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ABSTRACT  

The coupled response of elastic deformable liquid containers of horizontal-

cylindrical shape under external seismic excitation is examined, through an analytical 

methodology, assuming inviscid-incompressible fluid and irrotational-flow conditions. 

In particular, the case of a half-full horizontal-cylindrical deformable container is 

examined, considering an analytical series-type solution for the velocity potential 

function that describes the liquid motion under external excitation. This mathematical 

analysis extends the solution methodology presented in previous publications of the 

senior author, taking into account full coupling between sloshing and wall deformation 

in a rigorous manner, where wall deformation is considered through a sinusoidal 

assumed-shape function. In the mathematical formulation, the velocity potential is 

decomposed into three parts: (a) a first part, which represents liquid motion that 

follows the external excitation, (b) a “convective part”, representing liquid motion 
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associated with free surface elevation (sloshing), and (c) a third part caused by the 

wall deformation. Using an elegant mathematical manipulation, the coupled transient 

overall response of the liquid-container system is obtained in an efficient manner. 

Numerical results are presented in terms of the principal natural frequencies of the 

coupled system, as well as the system response under strong seismic input, and 

emphasize on the effects of container aspect ratio on the dynamic behavior of the 

system. The mathematical formulation for the case of long cylinders results in a 

simplified model, identical to the simplified “physical model” presented in a previous 

publication. 
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1 INTRODUCTION 

The presence of a free surface in partially filled liquid containers allows for fluid 

motions relative to the container, associated with free-surface elevation. This 

phenomenon, referred to as “liquid sloshing”, is generally caused by external tank 

excitation, and may have a significant influence on the response of the container. 

Assuming ideal fluid, the fluid flow is described through a velocity potential function 

satisfying the Laplace equation within the fluid, the kinematic condition on the tank 

wall, and the kinematic and dynamic free-surface conditions. Furthermore, 

considering small amplitude conditions, a linearized condition on the free surface of 

liquid is obtained. In the absence of external excitation, sloshing can be regarded as 

an eigenvalue problem, which represents the oscillations of the free surface of an ideal 

liquid inside a stationary container. The eigen-problem solution provides the natural 

frequencies of fluid oscillation (sloshing frequencies) and the corresponding sloshing 

modes, and depends strongly on the shape of the container. In the case of externally 

excited container, sloshing becomes a transient problem. The total liquid motion can 

be decomposed in two parts, first part which represents liquid motion that follows the 

external excitation, and a second part associated with sloshing, which expresses fluid 

motion with respect to the container. The solution of the transient problem provides 

the hydrodynamic pressures and forces on the container’s wall.  

In non-deformable liquid containers of rectangular and vertical-cylindrical shape, 

the sloshing problem can be solved analytically, using separation of variables, and the 

corresponding sloshing modes are mutually orthogonal and uncoupled. For other 

geometries (e.g. horizontal cylinders or spheres) exact analytical solutions may not be 

available, and the use of numerical or semi-numerical methods becomes necessary. 

Sloshing frequencies in non-deformable circular cylinders (canals) as well as the 

corresponding transient problem of externally-induced sloshing has been studied 

numerically in an early work by Budiansky (1960), using space transformations to 

map the initial circular region to a more convenient plane region. The flow field was 

described by a set of integral equations, which was solved using a Galerkin-type 

solution. Further contributions on the calculation of sloshing frequencies in horizontal 

cylindrical containers filled up to an arbitrary height have been reported by Moiseev 

& Petrov (1966), and later by Fox & Kuttler (1981, 1983), McIver (1989), McIver & 

McIver (1993), Zhou et al. (2008) using numerical or semi-numerical methods. 
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Recently, the analysis of horizontal cylindrical liquid containers under external 

excitation has received quite some attention, mainly because of its application in 

dynamics and stability of moving vehicles containing a liquid with a free surface. 

Faltinsen & Timokha (2009, 2010) presented a multimodal method for two-

dimensional forced liquid sloshing in a circular container, which employs an 

expansion in terms of the natural sloshing modes. The multimodal method has also 

been used by Kolaei et al. (2014a, 2014b) to analyse sloshing in a moving horizontal-

cylindrical container of both circular and general cross-sectional shape. Furthermore, 

several semi-numerical and numerical works have been motivated by the response of 

horizontal cylindrical pressure vessels under seismic loading (Kobayashi et al., 1989; 

Patkas & Karamanos, 2007; Karamanos et al. 2009), whereas the reader is referred to 

the recent paper by Malhotra (2014) for an important application of this topic in the 

seismic design of a large-scale horizontal-cylindrical container in the International 

Thermonuclear Experimental Reactor (ITER), in France. 

The particular case of a half-full horizontal cylindrical container offers the 

possibility for developing an elegant analytical formulation, which can be used as 

benchmark for verifying numerical methodologies. Evans & Linton (1993) developed a 

series-type analytical solution of the eigenvalue sloshing problem of a half-full two-

dimensional liquid container, expanding the velocity potential in a series of non-

orthogonal bounded harmonic spatial functions. This series solution has been 

extended by the authors (Papaspyrou et al. 2004a, b) for the calculation of 

hydrodynamic pressures and forces in half-full cylinders under transverse and 

longitudinal external excitation respectively, expanding the velocity potential in 

bounded series in terms of arbitrary time functions and their associated non-

orthogonal spatial functions, resulting in a system of ordinary linear differential 

equations. In the case of transverse excitation, a simplified three-dimensional model 

was also presented by Papaspyrou et al. (2004b) and further developed in Karamanos 

et al. (2006), extending the series solution to account for wall deformation and 

calculating the coupled response of the liquid-structure system. More recently 

Hasheminejad & Aghabeigi (2009, 2011) analyzed sloshing in half-full horizontal 

cylindrical containers of elliptical cross-section and in a subsequent publication they 

extended their formulation to examine the effects of vertical or horizontal side baffles 

on sloshing response (Hasheminejad & Aghabeigi, 2012). 
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The present work, motivated by the seismic analysis of horizontal-cylindrical 

pressure vessels (Karamanos et al., 2006), is aimed at developing a rigorous 

mathematical model to calculate sloshing effects in deformable half-full horizontal 

cylindrical containers under external excitation in the transverse direction, extending 

and refining the work presented in Papaspyrou et al. (2004b). The coupled liquid-

structure response is tackled through an analytical methodology, considering the 

influence of container wall motion on liquid sloshing, through an appropriate assumed 

shape function to account for vessel deformation. It should be noted that for the case 

of deformable containers, the “sloshing” or “convective” motion has been customarily 

considered neglecting wall deformation effects. Such an approach has been used 

extensively in the seismic analysis of vertical cylindrical liquid storage tanks, where 

the container’s deformation was taken into account through either simple assumed-

shape functions (Veletsos & Yang 1977, Fischer 1979), or more elaborate shell 

deformation models (Haroun 1983, Natsiavas 1988, Gupta 1995). In the present work, 

the case of half-full horizontal cylinders under external transverse excitation is 

examined using a mathematical formulation that allows for full coupling between 

liquid motion and wall deformation through an explicit and rigorous manner. A 

similar approach has been followed by Fischer & Rammerstorfer (1999) for the case 

of upright cylindrical liquid containers. The formulation decomposes the motion in 

three parts: a first part that follows the external source, a second part due to 

container deformation and a third part associated with sloshing of the liquid free 

surface. In the present study, following the terminology widely adopted in the 

literature for earthquake response of liquid storage tanks (e.g. Veletsos & Yang, 1977; 

Fischer, 1979; and Fischer & Rammerstorfer, 1999), these three parts are referred to 

as “impulsive” motion, “deformation” motion and “convective” motion respectively.  

A truncated solution is also developed considering only the first two terms of the 

series in the transverse direction, which yields an elegant solution of good accuracy 

and enables the parametric study. The particular case of harmonic excitation is also 

examined, which results in a system of algebraic equations. Comparison of the present 

rigorous approach with the more simplified approach proposed by Papaspyrou et al. 

(2004b) is conducted towards better understanding the effects of container wall 

deformation on the overall dynamic response of the half-full horizontal cylinder. The 

numerical results are presented in terms of the frequencies of the coupled system with 

respect to the aspect ratio of the container, as well as the response the liquid-
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container system under external excitation from a severe seismic event for different 

values of the aspect ratio.  

2 FORMULATION OF THE COUPLED PROBLEM 

The fluid is contained in a half-full horizontal cylindrical vessel of radius R, with 

the y-axis of the coordinate system x,y,z , where axis y  points vertically downwards 

(Figure 1). The geometry is described in terms of the cylindrical coordinates r, θ, z.  

 

R
θ r x

y

L

X(t)

z

R
θ r x

y

L

X(t)

z

 
Figure 1: Schematic representation of the problem: half-full horizontal cylindrical container 

and coordinate system. 

 

2.1 Vessel deformation  

The container undergoes an arbitrary motion of its supports in the direction of the 

x axis with displacement ( )X t . The vessel is assumed flexible (deformable) in the 

form of a beam-type deformation where the cross-section remains circular (those 

vessels are rather thick to resist high internal pressure). However, relatively long 

horizontal cylindrical vessels (L/R≥10), quite common in petrochemical industries and 

refineries, exhibit a beam-type deformation, which may affect the overall response 

under transverse excitation. Thus, neglecting local (shell-type) modes, while the 

cylinder cross-section remains circular (undeformed) due to its significant thickness, 

the motion of the cylindrical container is directly determined by the motion of the 

cylinder axis, which is decomposed in two parts (Figure 2), the motion of the supports 
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( )X t , independent of z coordinate, and the motion due to the deformation of the 

container described by a function ( )y z, t  

( ) ( ) ( )y z, t z t= ψ ∆         (1) 

where ψ(z)  is an assumed shape function and ( )t∆  is an unknown degree of freedom 

that represents the magnitude of container motion relative to the supports. 

 

ψ(z)Δ(t)

Xg(t) z

x

z=Lz=0

undeformed cylinder axis

deformed cylinder axis

ψ(z)Δ(t)

Xg(t) z

x

z=Lz=0

undeformed cylinder axis

deformed cylinder axis  
Figure 2: Beam-type deformation of horizontal cylinder, simply supported at z 0=  and 

z L= . 

 

2.2 Fluid motion and decomposition 

Assuming inviscid-incompressible fluid and irrotational flow conditions, the flow is 

described by a velocity potential function ( )Φ r,θ,z,t , which satisfies Laplace equation 

within the fluid volume, with appropriate boundary conditions on the container’s wall 

and the free surface of the liquid. The velocity potential ( )r, , z, t ,Φ θ  satisfies Laplace 

equation within the domain r R,  - π/2 θ π/2,  0 z L< < < < <  

2 2 2
2

2 2 2 2
1 1 0
r r r r θ z
∂Φ ∂ Φ ∂ Φ ∂ Φ

∇ Φ = + + + =
∂ ∂ ∂ ∂

     (2) 

and the associated boundary conditions at the moving container and the liquid free-

surface: 

0
z

∂Φ
=

∂
   z 0, L,  π/2 θ π/2,  0 r R= − < < < <   (3) 

( )X ψ(z) sin θ
r

∂Φ
= + ∆

∂
   r R,  π/2 θ π/2,  0 z L= − < < < <   (4) 
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2

2
g 0

t r θ
∂ Φ ∂Φ

± =
∂ ∂

  θ π/2,  r R,  0 z L= ± < < <    (5) 

Equation (3) is the homogeneous Neumann condition at the two cylinder ends, and 

equation (4) is the nonhomogeneous Neumann condition at the “wet wall” of the 

container, expressing that liquid velocity normal to the container wall should be 

equal to the corresponding velocity of the container. Furthermore, equation (5) is the 

linearized combined kinematic-dynamic condition at the liquid free surface (e.g. 

Fischer and Rammerstorfer, 1999; Papaspyrou et al. 2004b) 

The velocity potential Φ  is decomposed in three parts 

I D C(r,θ,z,t) φ (r,θ,t) φ (r,θ,z,t) φ (r,θ,z,t)Φ = + +     (6) 

where Iφ (r,θ,t) , Dφ (r,θ,z,t)  and Cφ (r,θ,z,t)  are the so-called “impulsive”, 

“deformation” and “convective” potentials respectively, following the terminology 

widely adopted in the literature for the seismic response of liquid storage containers. 

More details on this decomposition procedure can be found in the paper by Fischer 

and Rammerstorfer (1999). 

The impulsive motion potential Iφ  satisfies the Laplace equation within the liquid 

volume 

2
Iφ 0∇ =      r R,  π/2 θ π/2< − < <  (7) 

and the following boundary conditions 

I
m

φ (X ψ ) sinθ
r

∂
= + ∆

∂
     r R,  π/2 θ π/2= − < <  (8) 

  Iφ 0=       θ π/2,  r R= ± <   (9) 

In Equation (8), mψ  is the mean value of ψ(z) : 
L

m

0

1ψ = ψ(z)dz
L ∫         (10) 

so that  

mψ(z)=ψ ψ(z)+          (11) 

and 
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L

0

ψ(z)dz = 0∫  . 

From Equations (7) - (9), one readily concludes that the impulsive potential is two-

dimensional, independent of the z coordinate. 

The “deformation” potential Dφ  satisfies the Laplace equation in the liquid volume 

2
Dφ 0∇ =    r R,  π/2 θ π/2,  0 z L< − < < < <   (12) 

and the following boundary conditions: 

Dφ 0
z

∂
=

∂
   z 0, L,  π/2 θ π/2,  0 r R= − < < < <   (13) 

Dφ  ψ(z) sin θ
r

∂
= ∆

∂


   r R,  π/2 θ π/2,  0 z L= − < < < <   (14) 

  Dφ 0=     θ π/2,  r R,  0 z L= ± < < <    (15) 

Finally, the convective potential Cφ , associated with the sloshing motion of the 

liquid, satisfies the Laplace equation  

2
Cφ 0∇ =     r R,  π/2 θ π/2,  0 z L< − < < < <  (16) 

and the following boundary conditions 

Cφ 0
z

∂
=

∂
    z 0, L,  π/2 θ π/2,  0 r R= − < < < <  (17) 

Cφ 0
r

∂
=

∂
    r R,  π/2 θ π/2,  0 z L= − < < < <    (18) 

    
2

C C I D
2

φ g φ g φ g φ
t r θ r θ r θ

∂ ∂ ∂ ∂
± =

∂ ∂ ∂ ∂
   θ π/2,  r R,  0 z L= ± < < <   (19) 

In boundary condition (19), the first term on the right-hand side represents the 

influence of impulsive motion on the convective potential, whereas the second term 

expresses the influence of vessel deformation on the convective potential. 

3 ANALYTICAL SOLUTION 

In each of the three problems, the unknown potential is expanded in terms of non-

orthogonal (in the transverse direction) bounded harmonic functions and the 

unknown coefficients of the expansion are determined by satisfying the boundary 
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conditions. It is easily deduced from the boundary conditions of all three problems 

and the symmetry of the vessel geometry with respect to planes z=L/2  and θ=0 , that 

all solutions must be symmetric in terms of z  and antisymmetric in terms of θ, with 

respect to the z=L/2  and θ=0  planes respectively. Therefore, in all cases, a general 

solution is considered in a series form that satisfies the Laplace equation, as described 

in the following paragraphs. 

3.1 Analytical solution for the fluid potential  

The solution of the two-dimensional impulsive problem is written in the following 

series form in terms of two-dimensional cylindrical harmonics 

I n
I n

n 1

φ (r,θ) q (t)  r  sin(nθ)
∞

=

=∑         (20) 

where I
nq (t), n=1,2,3,...  are generalized coordinates of the impulsive fluid motion. 

Introducing into the free surface condition (9), one readily obtains that the odd terms 

should vanish I
2n-1q (t)=0 . Subsequently, introducing into the lateral wall condition (8)

one readily obtains the following set of algebraic equations  

{ } { }I I
mq γ X ψ   = + ∆  

IM  

        (21) 

where 

{ } TI I I
2 2nq q …q =    

         (22) 

are the unknown even coefficients to be determined, 

2 n m
I 2n-1
nm 2 2

n ( 1)M R
(n (m 1/ 2) )

+ −
=  − − 

      (23) 

and  

[ ]TIγ π/4 0 0=          (24) 

The solution of the three-dimensional deformation potential is sought in the form 

of three-dimensional cylindrical harmonics  

D
D n,p n p p

p 2,4 n 1,2...

φ (r,θ,z) q (t) I (k r) sin(nθ) cos(k z)
∞ ∞

= =

= ∑ ∑


    (25) 
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where pk pπ / L= , D
n,pq (t)  are the generalized coordinates of the deformation motion, 

and nI (.)  is the modified Bessel function of the first kind. The above expression is 

substituted first in the free-surface condition (15) to obtain that the odd terms are 

zero ( D
2n-1,pq (t)=0, n=1,2,3,...). Subsequently, application of the lateral-wall condition 

(14) results in the following set of algebraic equations 

{ } { }D D
p p q γ  = ∆ 





D
pM         (26) 

where 

{ } TD D D
p 2,p 2n,pq q q =    

         (27) 

n+m
pD

mn,p 2n p 2 2

k L n( 1)M I (k R)
4 n (m 1/2)

 −′=  − − 
     (28) 

[ ]
L

TD
p p

0

γ π/4 0 0 cos(k ) ψ(z) dzz= ∫ 
       (29) 

Finally, the convective potential is written in the following series form, separating 

even and odd terms:  

C 2n-1 C 2n
C 2n-1 2n

n=1

C C
2n-1,p 2n-1 p 2n,p 2n p p

p=2,4 n=1

φ (r,θ,z,t)  q (t) r sin[(2n 1)θ] q (t) r  sin(2nθ)  

 q (t) I (k r) sin[(2n-1)θ] q (t) I (k r) sin(2nθ) cos (k z)

∞

∞ ∞

 = − + + 

 + + 

∑

∑∑

 

 

 (30) 

The above expression is introduced in the free surface condition (19) to obtain  

C C I
2n 2n-1 2n

1q (t) q (t) q (t)
2ng

= −        n=1,2,3…  (31) 

pC C C D D
2n-1,p 2n,p 2n-2,p 2n,p 2n-2,p

k g
q (t) q (t) q (t) q (t) q (t)

2
 = + + +   n=1,2,3…,p=2,4,6,…(32) 

C D
0,p 0,pq q 0= =           (33) 

Subsequently, introducing the above expression into the general solution equation 

(30), and substituting into equation (18) the following set of algebraic systems of 

equations (34) and (35) is obtained: 

{ } { } { }[ ]C C C C C
m q q γ X ψ   + = + ∆   M K      (34) 
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and 

{ } { } { }C C C C C D
p p p p p p q q q     + = −     M K K      (35) 

where 

n m
C 2n-1
mn

2 2

2n (-1)M R 1(n (m ) )
2

+
 
 

=  
 − −
 

      (36) 

C 2m-2
mmK (2m -1) π g R=        (37) 

[ ]TCγ πg 0 0=          (38) 

m n
C
mn,p p 2n p

2 2

n( 1)M k  I (k R) 12(n (m ) )
2

+
 
 −′=  
 − −
 

     (39) 

2
pC

mn,p 2n-1 p m,n 2n+1 p m,n 1

k πg
K  I (k R) δ I (k R) δ

8 +′ ′ = +      (40) 

and 

{ }C C C
1 2n-1q q q =           (41) 

{ }C C C
p 2,p 2n,pq q q =           (42) 

{ }D D D
p 2,p 2n,pq q q =           (43) 

Note that parameters D
2n,pq  are given in terms of ∆  from equation (26). 

Finally, it is important to note that the odd terms C
2n-1,pq  can be directly 

expressed in terms of the even terms C
2n,pq , substituting the convective solution (30) 

directly into the lateral wall condition (18), to obtain 

( )
2 m n

2m 2 C 2n 1 C
2m 1 2n2 2

n 1,2,..

n ( 1)(2m 1)R q R q
n m 1 2

+∞
− −

−
=

−
− = −

− −
∑      (44) 

( )
m n

C C
2m 1 p 2m 1,p 2n p 2n,p2 2

n 1,2,...

n( 1)I (k R) q (t) I (k R) q (t)
2 n m 1 2

+∞

− −
=

−′ ′= −
 − − 

∑    (45) 

 

3.2 Liquid-container interaction  

For each one of the above potentials iφ , i I,D,C= , the corresponding pressure of 

the fluid is computed through Bernoulli’s equation  
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  i
i

φp =
t

∂
−ρ

∂
         (46) 

where i I,D,C= . Conducting an appropriate integration of pressure ip  ( i I,D,C= ) 

around the lateral surface of the container at a specific section of the cylinder, one 

obtains the liquid force if  ( i I,D,C= ) per unit length along the cylinder for the 

potential under consideration. More specifically, the forces per unit length (along the 

cylinder) due to “impulsive”, “deformation” and “convective” motion are  

I I
I 2n 2n

n=1

f ρ L q (t) 
∞

= − ∑          (47) 

D D
D 2n,p p 2n,p

p=2,4 n=1,2

f ρ L  cos(k z)q (t)
∞ ∞

= − ∑∑        (48) 

C C D C
C 2n-1,p 2n-1,p 2n,p p 2n,p

p=0,2,4 n=1,2

f L q (t) + L cos(k z)q (t)
∞ ∞

 = −ρ  ∑∑      (49) 

respectively, where I
2nL , D

2n,pL , C
2n-1,pL , C

2n,pL  depend on the cylinder radius R . Thus, 

the total force per unit length due to the motion of the fluid is 

T I D Cf (z,t) =f (t) f (z,t) f (z,t)+ +       (50) 

Equilibrium of the beam-like cylinder requires that 

( )
4 2

SH T4 2

y yE I m X = f z,t
z t

   ∂ ∂
+ +   ∂ ∂   

       (51) 

where EI  is the bending stiffness of the beam-like cylinder, calculated approximately 

as follows 

( )3EI Eπ R + h 2 h≅         (52) 

and SHm  is the container’s mass per unit length. Using an arbitrary admissible 

function w(z), and assuming that the cylinder is simply supported at two symmetric 

supports, the weak form of the above equilibrium equation is obtained 

( ) ( ) ( ) ( ) ( )
L L L

SH T
0 0 0

EI y z,t w z dz m y z,t +X w z dz = f w z dz′′ ′′  +  ∫ ∫ ∫   (53) 
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In the context of a Galerkin-type solution procedure, the trial function is 

approximated as  

ww(z) = A ψ(z)         (54) 

where Aw is an arbitrary number. Therefore, the following dynamic equilibrium 

equation is obtained  

( )
L

b T
0

K Δ = f ψ z dz∫         (55) 

or 

( ) ( )

( ) ( ) ( )

L L

b I D
0 0

L L L
2

C SH SH
0 0 0

K Δ = f ψ z dz f ψ z dz

f ψ z dz m ψ z dz X m ψ z dz

+ +

   
+ − ∆ −   

   

∫ ∫

∫ ∫ ∫ 

   (56) 

where 

  

L

2
b

0

K EI ψ (z) dz′′= ∫         (57) 

is the equivalent bending stiffness of the vessel. 

 

4 A TRANSVERSELY-TRUNCATED SOLUTION  

It is possible to obtain an elegant solution of the coupled problem, considering only 

the first two terms in the previous expansions (20), (25) and (30), in terms of θ . This 

solution can be used for a detailed examination of the effects of wall deformation on 

the dynamic response. For simplicity, the mass of the container SHm  is assumed small 

and it is neglected. 

4.1 Solution for the “impulsive” and “deformation” motions  

Using a truncation with the first two terms of θ , the impulsive motion potential in 

Equations (20) - (24) reduces to the following expression  

( ) 2
I m

3πφ (r,θ,t) X ψ  r  sin2θ
16R

= + ∆        (58) 
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The corresponding expression for “impulsive” pressure becomes  

( )I
I m

φ 3πRP ρ ρ X + ψ  sin2θ
t 16

∂
= − = − ∆

∂
       (59) 

and a simple integration on the lateral surface gives the impulsive force per unit 

length 

( ) ( )
2

L
m m

mπRρ X + ψ Δ X + ψ Δ
4 2If = − = −        (60) 

Furthermore, the deformation motion potential in Equations (25) - (29) becomes 

D
D 2,p 2 p p

p=2,4

φ (r,θ,z) q (t) I (k r) sin(2θ) cos(k z)
∞

=∑      (61) 

where 
L

D
2,p p

p 2 p 0

3π q (t) ψ(z) cos(k z) dz
4L k  I (k R)

∆
=

′ ∫


       (62) 

The pressure associated with this potential is given by the following expression 

L
2 p

D p p
p=2,4 p 2 p 0

I (k R)3πP ρ cos(k ) ψ(z) dz sin2θ cos(k z)
4L k  I (k R)

  z    
∞  

= − ∆ ′  
∑ ∫

   (63) 

and the corresponding force per unit length is 

L
2 p

p p
p=2,4 p 2 p 0

I (k R)πRρ cos(k z) ψ(z) dz cos(k z)
L k I (k R)Df     

∞  
= − ∆  ′  

∑ ∫

   (64) 

 

4.2 Solution for “convective” motion and liquid-vessel interaction 

Considering only the first two terms in the series solution (30), and using the fact 

that Equations (44) - (45) reduce to  

C C
2 1

3q q
16R
π

= −          (65) 

1 pC C
2,p 1,p

2 p

I (k R)3q q
8 I (k R)

′π
= −

′
       (66) 
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respectively, the convective motion potential from Equation (30) and the 

corresponding pressure, written in terms of variables C
1q  and C

1,pq  become 

C 2
C 1

1 pC
1,p 1 p 2 p p

2 pp=2,4

3πφ (r,θ,z,t) q (t) r sinθ r sin2θ
16R

I (k R)3πq (t) I (k r) sinθ I (k r) sin2θ cos(k z)
8 I (k R)

∞

 = − +  
 ′

+ − ′  
∑





  (67) 

and 

C
C 1

1 pC
1,p 1 p 2 p p

2 pp=2,4

3πRρ q (t) R sinθ sin2θ
16

I (k R)3πq (t) I (k R) sinθ I (k R) sin2θ cos(k z)
8 I (k R)

{

}

P

∞

 = − − +  
 ′

+ − ′  
∑





 (68) 

respectively. Furthermore, the total force per unit length is  

1 p 2 p 1 pC CL
1 L 1,p p

p=2,4 2 p

I (k R) I (k R) I (k R)m  q (t) m q (t) cos(k z)
2 R R I (k R)Cf  

∞  ′
= − − − ′  

∑   (69) 

where the generalized coordinates C
1q (t)  and C

1,pq (t)  are computed through the 

following ordinary differential equations, 

[ ]C 2 C 2
1 S0 1 S0 mq (t) ω  q (t) = ω X(t) ψ Δ(t)+ +      (70) 

C 2 C
1,p Sp 1,p pq (t) ω  q (t) = γ (t) + ∆ ,    p 2,4,6,...=    (71) 

where 

2
S0

3πgω =
8R

         (72) 

p 1 p2
Sp

2 p

3π g k I (k R)
ω

16 I (k R)
′

=
′

       (73) 

p2
p S0

2 p

a R
γ ω

I (k R)
=

′
        (74) 

Finally, conducting the appropriate integrations in Equation (56), the following 

equation is obtained from the dynamic equilibrium of the deformable cylinder 

( )
2
SpC C

T Sp b S0 S0 1,0 Sp 1,p
p=2,4 p=2,4 p

ω
M M K M  X M q M q 0

γ

∞ ∞

Τ

 
′ − ∆ + ∆ + Μ − + + = 

 
∑ ∑ 

         (75) 

where 
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L

T L L m
0

M m ψ(z) dz m ψ L= =∫        (76) 

L
L L

S0 m
0

m mM ψ(z) dz ψ L
2 2

= =∫       (77) 

p
Sp L p p2

Sp

γLM m B a
R ω

 =  
 

       (78) 

2 p 2
T S0 m Sp L p

p=2,4 p=2,4 p 2 p

I (k R)LM M ψ M 2 m a
R k I (k R)

∞ ∞   ′ = + +   ′   
∑ ∑    (79) 

L

p p

0

1a = cos(k z) ψ(z) dz
L

  ∫         (80) 

1 p
p 1 p 2 p

2 p

I (k R)
B = I (k R) I (k R)

I (k R)
′

−
′

      (81) 

Equation (70) is separated in two parts, so that C C C
1 1A 1Bq q + q=  and 

  C 2 C 2
1A S0 1A S0q (t) ω  q (t) = ω X(t)+        (82) 

C 2 C 2
1B S0 1B S0 mq (t) ω  q (t) = ω ψ Δ(t)+       (83) 

Subsequently, a change of variables is introduced  

C
1A gq = q + X          (84) 

( )C
1B m 0q ψ Q= + ∆         (85) 

pC
1,p p2

Sp

γ
q (Q )

ω
= + ∆         (86) 

and the system of equations (82), (83), (71) and (75), written in terms of the new 

variables gq , and 0Q , pQ  ( p = 2,4,6,...), takes the following form 

2
g S0 gq (t) ω  q (t) X(t)+ = −         (87) 

2
0 S0 0Q (t) ω  Q (t) Δ(t)+ = −         (88) 

  
2

P SP PQ (t) ω  Q (t) Δ(t)+ = −         (89) 

and 

Sp 2S0 S0 m T S0 m
g 0 p b

p=2,4b b b b b

MM M ψ M M ψ q  Q  Q    ω   X
M M M M M

∞
Τ ′ + Μ

+ + + ∆ + ∆ = − 
 

∑   

  (90) 
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where 

  2 b
b

b

K
M

ω =           (91)  

and the equation of motion of the container is normalized by bM , defined as follows: 
L

2
b L

0

M m ψ (z) dz= ∫         (92) 

The value of bM  can be considered as a generalized mass of the entire liquid. 

The system of equations (87) - (90) can be written in matrix form as follows 

[ ] [ ] { } X+ = − 

Q QM K Γ        (93) 

where 

[ ]

( )T S0 mS0 S0 m S2 SP

b b b b b

1 0 0 0 0
0 1 0 0 1
0 0 1 0 1

0 0 0 1 1
M M ψM M ψ M M

M M M M M

 
 
 
 
 

=  
 
 

′ +     
     

      







   





M  (94) 

[ ]

2
S0

2
S0

2
S2

2
SP

2
b

ω 0 0 0
0 ω 0 0
0 0 ω 0

0 0 0 0ω
0 0 0 ω

 
 
 
 

=  
 
 
 
  









   





K       (95) 

 

{ }
T

T

b

M1 0 0 0
M

 
=  
 

Γ   (96) 

T

g 0 2 Pq Q Q Q = ∆ Q   (97) 

Equation (93) is in the form of a typical dynamic structural system, with no damping. 

The case of a damped system will be discussed in a later section of this paper. Finally, 

considering zero external excitation ( X 0= ) in equation (93), and assuming a 

harmonic solution, the following eigenvalue problem is obtained 
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[ ] [ ]2ω 0 − + = QM K        (98)  

and its solution provides the frequencies (i)ω  of the coupled liquid-container problem. 

4.3 Application for sinusoidal assumed shape function  

Assuming a sinusoidal function (z)ψ for the deformation of the cylinder in the 

following form,  

  ( )(z) sin z Lψ = π         (99) 

one obtains  m 2ψ = π , b LM m L 2= , 2
pa 2 (1 p ) = π −    

S0

b

M 2
M

=
π

 (100) 

Sp 1 p 2 p
2 2

b p 1 p 2 p

M I (k R) I (k R)16 1
M (1 p ) k R I (k R) I (k R)

 
= ⋅ − ′ ′π −   

, p 2,4,6,...=           (101) 

so that the equilibrium equation (90) becomes 

2
2 1
b g 0 2 2 2 2

p 2,4 1

1 2
p2 2 2

p=2,4 1 2

4 2 2 8 16 1 I (x)  X  q Q   
(1 p ) x I '(x)

16 1 I (x) I (x)  Q 0
(1 p ) x I (x) I (x)

∞

=

∞

      ω ∆ + + + + + ∆      π π π π π −       
 

+ ⋅ − = ′ ′π −  

∑

∑

 





 (102) 

where px k R= . The above expression results in an interesting mathematical result for 

the particular case of a long cylinder, as shown in the next paragraph. 

4.4 The case of a long cylinder 

The response of a long cylinder can be described by the above equations setting 

L R →∞  , or equivalently x 0→ , and the following limits are obtained: 

1 2
x 0

1 2

I (x) I (x)1 1lim
x I (x) I (x) 2→

 
− = ′ ′ 

 (103) 

1
x 0

1

I (x)1lim 1
x I (x)→

=
′

 (104) 

2
x 0

2

I (x)1 1lim
x I (x) 2→

=
′

 (105) 
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2 2
Sp S0L R

lim ω ω
→∞

=  (106) 

The rate at which Spω  converges to S0ω in equation (106) is shown in Figure 3. 

Because of equation (106), equations (88) - (89) become identical, implying that 

p 0Q Q≡   for p 2,4,6,...= , so that the equation of motion of the container (102) 

becomes  

2
b g 02 2 2 2 2 2 2 2

p 2,4,... p 2,4,...

2 4 8 8 16 4 q  Q  X 0
(1 p ) (1 p )

∞ ∞

= =

      ω ∆ + + + + + ∆ + =      π π π − π π − π      
∑ ∑  

  (107) 

Finally, it can be shown that 

2 2 2 2
p 2,4,...

8 16 1
(1 p )

∞

=

+ =
π π −∑  (108) 

and, therefore, the system of equations (93) can be written as follows: 

( ) ( )

2
S0

2
0 S0 0

2
b

1 0 0 q ω 0 0 q 1
0 1 1 Q 0 ω 0 Q 0 X

2/π 1/2 1 0 0 ω 4/π

        
        + = −        
        ∆ ∆        



 



g g

 (109) 

This system of equation is identical to the equations of motion obtained by 

Papaspyrou et al. (2004b) through a “physical” model, outlined in the Appendix of 

the present paper.  
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Figure 3: Convergence of Spω values to the value of S0ω  with increasing values of the 

L R ratio. 
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5 RESULTS  

The frequencies of the undamped coupled system, computed from equation (98), 

are shown in Table 1 – Table 4 for four different values of the L R ratio, and for 

different values of the truncation size in terms of p  in equations (61) and (67). In 

Figure 4, the first two (lowest) frequencies, together with the last (largest) frequency 

are plotted with respect to the value of the L R ratio. One of the two lowest 

frequencies is always equal to S0ω , denoted as (1)ω , as indicated by equation (87), and 

refers to liquid sloshing due to uniform motion of the container, whereas the other 

frequency, denoted as (2)ω  is equal to S0ω  for  L R values less than 50, but deviates 

from the value of S0ω  for L R values greater than 50. Finally, the value of the largest 

frequency, denoted as DEFω , corresponds to the vibration of the container. The value 

of DEFω  is quite large for L R values less than 20, but reduces rapidly and becomes 

comparable to the value of S0ω  for L R values greater than 50, a result also noticed 

in Table 1 – Table 4. 

1    (p=2) 2    (p=4) 3   (p=6) 4   (p=8) 5   (p=10) 6   (p=12) 7   (p=14) 8   (p=16)
1.178093 1.178093 1.178093 1.178093 1.178093 1.178093 1.178093 1.178093
1.178097 1.178097 1.178097 1.178097 1.178097 1.178097 1.178097 1.178097
1.524002 1.524002 1.524002 1.524002 1.524002 1.524002 1.524002 1.524002

269908.84 2.256482 2.256482 2.256482 2.256482 2.256482 2.256482 2.256482
268551.38 3.045854 3.045854 3.045854 3.045854 3.045854 3.045854

268364.00 3.817625 3.817625 3.817625 3.817625 3.817625
268318.85 4.574150 4.574150 4.574150 4.574150

268304.02 5.322726 5.322726 5.322726
2682980.72 6.067368 6.067368

268295.33 6.809995
268293.92

Truncation Size (L/R=5)

       
 

Table 1: Normalized frequencies of the coupled system ( L R =5, 2
bω R g = 130949.72). 

1    (p=2) 2    (p=4) 3   (p=6) 4   (p=8) 5   (p=10) 6   (p=12) 7   (p=14) 8   (p=16)
1.178029 1.178029 1.178029 1.178029 1.178028 1.178028 1.178028 1.178028
1.178097 1.178097 1.178097 1.178097 1.178097 1.178097 1.178097 1.178097
1.272067 1.272067 1.272067 1.272067 1.272067 1.272067 1.272067 1.272067
16619.09 1.523980 1.523980 1.523980 1.523980 1.523980 1.523980 1.523980

16511.97 1.870291 1.870291 1.870291 1.870291 1.870291 1.870291
16494.72 2.256435 2.256435 2.256435 2.256435 2.256435

16490.10 2.652232 2.652232 2.652232 2.652232
16488.48 3.045768 3.045768 3.045768

16487.80 3.434083 3.434083
16487.48 3.817490

16487.31

      

Truncation Size (L/R=10)

 
Table 2: Normalized frequencies of the coupled system ( L R =10, 2

bω R g = 8184.3575). 
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1    (p=2) 2    (p=4) 3   (p=6) 4   (p=8) 5   (p=10) 6   (p=12) 7   (p=14) 8   (p=16)
1.157486 1.157411 1.157403 1.157401 1.157401 1.157400 1.157400 1.157400
1.178097 1.178097 1.178097 1.178097 1.178097 1.178097 1.178097 1.178097
1.183255 1.183254 1.183253 1.183253 1.183253 1.183253 1.183253 1.183253

65.763792 1.202053 1.202053 1.202053 1.202053 1.202053 1.202053 1.202053
65.301275 1.231644 1.231644 1.231644 1.231644 1.231644 1.231644

65.217863 1.272075 1.272075 1.272075 1.272075 1.272075
65.192507 1.322542 1.322542 1.322542 1.322542

65.182417 1.382065 1.382065 1.382065
65.177679 1.449583 1.449583

65.175189 1.524002
65.173770

Truncation Size (L/R=40)

     ² /  
 

Table 3: Normalized frequencies of the coupled system ( L R =40, 2
bω R g = 31.97014). 

1    (p=2) 2    (p=4) 3   (p=6) 4   (p=8) 5   (p=10) 6   (p=12) 7   (p=14) 8   (p=16)
0.637939 0.635403 0.634943 0.634804 0.634748 0.634722 0.634709 0.634701
1.178097 1.178097 1.178097 1.178097 1.178097 1.178097 1.178097 1.178097
1.178976 1.178966 1.178962 1.178960 1.178958 1.178957 1.178975 1.178975
3.746990 1.181745 1.181683 1.181653 1.181635 1.181622 1.182357 1.182357

3.734910 1.186583 1.186442 1.186366 1.186317 1.187718 1.187718
3.732715 1.193527 1.193298 1.193169 1.195174 1.195174

3.732040 1.193298 1.202246 1.204704 1.204704
3.731768 1.213660 1.216271 1.216271

3.731638 1.229829 1.229829
3.731568 1.245328

3.731527

Truncation Size (L/R=90)

      
 

Table 4: Normalized frequencies of the coupled system ( L R =90, 2
bω R g = 1.0048244). 

Another issue related to the frequencies refers to the value of the largest 

frequency DEFω  of the coupled system, which may offer valuable information on the 

dynamic behavior of the container. Considering the motion of the container as a 

generalized single-degree-of-freedom system, one may write the vibration frequency of 

the moving container in terms of its stiffness bK  given in equation (57), and a 

generalized mass Μ  which represents the part of liquid mass moving with the 

container, as follows: 

2 b
DEF

K
ω =

Μ
 (110) 

Combining equations (110) and (91), one obtains a simple expression for the 

generalized liquid mass Μ  that follows the motion of the container: 

2

b

b DEFM
 ω

=  ω 

Μ
 (111) 

Expression (111) shows that the value of Μ  depends on the L R  ratio and it is 

plotted in Figure 5, normalized by the value of bM , defined in equation (92). The 

bMΜ ratio expresses the part of total liquid mass that follows the motion of the 
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container, whereas the remaining part of the liquid is associated with sloshing. The 

results in Figure 5 show that for L R  values less than 40, the liquid mass is divided 

in two equal parts: one associated with sloshing and one that follows the motion of 

the container. This is a result consistent with the one presented in Papaspyrou et al. 

(2004b).   

`

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

ω
s(

n)
2 ∙R

/g

aspect ratio L/R

2
(2)R gω

2
(1)R gω

2
( )DEF R gω

 (a) 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80 90 100

ω
s(

n)
2 ∙R

/g

aspect ratio L/R

2
(2)R gω

2
(1)R gω

2
( )DEF R gω

(b) 

Figure 4: Variation of the first two frequencies and the last (largest) frequency in 

terms of the L R ratio; (a) entire range of frequencies and (b) detail of the 

graph. 
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For larger values of the aspect ratio L R , the value of the bMΜ ratio decreases below 

the value of 0.5, so that less than half of liquid mass follows the motion of the 

container, while the mass associated with sloshing becomes larger. This decrease of 

the bMΜ ratio is attributed to the values of DEFω and bω , both associated with the 

deformation of the container; their values are significantly low for very long 

containers and comparable with the value of the sloshing frequency S0ω  (see Figure 4 

and Table 4). In such a case, there is coupling between the container motion and 

sloshing motion, so that the liquid mass associated with sloshing is increased, whereas 

the corresponding mass that follows the motion of the container is decreased, as 

indicated by the bMΜ ratio. 
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Figure 5: Ratio of generalized mass Μ , representing the liquid mass moving with the 

container, over generalized total liquid mass bM , in terms of the L R  

aspect ratio. 

 

Results for the response of the liquid-vessel system are also obtained for external 

excitation in the form of the accelerogram shown in Figure 6, from the Kobe 1995 

earthquake, a serious seismic event. The vessel under consideration has radius R  

equal to 1 meter, thickness h  equal to 2 cm, and it is considered half-full with liquid 

of density equal to 1000 kgr/m3. To obtain realistic results for this seismic excitation, 
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appropriate damping terms are introduced in equations (87) – (90), resulting to the 

addition of a damping term, proportional to Q  in the equations of motion, so that: 

[ ] [ ] [ ] { }X+ + = − 

 Q Q QM C K Γ  (112) 

where the damping matrix [ ]C  is considered in the following diagonal form:  

[ ]

s0 S0

s0 S0

s1 Sp1

sn Spn

b b

2ξ ω 0 0 0 0 0
0 2ξ ω 0 0 0 0
0 0 2ξ ω 0 0 0

0 0 0 0 2ξ ω 0
0 0 0 0 0 2ξ ω

 
 
 
 

=  
 
 
 
  

     

C  (113) 

In the present analysis, the values of damping coefficients s0ξ , sjξ (j=1,2,...n) , bξ  are 

equal to 0.02. The integration of the system of equations (112) is performed using 

Newmark’s algorithm with constants 1
4β=  and 1

2γ= , in an in-house program within 

Matlab environment. Results for the container under consideration are reported in 

Figure 7 and Figure 8 for two values of the aspect ratio L R , namely 10 and 40. The 

results indicate that the aspect ratio has a significant effect on the response of the 

container. 
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Figure 6: Seismic motion (accelerogram) from Kobe 1995 earthquake. 
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(a) 

(b) 

(c) 

Figure 7: Response of the coupled liquid-container system to Kobe 1995 earthquake 

( L R = 10); (a) container displacement ∆ ; (b) container acceleration ∆ ; (c) 

sloshing generalized coordinate gq . 
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(a) 

(b) 

Figure 8: Response of the coupled liquid-container system to Kobe 1995 earthquake 

( L R = 40); (a) container displacement ∆ ; (b) container acceleration ∆ . 

 

6 SUMMARY AND CONCLUSIONS  

Motivated by the analysis of horizontal cylindrical vessels under seismic excitation, 

the coupled response of deformable half-full liquid containers of horizontal-cylindrical 

shape under external excitation has been examined, through an analytical 

methodology, expanding the velocity potential in terms of arbitrary time functions. 

Full coupling between sloshing and wall deformation is considered, assuming a beam-

type assumed-shape function for the cylinder deformation.  
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Using a two-term truncation of the series solution in the transverse direction, an 

elegant mathematical solution is obtained for the transient problem, which results in 

a system of ordinary differential equations. For long cylinders and assuming a 

sinusoidal shape function for cylinder deformation, it is demonstrated that the 

present solution is identical to the solution proposed by Papaspyrou et al. (2004b), 

obtained through a “physical” model.  

Results are obtained for containers of different aspect ratio, in terms of the natural 

frequencies of the coupled system, and the system response under external excitation 

in the form of a severe seismic input. The numerical results indicate that for cylinders 

with small value of aspect ratio L R , the principal “convective” natural frequencies 

are significantly smaller than the natural frequency associated with the deformation 

of the container, and the corresponding “convective” liquid mass is half of the total 

liquid mass. For long cylinders (large value of L R ), the “deformation” natural 

frequency value is close to the value of the principal “convective” natural frequencies, 

implying coupling between the motion of the container and sloshing motion, so that 

the corresponding “convective” liquid mass becomes more than half of the total liquid 

mass.  
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APPENDIX. SIMPLIFIED MODEL FOR VESSEL-LIQUID INTERACTION  

It is possible to develop a simplified model that accounts for vessel-liquid 

interaction, using a simplified “physical” approach. The model is based on the two-

dimensional sloshing solution for the non-deformable half-full container and an 

assumed shape function, as in equation (1), resulting in a system of equations 

identical to (109). The formulation of this methodology is described in detail in [17], 

and it is outlined herein for the sake of completeness.  

The sloshing problem of the non-deformable container under transverse excitation 

can be described mathematically by equations (2) - (5), setting 0∆ = . Solution of this 

problem is sought expressing the liquid potential in the following form: 

( ) ( )Φ r,θ,t X(t) r sin φ r,θ,t= + θ  (114) 

where the first term on the right-hand side of equation (114) is a potential that 

satisfies the non-homogeneous boundary condition of the moving container, and φ  is 

a potential associated with sloshing. Expressing φ  as follows 
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2
1 2φ(r,θ,t) = α r sinθ + α r sin2θ   (115) 

one obtains 

1 1
3πgα +  α   X
8R

  = − 
 



  (116) 

2 1
3πα = α

16R
 −  
 

 (117) 

and the total hydrodynamic force per unit length on the cylinder wall along its length 

is 

L S 1f  m X m α= − −   (118) 

The above solution can be used as a basis for the developing a simplified three-

dimensional model for the deformable container. Substituting in equation (116) the 

excitation function X(t) with function X(t)+ψ(z)Δ(t) ,     

2
1 S0 1α + ω  α  X+ψ  = − ∆

  (119) 

and decomposing the sloshing motion in two parts, one associated with the external 

excitation and one with the deformation of the container setting  

1 S gα = ψ(z)α α+  (120) 

one obtains 

2
g S0 gα + ω  α  X= −   (121) 

2
S S0 Sα + ω  α   = − ∆  (122) 

and the force per unit length becomes: 

S L S S Lf(z,t) = m α m X m ψ(z)α m ψ(z) Δg− − − − 

   (123) 

Finally, using the weak form of the cylinder equation of motion (51), one obtains 

S g g S T bM q + M X + M q + M Δ + K Δ = 0′ ′ 

 T  (124) 

The system of equations (121), (122) and (124) in terms of Sα , α , Δg  is identical to 

the one of equation (109) corresponding to the limit case of infinitely long cylinder 

( L R →∞ ). 
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