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Abstract

When organizationsmove computation to the cloud, they

must choose from a myriad of cloud services that can be

used to outsource these jobs. The impact of this choice

on price and performance is unclear, even for techni-

cal users. To further complicate this choice, factors like

price fluctuations due to spot markets, or the cost of re-

covering from faults must also be factored in. In this

paper, we present Conductor, a system that frees cloud

customers from the burden of deciding which services

to use when deploying MapReduce computations in the

cloud. With Conductor, customers only specify goals,

e.g., minimizing monetary cost or completion time, and

the system automatically selects the best cloud services

to use, deploys the computation according to that selec-

tion, and adapts to changing conditions at deployment

time. The design of Conductor includes several novel

features, such as a system to manage the deployment of

cloud computations across different services, and a re-

source abstraction layer that provides a unified interface

to these services, therefore hiding their low-level differ-

ences and simplifying the planning and deployment of

the computation. We implemented Conductor and inte-

grated it with the Hadoop framework. Our evaluation us-

ing AmazonWeb Services shows that Conductor can find

very subtle opportunities for cost savings while meeting

deadline requirements, and that Conductor incurs a mod-

est overhead due to planning computations and the re-

source abstraction layer.

1 Introduction

Cloud computing gives programmers access to instan-

taneous, and practically unlimited computational re-

sources. This allows users and organizations to adapt the

computational power they use according to their needs,

without requiring them to invest in IT infrastructure.

This ease of scalability has made cloud computing pop-

ular among end users and a subject of excitement in re-

search and industry. Users have the opportunity to trans-

fer computations into the cloud, enabling applications

that were previously impossible or too expensive to per-

form locally.

These new opportunities, however, bring new chal-

lenges. In the past, organizations invested in building

1Currently at Google Inc.
2Currently at CITI/Universidade Nova de Lisboa

and maintaining an IT infrastructure. Given that invest-

ment, they could estimate how long a certain computa-

tion would take (or its feasibility). In the new cloud com-

puting era, however, it is possible to spend an almost un-

bounded amount of money on computational resources.

This changes the nature of the equation, since organi-

zations can balance the monetary cost of a computation

with how long it takes to complete it. Ideally, a customer

could invest the exact amount that is needed to complete

the required computation within the preferred deadline.

The situation is complicated by the fact that cloud

computing providers offer many different services. For

example, EC2 currently provides eleven different types

of virtual machine instances, and it is unclear how a com-

putation’s performance will change if run on different

instance types. In addition to the rental of a virtual ma-

chine, cloud providers also offer a variety of storage op-

tions, in addition to the storage available from the rented

virtual machines. Finally, cloud providers charge for data

transfer across different systems, particularly between

the cloud and the outside world. These factors make it

hard to calculate the exact cost of a cloud deployment.

Furthermore, the need to account for the possibility of

failures (and the cost for recovering from them) and the

emergence of spot markets, which allow bidding for re-

sources, aggravate the complexity of making best use of

cloud services.

This paper presents Conductor, a system that enables

cloud customers to make better decisions about which

cloud services to select, and orchestrates the execution

of MapReduce computations on the cloud automatically.

Conductor therefore frees the customer from having to

understand the trade-offs between different services, de-

vising an optimal execution plan, and deploying that

plan. For a given MapReduce computation, Conductor

lets customers specify optimization goals, such as mini-

mizing monetary cost or completion time, and leverages

automated optimization techniques to determine an ex-

ecution plan that best meets these goals. The system

then deploys the plan by invoking the appropriate cloud

services at various points in the execution and migrat-

ing data among them. Finally, at deployment time, Con-

ductor detects deviations from the expected plan, such as

those due to mispredictions of job performance or spot

prices, and adapts by recomputing the plan and adjusting

the deployment.



The design of Conductor addresses several interesting

technical challenges with novel techniques. For exam-

ple, Conductor was able to cope with the heterogeneity

of cloud services, which sometimes combine both a stor-

age and a computation service under the same interface,

by designing a resource abstraction layer that separates

storage from computation and provides a unified inter-

face to every service of the same class. This abstraction

is important to make the planning stage feasible by only

needing to consider the generic abstractions offered by

the resource abstraction layer. Furthermore, the abstrac-

tion layer enables the deployment of computations with-

out the need to worry about lower-level interface details

of each specific service.

We implemented a Conductor prototype, which com-

prises several components: a module for determining

the optimal plan for deploying MapReduce jobs, a re-

source abstraction layer that maps the unified compu-

tation and storage interfaces to the suite of services of-

fered by Amazon Web Services, and an extension to the

Hadoop framework that interacts with both the planning

module and the resource abstraction layer. Our evalua-

tion shows that Conductor’s automatic management suc-

ceeds in finding and deploying efficient execution plans,

and discovers non-trivial opportunities for cost and time

savings, while incurring a modest overhead.

The remainder of the paper is organized as follows.

In Section 2 we lay out today’s challenges when using

cloud services and state the goals of our system. In Sec-

tion 3 we overview how Conductor automates the de-

ployment of computations and in Section 4 we describe

how we can formally model MapReduce computations

to automatically determine optimal deployment plans. In

Section 5 we describe the design and implementation of

Conductor, and in Section 6 we present evaluation results

with our prototype. We present an overview of related

work in Section 7, and conclude the paper in Section 8.

2 Problem Statement

In this section we detail some of the challenges that cloud

customers face and describe the goals of Conductor.

2.1 Challenges
The following are several examples of challenges that

arise when deploying a computation in the cloud.

Service and provider diversity. Cloud customers must

choose among a variety of services with different price

and performance characteristics. For example, for its

EC2 service alone, Amazon offers eleven different types

of VM instances. Furthermore, the diversity of these of-

ferings is increasing, as new providers emerge and exist-

ing providers introduce new services.

Hybrid deployments. A special case of provider diver-

sity is when cloud customers make use of their own lo-
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Figure 1: Specified and measured performance for three

different EC2 instance types.

cal infrastructure, which can be augmented by the use of

cloud services. Local infrastructures have different char-

acteristics from cloud services, namely that the use of a

local infrastructure does not incur additional costs, but

provides access to a limited amount of storage and com-

putational power.

Dynamic pricing. The pricing for cloud services can

vary over time as providers adjust their pricing models,

or when new providers join the market. In addition, spot

markets for cloud computing services have been recently

introduced in EC2, bringing new opportunities and chal-

lenges. In particular, customers may try to use predic-

tions of the evolution of spot prices to obtain cost sav-

ings, but may also have to adjust their choices at deploy-

ment time in case their predictions are not met.

Mispredictions. To estimate the cost of alternative de-

ployment strategies, customers need to predict the per-

formance characteristics of different services. This is

challenging for several reasons. First, the information

that is available about these characteristics can deviate

from the performance that is actually observed. To il-

lustrate this, we measured the performance of various

types of EC2 instances, and compared it to the estimated

performance that Amazon reported in terms of a unit

they call ECU.1 The results in Figure 1 show a consis-

tently increasing throughput divergence between the pro-

jected and measured application performance. Second,

the performance characteristics of a given cloud service

can vary dramatically over time [20]. For instance, net-

work throughput might drop due to congestion, not only

within the data center, but also on the path between the

user and the cloud provider. Also, since often multiple

virtual machine instances are hosted on a single physical

machine, a level of interference among virtual machines

that is higher or lower than normal can lead to degraded

or improved performance, respectively.

Faults. Cloud providers have also started to offer ser-

vices with different reliability characteristics, for in-

stance, with discounted prices for storage services with

1For this simple experiment, we use the same setup and application

that is used in our evaluation in Section 6, and we configured Hadoop

to fully exploit the parallel processing capabilities that each instance

type offers.
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lower replication factors. These reliability levels are of

particular importance in long-running computations, or

computations that store intermediate results in these stor-

age services. An example of this are Pig [13] programs,

which compile down to multi-staged MapReduce com-

putations, in which the result of one stage is used as the

input to the subsequent stage. In this case, when inter-

mediate results become unavailable due to data loss, they

must be recomputed by re-executing all previous stages.

Therefore, the cost of this recovery depends on the num-

ber and complexity of the previous stages, and generally

increases as the computation progresses, making more

reliable storage options more and more useful [9].

Tightly coupled data and computation. A computation

that is deployed on the cloud will make use of several

types of resources, namely CPU, storage, and bandwidth.

Even though cloud computing providers offer separate

services and pricing options for some of these, like stor-

age, most services end up tightly coupling these vari-

ous categories. For instance, compute services like EC2

associate a virtual disk with each VM instance, which

can be used for storage. Also, when performing a com-

putation, one must take into account the cost of trans-

ferring the input data to where the computation is per-

formed. This tight coupling complicates the task of de-

ciding which services to use in several ways: it may hide

opportunities for making use of resources, such as taking

advantage of virtual disks to avoid having to pay for S3

storage, and it precludes simplistic resource management

approaches, such as always using the cheapest offering –

such a strategy could lead to increasing the overall cost or

the completion time, e.g., because of the cost of transfer-

ring the data between computation and storage locations.

2.2 Goals

Our goal is to build a system that overcomes these chal-

lenges by automating the process of choosing which

cloud services to make use of, and by deploying com-

putations on the cloud according to that choice.

Aside from addressing the aforementioned challenges,

the system should ideally meet the following goals.

Transparency. Customers should obtain the benefits of

the system without having to modify their computations.

In particular, they should be able to leverage different

types of services without having to adapt their applica-

tions to the interface that is provided by that service.

Efficiency. The customer should be able specify certain

goals like minimizing cost or execution time, and the sys-

tem should not only find a good solution according to

those metrics, but also impose low overheads both in the

planning stage and also at deployment time.

Adaptivity. The system must be able to react at deploy-

ment time to mispredictions or changes in the character-

Figure 2: System overview

istics of the deployment, so that user goals are not jeop-

ardized by these events.

Flexibility. As cloud services keep evolving, it should

be easy to incorporate new services or modifications to

an existing service into the system, to allow customers to

rapidly take advantage of them.

3 System Overview

To address the aforementioned challenges and goals, we

built Conductor, a system that simplifies planning and

deployment of jobs on the cloud by choosing which

services to make use of, according to customer-defined

goals, and deploying computations on the cloud accord-

ing to that choice. In this section we present an overview

of the design of Conductor.

As a starting point, a customer outsourcing a compu-

tation provides Conductor with the following input: (1)

a computation to be executed in the cloud, (2) a set of

cloud services that could be used for executing the com-

putation, and (3) a set of goals to optimize the execution

for (e.g., minimizing execution time for a given budget).

Given these inputs, Conductor starts by finding an exe-

cution plan that best meets the goals specified by the cus-

tomer. Once the plan is devised, Conductor deploys and

executes this plan, and, if necessary, adjusts it to chang-

ing conditions, such as variance in network performance

due to congestion or degraded virtual machine instance

performance due to interference with other instances on

the same physical machine.

At a high level, this functionality is achieved through

the following sequence of steps (as depicted in Figure 2).

1. Model both the computation and the set of ser-

vices available from cloud computing providers,

their cost, and their performance.

2. Automatically determine an optimal execution plan

by using a solver.

3. Deploy the planned execution and monitor the exe-

cution to identify conditions that constitute possible

deviations from the original model.
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4. Upon detecting deviations, feed the new conditions

back into the model, compute a new plan, and alter

the deployment accordingly.

The next sections detail each of these steps.

4 Modeling Computations and Services

Wemodel computations and the service offered bymulti-

ple cloud providers using dynamic linear programming.

We chose to use dynamic linear programming because

the pricing schemes of cloud services as well as the per-

formance of many data-parallel distributed computations

can be expressed as linear dependencies. Furthermore,

powerful tools to solve linear programs are available.

However, not every computation can easily be modeled

using dynamic linear programming, and hence, we had

to restrict the domain of our approach. Next, we explain

this restriction, and, in subsequent sections, we detail

how we model services, computations, and costs.

4.1 Restricting Computation Types

In order to automatically create a linear programming

based model for a given job, it is necessary to know

what are the individual processing phases, their computa-

tional cost, and the data flow patterns among them. Since

this is difficult to predict without analyzing the computa-

tion, we restrict ourselves to a specific class of computa-

tions, namely MapReduce jobs [2]. MapReduce is very

generic and has gained widespread adoption, and there-

fore, by focusing on this model, we cover a very broad

and increasingly important set of large-scale computa-

tions. Furthermore, MapReduce computations follow a

predefined data flow pattern, which makes it feasible to

build a generic dynamic linear programmingmodel. Our

description assumes the reader is familiar with MapRe-

duce; the original MapReduce paper supplies the neces-

sary background [2].

An alternative to restricting to MapReduce would be

to let programmers manually specify these job character-

istics, as proposed by other work [5]. Another possibility

would be to focus on recurring jobs, where the first run

would be monitored to extract the model that would be

used in subsequent runs. The core of our system would

not have to be changed to accommodate these methods.

4.2 Modeling Cloud Service Offerings

One of the challenges in choosing the best set of services

to make use of stems from the fact that each service may

coalesce resources of different types, namely storage and

computation, which we then need to consider separately

when determining the best set of services to make use

of. To address this, our model for cloud service offer-

ings breaks down each service into the following three

separate types of resources, a subset of which may be

provided by that service: computation, storage, and com-

munication. This allows us to have fine-grained control

over which services to utilize according to the applica-

tion needs for each of these resources.

Formally, the model for cloud service offerings con-

siders a set of m distinct cloud services (e.g., Amazon

EC2, Amazon S3), F1, ..., Fm, that provide a set of re-

sources of different types. The idea behind our model is

to explicitly consider the storage and computation capa-

bility of each service, and model communication implic-

itly. This is because, in contrast to storage and computa-

tion, communication cannot stand on its own and be al-

located independently, but instead always connects other

resource instances, which can either be storage or com-

putation. Each service is also associated with a certain

price that the customer is charged for using it. For a ser-

vice that has different prices for allocating a resource for

the first time and maintaining a resource, we addition-

ally annotate the communication resources connected to

that service to reflect this pricing scheme. For instance, a

cloud storage service might charge customers for storage

capacity consumed in a period of time, and additionally

for network traffic and I/O operations when uploading

data to (or downloading from) the service. In this case, in

our model the storage service is annotated with the time-

based storage cost, and the per-use cost is modeled as a

communication cost. Modeling the per-use cost is possi-

ble in our case since we can precisely control how data

upload and download is mapped to individual I/O oper-

ations and how much data is transferred in each opera-

tion on average. Thus, given the average amount of data

transferred per I/O operation, we can translate the per-

operation costs to per-byte costs and incorporate them as

communication costs in our model.

Conductor generates the model automatically from a

description of cloud service offerings that contains in-

formation about service cost, performance characteris-

tics and other properties. In Figure 3 we show a simpli-

fied example of a service description in a simple, human-

readable XML-based format that Conductor takes as in-

put. These descriptions of public cloud services could

be published by the providers themselves or by third par-

ties, while a user would only have to manually specify

his privately owned resources (if any).

4.3 Modeling MapReduce Computations

Next, we walk through the successive steps of MapRe-

duce computations to explain how we model them [17].

Unless mentioned otherwise, all variables in our model

are positive. We express the execution as a sequence of

discrete time intervals such that for each interval t the
model contains the actions (e.g., process or transfer data)

that can be performed in that interval. An important prac-

4



<r e s o u r c e>

<p r o p e r t y =”name”>

<s t r i n g> S3 </ s t r i n g>

</ p r o p e r t y>

<p r o p e r t y =” c o s t g e t ”>

<doub le> 1 . 0E−6 </ doub le>

</ p r o p e r t y>

<p r o p e r t y =” c o s t p u t ”>

<doub le> 1 . 0E−5 </ doub le>

</ p r o p e r t y>

<p r o p e r t y =” c o s t t s t o r e ”>

<doub le> 2 .08333332E−4 </ doub le>

</ p r o p e r t y>

<p r o p e r t y =” can compute ”>

<boo l e a n> f a l s e </ b oo l e a n>

</ p r o p e r t y>

<p r o p e r t y =” s t o r a g e c a p a c i t y ”>

< i n t> −1 </ i n t>

</ vo id>

</ r e s o u r c e>

Figure 3: Simplified example of the XML-based descrip-

tion of the S3 storage service.

tical aspect of this model is that, to limit the size of the

model that is generated, we always set an upper bound T
on the time to finish the computation. T is expressed in

terms of number of time intervals, which are the granu-

larity of the execution progress. For instance, one inter-

val could correspond to one hour of runtime.

Input to Map phase. To execute the Map phase, the in-

put data from the source storage has to be uploaded to

a storage service in the cloud for processing. The up-

load is modeled in a time-step fashion for all T intervals.

For each interval t, the source storage contains sourcet
amount of data that wasn’t uploaded yet and upload(i,t)
denotes the amount of data uploaded from the source

storage to the storage service Fi. All the data uploaded

by time t (denoted by storeIn(i,t)) will be stored in Fi

until the execution phase is finished. Data storage and

upload is flow preserving, which we express by the fol-

lowing constraints:

∀i, t : sourcet −
m∑

i=1

upload(i,t) = sourcet+1 (1)

∀i, t : storeIn(i,t−1) + upload(i,t) = storeIn(i,t)

(2)

The available upload speed can be expressed in the

model by adding a constraint that restricts the total

amount of data that can be uploaded.

Data processing. Next, the uploaded data is processed,

and the result is stored. Similar to data upload and stor-

age, we model the actual processing per time interval t:
In interval t, the uploaded data storeIn(i1,t) in storage

service Fi1 can be processed by a computational service

and then the result storeOut(i2,t) is stored at Fi2 .

The amount of data that is processed in each time in-

terval t is bounded by the number of computing nodes

that we choose to run during that interval. Also, we can

only process input data in the cloud that has already been

uploaded. Let proc(i,t) denote the amount of data which

is processed by cloud service Fi in time interval t. We

can therefore represent the constraints for computations

as follows:

∀i, t :
∑

proc(i,t) ≤ nodes(i,t) · capacityi (3)

∀t :

t∑

t′=1

m∑

i=1

proc(i,t′) ≤

m∑

i=1

storeIn(i,t) (4)

Here, nodes(i,t) denotes the number of computing

nodes rented in interval t from computing service Fi,

and capacityi denotes the processing capacity of a single
node for Fi.

Reduce phase. The Reduce phase is modeled in a simi-

lar way to the Map phase, except for the fact that we do

not need to consider the data upload stage, since the Re-

duce phase takes the result of theMap phase as the input.

Hence, in our model, in each time-step t we add possi-

ble transitions from the output storage of the Map phase

storeOut(i,t) to the input storage of the Reduce phase

storeIn(i,t+1).

With the current formulation, the Reduce phase can

start without the Map phase being complete, which is not

allowed by the MapReduce model. We enforce that the

two phases do not overlap by specifying that the amount

of data flowing to the next phase has to be either 0 or the
full output data. We specify this property as a linear pro-

gramming constraint using a semi-continuous variable,

that can hold either 0 or the full output data size. After

combining the two phases, we model the download of the

final result from the output storage of the Reduce phase

by adding transitions to the destination storage.

4.4 Execution Cost

The model must also capture the monetary cost of run-

ning the computation. The monetary cost of each phase

can be expressed as the cumulative sum of the cost in-

curred in each interval over time T . For time interval t,
the cost can be expressed as the sum of the cost incurred

for uploading the data, processing the data and storing

the result in a storage service. We calculate the cost for

each time interval based on the amount of resources con-

sumed per cloud service. For instance, the computation

cost in time interval t is the number of machine-hours

used in this interval multiplied by the price per machine-

hour. Formally, we express the total monetary cost over

T as follows:

Let y(i,t) be the number of units of cloud service Fi

purchased for time interval t, and let bi be the price per
unit for Fi. The total cost C for such a configuration is

C =

T∑

t=1

m∑

i=1

(bi · y(i,t)) (5)

5



Note that this monetary cost, as well as other character-

istics captured in our model such as execution time, can

be used in the objective function for optimization. Since

no negative amount of resources can be purchased, we

automatically have the constraint ∀i, t : y(i,t) ≥ 0.

4.5 Data Migration

Since we consider multiple storage services in our

model, we may choose to migrate data between them

during the execution. We include migration by adding

transitions in each time interval t from storeIn(i1,t) to

storeIn(i2,t+1). These transitions express migrating in-

put data from the storage services Fi1 to Fi2 . Simi-

larly, we add transitions for migrating the output data

storeOut in each time-step. Note that the transitions

for data migration go from one time-step t to the next

one t+ 1, rather than staying within the same time step.

This allows us to express that data migration is not com-

pleted instantly. The cost for migration can be added to

the storage cost per time-step.

4.6 Resource Overlap

In our previous explanation of the model, we have as-

sumed that each service provides only a single type of

resource, either storage or computation. However, in

practice, services can provide both types (and potentially

other types) simultaneously. For instance, we can oppor-

tunistically store data on the virtual disk of runningVMs,

leveraging this spare resource at a low extra cost.

Our model accommodates this overlap of resources

easily, since it distinguishes cloud services from the re-

sources they provide. Thus, in addition to the pricing and

performance characteristics we already specify for each

cloud service F1, . . . , Fm, we also specify the quantities

of other resources R1, . . . , Rn each of the services of-

fers. For instance, in this model a pure storage service

like Amazon’s S3 will provide only storage resources

while instances of Amazon’s EC2 service provide both

computation and storage resources.

4.7 Dynamic Pricing

Recently, Amazon started offering spot market pricing,

where customers bid the maximum price they are willing

to spend to have access to unused Amazon EC2 capacity,

thus paying a price tag that reflects the current supply and

demand. Furthermore,Amazon allows customers to have

access to the history of spot prices, so that customers can

try to predict how spot prices will change and develop a

bidding strategy.

We thus extend our model to include dynamic pricing

in spot markets. Given our model where computations

are divided into discrete time-steps, spot prices can easily

be incorporated by setting the price of this service in each

time-step to an estimated spot price. These estimates

could potentially be derived by extrapolating past pric-

ing patterns. In our evaluation in Section 6.5 we leverage

a simple method that uses the maximum spot price of the

last n hours as a basis to compute a bid. More elabo-

rate methods [1] or methods for analyzing stock market

trends could also be leveraged. However, predicting spot

prices is a challenging problem in its own right and be-

yond the scope of this work. For the sake of simplicity,

we assume some predictor that can produce estimates for

future pricing. Let E[b(i,t)] denote the estimated price

per unit of cloud service Fi for time interval t. Thus, the
modified total cost C′ can be expressed as follows:

C′ =

T∑

t=1

m∑

i=1

(E[b(i,t)] · y(i,t)) (6)

4.8 Solving

For processing the linear program and computing an op-

timal execution plan, we dispatch the generated linear

program to the CPLEX solver. Although the solving time

is usually on the order of seconds (see Section 6.6), it is

possible that in certain cases CPLEX takes significantly

longer to compute the optimal solution. In such cases,

a potentially non-optimal, but feasible solution can be

found much faster. To avoid long delays on the deploy-

ment of jobs submitted by users, instead of waiting for

the optimal solution, we bound the solving time to three

minutes and use the best solution that was computed so

far.

5 Job Deployment

Once Conductor finds an optimal execution plan for a

model of a job and available resources, it deploys the

plan by instantiating the appropriate cloud services. We

next present the design of this component of Conductor.

5.1 Programming Abstractions

The deployment of a computation plan is complicated by

the fact that different services may have different stor-

age and computation interfaces, incompatible semantics,

or that sometimes storage and computation are bundled

together. Conductor overcomes the differences between

the services by providing a uniform interface to applica-

tions. In particular, Conductor provides abstraction lay-

ers for the two basic resource types: storage and comput-

ing resources. For services with bundled resources like

EC2 instances, the abstraction layers for these two differ-

ent resource types allow using storage and computation

independently. These abstraction layers also enable Con-

ductor to transparently manage the resources according

to the execution plan. Furthermore, the abstraction lay-

ers hide the complexity of supporting and managing the

resources from the application, as depicted in Figure 4.
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Storage. The primary goal of Conductor’s storage sys-

tem is to provide an abstraction layer that enables appli-

cations to transparently utilize multiple different storage

services as backends, and manage this usage automati-

cally. For instance, by using Conductor’s storage system,

applications can transparently use both S3 and the local

hard disk of virtual machines to store different parts of

the data. This storage can be accessed by a client that

hides from the user how and where data is stored on the

backends.

We implemented Conductor’s storage system as a dis-

tributed key-value storage service. The key-value in-

terface is generic enough to support other abstractions

built on top of it. For instance, there are already

multiple file system implementations built on key-value

stores [12]. Also, many applications and frameworks, in-

cluding Hadoop, support Amazon’s S3 storage service.

Since S3 and Conductor’s storage system provide simi-

lar interfaces, Hadoop is able to use Conductor’s storage

system seamlessly.

The central component in Conductor’s storage system

is the namenode, which provides a directory service for

data, and manages upload, replication and migration of

the data as per the execution plan generated by the con-

troller (described in Section 5.2). The namenode main-

tains a mapping from file block identifiers to their lo-

cations in Conductor’s storage system. These location

records contain information specific to the storage back-

end on which a file block is stored. For instance, for a

file block stored on a node’s local hard disk, the location

record would indicate the type of storage and include the

addresses of the nodes storing that file block. (We repli-

cate blocks in more than one node for fault tolerance and

performance.)

The implementation of each storage backend is spe-

cific to the storage services it utilizes, and maps the

semantics of each service to the target key-value store

semantics. For instance, the local disk storage back-

end uses a storage daemon running on each participating

node. This daemon uses Berkeley DB to store key-value

pairs locally on disk. The data stored on each node can

be accessed through a protocol with put, get and delete

queries. For the S3 backend, in contrast, the client uses

the generic S3 client APIs.

To access data in Conductor’s storage service through

the uniform interface provided by the storage client, the

client first queries the namenode for a set of locations

for the data block. In case the namenode returns multiple

locations, the client fetches the file block from the closest

location (by ping time) using the logic that is specific to

the storage backend given in the location record.

As an optimization, when computation and storage

components are co-located on the same node, Conduc-

tor allows the computation to make use of local storage

without going through the namenode. For reading data,

this is done by directing requests to the local storage dae-

mon directly, which can either succeed and proceed in a

very fast manner, or fail and fall back to the normal read

operation, in which case we additionally install a cached

copy of the data on the local node. For writing data, the

optimized write is always performed locally, and then the

namenode is notified so that it can transfer data to the ap-

propriate nodes in the background.

Computation. For computation it is more difficult to

create an abstraction layer for different services. For in-

stance, it is easy to provide a MapReduce computation

service (like Amazon’s Elastic MapReduce service) on

top of a virtual machine abstraction, but the converse is

not true. Since we restrict ourselves to MapReduce com-

putations, our abstraction of a computation resource is an

instance that is capable of participating in a MapReduce

computation. In particular, we only require that compu-

tation resources can be configured and automatically set

up to join a Hadoop cluster and participate in MapRe-

duce job execution. This allows us to implement this ab-

straction on top of different types of services, from low

level VM rental to local cluster resources. For instance,

in the case of Amazon’s EC2, this is achieved by building

a pre-configured machine image which is used by Con-

ductor to automatically allocate EC2 instances accord-

ing to the deployment plan and have them join a Hadoop

cluster.

5.2 Job Controller

The job controller is a central component of the design

of Conductor. It orchestrates the job execution by gener-

ating a plan to best meet the user’s goals and deploying

it using cloud services.

After submitting a MapReduce job to Hadoop, a user

starts Conductor’s job controller to manage the execu-

tion of the job. The job controller automatically gener-

ates a linear programming based execution model with

the given job characteristics and resources available as

described in Section 4. The model, together with the

user’s optimization goals, is then processed by a solver

to generate a deployment plan. After the controller re-

ceives the resulting plan, it deploys it accordingly and

monitors the execution progress. Deployment decisions

concerning how to handle and store data (e.g., where and
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when to upload and store what data) are forwarded to

the storage service (described in Section 5.1), which then

triggers upload and replication accordingly. Deployment

decisions about the actual processing are handled by the

job controller by allocating the planned number of nodes

through a service-specific interface (e.g., in case of EC2,

Amazon’s AWS client library) and setting them up to join

the computing cluster.

In order to allow a seamless interaction between

Hadoop and Conductor, we extended Hadoop in several

ways, as we explain next.

5.3 Hadoop Extensions
We adapted Hadoop version 0.20.2 to support Conduc-

tor’s automatic management functionalities.

Location-aware scheduler. The original Hadoop sched-

uler makes decisions that may conflict with the execu-

tion plans determined by Conductor, thus resulting in

higher cost or performance degradation. In particular, the

Hadoop scheduler tries to schedule tasks on the nodes

that also hold the respective input data block, and, in

cases where locality cannot be exploited, it schedules

tasks on non-local nodes and reads their input over the

network. This flexible scheduling of tasks conflicts with

Conductor, as it may violate the deployment of the ex-

ecution plan generated by the controller. For example,

fetching the input data from a remote site when not speci-

fied in the plan could congest network links, hinder other

data transfers, or result in transfer costs that were not

considered during the optimization phase. Therefore, to

accurately deploy an execution plan, we must override

the flexible scheduling policies of the Hadoop scheduler.

In particular, we ensure by data migration and replica-

tion that data is always locally available to the task or

stored on a remote location specified in the plan when it

is assigned for execution by the scheduler.

The modified scheduler is integrated into Hadoop and

we normally run it on a node under the customer’s con-

trol. To deploy the plan accurately, the scheduler main-

tains task queues for each computing resource (e.g.,

EC2) containing the tasks that are runnable for that re-

source. The scheduler sets tasks runnable when their in-

put data is either stored locally to that resource or on a

different storage resource specified in the plan. For in-

stance, depending on the plan, a task is set runnable on

EC2 nodes when its input data finishes uploading to EC2

nodes or to the S3 storage service. The scheduler then

assigns runnable tasks from the corresponding queues to

nodes. This mechanism ensures that during scheduling

no actions are performed that were not considered in the

plan, which might have negative impact on runtime or

cost.

Storage system. The second extension to Hadoop is to

add support for Conductor’s storage system. This sup-

port is required for Hadoop jobs to process input data

stored on Conductor’s storage system and write output

data to it. Hadoop supports multiple storage options via

file system drivers that implement a file system abstrac-

tion. In order to make Conductor’s storage system us-

able by Hadoop, we implemented a file system driver

that translates file system specific calls (e.g., open, close,

read, write) into the key-value store operations (e.g., get,

put, delete) that are supported by Conductor’s storage

system.

In our implementation, we split files into smaller

chunks that are stored as key-value pairs in Conductor’s

storage system. Additionally, for each file we store in-

odes that list the chunks that constitute the file content.

Our implementation reuses to a large extent the Amazon

S3 file system driver, since S3 has a similar key-value

storage interface. In contrast to the S3 driver, which does

not allow any locality in scheduling tasks, the driver for

Conductor’s storage system implements the functionality

required by the Hadoop scheduler to perform location-

aware scheduling. More precisely, we provide methods

for the scheduler to retrieve the location of a task’s input

data, and, based on that information, set it to runnable.

The driver also interacts with Conductor’s storage sys-

tem to provide hints about which data block should be

uploaded or replicated with higher priority.

5.4 Adapting to Dynamics

The job controller monitors the execution progress. If

the observed performance for a particular resource (e.g.,

EC2 instances) significantly deviates from the expected

characteristics upon which the model and the deploy-

ment plan was based, the job controller adapts the de-

ployment by creating an updated model, recomputing the

plan, and deploying it accordingly.

In a similar way, Conductor reacts to other system dy-

namics that might change during runtime, such as dy-

namic pricing for resources in spot markets. Conductor

re-creates a model based on the current system state and

the properties of the resources, including the changed

ones. Similarly to the initial model, this model is trans-

ferred to the solver daemon to determine an execution

plan and deploy it.

6 Evaluation

In this section we evaluate our Conductor prototype by

using it to deploy several computations on the cloud us-

ing Amazon’s Web Services (AWS) in scenarios that can

be difficult to handle manually or require non-obvious

deployment strategies.

Our evaluation tries to answer the following main

questions: (1) Can Conductor realize potential cost and

time savings when deploying MapReduce jobs, both in

cloud-only and hybrid deployments? (2) Can Conductor
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adapt to unexpected conditions at deployment time, in-

cluding the unpredictability of spot market prices? (3)

What are the overheads introduced by Conductor?

6.1 Experimental Setup

In all experiments, the plan generated by Conductor ex-

clusively makes use of large instances (m1.large) for

processing on Amazon’s Elastic Compute Cloud (EC2).

These instances are equipped with 7.5GB of memory,

a 850GB virtual hard disk, and 4 EC2 Compute Units,

where one Compute Unit is equivalent to a 1.0-1.2GHz

AMD Opteron or 2007 Intel Xeon CPU. In addition to

the large EC2 instances, we also allow Conductor to use

extra large EC2 instances (m1.xlarge). However, in

the scenarios we consider, the extra large instances are

never chosen in the generated deployment plans since

they offer a cost-performance ratio that is slightly worse

than for large instances. For hybrid deployments, we

additionally use a local cluster of five machines, each

equipped with an AMD Athlon64 dual core CPU run-

ning at 2GHz and 2GB of memory. Additionally, some

experiments make use of S3 for storage.

The application we use for our evaluation is a k-means

clustering analysis. We use the k-means clustering im-

plementation in MapReduce that is available as part of

the Apache Mahout package. The input to the job con-

sists of 40 million randomly generated points, summing

up to 32GB of data. Additionally, we use a set of 10

thousand reference points for the clustering process. For

this application, the large EC2 instances we used and our

local cluster nodes both achieved an average processing

throughput of 0.44GB/h per node. Our approach can be

applied to other applications and resources as well when

their characteristics are specified.

Unless mentioned otherwise, the network bandwidth

between the customer and the cloud is set to 16MBit/s

(2MB/s) and the client has a predetermined deadline for

job completion of 6 hours. In all experiments, the input

data and the Hadoop Jobtracker were located on a node in

our local cluster, and the output was also downloaded to

our local cluster. We used the prices of Amazon’s AWS

as of July 2011. For tracking the cost of cloud resource

usage in each experiment, we instrumented our prototype

implementation to account for all operations over cloud

resources. We chose this internal accounting approach

over Amazon’s accounting because it enabled us to track

the per experiment cost and at a much finer granularity.

6.2 Savings in Public Clouds

First we evaluate Conductor’s ability to deploy an exe-

cution plan that realizes potential cost and time savings

in a scenario where the customer deploys a computation

entirely on the cloud.

In this scenario, the customer has several options for

deploying the computation using AWS, which we test in

our experiments:

• Hadoop S3. Upload data to S3 and then instruct a

Hadoop cluster running on EC2 instances to access

data directly from S3.

• Hadoop upload first. Upload data directly to sin-

gle EC2 instance running HDFS. Upon completion,

start more EC2 instances to join the cluster and use

HDFS for inputs and outputs.

• Hadoop direct. Set up the HDFS cluster on the

client side, and instruct the EC2 instances to read

and write to this HDFS cluster.

Interestingly, all of these options are described in the

Hadoop or AWS documentation, which further strength-

ens our motivation that there often does not exist a clear

choice of how to deploy computations in the cloud.

Figure 5 shows the monetary costs for different de-

ployment options and Figure 6 shows their overall job

completion time. The first four bars compare Conduc-

tor’s cost and performance to the three deployment op-

tions listed before. In this case, Conductor determined it

should only use EC2 instances for storage, and the ade-

quate number of EC2 instances to be 16. Therefore, in

the Hadoop direct run, we also use 16 EC2 instances.

For the two configurations with a distinct upload phase

before processing, we use 100 EC2 instances. In the run-
time comparison in Figure 6, streamed processing de-

notes the combined time required for processing the data

and retrieving it from the respective storage as it is con-

sumed, without a distinct upload phase.

From these results we make two main observations.

First, that the total cost and completion time can vary sig-

nificantly between the different deployment options. For

certain deployment options (e.g., Hadoop S3) the service

pricing models can result in an unexpectedly high total

cost. In the case ofHadoop S3, the actual processing was

finished in little more than one hour, but two full hours

are charged for each allocated instance, resulting in a to-

tal cost roughly two times higher than for the other op-

tions. The second observation we make is that Conduc-

tor succeeded both in obtaining a cost that is very close

to the cheapest alternative, and in meeting the required

completion deadline. Note that the fact that Conductor

only performs slightly worse than the fastest alternative

is a positive outcome, given that we are comparing the

performance of our implementation mostly driven by a

single graduate student with Hadoop’s highly optimized

production code. We analyze the main overheads intro-

duced by Conductor later in the evaluation.

Another advantage of Conductor is that it not only

helps determine the best deployment scheme but also

helps choose the right deployment parameters, which

may be even more difficult to set than just determining,

e.g., whether to use S3 or not. To show this, we validate
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Figure 6: Job completion time of various deployment op-

tions solely in the cloud.

whether Conductor made a good decision regarding the

number of EC2 instances to reserve. Therefore, we reran

the experiment with five more and five less EC2 instances

than those chosen by Conductor (11 and 21 instances, re-
spectively). The results are shown in Figure 7. These

show that slightly increasing and slightly decreasing the

number of EC2 instances that are allocated leads to ei-

ther a cost increase or missing the deadline, respectively.

This validates our points that understanding the charac-

teristics of all possible deployment options and making

the right choice for a particular application scenario can

be challenging, and that Conductor performs this choice

automatically while incurring in modest overhead.

While this first experiment already shows some chal-

lenges in deciding which cloud services to use, Conduc-

tor still ends up resorting to one of the three deployment

possibilities we had considered initially. In the next ex-

periment we intentionally designed an even more chal-

lenging scenario where multiple different services have

to be used at different times to minimize the monetary

cost for the execution. To highlight this, we slightly

modify the job parameters to use an upload bandwidth

of 8MBit/s and a smaller set of reference points such that

large EC2 instances process the input at a rate of 6.2GB/h

per node.

The experimental results in Figure 8 show that neither

storage option yields optimal results when used alone.

Instead, the minimal cost is achieved when a mix of S3

and EC2 storage is used for storing different parts of the

data at different points in the execution. In this particular

example, Conductor first uploads roughly half of the in-

 0

 10

 20

 30

 40

 50

11 16 21

c
o

s
t 

[U
S

$
]

nodes

 0

 5000

 10000

 15000

 20000

 25000

 30000

11 16 21

ru
n

ti
m

e
 [

s
]

nodes

deadline

Figure 7: Monetary cost and runtime impact of deviat-

ing from the optimal deployment scheme in a cloud-only

scenario.

put data to the S3 storage service, and later the remaining

data is uploaded to EC2. Once an EC2 node is allocated,

it starts processing the input data that was previously up-

loaded to S3 and the data is uploaded in parallel to an

EC2 node. This utilization plan, in contrast to using only

S3 or EC2 for storage, makes the best use of the EC2

nodes and the S3 service to achieve a lower monetary

cost. This non-obvious resource utilization plan, which

would be difficult to determine manually, is found and

deployed automatically by Conductor, thanks to both the

modelling and optimization phase and the use of resource

abstraction layers that allow for seamlessly using the two

types of storage in combination.

While Figure 8 only shows modest cost savings when

compared to one of the simpler options (storing all data

on S3), we point out that the cost savings for a combined

solution can be much higher, since (1) the percentage

gains we illustrate in the experiment increase with the

input data size, and (2) these effects are also sensitive to

variations in the pricing structure. Since we did not con-

sider larger data sizes in our experiments due to financial

and experiment duration constraints, we determine the

potential cost savings analytically, by assuming a differ-

ent input size and pricing structure. The analytic results

in Figure 9 show what happens when we assume S3 stor-

age costs are ten times higher and scale up the input size

to 64, 128, and 256 GB. These results show that hitting

the sweet spot for utilizing different cloud services has

an increasing impact on monetary cost as data size in-

creases, reaching savings of about 1/3 of the cost for an

input of 256 GB.

Note that the optimal fraction of data to store on EC2

when considering 32GB of input data is higher than

the optimal fraction when considering larger input data

sizes. This effect results from the accounting granu-

larity of EC2 instances: since allocated node-hours are

rounded up for billing, Conductor does not immediately

shut down allocated instances after the computation is

finished, since they are billed until the next full hour any-

way. Instead, these instances are used for storage. For

larger input data sizes, these rounding effects have much

less impact and instances are mostly used for computa-

tion and storage simultaneously.
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data is stored. A fraction of 1 (0) stored on EC2 denotes

that all input data is stored on the virtual hard disks of

EC2 nodes (on the S3 storage service). Conductor de-

termined that in this scenario costs are minimized when

roughly 50% of the data is stored on EC2.

6.3 Savings in Hybrid Clouds

The next experiment determines whether Conductor can

realize potential cost and time savings in a scenario

where the cloud customer can make use of a local clus-

ter for some of the processing, but this capacity is not

enough to meet the prescribed deadline. This local clus-

ter is modeled as just another provider (which is the user

himself) that offers a single instance type (which is the

machine type in the local cluster). To account for the

limited size of the local cluster, we enforce a constraint

in our model that limits the number of instances that can

be rented.

In this scenario, Conductor determined that data

should be stored on EC2 instances, and decided that the

right number of EC2 instances to allocate was 16 to meet

the deadline of 4 hours. In Figure 10 we show a cost

and runtime comparison with an HDFS-based deploy-

ment that also allocated 16 instances. The results show

that, even if the user managed to guess the right number

of instances to allocate, the results that are obtained are

very similar to the ones achieved by Conductor. Further-

more, Figure 11 shows what happens if the user under-

 0

 5

 10

 15

 20

 25

Conductor Hadoop

c
o

s
t 

[U
S

$
]

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Conductor Hadoop

u
p

lo
a

d
 a

n
d

p
ro

c
e

s
s

 t
im

e
 [

s
]

Figure 10: Monetary cost and runtime for running the

job with Conductor and Hadoop when leveraging local

resources.

 0

 5

 10

 15

 20

 25

 30

 35

 40

11 16 21

c
o

s
t 

[U
S

$
]

nodes

 0

 5000

 10000

 15000

 20000

11 16 21

ru
n

ti
m

e
 [

s
]

nodes

deadline

Figure 11: Monetary cost and runtime impact of devi-

ating from the optimal deployment scheme in a hybrid

scenario.

estimates or overestimates the number of EC2 instances

to allocate. Again, this could lead to either an increased

cost, or to missing the deadline.

6.4 Adapting to Performance Variations

In this section we present our experimental results to

demonstrate how Conductor can adapt to dynamics dur-

ing application runs.

In this experiment we wrongly assume a processing

speed of 1.44GB/h per node when the actual speed is

0.44GB/h. Such a difference between predicted and ac-

tual processing rates may result from wrong estimates

by the user, but also due to the heterogeneity in cloud

node performance [20]. Figure 12 plots the number

of allocated EC2 instances and total completed tasks

throughout the job execution. In the initial deployment

plan, Conductor used 3 EC2 nodes in the first hour of

execution and 5 EC2 nodes from the second hour on.

This number of nodes would be sufficient to finish the

job if the processing speed per node would indeed be

1.44GB/h. After one hour, the job progress monitoring

revealed the misprediction, which caused Conductor to

update the model and recompute the deployment plan.

The new plan is unchanged for the first hour (correspond-

ing to the past execution) but uses 16 EC2 nodes in the

second hour and then 18 EC2 nodes from the third hour

on. With this updated deployment plan, the job can be

finished before the deadline even though the initial plan

would have led to missing that deadline. Similarly to per-

formance over-estimation, Conductor can react to under-

estimation by adapting the deployment and reducing the

number of EC2 instances to use.
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Figure 12: Job progress and Node allocation with initial

and updated deployment plan.

6.5 Adapting to Dynamic Pricing

Next, we evaluate through simulations the monetary sav-

ings from integrating Conductor with spot markets.

To drive spot market prices in these experiments we

initially intended to use only the EC2 spot price history

fromAWS. However, we realized that the history of these

spot prices did not exhibit any diurnal patterns, as can be

seen in Figure 13. As more providers enter the market

and spot markets attract more customers, we expect the

price to more closely reflect data-center utilization and

resource demand, and hence become more predictable.

Therefore, we decided to include a second data set in our

evaluation for which history can be used as a reasonable

predictor. For that purpose, we use the spot price history

from an electricity market. This data had to be slightly

adapted, namely to make values non-negative (electricity

spot prices can be negative), and also to keep the values

below the normal price of EC2 instances.

In Figure 14 we present our simulation results for cost

savings with Conductor when using spot instances in dif-

ferent settings. In regular, only regular instances (with-

out dynamic pricing) are used. In awswe use the original

spot price history for Amazon’s EC2 instances, while in

el we use the synthetic history generated from electricity

prices. -opt denotes the cost in an optimal deployment

case where Conductor can exactly predict spot prices. In

the -pX settings Conductor uses a simple predictor that

uses the past X days of spot pricing history to derive a

price prediction. With -p0, the predictor assumes the cur-

rent spot price will not change.

A first observation from these results is that allocating
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Figure 13: Spot price histories for AWS EC2 instances

of type m1.large

EC2 instances on the spot market can reduce the total

job cost compared to allocating regular instances. The

average cost savings in both settings range between 50%

to 60% – a significant reduction.

A second observation is that the use of a trivial predic-

tor (p0) is highly effective in both spot markets, achiev-

ing close to optimal cost savings. As the predictor be-

comes more sophisticated by incorporating more infor-

mation from the recent past, there are slight improve-

ments when using the electricity prices, namely in re-

ducing the standard deviation of the final cost. Thus in

this case the planner can efficiently leverage historic spot

data. However, when considering the less regular AWS

trace of spot prices, the use of more information from the

recent past causes the total price and the standard devia-

tion to go up. This is because there end up existing more

situations where the plan decides to wait for a better spot

price and at deployment time ends up waiting in vain.

6.6 Overheads

Storage layer performance. We compare the perfor-

mance of the storage layer offered by Conductor to other

storage options in Hadoop, namely HDFS and Ama-

zon’s S3. We measure throughput in our experiments,

since this is the most important performance metric for

MapReduce workloads. We do so by copying 32GB of

data (consisting of 64MB files) to the corresponding stor-

age service. To allow for a fair comparison to S3, we ran

the measurements on large EC2 instances, where the net-

work bandwidth to S3 is higher, instead of on our cluster

nodes.
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Figure 14: Average total job cost in different simulations.

Conductor’s storage service and HDFS were config-

ured with a replication factor of three, and all four nodes

were either used as datanodes for HDFS or ran a stor-

age slave for Conductor’s storage. In all cases, the data

was read from an Elastic Block Store volume. We con-

sidered two options for copying the data onto S3: using

the integrated S3 support of Hadoop and using s3cmd,

and a dedicated S3 command line client. The reason for

also considering a separate S3 client is that we found a

significant performance gap between these two options

that cannot be attributed to the S3 storage service, but

rather to client implementation specifics: the S3 client in-

tegrated into our version of Hadoop used SSL data trans-

fer to S3 by default, which significantly decreased per-

formance.

The results presented in Figure 15 show that the

highest throughput was achieved with Hadoop’s HDFS.

Conductor’s storage service exhibits roughly 25% lower

throughput than HDFS in our experiments and performs

comparably to S3 when using s3cmd. The measured

throughput of S3 when using Hadoop directly is signifi-

cantly lower than using s3cmd.

The high performance of HDFS was not particularly

surprising to us, as HDFS has been actively developed

for several years and significant effort has been put into

performance optimization. In contrast, in our prototype

the main focus was an abstraction layer that could utilize

several other storage services. Therefore we believe we

introduce an acceptable throughput overhead.

Modelling and Solving. Creating a linear program-

based model consisting of all possible actions that could

be taken for a MapReduce program and determining an

optimal plan are presumably expensive operations. How-

ever, in our prototype it turned out that the model cre-

ation is very cheap. For all scenarios we considered in

our evaluation, the model creation took less than 1 sec-

ond on a desktop machine with an Intel Core 2 Duo CPU

at 3GHz and 4GB RAM. Computing an optimal execu-

tion plan from such a model was significantly more ex-
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Figure 16: Model solving time for different input sizes

and available resources.

pensive. In our experiments, we used the CPLEX 11.2.1

optimizer for that purpose. We ran CPLEX on a node

equipped with 8GB of RAM and an AMD Opteron dual

core CPU running at 2.6GHz. We configured CPLEX to

terminate when a solution is found that is at most 1% off

the optimal solution.

Figure 16 depicts the solving time for various input

sizes and different resources that are available to run the

job. EC2-only means that we assume to have only EC2

available for both computation and storage. In S3+EC2

we also allow the use of the S3 storage service and in

EC2+S3+local we can additionally use a local cluster for

storage and computation. The results show that the solv-

ing times are acceptable, and that adding more features

to the model roughly doubles the solving time. Further-

more, we can see that the input data size directly influ-

ences solving time. This is because the input size has an

impact on the model size (since the input size, together

with processing speed and upload speed, gives a lower

bound on execution steps to include in the model), which

then implies an increase on solving time.

7 Related Work

Our work builds on contributions from several different

areas, which we briefly survey.

Resource Management. Automatic resource manage-

ment has been studied in other contexts. For exam-

ple, operating systems automatically allocate resources;

cluster resource management systems have been pro-

posed [3, 7]; and resource management in Grid comput-

ing has also been studied [10, 15]. In cloud computing,
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resource management presents new challenges that are

not addressed by previous work. Namely, as opposed to

clusters and grids, a cloud computation has access to in-

finite resources but must pay an increased marginal cost

for each resource it uses. Our system takes these distin-

guishing features into account, and modeling them is one

of the primary challenges of this work. A recently pro-

posed system called Mesos [6] allows different cluster

computing frameworks to share a static commodity clus-

ter to improve utilization and reduce data redundancy.

Mesos employs a scheduling mechanism in which re-

sources are offered to the different frameworks, and each

framework can decide which resources to use and how

to use them. Besides targeting a dynamic cloud set-

ting, Conductor differs from Mesos by considering job

deployment at task-level granularity, taking into account

user-provided optimization goals and the costs of the on-

demand cloud resources.

Scheduling. There is a significant amount of research

in scheduling jobs in the context of distributed execution

frameworks. Quincy [7] is a fair scheduler for scheduling

concurrent distributed jobs with fine-grain resource shar-

ing for Dryad. Late scheduler [20] overcomes the per-

formance degradation due to straggler tasks in Hadoop

for heterogeneous environments. Delay scheduling [19]

strikes a balance between data locality and fairness by

employing a lazy approach for scheduling jobs to max-

imize the locality. The most fundamental comparison

point is that Conductor must consider the dynamic al-

location of cloud resources as an additional dimension in

the scheduling problem, while the aforementioned work

can simply assume a static set of resources.

Optimization. Many systems require decisions to be

made at runtime from a large set of possible alternatives.

Therefore, optimization techniques have been employed

to select the best choice dynamically. For example, Rhi-

zoma [18] proposed automating resource allocation for

generic applications. Rhizoma uses a specification of re-

sources and maximizes the utility for an application. Al-

though Rhizoma uses cloud computing as motivation, the

application they describe is a publish-subscribe system

deployed on PlanetLab, where the challenge is to find

well-connected, lightly loaded nodes. Unlike Rhizoma,

our proposal is geared towards deploying computations

on the cloud, without requiring the specification of appli-

cation resource requirements. We model the problem of

cloud resource allocation as a linear program. Modeling

other problems in such a way has been done in a vari-

ety of fields including systems research [8]. Similarly, a

recent proposal [14] seeks to shift computations among

multiple data centers based on changing electricity prices

in the spot market. Conductor’s approach is related, but

addresses a different problem of making the best possi-

ble use of a diverse set of cloud resources for a specific

type of computation, for which a runtime model can be

derived automatically. Our own short position paper [16]

described high level ideas, which are incorporated in this

work, but did not present a complete system.

Hybrid deployment and spot markets. With the ad-

vent of public and private cloud infrastructures, there is a

demand to utilize both of them. CloudWard Bound [5]

makes a case for the hybrid deployment of multi-tier

enterprise applications where the infrastructure is partly

hosted on-premise, and partly in the cloud. For a given

application, CloudWard Bound can suggest deployment

plans that leverage cloud resources for some applica-

tion components, obey user-provided privacy policies

and satisfy application latency requirements. In contrast,

Conductor focuses on a distributed bulk data-processing

framework where it can manage the deployment of pro-

cessing tasks for individual jobs. Conductor’s deploy-

ment plans need to consider the varying resource require-

ments jobs can have throughout their execution, which

is less relevant in the context of long-term deployments

of enterprise applications that CloudWard Bound targets.

Furthermore, data privacy is not the focus of Conductor.

Dynamic allocation of spot instances for MapReduce

computations has also been proposed recently [1, 11]. In

contrast, we focus on the broader problem of trying to

incorporate multiple providers of potentially diverse re-

sources (both from regular and spot markets) to deter-

mine a globally optimal resource allocation plan.

Resource exploration. The availability of multiple ma-

chine types raises the question of how the different

machine characteristics will impact application perfor-

mance. Accurately predicting application performance

when low-level characteristics are known is a challeng-

ing problem that has been studied in the past [4]. We

consider the problem of resource exploration to be com-

plementary to our work; our approach could directly ben-

efit from resource exploration techniques since we can

leverage them to automatically predict the performance

characteristics of different resource types.

8 Conclusion

In this paper we motivated and presented the design

of Conductor, a system that assists cloud customers in

choosing the right set of resources to use when running

cloud computations. Conductor takes the burden of man-

ual choice and optimization away from the customer, by

automating the selection process and providing mecha-

nisms to utilize different services seamlessly. This au-

tomation and flexibility allows the customer to state high

level goals about price or performance, rather than hav-

ing to make low level resource selection decisions.

Conductor requires users to specify simple high level

goals, and a small amount of information about the

MapReduce computation, and then uses optimization
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tools to determine an execution plan. This execution

plan is deployed, and then adapted, if any of the informa-

tion used in computing the plan changes at runtime. Our

evaluation shows that Conductor is able to find and de-

ploy non-obvious execution plans, while incurring only

a modest overhead.

Conductor is an important first step in automating

cloud resource selection, but much work remains in gen-

eralizing the set of supported applications, increasing the

adaptivity to changing conditions, and providing power-

ful abstractions for computation that cover a wide range

of services.
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