume of communication which are
again restricted to the two-dimensional rectangular loop case. The unimodular transformations
used within our paper are related to loop skewing [9] and loop interchange[10].

The polytope and related notation is based upon the work of [8]. The main concern of his
thesis was the unification of the systolic framework based on uniform recurrences with data
dependency analysis. Although the polytope notation was developed quite extensively, it was
used chiefly to find a legal ordering vector within the polytope so as to maintain program data
dependencies.

The work presented in this paper forms part of the general mapping of array computation to
distributed memory architectures. In [6] load balancing for more general programs including
serial loops and conditionals and arbitrary nesting is presented. Matrix transformations to
minimise non-local access by alignment, data partitioning and data re-use are also presented
where the interaction between load balancing and communication overhead is investigated.

7 Conclusion

This paper has addressed the use of unimodular transformations to load balance a particular
sub-class of loop structures and to reorder them so as the appropriate iterators are outermost.

By viewing the iteration space of such loops as a polytope it has been possible to determine
an invariance condition to ensure perfect load balancing.

The existence conditions for a load balancing transformation have been derived. If any
one loop in a loop nest satisfies this condition an algorithms to perform the transformation in
polynomial time has been presented.
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If more than one load balanced loop is to be partitioned and scheduled over the processors,
an algorithm has been derived which simultaneously transforms all of them without increasing
the complexity of the scheme.

It is desirable to have partitioned loops outermost. The surprising result that this is always
possible for load balanced loops has been shown. A simple unimodular transformation and
hence an algorithm that moves such loops outermost has been given.

This paper has shown that load balancing, for a sub-class of programs, can be achieved by
application of unimodular transformations. Further work will no doubt apply such transform-
ations for other issues in compiling for multiprocessors.
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