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NON-ASSOCIATIVE J2 PLASTICITY MODEL FOR FINITE ELEMENT BUCKLING 

ANALYSIS OF SHELLS IN THE INELASTIC RANGE 
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Abstract. The development and numerical implementation of a special-purpose constitutive model is described for 

investigating the structural stability of cylindrical metal shells under axial compression and bending, which buckle 

in the inelastic range. The model employs von Mises yield surface (J2 plasticity) and the rate form of J2 

deformation theory, leading to a non-associated flow rule. Special emphasis is given on plastic flow continuity. 

The numerical implementation is conducted through both the classical Euler-backward and Euler-forward 

substitution numerical schemes, where stress and strain tensors are described in curvilinear coordinates, with the 

extra constraint of zero normal stress through the shell thickness. The numerical results will be compared with 

available experimental data. The model is implemented within an in-house finite element technique for the 

nonlinear analysis of relatively thick cylindrical metal shells that uses a “tube-element” discretization, and it is 

employed for the solution of some benchmark problems. 

 

1 INTRODUCTION 

Relatively thick cylindrical metal shells, with diameter-to-thickness ratio 50sD t ≤ , are used in pipeline and 

piping applications for hydrocarbon transportation and distribution. Those elongated metal cylinders, often 

referred to as “tubes” or “pipes”, can be subjected to severe structural loading, which induces significant 

compressive strains in the cylinder wall, resulting in buckling failure in the form of wrinkles, sometimes referred 

to as “local buckling”. This is a shell-type buckling, quite different from the one that thin-walled shells exhibit. 

More specifically, thin-walled cylindrical shells under axial compression buckle in the elastic range, and their 

behavior is characterized by sudden collapse and imperfection sensitivity. On the contrary, thick-walled cylinders 

buckle in the plastic range and failure occurs more gradually after a sequence of events.  

Early experimental work has been reported on relatively-thick aluminum cylinders by Lee (1962) and 

Batterman (1965), supported by analytical bifurcation calculations, demonstrated that the buckling resistance of 

relatively-thick metal cylindrical shells is less sensitive to initial imperfections than of thin-walled elastic shells. 

The imperfection sensitivity of axially compressed cylindrical shells has been investigated analytically by Gellin 

(1979), extending Koiter's methodology for cylindrical shells considering a uniform axisymmetric imperfection 

(Koiter, 1963). A recent experimental and analytical investigation of buckling behavior of thick cylindrical shells 

has been reported by Bardi and Kyriakides (2006) and Bardi et al. (2006), whereas local buckling of elongated 

cylindrical shells under longitudinal bending has been examined in the works of Kyriakides and Ju (1992), and Ju 
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and Kyriakides (1992). 

In simulating metal shell buckling in the inelastic range, the choice of appropriate material models constitutes a 

key issue. It has been recognized that J2-flow theory can accurately describe the general material behavior of 

metals in the inelastic range and it is widely used for the nonlinear elastic-plastic finite element stress analysis of 

shell structures (Dvorkin et al., 1995, Argyris et al., 2002, Paraskevopoulos and Talaslidis, 2006). Nevertheless, 

buckling predictions based on the J2-flow theory may not be reliable in cases where bifurcation from the 

prebuckling state occurs well into the inelastic range. This is attributed to the vertex (corner) that develops on the 

yield surface at the point of loading. The formation of such vertex on the yield surface has been detected 

experimentally in aluminum and steel materials (Kuwabara et al., 2000), and can be very important in cases, where 

abrupt deviations from proportional loading occur, as in the case of plastic instability, where the shell wall exhibits 

a transition from a smooth configuration to a wavy-pattern associated with multi-axial state of stress.  

To obtain more reliable buckling predictions, in axially-compressed cylindrical metal shells Tvergaard (1983) 

and Mikkelsen (1995) conducted stability calculations through a special enhancement of J2 (von Mises) plasticity 

theory, namely the J2-corner theory, initially proposed by Christoffersen and Hutchinson (1979), considering the 

formation of a corner on the yield surface at the loading point. Using J2-corner theory, the corresponding 

instantaneous moduli are less stiff than those predicted by the J2-flow theory. Therefore, the response is 

significantly different for the case of abrupt change of direction in the stress space (e.g. when buckling occurs), 

while for proportional loading the two theories coincide. Nevertheless, the corner theory, despite its rigorousness 

in describing the corner of the yield surface, may not be suitable for large-scale computations. 

Alternatively, pseudo-corner theories have been proposed. Hughes and Shakib (1986) presented a modified J2-

flow theory with a hardening modulus that depends on the angle between the deviatoric strain increment and the 

outward vector normal to the yield surface. In this simplistic manner, the model attempts to account for some 

essential characteristic of a corner theory, such as reduced material stiffness and increased plastic flow, while 

keeping the basic features of the classical J2-flow theory. Simo (1987) proposed a J2-non-associative flow model, 

which imitates some corner theory characteristics through the adoption of a non-associative flow rule without 

introducing the complexity associated with keeping track of the formation and evolution of yield surface corners. 

Simo also presented an Euler-backward scheme for the numerical integration of the pseudo-corner model within a 

non-linear finite element framework. However, Simo’s pseudo-corner model requires the definition of several 

parameters related to the yield surface “vertex”. In addition it is not clear how the proposed integration scheme can 

be implemented in shell analysis problems. This model has not been used in large-scale inelastic shell buckling 

calculations. 

So far, most of the attempts to predict bifurcation buckling in the inelastic range use the flow theory for tracing 

the prebuckling solution and employ the deformation theory moduli to detect bifurcation on the prebuckling path 

(e.g. Ju and Kyriakides, 1992, Bardi et al., 2006). However, such an approach does not describe accurately the 

entire structural response, and most importantly, postbuckling performance. In a more recent publication, Peek 

(2000) developed a J2 plasticity model, which uses a non-associated flow rule similar to the rate form of the J2 

deformation theory referred to as “incrementally continuous” deformation theory with unloading and the proposed 

constitutive model can be implemented with minimal changes to an algorithm based on associative flow theory. 

This model is an important contribution towards elastic-plastic buckling analysis, however its main drawback is 

that in this model unloading is not elastic. Furthermore, its implementation to shell buckling problems, where zero 
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normal stress should be zero through shell thickness, is not described. 

The present paper describes the development and the numerical implementation of an efficient special-purpose 

constitutive model, suitable for accurate and efficient large-scale metal shell buckling computations within a finite 

element environment. The material model is based on the von Mises yield surface (J2 plasticity) with isotropic 

hardening and employs the rate form of J2-deformation theory, leading to a non-associated flow rule. The 

numerical implementation follows an Euler-backward or an Euler-forward substitution scheme, developed for 

elastic-plastic shell analysis, accounting for zero normal stress through the shell thickness. The model maintains 

the basic features of the classical J2-flow plasticity implementation, while introducing the key enhancements for 

accurate and efficient shell buckling predictions. Furthermore an enhanced version of the model is developed, 

which allows the simple and efficient extension of the model for large strains through an additive decomposition 

of the rate-of-deformation tensor.  

The proposed constitutive model and its numerical integration are presented in the framework of small-strain 

plasticity in section 2, whereas section 3 describes the direct enhancement of the model for large strains. The non-

associative constitutive model is incorporated in a special-purpose finite element methodology, outlined in section 

4; the methodology has been introduced elsewhere for the analysis of nonlinear cylindrical shells, and has been 

shown very efficient for analyzing the structural behavior of steel cylinders (Karamanos and Tassoulas 1996). In 

section 5, the issue of plastic flow continuity is addressed, whereas in section 6 three characteristic problems are 

modeled and the numerical results are compared with existing analytical results and available experimental data.  

2 CONSTITUTIVE MODEL 

 In this section, a description of the model for small-strain analysis is presented, followed by its numerical 

integration and the development of the consistent elastic rigidity matrix. 

2.1 Model description 

The rate of stress σ  is related to the elastic strain rate eε  as follows: 

( )e p= = −σ Dε D ε ε            (1) 

where D  is the fourth order elastic stiffness tensor, ε  is the rate of total strain and pε  is the plastic strain rate. 

The elastic rigidity D  can be expressed as follows: 

22 3
3

G K G = + − 
 

D I J         (2) 

where K  is the bulk modulus, G  is the shear modulus, I  is the symmetric fourth-order identity tensor and J  is 

the volumetric fourth-order identity tensor. Tensor D  can also be written in the following form: 

2 3G K= +D P J          (3) 

where the fourth-order tensor P  is defined as 

= −P I J          (4) 

In the present model, the flow rule adopts the rate form of the J2-deformation theory: 

3 1 1 3 1 1
2 2

p

s T s

q
E E q E E

   
= − + −   

   
ε s s



       (5) 
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where s  is the deviatoric stress tensor, q  is the von Mises equivalent stress, defined as follows 

3 3
2

s s 2q J= ⋅ =         (6) 

so that 

3
2

s sq
q

= ⋅           (7) 

and E , sE , TE  are the Young’s modulus, the secant modulus and the tangent modulus respectively. Yielding is 

defined is defined by the von Mises yield function with isotropic hardening 

( ) ( )21 1, 0
2 3q qF kε ε= ⋅ − =σ s s        (8) 

where ( )qk k ε=  is the material yield stress in uniaxial tension, which defines the size of the yield surface, qε  is 

the equivalent plastic strain, defined as follows 

2 3 p
q  ε = ⋅ε n           (9) 

and =n s s  is the unit outward normal tensor to the yield surface and s  is the magnitude of s  ( = ⋅s s s ). 

Function ( )qk ε  can be nonlinear, and is calibrated from a uniaxial tension test. 

The plastic strain rate equation (5) can be rewritten in the following, more illustrative vector form 

3 3 1 1
2 2

qp t

sq E E
ε  

= + − 
 

ε s s


        (10) 

where ( )s s n s nt = − ⋅    is the component of s  tangent to the yield surface shown in Figure 1. The flow rule in 

equation (10) implies that the plastic strain increment is composed by two components, one normal to the yield 

surface and one tangent to the yield surface. This makes the elastic-plastic instantaneous moduli of the J2-

deformation less stiff than the corresponding moduli of the J2-flow theory. More specifically, the instantaneous 

rigidity tensor (tangent moduli) for this model can be written as follows 

( )( )2

2 32 3
3ep s s s TG K G G G

q
 = + − − − ⊗ 
 

D I J s s      (11) 

where 

1
1 3sG

G h

=
+

         (12) 

1
1 3TG

G H

=
+

         (13) 

1
1 1

s

h

E E

=
+

         (14) 

and H  is the hardening modulus, equal to qd k d ε . 
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Figure 1: Schematic representation of stress and strain tensor increments in the deviatoric plane, with respect to 
von Mises surface. 
 

A curvilinear system 1 2 3 , ,ξ ξ ξ  is considered to describe stress and deformation within the shell, where 

coordinate lines 1ξ  and 2ξ  for a constant value of 3ξ  define a shell surface (lamina), whereas the coordinate line 

3ξ  is initially directed through the shell thickness. The covariant and contravariant base vectors of this coordinate 

system are denoted as ig  and jg  respectively, as shown in Figure 2. Therefore, the stress tensor can be written in 

terms of the covariant tensor base ( )σ g gij
i jσ= ⊗ , and the components of fourth-order rigidity tensors D  and 

Dep  with respect to the covariant basis can be written  

( ) 2
3

ijkl jl ik il jk ij klD G g g g g K G g g = + + − 
 

      (15) 

and 

( ) ( )2

2 3
3

ijkl jl ik il jk ij kl ij kl
ep s s s TD G g g g g K G g g G G s s

q
 = + + − − − 
 

   (16) 

Finally, in the present formulation, following shell theory, it is required that the traction component normal to 

any shell lamina is imposed to be zero at any stage of deformation. Considering that the traction on the lamina is 

3
3

1 σ g
g

, where 3g  is the magnitude of 3g , i.e. the contravariant base vector normal to the 1 2 ,ξ ξ -surface (as 

shown in Figure 2), and that traction component normal to the lamina is 3 3
23

1 ( )⊗⋅σ g g
g

, which is equal to 

33
23

1

g
σ , one obtains  

33 0σ =           (17) 
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Figure 2: Curvilinear coordinate system and base vectors for shell description. 
 

2.2 Numerical Implementation 

Consider that at a material point, the stress nσ , strain nε  and the equivalent plastic strain q nε  are given at time 

nt , as well as the strain 1n n+ = + ∆ε ε ε  at time 1nt + . The calculation of 1n+σ  and 1q nε +  requires integration of the 

above constitutive equations from nt  to 1nt + . An elastic predictor – plastic corrector scheme is adopted where a 

purely elastic trial state is followed by a plastic corrector phase. The purely elastic (trial) stress is defined by the 

formula 

Δe
n= +σ σ D ε          (18) 

In accordance with condition (17), the strain increment is decomposed as follows 

( )3 3
33Δ Δ Δε= + ⊗ε ε g g         (19) 

where Δε  is the known part of the total strain increment Δε , and 33Δε  is an extra unknown (Aravas, 1987).  

If the trial stress violates the yield condition, an elastic-plastic behavior should be taken into account, 

integrating equation (1) between stages nt  and 1nt + , 

( )1
p

n n+ = + ∆ − ∆σ σ D ε ε         (20) 

Using an Euler-backward integration scheme for equation (5), the increment of plastic strain is written 

( ) 1
1 1

1 1 1 1

Δ3 3Δ
2 2

q np
n n n

n n n

H
h q h

ε +
+ +

+ + +

= − +ε s s s       (21) 

where the von Mises equivalent final stress is  

  1 1 13 2n n nq + + += ⋅s s         (22) 

and  

  ( )1 1 1T sh E E= −         (23) 

Using eqs. (19) and (21), the final stress becomes 

( ) 1
1 33 1 1

1 1 1 1

3 Δ32 Δ q ne
n n n n

n n n

G HGG
h q h

ε
ε +

+ + +
+ + +

= + − − −σ σ a s s s     (24) 

where  

Δe
n= +σ σ D ε          (25) 

1ξ

2ξ

3ξ

g1

g3

g2

g3
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3 3a g g= ⊗          (26) 

and ′a  is the deviatoric part of a . From equation (24), the hydrostatic and the deviatoric parts of the final stress 

are written as 
33

33Δe
n+1p p K gε= −         (27) 

1 33
1 1

1 1 1 1

1 32 Δ
3 Δ31

e
n n

q n n

n n n

GG
G H hG

h q h

ε
ε+

+ +

+ + +

 
′= + + 

 + +
s s a s     (28) 

where ep 1  and es  are the hydrostatic and deviatoric parts of eσ  ( e e ep= − +σ 1 s ). Equation (28) shows that 1n+s  

and s e  may not be co-linear and the correction may not be on the deviatoric plane. Squaring equation (28), the 

effective stress at the final state is calculated as follows 

( )

( )33

2
2e 2 2 2 33 33

1 33
1 1

1

1
2

1
33

1 1 1

1 3 6 4 Δ
31

33                        6 Δ Δ

n n
n n

n

e 33 n
n q

n n

G Gq q q Q G g g
G h h

h

G HGG s s
h h

ε

ε ε

+
+ +

+

+

+ +

  = + + + +    + 

  + + −     

   (29) 

where  

( )3 2 s se e eq = ⋅          (30) 

and  

( )3 2 s se
nQ = ⋅         (31) 

The yield criterion (8) at stage 1n +  is written as 

( ) ( )33Δ Δ Δn+1 q q qn
q , kε ε ε ε= +        (32) 

Enforcing the conditions of zero stress normal to any shell lamina ( 33 0n+1σ = ), and using (24) the following 

equation is obtained 

( )331 33 33 33 33
1 33

1 1 11 1

3 Δ3 4 31 Δ 0
3

q n e
n

n n nn

G HG G Gp g s g g s
h q h h

ε
ε+

+
+ + ++

   
 + + − + + =     

  (33) 

Summarizing, equations (27), (29), (33) and the yield criterion (32), constitute a system of four equations with 

four unknowns, namely, n+1q , n+1p , Δ qε  and 33Δε . Considering Δ qε  and 33Δε  as the primary unknowns, 

equations (33) and (32), can be solved in terms of Δ qε , 33Δε  using Newton’s method as described in more detail 

in Appendix I. 

Alternatively, an Euler-forward method can be employed to integrate the above constitutive equations, within 

an elastic predictor–plastic corrector scheme. The Euler-forward integration of plastic strain rate gives 

( )1
1

3 3Δ
2 2

q np
n n n

n n n

H
h q h

ε
+= − +ε s s s



       (34) 

The final stress and its deviatoric part are written as 
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( )1 33 1
1

3 Δ32 Δ q ne
n n n n

n n n

G HGG
h q h

ε
ε+ += + − − −σ σ a s s s     (35) 

1 33
1

31 32 Δ Δ
31

e n
n q n

n n n

n

G HGG
G h q h

h

ε ε+

  
 ′  = + + −

  +   
s s a s     (36) 

Squaring equation (36), the effective stress at the final state is calculated as follows 

( ) ( ) ( )

( )33

2
2 2 2

1 q
1 1

1
2

2 2 33 33 33
33 33

1

61 3 3 6Δ Δ
31

3 3                        4 Δ +6 Δ Δ

e n
n q n

n n n nn n

n

e
q n

n n n

GHG GH Gq q q Q
h q h h q hG

h

G GHG g g G s s
h q h

ε ε

ε ε ε

+

        = + − + −          +  
 

     + + −     

  (37) 

In addition, enforcing 33 0n+1σ = in equation (35), the following equation is obtained  

( )3333 33 33 33
1 33

1

3 Δ3 4 31 Δ 0
3

qe
n n

n n n n

G HG Gp g s G g g s
h h q h

ε
ε+

      + − + + − =        
  (38) 

Equations (27), (37), (38) and the yield criterion (32) constitute a system of four equations with four 

unknowns, namely, 1nq + , 1np + , Δ qε  and 33Δε . Considering Δ qε  and 33Δε  as the primary unknowns, equations 

(38) and (32) can be solved in terms of Δ qε , 33Δε  using Newton’s method as described in more detail in 

Appendix I. 

 

2.3 Linearization moduli  

The consistent (algorithmic) rigidity moduli are computed from the following basic equation: 

  1

1

σ
D

ε
c n
ep

n

+

+

∂
=
∂

         (39) 

The final stress is written in terms of its deviatoric part 

  ( )1 1 1σ s ε 1 1n n nK+ + += + ⋅         (40) 

where 1  is the second-order unit tensor, and the final strain 

( )1 1 1
1
3

ε e ε 1 1n n n+ + += + ⋅         (41) 

where e  is the deviatoric strain tensor. Differentiation of equation (41) gives 

1

1

e
P

ε
n

n

+

+

∂
=

∂
         (42) 

Equation (39), with the consideration of equations (40) and (42), leads to 

1 1

1 1

3
σ s

D P I
ε e

c n n
ep

n n

K+ +

+ +

∂ ∂
= = +
∂ ∂

       (43) 

In the following, four-order tensor 1 1n n+ +∂ ∂σ ε  is computed for the Euler-backward integration scheme and 
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presented in the previous section. In particular using equations (18), (19) and (21), the final stress 1σn+  can be 

written as 

( )1 1 1
1 1 1

Δ32
2

qe
n n n n

n n

H
G

h h
ε

+ + +
+ +

  = − − + 
  

σ σ s s N      (44) 

where the dimensionless tensor N  is defined at a certain stress state σ  by the following expression: 

3
2

N s
q

=          (45) 

Using the definition of the equivalent stress in equation (6), it can be readily verified that  

  N
σ
q∂
=

∂
          (46) 

The corresponding deviatoric stress is 

( )1 1 1
1 1 1

Δ32
2

qe
n n n n

n n

H
G

h h
ε

+ + +
+ +

  = − − + 
  

s s s s N      (47) 

or equivalently, 

1
1

1 1 1 1

1 3
3 Δ31

e
n n

q n

n n n

G
G H hG

h q h
ε+

+

+ + +

 
= + 

 + +
s s s       (48) 

Differentiation of equation (47) gives 

1
1 1

1 1 11 1

Δ 13 3 3qe n
n n n

n n nn

H
d d G d G d G d

h q h h
ε

+
+ +

+ + ++

    
 = − − +        

s
s s s s    (49) 

From the definition of the trial stress in equation (18), it is readlily obtained that 

1 12 2e
n nd G d G d+ += =s e P ε        (50) 

Furthermore, it is necessary to express differential quantities qd ε  , 1nd +s and 1ndq +  in terms of 1εnd + . Squaring 

equation (48) and assuming that tensor es  is parallel to ns , the von Mises equivalent stress at the final state is 

calculated as follows 

1
1

1 1 1

1

31 3 Δ
31

e n
n n q

n n

n

G HGq q q
G h h

h

ε+
+

+ +

+

 
 = + −
 

+  
      (51) 

where ( )3 2 s se e eq = ⋅  and ( )3 2 s sn n nq = ⋅ . The assumption of tensors es  and ns  being co-axial is 

discussed at the end of the paragraph. From the definition of the hardening modulus, 

1 1n n qd q H d ε+ +=         (52) 

The final stress has to satisfy the yield criterion and using equations (32) and (51) this can be expressed as 

follows 

( )1

1 11 1

33 3Δ 1 Δe n
n q qq n

n nn

G HG Gq q k
h h h

ε ε ε+

+ ++

 
+ − = + + 

 
     (53) 

Differentiation of equation (53) gives 
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( ) 1 11
1 12 2

1 1 1

1 1 1
12

111 1 1 1

3 3 3 Δ
2

3 Δ 3 3 3 1

ne n
n n q n q qe

n n

q n n n
q q q n

nnn n

hh
d G q d G H d

q h h

G H G H h Gd d G k d H d
h h hh

ε ε ε

ε
ε ε ε ε

++
+ +

+ +

+ + +
+

+++ +

′ ′ 
 + − − −      

′ ′   
− − = − + +   

  

s D ε

  (54) 

or equivalently, 

1
2 e

q n
Gd d
A

ε += N ε             (55) 

where 

1 1 1 11 1 1 1
1 2 2 2

1 1 11 1 1 11 1

3 Δ 3 Δ3 3 331 n q n q nn n n n n
n

n n nn nn

G H h G HG q h G H G h qGA H
h h hh h h

ε ε+ + ++ + + +
+

+ + ++ ++

′ ′′ ′ 
= + − − + + + 
 

(56) 

Subsequently, equations (50), (52) and (55) are substituted into (49) 

1 1 1
2 4 1

3n n n
G G Hd d d
B B A+ + +

 = − − ⊗ 
 

s P ε N N ε      (57) 

where 

1 1 1 1

3 Δ31 q

n n n

G HGB
h q h

ε

+ + +

= + +         (58) 

Substituting,  

1 1 1 1 1
4 1 3 11
3 2n n n n n
G Hd d d

B A B+ + + + +

    = − − ⊗ + −        
σ D ε N N P ε    (59) 

so that the consistent rigidity tensor (algorithmic moduli) 

1 1
4 1 3 11
3 2

c
ep n n

G H
B A B+ +

    = − − ⊗ + −        
D D N N P      (60) 

Finally, the condition of zero stress normal to shell laminae is imposed considering 33 0dσ =  in the rigitidy 

moduli of equation (60).  

One should note that the consistent rigitity tensor in equation (60) is based on the assumption that tensors es  

and ns  are co-axial. If this assumption is not employed in the formulation, the following expression is obtained for 

the von Mises stress at the final state, instead of equation (51) 

( )
1

22
2 2 1

1
1 1 1 1

1

31 3 6
31

e n
n n q

n n n

n

G HG Gq q q Q
G h h h

h

∆ε+
+

+ + +

+

     = + + −     +  
   (61) 

and the correspoding consistent rigitity tensor has a more coplex form which is non-symmetric, as presented in 

Pappa (2014). In the present study, the consistent rigitity of equation (60) is employed.  

 

3 LARGE STRAIN FORMULATION 

In this section, the extension of the previous model for large strains is presented, towards efficient inelastic 

analysis of geometrically nonlinear shells based on an additive decomposition of the rate-of-deformation tensor. 
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Following a short presentation of the constitutive equations, their numerical intergation is described in detail. 

3.1 Large-strain constitutive model  

The starting point is a basic constitutive equation that relates the Jaumann rate of Kirchhoff stress τ  to the 

elastic part of rate-of-deformation tensor d  by a linear hypoelastic equation of the form  

( )τ τ τ W W τ Dd D d de p
∇
≡ + − = = −

 
     (62) 

where W  is the spin tensor. Assuming von Mises plasticity with isotropic hardening, the yield criterion is defined 

by equation (8), where s is the deviatoric part of τ, and the flow rule is 

3 1 1 3 1 1
2 2

d s sp

s T s

q
E E q E E

∇   
= − + −   

   

       (63) 

which is an extension of the rate form of deformation theory for large strains (Neale 1981). In this equation, sE  

and TE  are functions of the equivalent plastic strain qε , defined as the time integral of qε  

2 3 d np
q  = ⋅ε          (64) 

an equation analogous to (9). Using a standard inversion procedure in equation (62), one obtains the elastic-plastic 

rigidity tensor epD  so that 

ep

∇
=τ D d          (65) 

For the purposes of inserting the present model within a finite element formulation, to be discussed in the next 

section, the constitutive equation (65) is written in terms of the convected rate of Kirchhoff stress tensor 
o
τ  defined 

as follows 

( )
o
τ g gij

i j⊗= τ          (66) 

From continuum mechanics (Malvern, 1969), one may show that the convected rate is related to the Jaumann rate 

as follows 

ο
τ τ d

∇
= −L          (67) 

where L  is the geometric rigidity fourth-order tensor, with components: 

1
2

ijkl ik jl jk il il jk jl ikg g g g = + + + τ τ τ τL       (68) 

so that 

ep( )= − =
ο
τ D d dL R         (69) 

and R  is a fourth order tensor, equal to: 

ijkl ijkl ijkl
epD= −R L         (70) 

It can be verified that the components of tensor R  exhibit the symmetries ijkl jikl ijlk= =R R R (due to symmetry of 

ο
τ  and d ) and the nontrivial symmetry ijkl klij=R R . 
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3.2  Numerical integration of the large-strain model 

To integrate the above constitutive equations, an equivalent expression of the equations in a “rotated” 

coordinate system is developed, using the rotation tensor R  from the decomposition of the deformation gradient 

∆F  that corresponds to the time step under consideration. This methodology has been first suggested by 

Nagtegaal (1982) and it is adjusted herein for the purpose of analyzing nonlinear shells. More specifically, the 

deformation gradient tensors at the beginning Fn  and at the end 1Fn+  of the step are related as follows 

1
1

i
n n i

−
+∆ = = ⊗F F F g G         (71) 

where ig  are the covariant base vectors at the current configuration (end of the step), and iG  are the contravariant 

base vectors at the beginning of the step. Tensor ∆F  is decomposed into a stretch tensor U  and a rotation tensor 

R  so that 

∆F = R U          (72) 

Tensors R  and U  refer to the step under consideration and should be regarded as incremental quantities from 

state n  to state 1n + . The stretch tensor U  is the square root of the right Cauchy-Green tensor C  (defined as 

Δ ΔT=C F F ), and can be expressed in the following expression [Ting (1985); Hughes & Simo (1998)]. 

2
1 2 3U C C 1A A A= + +         (73) 

where 1  is the unit tensor, which can be written in the following form 

( )1 G Gi j
ijG= ⊗         (74)

 

tensor 2C  is the square of the right Cauchy-Green tensor C  defined as 

( )2C CC = G Gkj i l
ik jlg g G≡ ⊗        (75) 

and  ( =1,2,3)iA i  depend on the principal invariants of U , defined in Appendix II. An expression similar to 

equation (73) can be derived for the inverse tensor 1U−  [Ting (1985); Hughes & Simo (1998)].  

1
1 2 3U C U 1B B B− = + +         (76) 

where  ( =1,2,3)iB i  depend on the principal invariants of 1U− , also defined in Appendix II. From equations (73) 

and (76) the components of U  and 1U−  with respect to the ( )G Gi j⊗  basis denoted as iju , iju  respectively, are 

given by the following expressions 

1 2 3ij ij ij iju A a A g A G= + +         (77) 

1 2 3ij ij ij iju B g B u B G= + +         (78) 

where 
kl

ij ik jla g g G=          (79) 

Since U  is symmetric and positive definite, the rotation tensor is written 

1Δ  −=R F U          (80) 
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Therefore, the components of R  with respect to the ( )j
k ⊗g G  basis are 

k ik
j ijr u G=          (81) 

so that 

( )k j
j kr= ⊗R g G         (82) 

Subsequently, the so-called rotated stress tensor τ̂  and the logarithmic strain ΔE  are defined as follows 

τ̂ R τ RT=          (83) 

Δ ln=E U          (84) 

For computational purposes, a truncated Taylor series expression for the ln U  is considered 

( ) ( ) ( ) ( )2 3 41 1ln
2 3

Ο= − − − + − + −U U 1 U 1 U 1 U 1      (85) 

where the higher-order terms are omitted. Combining equations (77), (84) and (85), the components of ΔE  with 

respect to G Gi i⊗  reference basis are 

(11) (11) (11) (12) (11)1 1
2 3

km km
ij ij ik jm ik jmE u u u G u u G∆ ≅ − +       (86) 

where  
(11)
ij ij iju u G= −          (87) 

(12) (11) (11) km
ij ik jmu u u G=         (88) 

If the directions of the principal stretches (i.e., the eigenvectors of U ) remain fixed within the time period 

between nt  and 1nt + , it can be shown (Nagtegaal, 1982) that over that time period the following expressions can 

be written  

ˆτ R τ R
∇
= 

Τ          (89) 

and 

( )E R d R R d d R R d R + R d R E Ee p e p e p= = + = = +  

Τ Τ Τ Τ     (90) 

where the elastic and plastic part of E are defined as follows: 

e eΤ=E R d R          (91) 

p pΤ=E R d R          (92) 

Using the above equations, the constitutive relation (62) and the flow rule (63) can be written for that time period 

in terms of the rotated stress and strain rates, as follows 

( )ˆ -τ = DE D E Ee p=

           (93) 

and 

ˆ3 1 1 3 1 1ˆ ˆ
ˆ2 2

E s + sp

s T s

q
E E q E E

   
= − −   

   





       (94) 

where q̂  is the von Mises equivalent stress of the rotated stress 
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3 ˆ ˆˆ
2

s sq = ⋅          (95) 

One can readily show that 

3ˆ
2

s sq q= ⋅ =          (96) 

and  

2ˆ ˆ 
3

E np
q = ⋅

ε          (97) 

is equal to qε , so that during plastic loading ˆˆ qq Hε=  . Using the rotated quantities of stress and strain, the 

hypoelastic equation (93) can be integrated exactly as follows 

( )1ˆ Δ - Δ p
n n+ = +τ τ D E E         (98)

where it was taken into account that τ̂ τn n= . The above equations (93)-(98) are similar to the “small-strain” 

plasticity equations (1), (5)-(6), (9) and (20). Therefore, the integration of the elasto-plastic equations can be 

carried out by using a procedure similar to that described in the previous section for small-strain plasticity.  

In addition, one should account for the condition of zero stress normal to the shell surface, requiring that 

throughout the analysis 

( ) ( )3 3 3 3 0τ g g τ g g⋅ = ⋅ ⊗ =         (99) 

where 3g  is the contravariant base vector normal to the shell laminae. Defining the “rotated basis” vectors ĝm  

and ĝ j  as 

ĝ R gT
j j=          (100) 

ˆ m T m=g R g          (101) 

the zero normal stress condition (99) implies that 

( ) ( )3 3 3 3ˆ ˆ ˆ ˆˆ ˆ 0τ g g τ g g⋅ = ⋅ ⊗ =         (102) 

or equivalently 

33 33 33ˆ ˆ ˆ ˆ 0s p g= − =τ         (103) 

where ˆkmτ  are the contravariant components of τ̂  with respect to the ĝi  basis, and from equations (81) and (101)

one can readily show that  

ĝ Gm im j
iju G=          (104) 

Using an Euler-backward scheme for the integration of the flow rule (94), equation (93) becomes 

( )1 1 1
ˆ1 1 1 1ˆ ˆ ˆˆ Δ 3 3
ˆn n n n n

s T s

qG G
E E q E E+ + +

   
= + − − − − −   

   
τ τ D E s s s



    (105) 

Expressing tensors 1ˆ ˆ,  ,  Δn n+τ τ E  in terms of tensor bases defined by the rotated vectors ˆ ˆ,  g gm k  
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( )ˆ ˆΔ Δ k m
km= ⊗E g gE         (106) 

( )1 1 ˆ ˆˆ ˆτ g gij
n i jn+ += ⊗τ         (107) 

( )ˆ ˆˆ ˆτ g gij
n n i j= ⊗τ          (108) 

where 

( )( )ˆ ˆΔ Δ i j
km ij m kE= ⋅ ⋅G g G gE        (109) 

( )( )1 1 ˆ ˆˆ ˆ g G g Gijkm k m
n j in+ += ⋅ ⋅τ τ        (110) 

so that equation (105) becomes 

( )1 1 1
ˆ1 1 1 1ˆˆ ˆ ˆ ˆ ˆΔ 3 3
ˆ

ij ijkm ij ijij ij
n km nn n n

s T s

qD G s s G s
E E q E E

τ τ+ + +
   

= + − − − − −   
   



E    (111) 

where ˆ ijkmD  are the components of the 4th order elastic rigidity tensor D  with respect to the rotated basis 

ˆ ˆ ˆ ˆg g g gi j k l⊗ ⊗ ⊗ . For the purposes of accounting for the zero stress condition normal to shell laminae, the strain 

increment is decomposed in a "known" and "unknown" part 

33 ˆΔ Δ Δ E= +E E a         (112) 

where Δ E  is the known part of  the total strain increment ΔE  and 

( )3 3ˆ ˆ ˆ ˆ ˆˆ ˆ3 3a g g g gk m
k mg g= ⊗ = ⊗        (113) 

so that 

( ) ( )1 33 1 1
ˆ1 1 1 1ˆ ˆ ˆ ˆ ˆˆ 3 3
ˆ

e
n n n n

s T s

qE G G
E E q E E+ + +

   
= + ∆ − − − − −   

   
τ τ Da s s s



   (114) 

where 

ˆ Δe
n= +τ τ D E          (115) 

The solution algorithm proceeds exactly as described in section 2.2 for small strains considering the “rotated” base 

vectors ˆ ig , ˆ jg  and that 33
1ˆ 0τn+ = . Upon calculations of 1ˆij

n+τ  , i.e., the components of tensor τ̂  with respect to the 

«rotated» base ( )ˆ ˆg gi j⊗ , the components 1
pm
n+τ  of tensor 1τ̂n+  with respect to the current base ( )g gp m⊗  should be 

computed, using the definition of τ̂ . More specifically, the final stress is 

1 1ˆτ Rτ RT
n n+ +=          (116) 

After some tensor algebra using equation (81) 

( )( )( )1 1 ˆ ˆˆτ g G g G g gq m ij q p
n p k n i j p mr r+ += ⋅ ⋅ ⊗τ       (117) 

and therefore the components of the final stress with respect to the current covariant basis can be computed as 

follows: 

( )( )1 1ˆ ˆ ˆpm q m q p ij
n p k i j nr rτ τ+ += ⋅ ⋅g G g G        (118) 
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4 FINITE ELEMENT FORMULATION 

The above constitutive model is suitable for the nonlinear analysis of any type of shell, with double curvature. 

In the present work, it is implemented within a special-purpose nonlinear finite element technique for the analysis 

and buckling of cylindrical and tubular shells. The nonlinear formulation adopted in the present work was 

introduced in its general form by Needleman (1982). It has been employed for the nonlinear analysis of relatively 

thick elastic-plastic offshore tubular members (Karamanos and Tassoulas 1996) and, more recently, for the elastic 

stability of thin-walled cylinders under bending and pressure (Karamanos, 2002; Houliara and Karamanos, 2006, 

2010). 

The cylindrical shell is considered as an elastic-plastic continuum with embedded (convected) coordinates are 

denoted by ( 1,2,3)i iξ = , as described in previous sections. The position vector of the material point ( 1 2 3, ,ξ ξ ξ ) 

in the current (deformed) configuration at time t  is denoted as 1 2 3( , , , )x x tξ ξ ξ= , whereas the position of the 

material point ( 1 2 3, ,ξ ξ ξ ) at t =0 in the reference (undeformed) configuration is denoted by 1 2 3( , , )X X ξ ξ ξ= . At 

any material point, the covariant base vectors in the reference and in the current configuration, which are tangent 

to the coordinate lines, are / i
i ξ= ∂ ∂G X  and / i

i ξ= ∂ ∂g x , respectively. Furthermore, Gk
  and gk  denote the 

contravariant (reciprocal) base vectors in the reference and current configuration, respectively.  

4.1 Governing equations 

 The constitutive equations, extensively discussed in the previous section, relate the convected rate of Kirchhoff 

stress tensor 
o
τ  to the rate of deformation tensor d  through the relationship 

( )
ο
τ D d dep= − =L R         (119) 

where epD  is the elastoplastic rigidy fourth-order tensor and L  is the geometric rigidity fourth-order tensor. 

Expressions for the components of epD , L and R  are offered in equations (16), (68) and (70) respectively. 

Deformation is described by the rate-of-deformation (stretch) tensor d , which is the symmetric part of the 

velocity gradient. It can be shown that the covariant components of the rate-of-deformation tensor are: 

( )/ /
1 ( ) ( )
2

G g G gm m
kl m l k m k ld V V= ⋅ + ⋅        (120) 

where /m lV  is the covariant derivative of the velocity vector component mV  with respect to the reference basis. 

Equilibrium is expressed through the principle of virtual work, considering an admissible displacement field 

uδ . For a continuum occupying the region 0V  and V  in the reference and in the current configuration, 

respectively, and with boundary B  in the deformed configuration, the principle of virtual work is expressed as: 

0

i
/ k 0( )G g u tkj

i j q
V B

U dV dB⋅ = ⋅∫ ∫δ τ δ        (121) 

where t  is the surface traction and ijτ  are the contravariant components of the Kirchhoff stress tensor τ , which is 

parallel to the Cauchy stress σ  ( 0τ σdV dV= ) and 

/ i
( )u Gi j jU ∂ δ

= ⋅
∂

δ
ξ

        (122) 

For the purpose of linearizing the equilibrium equations, the principle of virtual work is considered at a "nearby" 
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configuration ( )1 2 3, ,ξ ξ ξ′x  

( )
0

/ 0
'

k ij
k j i

V B

U dV dBδ τ δ′ ′ ′ ′ ′ ′⋅ = ⋅∫ ∫G g u t       (123) 

corresponding to boundary B′ , stress tensor τ′  and boundary traction t′ . Considering the increment of 

displacement ∆u , defined as the difference between, vectors ′x  and x  and the linearized form of the principle of 

virtual work is obtained as follows 

0 0

0 0Δ u tijpq ji
i/ j p/ q i/ j

V B V

ˆU S U dV dB U dVδ δ δ σ′= ⋅ −∫ ∫ ∫      (124) 

where 

( )Δu
Δ p/ q pqU

ξ
∂

= ⋅
∂

G         (125) 

components ijpqS  refer to the fourth-order tensor S  and are equal to 

( ) ( )ijpq i kjmq p jq ip
k mS R Gτ= ⋅ ⋅ +G g g G         (126) 

and ijσ̂  are the contravariant components of the non-symmetric nominal stress tensor σ̂ , defined as follows: 

1

0

σ F σ-d Vˆ
d V

=          (127) 

or, in component form 

( )ij ij j
kσ̂ τ= ⋅g G         (128) 

 

4.2 Finite element discretization and implementation 

Using a finite element discretization and adopting matrix notation, the incremental displacement field can be 

expressed as 

ˆ[ ]u N U∆ = ∆          (129) 

in which [ ]N  is the interpolation matrix that contains the appropriate shape functions and Û∆  is a vector that 

contains the increments of nodal degrees of freedom. Using the same functions for the virtual displacements, one 

can write 

ˆ[ ]u N U=δ δ          (130) 

where ˆδU  are arbitrary virtual nodal displacements. 

The covariant differentiation of equations (129) and (130) results in: 

{ }/
ˆ( ) [ ]u B Uk lgrad U∆ = ∆ = ∆        (131) 

{ }/
ˆ( ) [ ]u B Uk lgrad U= =δ δ δ        (132) 

where [ ]B  contains the derivatives of the elements of the interpolation matrix. Furthermore, in matrix form, 

equation (126) becomes,  

[ ] [ ][ ] [ ]T= +   W W CS R         (133) 
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where [ ]W  is a matrix containing the mixed components of the deformation gradient with respect to the reference 

base vectors 

( ) ( )Fi i i i
j j j j⋅ = ⋅ ⊗ = ⋅ = ⋅F G G FG G G g           (134) 

and [ ]R  contains the components of rigidity tensor R  defined in (70). 

For arbitrary virtual displacements Ûδ  the following set of linearized equations of the discretized continuum is 

obtained: 

[ ]Κ U F Fext int
ˆ∆ = −         (135) 

where [ ]Κ  is the incremental stiffness matrix  

[ ] [ ] [ ]
0

0K B BST

V

dV=   ∫         (136) 

and ,  F Fext int  are the external and internal load vectors respectively: 

[ ]F N t
q

T
ext q

B

dB′= ∫         (137) 

[ ] [ ]
0

0F B W τT T
int

V

dV= ∫         (138) 

Equilibrium is achieved when Fint  equals Fext . An incremental Newton-Raphson iterative numerical procedure is 

employed, enhanced to enable the tracing of postbuckling “snap-back” equilibrium paths through an arc-length 

algorithm, which monitors the value of the so-called “arc-length parameter” (Crisfield, 1983).  

The cylinder is discretized through a three-node “tube element” (see Figure 3), introduced in Karamanos and 

Tassoulas (1996) for the analysis of thick walled tubes also employed for analysis of thin-walled elastic cylinders. 

This element combines longitudinal (beam-type) with cross-sectional deformation. The convected coordinates 

( )1 2 3, ,ξ ξ ξ  are assumed in the hoop, axial and radial direction in the reference configuration respectively and are 

denoted as ( ), ,θ ζ ρ .  

Nodes are located along the cylinder axis, which lies on the plane of bending, and each node possesses three 

degrees of freedom (two translational and one rotational). A reference line is chosen within the cross-section at 

node ( )k  and a local Cartesian coordinate system is defined, so that the ,x y  axes define the cross-sectional 

plane. The orientation of node ( )k  is defined by the position of three orthonormal vectors ( )e k
x , ( )e k

y  and ( )e k
z . For 

in-plane (ovalization) deformation, fibers initially normal to the reference line remain normal to the reference line. 

Furthermore, those fibers may rotate in the out-of-plane direction by angle ( )γ θ . Using quadratic interpolation in 

the longitudinal direction, the position vector ( , , )x θ ζ ρ  of an arbitrary point at the deformed configuration is: 

( )
3

( ) ( ) ( ) ( ) ( )

1
( , , ) ( ) ( ) ( ) ( )x x r n ek k k k k

z
k

N
=

 = + + + ∑θ ζ ρ θ ρ θ ργ θ ζ    (139) 

where ( )x k is the position vector of node ( )k , ( ) ( )r k θ  is the position of the reference line at a certain cross-

section relative to the corresponding node ( )k , ( ) ( )n k θ  is the “in-plane” outward normal of the reference line at 
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the deformed configuration and ( ) ( )kN ζ  is the corresponding Lagrangian quadratic polynomial. Using nonlinear 

ring theory (Brush and Almroth, 1975), vector functions ( ) ( )r k θ  and ( ) ( )n k θ , can be expressed in terms of the 

radial, tangential and out-of-plane displacements of the reference line, denoted as ( ), ( ), ( )w v uθ θ θ , respectively. 

Functions ( ), ( ), ( )w v uθ θ θ  and ( )γ θ  are discretized as follows: 

0 1
2,4,6,... 3,5,7,....

( ) sin cos sinn n
n n

w a a a n a n
= =

= + + +∑ ∑θ θ θ θ     (140) 

1
2,4,6,... 3,5,7,....

( ) sin sin cosn n
n n

v a b n b n
= =

= − + +∑ ∑θ θ θ θ      (141) 

2,4,6,... 3,5,7,....
( ) cos sinn n

n n
u c n c n

= =

= +∑ ∑θ θ θ       (142) 

0,2,4,6,... 1,3,5,7,....
( ) cos sinn n

n n
n n

= =

= +∑ ∑γ θ γ θ γ θ       (143) 

Coefficients ,n na b  refer to in-plane cross-sectional deformation, and express the ovalization of the cross-section, 

whereas ,n nc γ  refer to out-of-plane cross-sectional deformation, expressing cross-sectional warping. 

For the purposes of the present study, a 16th degree expansion is used for ( ), ( ), ( )w v uθ θ θ  and ( )γ θ  

[considering n≤16 in equations (140)-(143)], and four “tube-elements” per half wavelength are employed. 

Regarding the number of integration points, 23 equally spaced integration points around the half-circumference, 

five Gauss points in the radial (through the thickness) direction and two Gauss points in the longitudinal direction 

of the “tube element” are considered (reduced integration scheme) following relevant convergence studies reported 

in previous works of senior author (Karamanos, 2002; Houliara & Karamanos, 2010). 

 

 
Figure 3: Three-node “tube element”. 
 

4.3 Bifurcation in the inelastic range 

Detection of bifurcation from prebuckling to post-buckling is performed upon convergence of solution at the 

end of each loading increment, adopting Hill’s “comparison solid” concept, as described in detail by Hutchinson 

(1974). The use of “comparison solid” yields lower bound, yet quite accurate, estimates of the bifurcation load, 

introducing the quadratic functional F : 

/ /( )ijkl ij k
ij kl j k j

V

F R E E U U dV= ∆ ∆ + ∆ ∆∫ τ       (144) 

The positive definiteness of functional (144) ensures uniqueness of solution and stability. At the stage where 

F  becomes non-positive definite, bifurcation occurs. Using the following expressions, 
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ij k ij mk
/ j k / j m / j k / jU U U G U∆ ∆ = ∆ ∆τ τ       (145) 

( ) ( )1
2

k k
ij p k / q q k / pE U U ∆ = ⋅ ∆ + ⋅ ∆ G g G g        (146) 

and the finite element discretization procedure described in the previous paragraphs, functional F  can be written 

in the following quadratic form in terms of “stiffness matrix” [ ]′K  

[ ]ˆ ˆTF ′= ∆ ∆U K U         (147) 

where 

[ ] [ ] [ ]
0

T
0

V

dV′ =   ∫K B BS         (148) 

and 

[ ] [ ][ ] [ ]T ′= +   W W CS R        (149) 

and [ ]′R  is the constitutive matrix containing the tangent elastic-plastic moduli ijklR  of J2-non associative flow 

theory moduli. Therefore, the positive definiteness of F  is equivalent to the positive definiteness of [ ]′K , 

examined through the evaluation of its eigenvalues at the end of each loading increment. Bifurcation occurs when 

the smallest eigenvalue of [ ]′K becomes equal to zero. 

 

5 CONTINUITY OF PLASTIC FLOW 

To quantify the production of plastic flow, the so-called plastic production ratio is adopted (Hughes and 

Shakib, 1986), defined as:  

( ) pw θ = e e            (150) 

where e  is the deviatoric part of incremental strain tensor ε , and pe  is the plastic part of e . Equivalently, 

equation (150) can be written in a normalized form: 

1
3

* Hw w
G

 = + 
 

         (151) 

offering a measure of plastic strain-rate dependence on the direction of strain increment with respect to the 

outward unit normal to the yield surface n . The value of w  depends on angle θ  between the outward normal n  

and the deviatoric strain increment e : 

( )
cos

⋅
=

n e
e




θ          (152)  

 

In classical plasticity, loading paths tangential to the yield surface ( )2θ π=  imply zero platic deformation, so 

that 0*w =  for 2≥θ π , as a result of elastic behavior. This shown in Figure 4 for J2-flow theory, as well as for 

the models proposed by Hughes and Shakib (1986) and Simo (1987).  

For the non-associative flow rule under consideration as expressed in equation (10) and using the definition of 

plastic production ratio in equation (150), the following expression for the plastic production ratio is obtained: 
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( )* 21 cos
3
Hw A B
G

θ θ = + + 
 

       (153) 

where  

( )( )21 1 3= + qA h Gε         (154) 

( ) ( )( )221 1 3 1 1 3= + − + qB H G h Gε       (155) 

In Figure 4 the value of *w  from present model, expressed in equations (153) - (155) is also plotted in terms of 

angle θ  with the continuous lines. The two lines corresponds to two levels of equivalent plastic strain qε  equal to 

2% and 5% respectively. There exists a discontinuity at 2=θ π , which is due to the non-zero tangential 

component of ε p
 . Apart from the fact that this discontinuity is not consistent with the physical problem, it may 

cause numerical convergence problems. Therefore, a zero value of 0*w =  at 2=θ π  is desired, and a 

modification of the plastic flow equation (5) is proposed, so that the tangential (non-associative) part of the right-

hand side vanishes for θ  values approaching 2π . Towards this purpose, a modified value of the secant modulus 

sE  is considered in terms of θ , denoted as sE , as follows: 

( ) ( )( ) ( )n n
01  s q s qE E sin E sin ,ε ε θ θ θ θ= − + ≥      (156) 

where 0θ  is a threshold value quite close to 2π  and n  is a large-valued exponent. Therefore, 

( ) ( )
( )

s q
q

s q

EE
h

E E

ε
ε

ε
=

−
        (157) 

and the plastic ratio becomes a continuous function of θ , approaching smoothly the value of 2π .This is shown in 

Figure 4 with the dotted lines for values of 0θ  and n  equal to 75o and 300 respectively. In such a case, 

( ) 21
3
Hw* A B cos
G

θ θ = + + 
 

       (158) 

( )( )21 1 3qA h Gε= +         (159) 

( ) ( )( )221 1 3 1 1 3qB H G h Gε= + − +       (160) 
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Figure 4: Variation of normalized plastic production ratio *w  in terms of θ  for various plasticity models. 

6 VERIFICATION RESULTS 

 Numerical results for benchmark problems of metal cylindrical shell buckling are obtained to validate the 

numerical methodology described in the previous sections. Large-strains are considered with the material model 

formulation described in section 3. Furthermore, the integration of constitutive models is performed with the 

Euler-backward method described in section 2.2. 

6.1 Wrinkling of axially-compressed cylinders 

 The first problem refers to wrinkling of stainless steel tubes under uniform axial compression, and comparison 

with both experimental data and analytical predictions is conducted. Bifurcation analysis of perfect cylinders, 

associated with the initial development of wrinkles is described first. Subsequently, simulation of gradual 

development and localization of wrinkles in initially imperfect cylinders is presented using a nonlinear incremental 

analysis. 

The tubes under consideration have been tested by Bardi and Kyriakides (2006) and are made of stainless steel 

material SAF 2507 super-duplex, which can be described for uniaxial tension through a Ramberg-Osgood stress-

strain curve [eq. (161)] 

131
7

n

E
σ σε

σ

+  = +  
   

        (161) 

 The values of E , σ  and n  have been determined through an appropriate tensile test equal to 194 GPa, 572 

MPa and 13 respectively. The cylindrical shells are thick-walled with diameter-to-thickness ratio between 20 and 

50, and are appropriately machined so that the buckling area can be considered free of boundary conditions. More 

details on the specimens and the experimental procedure can be found in Bardi & Kyriakides (2006).  

 Initial wrinkling of those tubes as obtained from a bifurcation analysis conducted with the present numerical 

tools. The numerical results are compared with experimental results and analytical solutions. More specifically, the 

bifurcation load at first wrinkling can be calculated analytically using the following equation (Batterman, 1965; 

Bardi & Kyriakides, 2006). 
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1/22
11 22 12

3
s

cr
tC C C
R


           

        (162) 

where R  and st  are the radius and wall thickness of the tube and aC   are the instantaneous material moduli for 

plane stress conditions, at the bifurcation stage. Expressions for moduli aC  , for both associative and non-

assocative J2-plasticity, can be found in Bardi and Kyriakides (2006). It should be noted that first wrinkling of 

those thick-walled cylinders in the plastic range is always axisymmetric (Figure 6) as shown analytically by Gellin 

(1979). 

 The analytical and numerical predictions for the critical stress and strain are plotted against sD t  in Figure 5, 

together with experimental results reported in Bardi et al. (2006). In this figure, ○ and ● refer to the upper and 

lower bound of first wrinkling observed in tests (Bardi and Kyriakides, 2006) respectively. In the same graph, the 

corresponding predictions using J2-flow (associative) and the present (non-associative) theory both analytically 

and numerically are also shown. Note that the numerical predictions of J2-flow theory have been obtained from the 

present finite element technique and the constitutive equations for the associative flow rule; these equations are 

obtained from the flow rule (10) omitting the second term on the right-hand-side and are reported in Pappa (2014). 

The analytical predictions are obtained from equation (162) using the appropriate instantaneous moduli aC   for 

the associative and non-associative case. The comparison with experimental data shows the superiority of the non-

associative flow model with respect to the associative flow model in predicting bifurcation in the plastic range. 

Furthermore, a very good comparison of the present numerical model and the corresponding analytical results 

from equation (162) is shown. The axisymmetric buckling shape is depicted in Figure 6. 

 

  
(a) (b) 

Figure 5: (a) Critical stress (onset of wrinkling) vs. specimen sD t  and (b) critical strain vs. specimen sD t , 
analytical predictions refers to equation (162). 
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Figure 6: Bifurcation (first wrinkling) shape of axially loaded stainless steel cylinder ( sD t =26.3). 
 

Following the above bifurcation analysis, a nonlinear analysis is performed that follows the gradual 

development of wrinkles under increasing axial compression. Thick-walled cylinders subjected to axial 

compression, exhibit limit load instability (occurrence of maximum load on the load-displacement curve), 

followed by the development of localized buckling patterns. To describe this process, an initially 

axisymmetrically wrinkled pattern is assumed and gradual development and localization of this wrinkling pattern 

is monitored. Towards this purpose, a thick-walled cylinder ( sD t =26.3), with the same material is considered, 

using a tube segment of length equal to seven half-wavelengths. Each half-wavelength corresponds to the first 

buckling shape of Figure 6, and an initial wave-type imperfection is imposed with a small amplitude 0,maxω  

equal to 0.1% of thickness. The half-wave length hwL  has been determined from the bifurcation analysis 

described above, equal to 14.515 mm. The load-displacement equilibrium path is shown in Figure 7a. 

Considering a small bias in the amplitude of one wrinkle (as initial imperfection), the analysis leads to a 

maximum load due to wrinkle localization denoted as limit state as shown in Figure 7a, where the numerical 

analysis the experimental curve are compared. The comparison between the non-associative model and tests 

results is very good in terms of the maximum load, the corresponding deformation and the initial post buckling 

behavior. It is noted that the limit (maximum) load occurs at a value of imposed displacement Lδ  equal to 

4.5%, which is well beyond the strain at which first wrinkles occur in the perfect cylinder (1.8%), shown in 

Figure 5b. This means that first bifurcation may not be related to the ultimate axial compression capacity of the 

cylinder, as noted by Bardi and Kyriakides (2006). Figure 7b shows the buckled configuration of the cylindrical 

shell and the localization of wrinkling deformation at a value of imposed displacement Lδ  equal 5%. In Figure 

7c the evolution of radial displacement along a cylinder generator is shown, illustrating the non-uniform growth 

of wrinkle amplitude; the central ripple grows significantly more than the others, resulting in localization of 

wrinkled pattern and loss of structural strength. Finally, in Figure 7a, the numerical results using the classical J2-

flow theory are also shown. The comparison is satisfactory up to a certain level, but this associative model does 

not predict accurately the ultimate load deformation and the initial post buckling behavior.  
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(a) (b) 
 

 

 
 
 
 
 
 
 
 
 
 

(c)  
 
Figure 7: (a) Stress-displacement response, comparison with the test result reported in Bardi & Kyriakides 
(2006); (b) Deformed configuration of axially loaded cylinder with localized wrinkling corresponding to δ/L 
value of 5%; (c) evolution of radial displacement along a cylinder generator with increasing axial compression. 
 

6.2 Buckling of imperfect axially-compressed cylinders 

 The buckling performance of imperfect thick-walled cylinders subjected to axial (meridional) compression 

has been examined analytically by Gellin (1979). Gellin enhanced the methodology initially proposed by Koiter 

(1963) for elastic thin-walled cylinders, employing shell kinematics based on DMV shell theory, and elastic-

plastic material behavior through J2 deformation theory. 

Comparison is conducted for a moderately thin-walled cylindrical shell with sD t  equal to 51. The material 

behavior can be described by equation (161), with E , σ  and n  equal to 194 GPa, 572 MPa and 5 respectively, 

so that the ratio of the effective yield stress σ  to the classical buckling stress of the elastic shell e
c/σ σ  is 0.5 (

e
cσ  is defined equal to ( )23 1sE t Rν− ). The analysis assumes an initial imperfection in the form of first 

axisymmetric buckling mode (see Figure 6) obtained by a bifurcation analysis, as described above. 

Considering a tube segment of length equal to twice the value of half-wavelength ( 2 hwL L ), and the 
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axisymmetric initial imperfection, secondary bifurcation to a non-axisymmetric mode is calculated. The results 

of the numerical calculations are presented in Figure 8, where the bifurcation load of the imperfect shell Pcr  is 

normalized by the bifurcation load of the perfect shell 0Pcr,  and plotted in terms of the imperfection amplitude 

0,maxω  showing a very good comparison with Gellin’s results. 

 
 

Figure 8: Imperfection sensitivity in the plastic range for a metal cylinder with sD t =51 and yield stress 572 
MPa. 
 

6.3 Bending of elongated metal cylinders 

The third problem refers to an elongated cylindrical shell, referred to as “tube”, subjected to longitudinal 

bending. The tube is made of aluminum (AL 6061-T6), diameter and thickness are equal to 31.75 mm (1.25 in) 

and 0.889 mm (0.035 in) respectively, ( sD t =35.7) and has been tested experimentally (Kyriakides and Ju, 

1992). Material behavior is described by a Ramberg-Osgood of stress-strain curve equation (161), with E , σ  

and n  equal to 67.36 GPa, 282 MPa and 28 respectively, corresponding to a yield stress of 283.4 MPa . 

The structural response of thick cylindrical shells and the ensuing instabilities are strongly influenced by the 

plastic behavior of the metal material, as well as by the ovalization of the cross-section, implying a highly 

nonlinear prebuckling state. Along this nonlinear path, the shell exhibits various shell-type buckling modes in the 

form of wrinkles along its compression side. First bifurcation occurs in a uniform wrinkling pattern shown in 

Figure 9 denoted by the first arrow (↑) on the primary path, which is similar to the first wrinkling pattern 

reported in the tests of Kyriakides and Ju (1992) and a second bifurcation on the same prebuckling path is also 

detected, in the form shown in Figure 9 denoted by the second arrow (↑). The moment is normalized by the 

fully-plastic moment ( 2
0 Y sM t Dσ= ) and the curvature is normalized by the value of characteristic value 

2
I st Dκ = . In the same Figure, the corresponding predictions from the J2-flow theory are also shown. The 

prebuckling paths obtained from the 2 models are quite close, but the associative model fails to predict correct 

bifurcation. More specifically, the bifurcation predicted by the associative flow model occurs at a very late stage 

denoted by (↓) and does not correspond to wrinkled shape observed experimentally.  

Failure of the cylinder occurs because of wrinkle localization (Figure 10); using an initially wrinkled model 

in the form of the shape of Figure 9 with a wrinkle amplitude equal to 3
0 10,max stω −=  (consistent with reported 
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experimental measurements) and imposing a very small preference in the wrinkle of the middle section, the 

cylinder exhibits structural instability in the form of a localized buckled pattern. The corresponding moment-

curvature curve matches very well the experimental curve. The above results are consistent with the observations 

reported in the corresponding experiments (Kyriakides and Ju, 1992). 

 
Figure 9: Moment-curvature diagram of tube with sD t =35.7. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

  

 

 

 

 

 

 

 

(b) 

Figure 10: (a) Comparison of test results (Kyriakides and Ju, 1992) with present numerical predictions; (b) 

Deformed configuration of a bent shell with localized wrinkling ( sD t =35.7). 
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7 CONCLUSIONS 

A large-strain J2 non-associative plasticity model has been developed for nonlinear analysis of cylindrical 

shells. The model maintains the basic formulation and implementation features of the standard J2-flow theory, but 

contains the necessary enhancements for accurate shell buckling predictions, without any additional parameters 

required by corner or pseudo-corner theories. The model is consistent with shell theory requirements (zero stress 

normal to the shell laminae), it is numerically integrated through a robust Euler-backward substitution scheme. An 

alternative Euler-forward scheme is also presented. An enhanced large strain version of the model is also 

presented, based on an additive decomposition of the rate-of-deformation tensor. This allows the direct application 

of the above robust integration schemes in large-strain analysis through a polar decomposition of the deformation 

gradient and appropriate rotation of the stress and strain tensors, while accounting for zero stress normal to shell 

laminae. The non-associative constitutive model is implemented within a special-purpose finite element 

formulation, which uses a three-node “tube element”. Bifurcation buckling in the inelastic range is detected along 

the equilibrium path through an implementation of the “comparison solid” concept. Special emphasis is paid on 

the continuity of plastic flow, to overcome numerical problems of convergence. Numerical results are in excellent 

agreement with available experimental data and analytical predictions, and demonstrate that the present 

methodology is capable of describing accurately and efficiently buckling and post-buckling behavior of rather 

think-walled cylindrical shells in the inelastic range. In addition, the comparison with test data demonstrates the 

superiority of this non-associative model with respect to the classical associative J2–plasticity model in predicting 

shell buckling in the inelastic range. 
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Appendix I – Newton’s method for integrating the constitutive model 

Equations (27), (29), (33), (32) or (27), (37), (38), (32) are solved using the Newton method. The unknowns 

Δ qε and 33Δε  are chosen as the primary unknowns considering that equations (32)and (33) or (32) and (38) are 

the basic equations. Denoting as ( )Δ qδ ε and ( )33Δδ ε  the corrections of c and 33Δε , the Newton equations 

become: 

( )
( )

11 12 1

21 22 233

Δ

Δ
qA A b

A A b
δ ε

δ ε

    
=    

     
 (I-1) 

For the backward-Euler integration scheme, the constants ijA  and ib  are given in the following expressions: 
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For the forward-Euler integration scheme, the constants ijA  and ib  are given in the following expressions: 
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Appendix II - Algorithm for polar decomposition 

This algorithm computes the squares of the principal stretches 2
iλ , ( )1,2,3i =  (the eigenvalues of C ) by 

solving (in closed form) the characteristic polynomial. The algorithm has been introduced by Franca (1989), it is 

described in the book of Simo and Hughes (1998) and is adapted herein for the case of curvilinear coordinates. 

The covariant base vector and the contravariant (reciprocal) base vector in the beginning of the step G i , jG , the 

covariant base vector and the contravariant base vector in the current configuration gi , g j respectively, are given. 

Let ia , ( )1, 2,3i =  be the principal invariants of U defined as 
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where 

kl
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If 0 aux <  then  
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end if 

Compute the invariants of U  
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Furthermore, the coefficients ,   (i=1,2,3)i iA B  in the expressions (73) and (76) for U , 
1U−  are defined as 
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where 1 2 3D i i i= − . 
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