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Abstract

Classical results on secure multi-party computation (MPC) imply that fully secure computa-
tion, including fairness (either all parties get output or none) and robustness (output delivery is
guaranteed), is impossible unless a majority of the parties is honest. Recently, cryptocurrencies
like Bitcoin where utilized to leverage the fairness loss in MPC against a dishonest majority.
The idea is that when the protocol aborts in an unfair manner (i.e., after the adversary receives
output) then honest parties get compensated by the adversarially controlled parties.

Our contribution is three-fold. First, we put forth a new formal model of secure MPC
with compensation and we show how the introduction of suitable ledger and synchronization
functionalities makes it possible to express completely such protocols using standard interactive
Turing machines (ITM) circumventing the need for the use of extra features that are outside
the standard model as in previous works. Second, our model, is expressed in the universal
composition setting with global setup and is equipped with a composition theorem that enables
the design of protocols that compose safely with each other and within larger environments where
other protocols with compensation take place; a composition theorem for MPC protocols with
compensation was not known before. Third, we introduce the first robust MPC protocol with
compensation, i.e., an MPC protocol where not only fairness is guaranteed (via compensation)
but additionally the protocol is guaranteed to deliver output to the parties that get engaged
and therefore the adversary, after an initial round of deposits, is not even able to mount a denial
of service attack without having to su↵er a monetary penalty. Importantly, our robust MPC
protocol requires only a constant number of (coin-transfer and communication) rounds.

1 Introduction

Secure multiparty computation (MPC) enables a set of parties to evaluate the output of a known
function f(·) on inputs they privately contribute to the protocol execution. The design of secure
MPC protocols, initiated with the seminal works of Yao [Yao82] and Goldreich et al. [GMW87] has
evolved to a major e↵ort in computer security engineering. Beyond privacy, a secure MPC protocol
is highly desirable to be fair (either all parties learn the output or none) and robust (the delivery of
the output is guaranteed and the adversary cannot mount a “denial of service” against the protocol).
Achieving fairness and robustness in a setting where there is an arbitrary number of corruptions,
as desirable as it may appear, is prohibited by strong impossibility results stemming from the work
of Cleve [Cle86] who showed that coin-flipping is infeasible in any setting where there is no honest
majority among parties that execute the protocol. These impossibility results, combined with the
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importance of the properties that they prevent, strongly motivate the exploration of alternate –
yet still realistic – models that would enable fair and robust MPC protocols.

With the advent of Bitcoin [Nak08] and other decentralized cryptocurrencies, the works of
[ADMM14a,ADMM14b,BK14,KB14] showed a new direction for circumvention of the impossibility
results regarding the fairness property: enforcing fairness could be achieved through imposing
monetary penalties. In this setting a breach of fairness by the adversary is still possible but it
results in the honest parties collecting a compensation in a way that is determined by the protocol
execution. At the same time, in case fairness is not breached, it is guaranteed that no party loses
any money (despite the fact that currency transfers may have taken place between the parties).
The rationale here is that a suitable monetary penalty su�ces in most practical scenarios to force
the adversary to operate in the protocol fairly.

While the main idea of fairness with penalties sounds simple enough, its implementation proves
to be quite challenging. The main reason is that the way a crypto-currency operates does not
readily provide a trusted party that will collect money from all participants and then either return
it or redistribute it according to the pre-agreed penalty structure. This is because crypto-currencies
are decentralized and hence no single party is ever in control of a money transfer beyond the owner
of a set of coins. The mechanism used in [ADMM14a, ADMM14b, BK14, KB14] to circumvent
the above problem is the capability1 of the Bitcoin network to issue transactions that are “time-
locked”, i.e., become valid only after a specific time and prior to that time may be superseded
by other transactions that are posted in the public ledger. Superseded time-locked transactions
become invalid and remain in the ledger without ever being redeemed.

While the above works are an important step for the design of MPC protocols with properties
that circumvent the classical impossibility results, several critical open questions remain to be
tackled; those we address herein are as follows.

Our Results. Our contribution is three-fold. First, we put forth a new formal model of secure
MPC with compensation and we show how the introduction of suitable ledger and synchronization
functionalities makes it possible to express completely such protocols using standard interactive
Turing machines (ITM) circumventing the need for the use of extra features that are outside the
standard model (in comparison, the only previous model [BK14] resorted to specialized ITM’s that
utilize resources outside the computational model2). Second, our model is equipped with a compo-
sition theorem that enables the design of protocols that compose safely with each other and within
larger environments where other protocols with compensation take place; a composition theorem
for this class of protocols was not known before and requires a new framework for synchronization
in the global UC setting that can be of independent interest. Third, we introduce the first robust
MPC protocol with compensation, i.e., an MPC protocol where not only fairness is guaranteed (via
compensation) but additionally the protocol is guaranteed to deliver output to the parties that get
engaged and therefore the adversary is not even able to mount a denial of service attack without
having to su↵er a monetary penalty. In more details we have the following.

We put forth a new model that utilizes two ideal functionalities and expresses the ledger of
transactions and a clock in the sense of [KMTZ13] that is connected to the ledger and enables

1Note that this feature is currently not fully supported.
2An ITM with the special features of “wallet” and “safe” was introduced in [BK14] to express the ability of ITM’s

to store and transfer “coins.” Such coins were treated as physical quantities that were moved between players but
also locked in safes in a way that parties were then prevented to use them in certain ways (in other words such safes
were not local but were a↵ected from external events).
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parties to synchronize their protocol interactions. Our ledger functionality enable us to abstract
all the necessary features of the underlying cryptocurrency. Contrary to the only previous
formalization approach [BK14,KB14], our modeling allows the entities that participate in an
MPC execution to be regular interactive Turing machines (ITM) and there is no need to equip
them with additional physical features such as “safes” and “locks.” Furthermore the explicit
inclusion of the clock functionality (which is only alluded to in [BK14,KB14]) and a synchronous
framework for protocol design given such clock reveal the exact dependencies between the ledger
and the clock functionality that are necessary in order for MPC with compensation protocols to
be properly described. We express our model within a general framework that we call Q-fairness
and robustness and may be of independent interest as it can express meaningful relaxations of
fairness and robustness in the presence of a global ideal functionality.

We prove a composition theorem that establishes that protocols in our framework are secure in
a universally composable fashion. Our composition proof treats the clock and ledger function-
alities as global setups in the sense of [CDPW07,CJS14]. We emphasize that this is a critical
design choice: the fact that the ledger is a global functionality ensures that any penalties that
are incurred to the adversary that result to credits towards the honest parties will be globally
recognized. This should be contrasted to an approach that utilizes regular ideal functionalities
which may be only accessible within the scope of a single protocol instance and hence any
penalty bookkeeping they account may vanish with the completion of the protocol. Providing
a composition theorem for MPC protocols with compensation was left as an open question
in [BK14].

We finally present a new protocol for fair and robust secure MPC with compensation. The
robustness property we prove guarantees that once the protocol passes an initial round of
deposits, parties are guaranteed to obtain output or be compensated. This is in contrast
to fair MPC with compensation [ADMM14a, ADMM14b, BK14, KB14] where the guarantee
is that compensation takes place only in case the adversary obtains output while an honest
party does not. To put it di↵erently, it is feasible for the adversary to lead the protocol to a
deadlock where no party receives output however the honest parties have wasted resources by
introducing transactions in the ledger. We remark that it is in principle possible to upgrade
the protocols of [ADMM14a, ADMM14b, BK14, KB14] to the robust MPC setting by having
them perform an MPC with identifiable abort, cf. [GMW87, IOZ14], (in such protocol the
party that causes the abort can be identified and excluded from future executions). However
even using such protocol the resulting robust MPC with compensation will need in the worst
case a linear number of deposit/communication rounds in the number of malicious parties.
Contrary to that, our robust protocol can be instantiated so that it requires a constant number
of deposit/communication rounds independently of the number of parties that are running
the protocol. Our construction uses time-locked transactions in a novel way to ensure that
parties do progress in the MPC protocol or otherwise transactions are suitably revertible to
a compensation for the remaining parties. The structure of our transactions is quite more
complex than what can be presently supported by bitcoin; we describe in high-level how our
protocol can be implemented via Ethereum3 contracts.

Related work. In addition to the previous works [ADMM14a,ADMM14b, BK14,KB14] in fair
MPC with compensation, very recently, Ru�ng et al. [RKS15] address equivocation issues via
penalty mechanism, and design decentralized “non-equivocation” contracts.

3
http://www.ethereum.org.
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There are a number of other works that attempted to circumvent the impossibility results for
fairness in the setting of dishonest majority by considering alternate models. Contrary to the
approach based on cryptocurrencies these works give an advantage to the protocol designer with
respect to the adversarial strategy for corruption. For instance, in [GKM+13] a rational adversary
is proposed and the protocol designer is privy to the utility function of the adversary. In [ALZ13] a
reputation system is used and the protocol designer has the availability of the reputation information
of the parties that will be engaged in the protocol. Finally in [GGJ+15] a two tiered model is
proposed where the protocol designer is capable of distinguishing two distinct sets of servers at the
onset of the computation that di↵er in terms of their corruptibility.

Global setups were first put forth in [CDPW07] motivated by notion of deniability in crypto-
graphic protocols. In our work we utilize global functionalities for universal composition (without
the deniability aspect) as in [CJS14] where a similar approach was taken for the case of the use of
the random oracle as a global setup functionality for MPC.

Fairness was considered from the resource perspective, cf. [BN00, Pin03, GMPY06], where it
is guaranteed due to the investment of proportional resources between the parties running the
protocol, and the optimistic perspective, cf. [ASW97, ASW98, CC00], where a trusted mediator
can be invoked in the case of an abort. We finally note that without any additional assumptions,
due to the impossibility results mentioned above, one can provide fairness only with certain high
probability that will be a↵ecting the complexity of the resulting protocol, see, e.g., [GK09] and
references therein.

In concurrent and independent work, Kosba et al [KMS+15] propose a framework for composable
protocols based on a ledger. and explore a notion of fairness with compensation. Our work goes
beyond fairness and provides a treatment of robustness. Furthermore we provide a synchronous
framework with a global clock (of independent interest) that uses the ledger as a global setup to
achieve fairness and robustness and we prove a composition theorem for our framework.

Organization. We start with preliminaries in Section 2. Then in Sections 3 and 4, we lay down
a formal framework for designing composable fair protocols in the presence of globally available
trusted resources. In Section 3, we introduce two shared functionalities Ḡ

clock

and Ḡ
ledger

respec-
tively to formulate the trust resources that are provided by Bitcoin-like systems. Subsequently, in
Section 4, we put forth a new formal framework for secure MPC with compensation: we introduce
the notions of Q-fairness, and Q-robustness via wrapper functionalities; we then consider the real-
ization of such wrapper functionalities, and further provide a composition theorem. In Section 5,
we present a protocol in our new framework to achieve our new notions of fairness and robustness.
Implementing our protocol within Ethereum is discussed in the section 6. Proofs of our theorems
are presented in Appendix A.

2 Preliminaries

Throughout the paper we assume an (often implicit) security parameter denoted as . For a number
n 2 N we denote by [n] the set [n] = {1, . . . , n} and denote by 0n (resp. 1n) the all-zero (resp.
all-ones) string of length n. For a randomized algorithm Alg we denote by Alg(x; r) the output of
Alg on input x and random coins r. To avoid always explicitly writing the coins r, we shall denote

by y
$ Alg(x) the operation of running Alg on input x (and uniformly random coins) and storing
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the output on variable y. We write f : X
$! Y to denote a probabilistic function with domain X

and range Y . We use the standard definition of negligible and overwhelming (e.g., see [Gol01]).
For a multiparty function f : ({0, 1}⇤[{�})n ! ({0, 1}⇤[{?})n for parties in P = {p1, . . . , pn}

and for a set P ✓ P, we denote by f ||P 0| the restriction of f to the parties in P 0, namely, if each
p
i

2 P 0 has input x
i

, then the output of f ||P 0| is the output of f evaluated on inputs x
i

for each
p
i

2 P 0 and x
j

= � for each p
j

2 P \ P 0.
We describe our results in the extension of Canetti’s UC framework [Can01] to allow for global

setups, known as GUC [CDPW07]. As argued above, this is the natural model to consider execution
in the present of a globally synchronized clock and a ledger/bulletin board. Consistently with the
(G)UC notation, we denote local (UC) functionalities by calligraphic letters, as in F , and add a
bar to denote global functionalities, as in Ḡ. Furthermore, we denote by �, the dummy protocol.
Note that in GUC � might receive inputs for its (UC) hybrids and/or for the global setup, where
an implicit mechanism is assumed to allow the environment to define the intended recipient of each
submitted input to �. For a protocol ⇡, a (local) UC functionality F and a global setup Ḡ we

denote by Exec

Ḡ,F
⇡,A,Z the output of the environment Z in an execution of ⇡ having hybrid access

to Ḡ and F in the presence of adversary A. We assume some familiarity with the UC and/or the
GUC framework.

Correlated Randomness as a Sampling Functionality Our protocols are in the correlated
randomness model, i.e., they assume that the parties initially, before receiving their inputs, receive
appropriately correlated random strings. In particular, the parties jointly hold a vector ~R =
(R1, . . . , Rn

) 2 ({0, 1}⇤)n, where P
i

holds R
i

, drawn from a given e�ciently samplable distribution
D. This is, as usual, captured by giving the parties initial access to an ideal functionality FD

corr

,
known as a sampling functionality, which, upon receiving a default input from any party, samples
~R from D and distributes it to the parties (cf. Figure 1 ). Hence, a protocol in the correlated
randomness model is formally an FD

corr

-hybrid protocol. Formally, a sampling functionality FD
corr

is parameterized by an e�ciently computable sampling distribution D and the (ID’s of the parties
in) the player set P.

Functionality FD
corr

Functionality FD
corr

interacts with a set of parties P = {P1, . . . , Pn}, the adversary S and the environ-
ment Z. The functionality is parameterized with a distribution sampler D.

Upon receiving (request, sid) from any party or the adversary, set ~R = (R1, . . . , Rn) D and for
each Pi 2 P send (request, sid, Ri) to Pi (or to the adversary if Pi is corrupted).

Figure 1: The correlated randomness functionality.

3 Model

In this section and next section, we lay down a formal framework for designing composable fair
protocols in the presence of globally available trusted resources. we introduce in the current section,
shared (in the sense of the GUC model [CDPW07]) functionalities Ḡ

clock

and Ḡ
ledger

respectively
to formulate the trust resources that are provided by Bitcoin-like systems. We stress that these
two functionalities can be thought of as a single global functionality and in our description are
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allowed to communicate. Nonetheless, we choose to describe then as two separate functionalities,
because as we argue, the clock Ḡ

clock

can also be used alone (without Ḡ
ledger

) to naturally model
synchronous computation with a global notion of time.

3.1 Global Clock Functionality and Synchronous Protocol Executions

In this section we describe how to model execution of synchronous protocols that can access a
global-clock setup. This is an adaptation of the original idea by Katz et al. [KMTZ13], where a
clock was modelled as UC functionality that is local to the calling protocol, and is of independent
interest as a model for the design of synchronous protocols. In addition to being a more realistic
model for capturing time in UC, the notion of the global clock allows for synchronous execution of
any protocols that choose to use it.

Before defining our clock, we recall the reader the clock and model of synchronous execution
from [KMTZ13] and then highlight the main di↵erences. The clock in [KMTZ13] is a UC func-
tionality that keeps an indicator bit b originally set to 0. The parties can send to the clock special
“update” messages, and as soon as the clock sees that all honest parties agree to update the state
is sets b := b � 1. The clock then continues to receive “update” messages, and again, as soon as
the clock sees that all honest parties have requested to update after the last switch of the bit b
it switches it again. To make sure that the adversary is given enough activations, whenever the
clock receives an “update” message from the honest party it notifies the adversary. In addition to
“update” messages, the parties can send the clock a “read” message which the clock replies with
the current value of b.

The use of such a clock to keep a round structure is as follows: Whenever a party observes
a switch of the bit b, it interprets it as a round advance. Thus, a synchronous protocol with
access to such a clock is executed as follows. In each round, every party performs all its protocol
instructions for the current round, and at the end sends an “update” message to the clock; from
the point where the party updates (its round has finished) it queries (”reads”) the clock with each
following activation to detect when all parties have also finished their rounds (i.e., when the value
of b switches). Once this happens, the party starts its next protocol round.

An issue with the above clock is that in order to execute two protocols using the same clock we
need to make use of the joint-state UC theorem [CR03]. Instead, in this work we take an alternative
modelling approach and define a shared clock functionality Ḡ

clock

. This functionality can be viewed
as a shared version of the clock functionality which was defined by Katz et al. [KMTZ13]. The
main intuition behind our clock functionality is that all honest parties can use it to ensure that they
proceed with their rounds at the same pace. On a hight level, the clock operates as follows: any
party that wishes to be synchronised with the global clock can send (register, sid) to the clock
and subsequently it can send it (clock-update, sid) commands, where sid is Ḡ

clock

’s identifier.
The clock stores a global-time counter ⌧ (initially set to 0), and as soon it is instructed by all
currently honest parties and by associated shared functionalities4 to advance the time (i.e., receives
(clock-update, sid) it increases its state-counter ⌧ by 1.

The main di↵erence between our formulation and that by Katz et al. [KMTZ13] is that in [KMTZ13]
the clock is a UC functionality which is local to a single protocol and waits for an “update” message
by every honest party to advance its state; however, here we intend to have the clock to be ac-

4Certain global functionalities, such as the ledger defined in the following section, might depend on time and,
therefore, need to be synchronized with the clock.
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cessed globally and used by arbitrary protocols. Therefore we give the power to the environment to
define the clock’s speed. Indeed, if there are no associated shared functionalities, the environment
can instruct dummy parties to send inputs (clock-update, sid) to Ḡ

clock

and advance the clock
whenever it wishes. An additional di↵erence is that in [KMTZ13], the clock state is binary while
here, in our formulation, the state ⌧ is a positive integer which indicates the time that has passed
from point zero (i.e., from the beginning of time).

Next, we elaborate and explain how to use the global clock to design synchronous protocols. We
remark that the model of synchronous protocol execution of [KMTZ13] cannot be used in our setting
as the environment can make the clock advance before honest parties have time to take actions in
any round. Indeed, in the ideal setting the environment can keep sending (clock-update, sid) to
the dummy parties, which will forward it to the clock making its state to advance; to make sure that
the protocol is indistinguishable, honest parties would have to do the same, thereby giving away
the activations that they need for executing their protocol instructions such as send and receive
operations.5 This might, at first, seem like a bug but it is in fact a feature. It captures the fact
that since time is a quantity that should be in the control of the environment, if the environment
chooses to advance time too fast then some protocol might not have enough time to perform their
operations for each round, and might therefore need to give up.

To make sure that the environment cannot exploit such fast-forwarding of the clock we use the
following idea: We allow the clock to receive from honest parties or (non-shared) ideal functionalities
a special (Clock-Fast) message, which makes it set an internal indicator from 0 to 1. This
indicator will be added onto the response of the clock to clock-read queries, and will make
any synchronous protocol or corresponding functionality that reads the clock and observes this
indicator being set to one to immediately terminate with a default value. This way we ensure
that an environment that tries such a fast-forward distinguishing attack will be forced to make any
synchronous protocol behave in a default way, a behavior which, as we see, is easily imitated in the
ideal world. The detailed description of the clock functionality can be found in Figure 2.

We stress that having a global Ḡ
clock

-hybrid model makes the mode of execution of synchronous
protocols more intuitive compared to [KMTZ13]. Here is how synchronous protocols are executed
in this setting. First, as is the case in real-life synchronous protocols, we assume that the protocol
participants have agreed on the starting time ⌧0 of their protocol and also on the duration of each
round.6 We abstract this knowledge by assuming the parties know a function Round2Time : Z! Z
which maps protocol rounds to time (according to the global clock) in which the round should be
completed. For ⇢ 2 Z, Round2Time(⇢) is the time in which the ⇢th round of the protocol should be
completed. To make sure that no party proceeds to round ⇢ + 1 of the protocol before all honest
parties have completed round ⇢ , we require that any two protocol rounds are at least two clock-ticks
apart (see [KMTZ13] for a discussion); formally, for all ⇢ � 0, it holds that Round2Time(⇢ + 1) �
Round2Time(⇢) + 2.

A synchronous protocol in the above setting proceeds as follows where the parties keep locally
track of the current round ⇢ in the protocol they are in:

Upon receiving a (clock-update, sid) input (from its environment) where sid is the ID of
Ḡ
clock

, party P
i

forwards it to Ḡ
clock

.

5The communication channels we are using are fetch-type bounded delivery channels as in [KMTZ13]. In such
channels, the receiver needs to issue “fetch”-requests which are answered only if a message is ready for delivery. We
refer to [KMTZ13] for details.

6Di↵erent protocols might proceed at a di↵erent pace.
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Functionality Ḡ
clock

Shared functionality Ḡ
clock

is globally available to all participants. The shared functionality is param-
eterized with variables ⌧ , a bit dḠ

ledger

a set P 0 and a bit fast and is associated with a ledger shared
functionality Ḡ

ledger

.

Initially, ⌧ := 0, dḠ
ledger

:= 0, fast := 0 and P 0 := ;.
• Upon receiving (register, sid) from some party P , set P 0 := P 0[{P} and if P was not registered

before, set dP := 0; subsequently, forward (register, sid, P ) to A.

• Upon receiving (clock-update, sid) from Ḡ
ledger

set dḠ
ledger

:= 1 and forward
(clock-update, sid, Ḡ

ledger

) to A
• Upon receiving (clock-update, sid) from some honest party P 2 P 0 set di := 1; then if dḠ

ledger

:=
1 and dP = 1 for all honest parties in P 0, then set ⌧ := ⌧ + 1 and reset dḠ

ledger

:= 0 and dP := 0
for all parties in P 0. Forward (clock-update, sid, P ) to A.

• Upon receiving (clock-read, sid) from any participant (including the environment, the ad-
versary, or any ideal—shared or local—functionality) return (clock-read, sid, ⌧, fast) to the
requestor.

• Upon receiving (Clock-Fast) from any honest party or ideal functionality, set fast := 1.

Figure 2: The clock functionality.

Upon receiving a (clock-read, sid) input (from its environment), party P
i

forwards it to Ḡ
clock

and outputs the response to the environment.

Upon receiving a (Clock-Fast) input (from its environment), party P
i

forwards it to Ḡ
clock

.

Upon receiving any message (Input, sid0) where sid

0 is the session ID of a protocol P
i

is in-
volved in, do the following: Send (clock-read, sid) to Ḡ

clock

and denote the response by
(clock-read, sid, ⌧, fast); if fast = 1 then output Clock-Fast to the environment. Other-
wise do:

• if ⌧  Round2Time(⇢� 1) halt;

• else, if Round2Time(⇢ � 1) < ⌧  Round2Time(⇢) execute the next pending round�⇢
instruction (if all the instructions for round ⇢ are finished halt.)

• else, if ⌧ > Round2Time(⇢) and there are still pending instructions for the current round,
send (Clock-Fast) to Ḡ

clock

.

• else, i.e., if ⌧ > Round2Time(⇢) and P
i

has completed all round-⇢ instruction, then set
⇢ := ⇢+ 1 and halt.

It is easy to verify that the above mode of operation will guarantee that the parties are never out-
of-sync, since as soon as the first party issues a Clock-Fast message for the clock, all synchronous
protocols will enter the mode of outputting Clock-Fast for every input that the environment
hands them (that is not intended for the clock). However, there is one more thing that needs to
be taken care of. Since in the real-world the parties go to a default mode (where they output
Clock-Fast to every query) when the environment does not give them su�cient time, this should
also be the case in the ideal world. To achieve this we use another idea inspired by the guaranteed
termination functionality from [KMTZ13]: Let ⇡ be a synchronous protocol with round-to-time
function Round2Time : Z ! Z, where in each round, each party needs exactly m activations to
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perform its instructions7. We introduce a wrapper W̃ which, at a high level, forwards messages
to and from its wrapped functionality but stores a round-index and checks, as the protocol would,
that every party issues to the wrapped functionality, at least m activations for each round ⇢ in the
intended interval. If this is not the case the wrapper sends (Clock-Fast) to Ḡ

clock

and responds
with Clock-Fast form that point on. The detailed description can be found in Figure 3.

Wrapper Functionality W̃(F)

The wrapper W̃(F) interacts with a set of parties P = {P1, . . . , Pn}, the adversary S and the environ-
ment Z, as well as the shared clock functionality Ḡ

clock

. It is also parameterised with a round-to-time
function Round2Time : Z! Z, and the number m of activationss that each party should receive in each
round. It locally stores a round index ⇢ initialized to ⇢ := 1.

Upon receiving a message from S it forwards it to F.
Upon receiving a message from F for S it forwards it to S.
Upon receining a message from F for some party Pi it forwards it to Pi.
Upon receiving a message from an honest party, Pi sends (clock-read, sid) to Ḡ

clock

and de-
notes the response by (clock-read, sid, ⌧, fast); if fast = 1 then it outputs Clock-Fast to the
environment. Otherwise do:

if ⌧  Round2Time(⇢� 1) ignore the mesage;
else, if Round2Time(⇢�1) < ⌧  Round2Time(⇢) and Pi has sent less than m messages to W̃(F)
in the interval [Round2Time(⇢� 1) + 1, Round2Time(⇢)] then relay the message to F.
else, if ⌧ > Round2Time(⇢) and Pi has sent less than m messages to W̃(F) in the interval
[Round2Time(⇢� 1) + 1, Round2Time(⇢)] then send (Clock-Fast) to Ḡ

clock

.
else, i.e., if ⌧ > Round2Time(⇢) and Pi has sent less than m messages to W̃(F) in the interval
[Round2Time(⇢� 1) + 1, Round2Time(⇢)], then set ⇢ := ⇢+ 1 and halt.

Figure 3: The Syncronized wrapper functionality.

3.2 Global Ledger Functionality

Functionality Ḡ
ledger

provides the abstraction of a public ledger in Bitcoin-like systems (e.g., Bit-
coin, Litecoin, Namecoin, Ethereum, etc). Intuitively, the public ledger could be accessed globally
by protocol parties or other entities including the environment Z. Protocol parties or the environ-
ment can generate transactions; and these valid transactions will be gathered by a set of ledger
maintainers (e.g., miners in Bitcoin-like systems) in a certain order as the state of the ledger. More
concretely, whenever the ledger maintainers receive a vector of transactions ~

tx, they first add the
transactions in a bu↵er, assuming they are valid with respect to the existing transactions and the
state of the ledger; thus, in this way a vector of transactions is formed in the bu↵er. After a certain
amount of time, denoted by T, which will be also referred to as a ledger round, all transactions in
the bu↵er will be “glued” into the ledger state in the form of a block. The adversary is allowed to
permute the bu↵er prior to its addition to the ledger. In Bitcoin, T is 10 minutes (approximately);
thus in about every 10 minutes, a new block of transactions will be included into the ledger, and
the ledger state will be updated correspondingly.

To enable the ledger to be aware of time, the ledger maintainers are allowed to “read” the
state of another publicly available functionality Ḡ

clock

defined above. Furthermore, to ensure that

7One can make any synchronous protocol have this form by introducing dummy instructions.
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Functionality Ḡ
ledger

Shared functionality Ḡ
ledger

is globally available to all participants. The shared functionality is param-
eterized with a predicate Validate, a constant T, and variables state, bu↵er and counter.

Initially, state := ", bu↵er := ", and counter := 0.

• Upon receiving (submit, sid, ~tx) from some participant, If Validate(state, (bu↵er, ~tx)) = 1, then
set bu↵er := bu↵er|| ~tx. Go to State Extend.

• Upon receiving (read, sid) from a party P or A, if P is honest set b = state else set b =
(state, bu↵er).

1. Execute State Extend.

2. Return (read, sid, b) to the requestor.

• Upon receiving (permute, sid,⇡) from A apply permutation ⇡ on the elements of bu↵er.

State Extend: Send (clock-read, sid) to Ḡ
clock

and receive (clock-read, sid, ⌧) from Ḡ
clock

. If
|⌧�T ·counter| > T, then set state := state||Blockify(⌧, bu↵er) and bu↵er := " and counter := counter+1.
Subsequently, send (clock-update, sid) to Ḡ

clock

where sid is the ID of Ḡ
clock

.

Figure 4: The public ledger functionality.

the ledger is activated at least once in each time-tick8 (i.e., each advance of the Ḡ
clock

state)
we have the ledger, with every message it gets from a party other than the adversary, send a
(clock-update, sid) message to Ḡ

clock

. (Recall that, as defined, Ḡ
clock

always waits for at least
one such message from the ledger before advancing its time counter.)

We remark that all gathered transactions should be “valid” which is defined by a predicate
Validate. In di↵erent systems, predicate Validate will take di↵erent forms. For example, in the
Bitcoin system, the predicate Validate should make sure that for each newly received transaction
that transfers v coins from the original wallet address address

o

to the destination wallet address
address

d

, the original wallet address address

o

should have v or more than v coins, and the
transaction should be generated by the original wallet holder (as shown by the issuance of a digital
signature). Furthermore, prior to each vector of transactions becoming block, the vector is passed
through a function Blockify(·) that homogenizes the sequence of transactions in the form of a
block. Moreover, in some systems like Bitcoin, it may add a special transaction called a “coinbase”
transaction that implements a reward mechanism for the ledger maintainers.

In Figure 4 we provide the details of the ledger functionality.

4 Q-Fairness and Q-Robustness

In this section, we provide a formal framework for secure computation with fair and robust com-
pensation. In the spirit of [GMPY06], our main tool is a wrapper functionality. Our wrapper
functionality is equipped with a predicate QḠ which is used to make sure that the outcome of the
protocol execution is consistent with appropriate conditions on the state of the global setup Ḡ.
Intuitively, the predicate QḠ works as a filter, such that if certain “bad” event occurs (e.g., an
abort), then the wrapped functionality will restrict the simulators influence. More concretely, the

8This is essential to ensure that updates are done in a time-consistent manner.
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predicate QḠ has three modes Q

Init
Ḡ , QDlv

Ḡ and, QAbt
Ḡ , where Q

Init
Ḡ specifies under which condition

(on the global setup’s state) the protocol should start executing; QDlv
Ḡ specifies under which con-

dition parties should receive their output; and Q

Abt
Ḡ specifies under which condition the simulator

is allowed to force parties to abort. With foresight QInit
Ḡ will ensure that the protocol is executed

only if all honest participants have enough coins; QDlv
Ḡ will ensure that honest parties do not lose

coins if they execute the protocol; and Q

Abt
Ḡ will ensure that honest parties might be forced to an

“unfair” abort (i.e, where the adversary has received his output) only if they are compensated by
earning coins (from the corrupted parties). We will call an implementation of a wrapped version
of F a Q-fair implementation of F. 9

Our definition of QḠ-fairness can be instantiated with respect to any global setup that upon
receiving a read symbol (from any protocol participant or functionality) it returns its public
state trans. Concretely, let Ḡ be global ideal functionality and let QḠ a predicate, as above, with
respect to such Ḡ. Let also F be a non-reactive functionality10 which allows for fair evaluation
of a given function (SFE) in the sense of [GMPY06], i.e., it has two modes of delivering output:
(i) delayed delivery: (deliver, sid,m, P ) signifying delayed output delivery11 of m to party P ,
(ii) fair delivery: (fair-deliver, sid, (m,P

i1), . . . , (m,P
ik), (mS ,S)) that results in simultaneous

delivery of outputs m
i1 , . . .mik to parties P

i1 , . . . , Pik and output mS to S. We note that (G)UC
does not have an explicit mechanism for simultaneous delivery of outputs. Thus, when we refer to
simultaneous delivery of a vector (m

i1 , . . . ,mik) to parties P
i1 , . . . , Pik , respectively, we imply that

the functionality prepares all the output to be delivered in a “fetch mode” as defined in [KMTZ13];
that is:

The functionality registers the pairs (m
i1 , Pi1), . . . , (m,P

ik) as “ready to fetch” and sends the
set {(m

ij , Pij )|Pij is corrupted } to S.
Upon receiving an input (fetch-output, P

i

) from party P
i

, if a message (m
i

, P
i

) has been
registered as “ready to fetch” then remove it from the “ready to fetch” set and output it to P

i

(if more than one such messages are registered, deliver and remove from the “ready to fetch”
set the first, chronologically, registered such pair); otherwise send (fetch-output, P

i

) to S.

4.1 QḠ-Fairness

The wrapper functionality W that will be used in the definition of Q-fair (secure) computation is
given in Figure 5. The intuition is as follows: Prior to handing inputs to the (wrapped) functionality
F, the parties can request the wrapper to generate on their behalf a resource-setup (by executing an
associated resource-setup generation algorithm Gen) which allows them to update the global setup
Ḡ; this resource setup consists of a public component RS

pub
P,sid

and a private component RS
priv
P,sid

. 12

Both these values are given to the simulator, and the public component is handed to the party.
From the point when parties receive their inputs the Q predicate is used as a filter to specify

the wrapper’s behavior and add the fairness guarantees. More concretely, upon receiving an input
from a party, the wrapper checks on the global setup to ensure that Q

Init is true, and if it is not
true it aborts (i.e., sets all honest parties’ outputs to ? and blocks any communication between F

9We note that whenever it is clear from the context we may drop the subscript Ḡ in QḠ ,Q
Init
Ḡ ,QDlv

Ḡ ,QAbt
Ḡ .

10A non-reactive functionality does not accept any input from honest parties after generating output.
11Delayed output delivery is a standard (G)UC mechanism where the adversary is allowed to schedule the output

at a time of its choosing.
12In the case of bitcoin-like ledgers these will correspond to a wallet (public-key) and a corresponding secret key.
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and the adversary). This means that if the environment has not set up the experiment properly,13

then the experiment will not be executed and the wrapped functionality will become useless. This
formally resolves the question “What happens if some party does not have su�cient coins to play
the protocol?” which leads to some ambiguity in existing bitcoin-based definitions of computation
with fair compensation [BK14].

The predicates QDlv and Q

Abt are used to filter out attempts of the simulator to deliver outputs
or abort when Q

Dlv and Q

Abt are violated.14 Concretely, any such attempt will be ignored if the
corresponding predicate is not satisfied.

Intuitively, by requiring the protocol to implement such a wrapped version of a functionality,
we will ensure that the parties might only abort if QAbt is true, and might output a valid (non-?)
value if QDlv. As we shall see in Section 4.2, by a trivial modification of the fairness wrapper, we
can capture a stronger property which we will call Q-robustness; the latter, roughly, guarantees
that honest parties which start the protocol will either receive their output (and Q

Dlv being true) or
will abort and increase their revenue. (I.e., there is no way for the adversary to make the protocol
abort after the first honest party has sent its first input-dependent message).

Definition 4.1. We say protocol ⇡ realizes functionality F with QḠ-fairness with respect to global
functionality Ḡ, provided the following statement is true. For all adversaries A, there is a simulator
S so that for all environments Z it holds:

Exec

Ḡ
⇡,A,Z ⇡ Exec

Ḡ,W
Q,Ḡ(F)

S,Z
More generally, the protocol � realizes H with Q

0̄
G fairness using a functionality F with fairness

QḠ provided that for all adversaries A, there is a simulator S so that for all environments Z, it
holds:

Exec

Ḡ,W
Q,Ḡ(F)

⇡,A,Z ⇡ Exec

Ḡ,W
Q

0,Ḡ(H)

S,Z
We note that, both protocol ⇡ and the functionality (W

Q,Ḡ(F), Ḡ) are with respect to the global
functionality15 Ḡ. By following the very similar proof idea in [CDPW07], we can prove the following
lemma and theorem:

Lemma 4.2. Let QḠ be a predicate with respect to global functionality Ḡ. Let ⇡ be a protocol that
realizes the functionality F with QḠ-fairness. Let � be a protocol in (W

Q,Ḡ(F), Ḡ)-hybrid world.
Then for all adversaries A, there is a simulator S so that for all environments Z, it holds

Exec

Ḡ
�

⇡
,A,Z ⇡ Exec

Ḡ,W
Q,Ḡ(F)

�,S,Z

Theorem 4.3. Let QḠ and Q

0̄
G be predicates with respect to global functionality Ḡ. Let ⇡ be a

protocol that realizes the functionality F with QḠ-fairness. Let � be a protocol in (W
Q,Ḡ(F), Ḡ)-

hybrid world that realizes the functionality H with Q

0̄
G-fairness. Then for all adversaries A, there

is a simulator S so that for all environments Z it holds:

Exec

Ḡ
�

⇡
,A,Z ⇡ Exec

Ḡ,W
Q

0,Ḡ(H)

S,Z
Please see appendix for the proof details.

13In the case of a bitcoin-ledger this corresponds to the environment not transferring to some protocol-related
wallet su�cient funds to execute the protocol.

14As we will see, in bitcoin-like instantiations, QDlv will be satisfied when no honest party has a negative balance,
and QAbt will be satisfied when every honest party has a (strictly) positive balance.

15In GUC framework [CDPW07], this is also called, Ḡ-subroutine respecting.

12



Wrapper Functionality W
Q,Ḡ(F)

The wrapperW
Q,Ḡ(F) interacts with a set of parties P = {P1, . . . , Pn}, the adversary S and the environ-

ment Z, as well as shared functionality Ḡ. It is parameterized with a predicate Q = (QInit,QDlv,QAbt)

and a resource-setup generating algorithm Gen : 1⇤
$! ({0, 1}⇤)2 and wraps any given non-reactive

n-party functionality F with the two output-delivery modes (delayed and fair) described in Section 4.1.
The functionality also keeps an indicator bit b, initially set to 0, indicating whether or not S is blocked
from sending messages to F.

• Allocating Resources. Upon receiving (alocate, sid) from a party P , if a message (alocate, sid)
has already been received for P then ignore it; else send (Coins, sid, P ) to S and upon receiving
(Coins, sid, P, r) from S compute (RS

pub
P,sid, RS

priv
P,sid)  Gen(1; r) and sends a delayed output

(deliver, sid, RSpub
P,sid, P ) to P .

• Upon receiving any message M from F to be delivered to its simulator, if b = 0 forward M to S.
• Upon receiving a message (Forward,M) from S, if b = 0 then forward M to F as a message

coming from its simulator.

• Receiving input for F. Upon receiving (input, sid, x) from a party P , send read to Ḡ, de-
note the response by trans and if ¬QInit(RSpub

P,sid, trans) then set b := 1 and issue a message
(fair-deliver, sid, (?, P1), . . . , (?, Pn), (?,S)) (i.e., simultaneously deliver ? to all parties and
ignore all future messages except (fetch-output, ·) messages. Otherwise, forward (input, sid, x)
to F as input for P .

• Generating delayed output. Upon receiving a message from F marked (deliver, sid,m, P ) for-
wards m to party P via delayed output.

• Registering fair output. Upon receiving a message from F that is marked for fair delivery
(fair-deliver, sid,mid, (m1, Pi1), . . . , (mk, Pik), (mS ,S)), it forwards (mid, Pi1 , . . . , Pik ,mS) to
S.

• Q-fair delivery. Upon receiving (Q-deliver, sid,mid) from S then provided that a message
(mid, . . .) has been delivered to S operate as follows. For each pair of the form (m,P ) associated
with mid: Let L = {(m,P )| P is uncorrupted}. Send {(m,P )|P is corrupted} to S. (If some
currently honest P becomes corrupted later on, remove (m,P ) from sending and send (m,P ) to
S.) Subsequently perform the following.

– On input a message (deliver, sid,mid, P ) from S, provided that the record mid con-
tains the pair (m,P ) 2 L, send read to Ḡ, denote the response by trans and if
¬QDlv(sid, P,RSpub

P,sid, trans) then ignore the message. Else, remove (m,P ) from L and reg-
ister (m,P ) as “ready to fetch”.

– On input a message (abort, sid,mid, P ) from S, provided that the record mid con-
tains the pair (m,P ) 2 L, send read to Ḡ, denote the response by trans and if
¬QAbt(sid, P,RSpub

P,sid, trans) then ignore the message. Else, remove (m,P ) from L and
register (?, P ) as “ready to fetch”.

• Upon receiving an input (fetch-output, P ) from party P , if a message (m,P ) has been reg-
istered as “ready to fetch” then remove it from the “ready to fetch” set and output it to Pi (if
more than one such messages are registered, deliver and remove from the “ready to fetch” set
the first, chronologically, registered such pair); otherwise send (fetch-output, Pi) to S.

Figure 5: The Q-Fairness wrapper functionality.
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Is the ledger functionality su�cient for Q fairness? We will construct secure computation
protocols based on the ledger functionality Ḡ

ledger

together with other trusted setups. We may
wonder if we can construct secure computation protocol from Ḡ

ledger

only. The answer if negative.
Indeed, we prove the following statement

Theorem 4.4. Let QḠ be a predicate with respect to global functionality Ḡ = Ḡ
ledger

. There exists
no protocol in the Ḡ

ledger

hybrid world which realizes the commitment functionality F
com

with QḠ
fairness.

The proof idea is very similar to the well-known Canetti-Fischlin [CF01] impossibility proof.
Please refer to Appendix A.3 for the proof.

4.2 QḠ-Robustness

The above wrapper W allows the simulator to delay delivery of messages arbitrarily. Thus, al-
though the predicates do guarantee the promised notion of fairness, the resulting functionality
lacks the other relevant property that we discussed in the introduction, namely robustness. In the
following we define Q-robustness which will ensure that if any party starts executing the protocol
on its input (i.e., the protocol does not abort due to lack of resources for some party), then every
honest party is guaranteed to either receive its output without loosing revenue, or receive bottom
and a compensation. This property can be obtained by modifying the wrapper W using an idea
from [KMTZ13] so that in addition to the global-setup-related guarantees induced by predicate Q,
it also preserves the guaranteed termination property of the wrapped functionality.16

More concretely, in [KMTZ13], a functionality was augmented to have guaranteed termination,
by ensuring that given appropriately many activations (i.e., dummy inputs), from its honest inter-
face, it computes its output.17 In the same spirit, a wrapper which ensures Q-robustness is derived
from W via the following modification: As soon as a fair-output is registered (i.e., upon the wrapper
receiving (fair-deliver, sid,mid, (m1, Pi1), . . . , (mk

, P
ik), (mS ,S)) from its inner functionality) it

initiates a counter � = 0 and an indicator variable �
ij := 0 for each P

ij 2 {P
i1 , . . . , Pik}; when-

ever a message is received from some P
ij 2 {P

i1 , . . . , Pik}, the wrapper sets �
ij := 1 and does the

following check: if �
ij = 1 for all P

ij 2 {P
i1 , . . . , Pik} then increase � := � + 1 and reset �

ij = 0
for all P

ij 2 {P
i1 , . . . , Pik}. As soon as � reaches a set threshold T , the wrapper simultaneously

delivers each ((m1, Pik), . . . , (mk

, P
ik) (i.e., prepares them to be fetched) without waiting for the

simulator and does not accept any inputs other than (fetch-output, ·) from that point on. When
this happens, we will say that the wrapper reached its termination limit. We denote by ŴT the
wrapper from Figure 5 modified as described above. Note that the wrapper is parameterized by
the termination threshold T .

The intuition why this modification ensures guaranteed termination is the same as in [KMTZ13]:
if the environment wishes the experiment to terminate, the it can make it terminate irrespective
of the simulator’s strategy. Thus a protocol which realizes such a wrapper should also have such a
guaranteed termination (the adversary cannot stall the computation indefinitely.)

16That is, we want to ensure that if the functionality F has guaranteed termination then the wrapped functionality
will also have guaranteed termination.

17Of course, the simulator needs to be given su�ciently many activation so that he can provide its own inputs and
perform the simulation (for details we refer the interested reader to [KMTZ13]).
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Definition 4.5. We say protocol ⇡ realizes functionality F with QḠ-robustness with respect to global
functionality Ḡ, provided the following statement is true. There exists a threshold T such that for
all adversaries A, there is a simulator S so that for all environments Z it holds:

Exec

Ḡ
⇡,A,Z ⇡ Exec

Ḡ,ŴT
Q,Ḡ(F)

S,Z .

Moreover, whenever the wrapper reaches its termination limit, then for the state trans of the global
setup Ḡ upon termination it holds that QDlv

Ḡ (sid, P,RS
pub
P,sid

, trans) for every party P 2 P.

The composition theorems for Q-fairness from Section 4.1 can be adapted in a straight-forward
manner to Q-robustness. The statements and proofs are as in the previous section and are omitted.
We note in passing that since the wrapper Ŵ is in fact a wrapper which restricts the behavior of
S on top of the restrictions which are applied by the Q-fairness wrapper W, a protocol which is
Q-robustness is also Q-fair with respect to the same predicate Q.

4.3 Computation with Fair/Robust Compensation

We are now ready to instantiate the notion of Q-fairness with a compensation mechanism. For the
case when Ḡ corresponds to a Bitcoin-like ledger, e.g., Ḡ = Ḡ

ledger

, and QḠ provides compensation
of c coins, where c > 0, in the case of an abort, the resource-setup generation algorithm Gen a pair
of (address, sk) where address is a bitcoin address and sk is the corresponding secret-key and the
predicate Q

coin

Ḡ = (QC-Init
Ḡ ,QC-Dlv

Ḡ ,QC-Abt
Ḡ ) operates as follows. On input a session ID sid, a party

id P , a wallet address RS
pub
P,sid

, and a string trans which is parsed as a bitcoin ledger that contains

transactions:18

• Q

C-Init
Ḡ outputs true if and only if the balance of all transactions (both incoming and outgoing)

that concern RS
pub
P,sid

in trans and carry the meta-data sid is higher than a fixed pre-agreed

initialization amount.19

• Q

C-Dlv
Ḡ outputs true if and only if the balance of all transactions (both incoming and outgoing)

that concern RS
pub
P,sid

in trans and carry the meta-data sid is greater or equal to 0.

• Q

C-Abt
Ḡ outputs true if and only if the balance of all transactions (both incoming and outgoing)

that concern RS
pub
P,sid

in trans and carry the meta-data sid is greater or equal to a fixed pre-
agreed compensation amount.

If a protocol ⇡ realizes a functionality F with Q

coin

Ḡ -fairness (resp. Q

coin

Ḡ -robustness), i.e., with

respect to the global functionality Ḡ
ledger

, we say that ⇡ realizes F with fair compensation (resp.
with robust compensation). Because our results are proved for Q

coin

Ḡ , to keep the notation simple

in the remainder of the paper we might drop the superscript from Q

coin

Ḡ , i.e., we write Q or QḠ
instead of Qcoin

Ḡ .

18Transactions in trans can also be marked with metadata.
19In our construction QC-Init

Ḡ will check additional properties for the initial set of transactions that concern RSpub

P,sid;
specifically, not only that a fixed amount µ is present but also that it is distributed in a special way.
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5 Our Qcoin

Ḡ -Robust Protocol Compiler

In this section we present our fair and robust protocol compiler. Our compiler compiles a syn-
chronous protocol ⇡SH which is secure (i.e., private) against a corrupted majority in the semi-honest
correlated randomness model (e.g, an OT-hybrid protocol where the OT’s have been pre-computed)
into a protocol ⇡ which is secure with fair-compensation in the malicious correlated randomness
model. The high-level idea is the following: We first compile ⇡SH into a protocol in the malicious
correlated randomness model, which is executed over a broadcast channel and is secure with pub-
licly identifiable abort. (Roughly, this means that someone observing the protocol execution can
decide, upon abort, which party is not executing its code.) This protocol is then transformed into a
protocol with fair compensation as follows: Every party (after receiving his correlated randomness
setup) posts to the ledger transactions that the other parties can claim only if they, later, post
transactions that prove that they follow their protocol. Transactions that are not claimed this
way are returned to the source address; thus, if some party does not post such a proof it will not
be able to claim the corresponding transaction, and will therefore leave the honest parties with a
positive balance as their transactions will be refunded. Observe that these are not standard Bitcoin
transactions, but they have a special format which is described in the following.

Importantly, the protocol we describe is guaranteed to either produce output in as many (Bit-
coin) rounds as the rounds of the original malicious protocol, or to compensate all honest parties.
This robustness property is achieved by a novel technique which ensures that as soon as the honest
parties make their initial transaction, the adversary has no way of preventing them from either
computing their output or being compensated. Informally, our technique consists of splitting the
parties into “islands” depending on the transactions they post (so that all honest parties are on the
same island) and then allowing them to either compute the function within their island, or if they
abort to get compensated. (The adversary has the option of being included or not in the honest
parties’ island.)

5.1 MPC with Publicly Identifiable Abort

As a first step in our compiler we invoke the semi-honest to malicious with identifiable abort
compiler of Ishai, Ostrovsky, and Zikas [IOZ14] (hereafter referred to as the IOZ compiler). This
compiler takes a semi-honest protocol ⇡SH in the correlated randomness model and transforms it to
a protocol in the malicious correlated randomness model (for an appropriate setup) which is secure
with identifiable abort, i.e., when it aborts, every party learns the identity of a corrupted party. The
compiler in [IOZ14] follows the so called GMW paradigm [GMW87], which in a nutshell has every
party commit to its input and randomness for executing the semi-honest protocol ⇡SH and then has
every party run ⇡SH over a broadcast channel, where in each round ⇢ every party broadcasts his
round ⇢ messages and proves in zero-knowledge that the broadcasted message is correct, i.e., that he
knows the input and randomness that are consistent with the initial commitments and the (public)
view of the protocol so far. The main di↵erence of the IOZ compiler and the GMW compiler is that
the parties are not only committed to their randomness, but they are also committed to their entire
setup string, i.e., their private component of the correlated randomness. In the following, for the
sake of completeness, we enumerate some key properties of the resulting maliciously secure protocol
⇡Mal (which is based on the compiler in [IOZ14]) that will be important for our construction:

Every party is committed to his setup, i.e., the part of the correlated randomness it holds. That
is, every party P

i

receives from the setup his randomness (which we refer to as P
i

’s private
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component of the setup) along with one-to-many commitments20 on the private components of
all parties. Without loss of generality, we also assume that a common-reference string (CRS)
and a public-key infrastructure (PKI) are included in every party’s setup. We refer to the
distribution of this correlated randomness as DMal.

The protocol ⇡Mal uses only the broadcast channel for communication.

Given the correlated randomness setup, the protocol ⇡Mal is completely deterministic. This is
achieved in [IOZ14] by ensuring that all the randomness used in the protocol, even the one
needed for the zero-knowledge proofs, is part of the private components that are distributed by
the sampling functionality.21

⇡Mal starts o↵ by having every party broadcast a one-time pad encryption of its input with its
(committed) randomness and a NIZK that it knows the input and randomness corresponding
to the broadcasted message.

By convention, the next-message function of ⇡Mal is such that if in any round the transcript
seen by a party is an aborting transcript, i.e., is not consistent with an accepting run of the
semi-honest protocol, then the party outputs ?. Recall that the identifiable abort property
ensures that in this case every party will also output the identity of a malicious party (the same
for all parties).

There is a (known) upper bound on the number ⇢c of rounds of ⇡Mal.

We remark that, given appropriate setup, the IOZ-compiler achieves information-theoretic se-
curity, and needs therefore to build information-theoretic commitments and zero-knowledge proofs.
As in this work we are only after computational security, we modify the IOZ compiler so that we use
(computationally) UC secure one-to-many commitments [CLOS02] and computationally UC secure
non-interactive zero-knowledge proofs (NIZKs) instead if their information-theoretic instantiation
suggested in [IOZ14]. Both the UC commitment and the NIZKs can be built in the CRS model.
Moreover, the use of UC secure instantiations of zero-knowledge and commitments ensures that
the resulting protocol will be (computationally) secure.

Using the setup within a subset of parties. A standard property of many protocols in the
correlated-randomness model is that once the parties in P have received the setup, any subset P 0 ⇢
P is able to use it to perform a computation of a |P 0|-party function amongst them while ignoring
parties in P \ P 0. More concretely, assume the parties in P have been handed a setup allowing
them to execute some protocol ⇡ for computing any |P|-party function f ; then for any P 0 ✓ P,
the parties in P 0 can use their setup within a protocol ⇡|P 0 to compute any |P 0|-party function
f ||P 0|. This property which will prove very useful for obtaining computation with robustness or
compensation, is also satisfied by the IOZ protocol, as the parties in P 0 can simply ignore the
commitments (public setup component) corresponding to parties in P \ P 0. It should be noted
that this is not an inherent property of the correlated randomness model: e.g., protocols based on
threshold encryption do not immediately satisfy this property (as players would have to readjust
the threshold).

Making Identifiability Public. The general idea of our protocol is to have every party issue
transactions by which he commits to transferring a certain amount of coins per party for each
protocol round. All these transactions are issued at the beginning of the protocol execution. Every

20These are commitments that can be opened so that every party agrees on whether or not the opening succeeded.
21As an example, the challenge for the zero-knowledge proofs is generated by the parties opening appropriate parts

of their committed random strings.
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party can claim the “committed” coins transferred to him associated to some protocol round ⇢ only
under the following conditions: (1) the claim is posted in the time-interval corresponding to round
⇢; (2) the party has claimed all his transferred coins associated to the previous rounds; and (3) the
party has posted a transaction which includes his valid protocol message for round ⇢.

In order to ensure that a party cannot claim his coins unless he follows the protocol, the ledger
(more concretely the validation predicate) should be able to check that the party is indeed posting
its valid next message. In other words, in each round ⇢, P

i

’s round-⇢ message acts as a witness
for P

i

claiming all the coins committed to him associated with this round ⇢. To this direction
we make the following modification to the protocol: Let f(x1, . . . , xn) = (y1, . . . , yn) denote the
n-party function we wish to compute, and let f+1 be the (n+ 1)-party function which takes input
x
i

from each P
i

, i 2 [n], and no input from P
n+1 and outputs y

i

to each P
i

and a special symbol
(e.g., 0) to P

n+1. Clearly, if ⇡SH is a semi-honest n-party protocol for computing f over broadcast,
then the n + 1 protocol ⇡+1

SH (in which every P
i

with i 2 [n] executes ⇡SH and P
n+1 simply listens

to the broadcast channel and outputs 0) is a semi-honest secure protocol for f+1.
Now if ⇡+1

Mal denotes the (n + 1)-party malicious protocol which results by applying the above
modified IOZ compiler on the (n + 1)-party semi-honest protocol ⇡+1

SH for computing the function
f+1, then, by construction this protocol computes function f+1 with identifiable abort and has the
following additional properties:

Party P
n+1 does not make any use of his private randomness whatsoever; this is true because

he broadcasts no messages and simply verifies the broadcasted NIZKs.

If some party P
i

, i 2 [n] deviates from running ⇡SH with the correlated (committed) randomness
as distributed from the sampling functionality, then this is detected by all parties, including
P
n+1 (and protocol ⇡+1

Mal aborts identifying P
i

as the o↵ender). This follows by the soundness
of the NIZK which P

i

needs to provide proving that he is executing ⇡SH in every round.

Due to P
n+1’s role as an observer who gets to decide if the protocol is successful (P

n+1 outputs
0) or some party deviated (P

n+1 observes that the corresponding NIZK verification failed) in the
following we will refer to P

n+1 in the above protocol as the judge. The code of the judge can be used
by anyone who has the public setup and wants to follow the protocol execution and decide whether
it should abort or not given the parties’ messages. Looking ahead, the judge’s code in the protocol
will be used by the ledger to decide wether or not a transaction that claims some committed coins
is valid.

5.2 Special Transactions supported by our Ledger

In this section we specify the Validate and the Blockify predicates that are used for achieving our
protocol’s properties. More specifically, our protocol uses the following type of transactions which
transfer v coins from wallet address

i

to wallet address
j

conditioned on a statement ⌃:

B
v,addressi,addressj ,⌃,aux,�i,⌧ (1)

where �
i

is a signature of the transaction, which can be verified under wallet address

i

; ⌧ is the
time-stamp, i.e., the current value of the clock when this transaction is added to the state by the
ledger—note that this timestamp is added by the ledger and not by the users,—aux 2 {0, 1}⇤ is an
arbitrary string22; and the statement ⌃ consists of three arguments, i.e., ⌃ = (arg1, arg2, arg3),

22This string will be included to the Ledger’s state as soon as the transaction is posted and can be, therefore,
referred to by other spending statements.
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which are processed by the Validate predicate in order to decide if the transaction is valid (i.e., if
it will be included in the ledger’s next block).

The Validate predicate. The validation happens by processing the arguments of ⌃ in a sequential
order, where if while processing of some argument the validation rejects, algorithm Validate stops
processing at that point and this transaction is dropped. The arguments are defined/processed as
follows:

Time-Restrictions: The first argument is a pair arg1 = (⌧�, ⌧+) 2 Z ⇥ (Z+ [ {1}) of points
in time. If ⌧� > ⌧+ then the transaction is invalid (i.e., it will be dropped by the ledger).
Otherwise, before time ⌧� the coins in the transaction “remain” blocked, i.e., no party can spend
them; from time ⌧� until time ⌧+, the money can be spent by the owner of wallet address

j

provided that the spending statement satisfies also the rest of the requirements/arguments
in statement ⌃ (listed below). After time ⌧+ the money can be spent by the owner of wallet
address

i

without any additional restrictions (i.e., the rest of the arguments in ⌃ are not parsed).
As a special case, if ⌧+ = 1 then the transferred coins can be spent from address

j

at any
point (provided the spending statement is satisfied); we say then that the transaction is time-
unrestricted,23 otherwise we say that the transaction is time restricted.

Spending Link: Provided that the processing of the first argument, as above, was not rejecting,
the Validate predicate proceeds to the second argument, which is a unique “anchor”, arg2 =
↵ 2 {0, 1}⇤. Informally, this serves as a unique identifier for linked transactions24; that is, when
↵ 6=?, then the Validate algorithm of the ledger looks in the ledger’s state and bu↵er to confirm
that the balance of transactions to/from the wallet address address

i

with this anchor arg2

is at least v0 � v coins. That is, the sum of coins in the state or in the bu↵er with receiver
address address

i

and anchor arg2 minus the sum of coins in the state or in the bu↵er with
sender address address

i

and anchor arg2 is greater equal to v. If this is not the case then
the transaction is rendered invalid; otherwise the validation of this argument succeeds and the
algorithm proceeds to the next argument.

State-Dependent Condition: The last argument to be validated is arg3, which is a relation
R : S ⇥ B ⇥ T ! {0, 1}, where S, B, and T are the domains of possible ledger-states, ledger-
bu↵ers, and transactions, respectively (in a given encoding). This argument defines which
type of transactions can spend the coins transferred in the current transaction. That is,
in order to spend the coins, the receiver needs to submit a transaction tx 2 T such that
R(state, bu↵er, tx) = 1 at the moment when tx is to be validated and inserted in the bu↵er.
In our construction this is the part of the transaction that we will take advantage to detect
cheating (and thus R will encode a NIZK verifier etc.).

We point out that as with standard Bitcoin transactions, the validation predicate will always also
check validity of the signature �

i

with respect to the wallet address

i

. Moreover, the standard
Bitcoin-like transactions can be trivially casted as transactions of the above type by setting ↵ =?
and ⌃ = ((0,1),?,R;), where R; denotes the relation which is always true.

To simplify the structure of our special transactions and ease their implementation, we impose
the following additional constraints: whenever a time-restriction is given, i.e., arg1 = (⌧�, ⌧+) then

23This is the case with standard Bitcoin transactions.
24 Looking ahead arg2 will be used to point to specific transactions of a protocol instance. The mechanism may

be simulated by generating multiple addresses however it is more convenient for the protocol description and for this
reason we adopt it.
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it must be that ↵ 6= ?. Furthermore, if a time-restricted transaction is present with anchor ↵
from address1 to address2, the only transactions that are permitted with anchor ↵ in the ledger
would be time-unrestricted transactions originating from either address2 within the specified time-
window, or address1 after the specified time window.

The Blockify algorithm. This algorithm simply groups transactions in the current bu↵er and adds
a timestamp from the current round. We choose to ignore any additional functionality (e.g., such
as a reward mechanism for mining that is present in typical cryptocurrencies — however such
mechanism can be easily added independently of our results).

5.3 The Protocol

Let ⇡+1
Mal denote the protocol described in section 5.1. Let Round2Time(1) denote the time in

which the parties have agreed to start the protocol execution. Without loss of generality we
assume that Round2Time(1) > T+1 where T is the number clock ticks for each block generation cf.
Figure 4.25 Furthermore, for simplicity, we assume that each party P

i

receives its input x
i

with its
first activation from the environment at time Round2Time(1) (if some honest party does not have
an input by that time it will execute the protocol with a default input, e.g., 0).

Informally, the protocol proceeds as follows: In a pre-processing step, before the parties re-
ceive input, the parties invoke the sampling functionality for ⇡+1

Mal to receive their correlated ran-
domness.26 The public component of this randomness includes their protocol-associated wallet
address

i

which they output (to the environment). This corresponds to the resources allocation
step in the Q-robustness wrapper Ŵ. The environment is then expected to submit ⇢c special (as
above) transactions for each pair of parties P

i

2 P and P
j

2 P; the source wallet-address for each
such transaction is P

i

’s, i.e., address
i

and the target wallet-address for is P
j

’s, i.e., address
j

, and
the corresponding anchors are as follows: ↵

i,j,⇢

= (pid, i, j, ⇢), for (i, j, ⇢) 2 [n]2 ⇥ [⇢c], where27 pid

is the (G)UC protocol ID for ⇡+1
Mal. Since by assumption, Round2Time(1) > T+ 1, the environment

has su�cient time to submit these transaction so that by the time the protocol starts they have
been posted on the ledger.

At time Round2Time(1) the parties receive their inputs and initiate the protocol execution by
first checking that su�cient funds are allocated to their wallets linked to the protocol executions
by appropriate anchors, as above. If some party does not have su�cient funds then it broadcasts
an aborting message and all parties abort.28 This aborting in case of insu�cient funds is consistent
with the behavior of the wrapper Ŵ when Q

C-Init
Ḡ is false. Otherwise, parties make the special

transactions that commit them (see below) into executing the protocol, and then proceed into
claiming them one-by-one by executing their protocol in a round-by-round fashion.

Note that each protocol round lasts one ledger round so that the parties have enough time to
claim their transactions. This means that Round2Time(i+1)�Round2Time(i) � T, which guarantees
that any transaction submitted for round ⇢, ⇢ = 1, . . . , ⇢c � 1, of the protocol, has been posted on
the ledger by the beginning of round ⇢+ 1. Observe that by using a constant round protocol ⇡+1

Mal

25That is we assume that at least one ledger rounds plus one extra clock-ticks have passed from the beginning of
the time.

26In an actual application, the parties will use an unfair protocol for computing the correlated randomness. As this
protocol has no inputs, an abort will not be unfair (i.e., the simulator can always simulate the view of the adversary
in an aborting execution.)

27Recall that we assume |P| = n.
28Note that this is a fair abort and no party has spent any time into making transactions.
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(e.g., the modified compiled protocol from [IOZ14] instantiated with a constant round semi-honest
protocol) we can ensure that our protocol will terminate in a constant number of ledger rounds and
every honest party will either receive its input, or will have a positive balance in its wallet.

Remark 5.1 (On availability of funds). Unlike existing works, we choose to explicitly treat the
issue of how funds become available to the protocol by making the o↵-line transfers external to the
protocol itself (i.e., the environment takes care of them). However, the fact that the environment
is in charge of “pouring” money into the wallets that are used for the protocol does not exclude
that the parties might be actually the ones having done so. Indeed, the environment’s goal is to
capture everything that is done on the side of, before, or after the protocol, including other protocols
that the parties might have participated in. By giving the environment enough time to ensure these
transactions are posted we ensure that some honest party not having enough funds corresponds to
an environment that makes the computation abort (in a fair way and only in the pre-processing
phase, before the parties have invested time into posting protocol transactions).

Here is how we exploit the power of our special transactions in order to arrange that the balance
of honest parties is positive in case of an abort. We require that the auxiliary string of a transaction
of a party P

j

which claims a committed transaction for some round ⇢ includes his ⇢-round protocol
message. We then have the relation of this transaction be such that it evaluates to 1 if only if
this is indeed P

j

’s next message. Thus, e↵ectively the validate predicate implements the judge in
⇡+1
Mal and can, therefore, decide if some party aborted: if some party broadcasts a message that

would make the judge abort, then the validate predicate drops the corresponding transaction and
all claims for committed transactions corresponding to future rounds, thus, all other parties are
allowed to reclaim their committed coins starting from the next round.

Before we give the protocol description there is a last question: how is the ledger able to know
which parties should participate in the protocol? Here is the problem: The adversary might post
in the first round (as part of the committing transaction for the first round) a fake, maliciously
generated setup. Since the ledger is not part of the correlated randomness sampling, it would be
impossible to decide which is the good setup. We solve this issue by the following technique that
is inspired by [BCL+05]: The ledger29 groups together parties that post the same setup; these
parties form “islands”, i.e, subsets of P. For each such subset P 0 ✓ P [ {P

n+1} which includes
the judge P

n+1, the ledger acts as if the parties in P 0 are executing the protocol ⇡+1
Mal|P 0 (which,

recall, is the restriction of ⇡+1
Mal to the parties in P 0) for computing the |P 0|-party function f+1|P 0(~x)

defined as follows: let the function to be computed be f(~x), where ~x = (x1, . . . , xn), and f+1 be
as above, then f+1|P 0(~x) = f+1(~xP 0) where ~xP 0 = (x01, . . . , x0n) with x0

i

= x
i

for P
i

2 P 0 and x0
i

being a default value for every P
i

62 P 0. This solves the problem as all honest parties will be in
the same island P 0 ⇢ P (as they will all post the same value for public randomness); thus if the
adversary chooses not to post this value on behalf of some corrupted party, he is e↵ectively setting
this party’s input to a default value, a strategy which is easily simulatable. (Of course, the above
solution will allow the adversary to also have “islands” of only corrupted parties that might execute
the protocol, but this is also a fully simulatable strategy and has no e↵ect on fair-compensation
whatsoever—corrupted parties are not required to have a positive balance upon abort).

The final protocol ⇡B
Mal is detailed in the following. The protocol ID is sid. The function to be

computed is f(x1, . . . , xn). The protocol parties are P = {P1, . . . , Pn

}. We assume all parties have

29Throughout the following description, we say that the ledger does some check to refer to the process of checking
a corresponding relation, as part of validating a special transaction.
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registered with the clock functionality in advance and are therefore synchronized once the following
steps start.

Phase 1: Setup Generation

Time ⌧�2 = Round2Time(1)� T� 2:

The parties invoke the sampling functionality (cf. Figure 1) for DMal, i.e., every party P
i

2
P starts o↵ by sending the sampling functionality a message (request, sid); the sampling
functionality returns (Rpriv

i

, Rpub) to P
i

where R
priv
i

is P
i

’s private component (including all
random coins he needs to run the protocol, along with his signing key sk

i

) of the setup and
Rpub is the public component (the same for every party P

j

) which includes the vector of UC

commitments (Com1, . . . ,Comn

), where for j 2 [n], Com
j

is a commitment to R
priv
j

, along
with a vector of public (verification) keys (vk1, . . . , vkn) corresponding to the signing keys
(sk1, . . . , skn) and a common reference string CRS. Every party outputs its own public key,
as its wallet address for the protocol, i.e., address

i

= vk

i

.

Phase 2: Inputs and Protocol Execution

Time ⌧�1 = Round2Time(1)� 1:

Every party P
i

2 P receives its input x
i

(x
i

= 0 if no input is received in the first activation
of P

i

for time Round2Time(1)) and does the following to check that it has su�cient fund
available: P

i

reads the current state from the ledger. If the state does not include for each
(i, j, ⇢) 2 [n]2⇥ [⇢c] a transaction B

c,address,addressi,⌃0
i,j,⇢,aux

0
i,j,⇢,�,⌧

, for some arbitrary address

and where ⌃0
i,j,⇢

= ((0,1), (sid, i, j, ⇢),R;) then P
i

broadcasts ? and every party aborts the
protocol execution with output ? (i.e., no party does anything from that point on.Recall that
⇢c is the upper bound on the number of rounds of ⇡+1

Mal , cf. Section 5.1.

Time ⌧0 = Round2Time(1):

Every P
i

submits to the ledger the following “commitment” transactions:30

1. For each P
j

2 P : B
c,addressi,addressj ,⌃i,j,1,auxi,j,1,�,⌧ , where aux

i,j,1 = Rpub and ⌃
i,j,1 =

(arg1
i,j,1, arg2i,j,1, arg3i,j,1) with

arg1

i,j,1 = (Round2Time(1) + T, Round2Time(1) + 2T� 1)

arg2

i,j,1 = (sid, i, j, 1)

arg3

i,j,1 = R
i,j,1 defined as follows: Let P+1 = P [ {P

n+1}, where P
n+1 denotes the

judge, be the player set implicit in Rpub, 31 and let P+1
i

✓ P+1 denote the island
of party i including the judge, i.e., the set of parties (wallets), such that in the
first block posted after time Round2Time(1) all parties P

k

2 P+1
i

have exactly one
transaction for every P

j

2 P with arg1

k,j,1 = (Round2Time(1) + T, Round2Time(1) +

2T � 1), arg2
k,j,1 = (sid, k, j, 1), and aux

1
k,j,1 = Rpub. Furthermore, let ⇡+1

Mal|P+1
i

be

the protocol with public identifiability for computing f+1|P+1
i
, described above and

30Recall that, by definition of the clock, every party has as much time as it needs to complete all the steps below
before the clock advances time.

31Recall that Rpub includes commitments to all parties’ private randomness (including the judge’s Pd) used for
running the protocol, which is an implicit representation of the player set.
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denote by Rpub|P+1
i

the restriction of the public setup to the parties in P+1
i

. Then

R
i,j,1(state, bu↵er, tx) = 1 if and only if the protocol of the judge with public setup

Rpub|P+1
i

accepts the auxiliary string auxtx in tx as P
i

’s first message in ⇡+1
Mal|P+1

i

(i.e., it does not abort in the first round).

2. For each protocol round ⇢ = 2, . . . , ⇢c and each P
j

2 P: each party posts the transaction:
B
c,addressi,addressj ,⌃i,j,⇢,aux

1
i,j,⇢,�,⌧

, where aux

1
i,j,⇢

= Rpub and ⌃
i,j,⇢

= (arg1, arg2, arg3)

with

arg1 = (Round2Time(⇢) + T, Round2Time(⇢+ 1) + 2T� 1)

arg2 = (sid, i, j, ⇢).

arg3 = R
i,j,⇢

defined as follows: Let P+1
i

,⇡+1
Mal|P+1

i
be defined as above (and assume

P+1
i

= {P
i1 , . . . , Pim}. Then R

i,j,⇢

(state, bu↵er, tx) = 1 if and only if, for each
r = 1, . . . , ⇢ � 1 and each party P

ik 2 P+1
i

, the state state includes transactions
in which the auxiliary input is aux

ik,r and the protocol of the judge with public
setup Rpub|P+1

i
, and transcript (aux

i1,1, . . . , auxim,1), . . . , (auxi1,⇢�1, . . . , auxim,⇢�1),

accepts the auxiliary string aux in tx as P
i

’s next (⇢-round) message in ⇡+1
Mal|P+1

i

(i.e., it does not abort in the ⇢-th round).

Phase 3: Claiming Committed Transactions/Executing the Protocol

Time ⌧ � Round2Time(1):

For each ⇢ = 1, . . . , ⇢c + 1, every P
i

does the following at time Round2Time(⇢),:

1. If ⌧ = Round2Time(⇢c + 1) then go to Step 4; otherwise do the following:

2. Read the ledger’s state, and compute P+1
i

,⇡+1
Mal|P+1

i
as above.

3. If the state state is not aborting for P+1
i

= {P
i1 , . . . , Pim}, i.e., it includes for each r =

1, . . . , ⇢�1 and each party P
ik 2 P+1

i

a transaction in which the auxiliary input is aux
ik,r

such that P
i

executing ⇡+1
Mal|P+1

i
with public setup Rpub|P+1

i
, private setup R

priv
i

, and

transcript (aux
i1,1, . . . , auxim,1), . . . , (auxi1,⇢�1, . . . , auxim,⇢�1) for the first r � 1 rounds

does not abort, then compute P
i

’s message for round ⇢, denoted as msg
⇢

, and submit

to the ledger for each P
k

2 P+1
i

a transaction B
c,addressi,address,⌃0

k,i,⇢,aux
⇢
k,i,⇢,�,⌧

, where

aux

⇢

k,i,⇢

= msg
⇢

, address is the address that was the input of the first transaction with
link (sid, i, k, ⇢) and ⌃0

k,i,⇢

= (arg1, arg2, arg3) with

arg1 = (0,1)

arg2 = (sid, k, i, ⇢)

arg3 = R;. For each such transaction posted enter (sid, k, i, ⇢) in a set of “claimed”
transactions CLAIM

i

.

4. Otherwise, i.e., if the state state is aborting, then prepare for each round r = 1, . . . , ⇢�
1, and each P

k

2 P a transaction by which the committed transaction towards P
k

corresponding to round r is claimed back to address

i

, i.e., B
c,addressk,addressi,⌃,aux,�,⌧ ,

where aux =? and ⌃ = (arg1, arg2, arg3) with

arg1 = (0,1)

arg2 = (sid, i, k, r)
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arg3 = R;.
The above transaction is posted as long as it is not claimed already, i.e., (sid, i, k, r) 2
CLAIM

i

in a previous step.

This completes the description of the protocol. The protocol terminates in O(⇢c) ledger rounds. A
depiction of the transactions that are associated with a protocol round is given in Figure 6

Figure 6: The transactions associated with the first round r of our protocol compiler. R
i

(·) is a
relation which is true given the r-th round message of P

i

(for the given correlated randomness and
previous messages); m

i

is the message of player P
i

for round r. Player 3 aborts in the r-th round
of the protocol and players 1,2 collect their reward.

Observe that by using a constant-round protocol ⇡Mal [IOZ14], we obtain a protocol with con-
stantly many ledger rounds. Furthermore, as soon as an honest party posts a protocol-related
transaction, he is guaranteed to either receive his output or have a positive balance (of at least c
coins) after O(⇢c) ledger rounds. The following theorem states the achieved security. We assume
the protocol is executed in the synchronous model of Section 3.1.

Theorem 5.2. Let Ḡ = (Ḡ
ledger

, Ḡ
clock

), The above protocol in the (Ḡ,FDMal
corr

)-hybrid world realizes
W̃(F) with robust compensation.

Proof sketch. We first prove that the above protocol is simulatable, by sketching the corresponding
simulator S. If the protocol aborts already before the parties make their transactions, then the
simulator can trivially simulate such an abort, as he needs to just receive the state of the ledger and
see if all wallets corresponding to honest parties have su�cient funds to play the protocol. In the
following we show that the rest of the protocol (including the ledger’s contents) can be simulated
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so that if there is an abort, honest parties’ wallets have a positive balance as required by Q fairness.
First we observe that the simulator S can easily decide the islands in which the parties are split, as
he internally simulates the sampling functionality. Any island other than the one of honest parties
(all honest parties will be in the same island because they will post transactions including the same
public setup-component) is trivially simulatable as it only consists of adversarial parties and no
guarantee is given about their wallets by Q-fairness. Therefore, it su�ces to provide a simulator
for the honest parties’ island. To this direction, the simulator uses the simulator S

⇡

+1
Mal

which is

guaranteed to exist from the security of ⇡+1
Mal to decide which messages to embed in the transactions

of honest parties (the messages corresponding to corrupted parties are provided by the adversary).
If S

⇡

+1
Mal

would abort, then S interacts the ideal functionality to abort and continues by claiming

back all the committed transactions to the honest parties’ wallets, as the protocol would. The
soundness of the simulation of S

⇡

+1
Mal

ensure that the output of the parties and the contents of the

ledger in the real and the ideal world are indistinguishable.
The fact that the protocol will eventual terminate given su�cient rounds of activating every

party (i.e., in the terminology of Definition 4.5, given a su�ciently high threshold T ) follows by
inspection of the protocol: in each round every party needs at most a (fixed) polynomial number
of activations to post the transactions corresponding to his current-round message-vector. (In fact,
the polynomial is only needed in the initial committing-transactions round and from that point on
it is linear). To complete the proof, we argue that (1) when the protocol does not abort, every
honest party has a non-negative balance, and (2) when the protocol aborts, then honest parties
have a positive balance of at least c coins as required by predicate Q for the simulator to be able to
complete its simulation and deliver the (possibly aborting) outputs. These properties are argued
as follows:
Property (1): The parties that are not in the honest parties’ islands cannot claim any transaction
that honest parties make towards them as the ledger will see they as not in the island and reject
them. Thus by the last round every honest party will have re-claimed all transactions towards
parties not in his island. As far as parties in the honest island are concerned, if no abort occurs
then every party will claim all the transactions from parties in his island, and therefore his balance
will be 0.
Property (2): Assume that the protocol aborts because some (corrupted) P

i

broadcasts an incon-
sistent message in some round ⇢. By inspection of the protocol one can verify that honest parties
will be able to claim all transaction-commitments done to them up to round ⇢ (as they honestly
execute their protocol) plus all committed transactions that they made for rounds ⇢ + 1 . . . , ⇢c.
Additionally, because P

i

broadcasts an inconsistent message in round ⇢, he will be unable to claim
transactions of honest parties done from round ⇢ and on; these bitcoins will be reclaimed by the
honest parties, thus giving their wallets a positive balance of at least c coins.

We refer to Appendix A.4 for more details of the proof.

6 Using Ethereum Contracts

In this section we elaborate on the feasibility of implementing our construction using Ethereum
contracts. Ethereum is a type of virtual machine that operates over a blockchain protocol and
enables the execution of complex transactions, [Woo14]. The state of Ethereum is comprised of
accounts that are determined by their balance and a transaction counter. Transactions in Ethereum
contain the recipient account, a signature identifying the sender, the amount of ether (Ethereum’s
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currency) and the data to send, as well as two values called startgas and gasprice. These two values
signify that in order for transactions to be processed, “gas” needs to be spent that will be collected
by the miner running the transaction; gasprice represents the cost per computational step and
startgas represents the initial gas value that the sender funds the transaction with. Gas can be
funded with ether and corresponds to the product startgas · gasprice.

Transaction recipients are regular accounts as well as “smart” contracts. A contract is a special
account that has its own code that is executed whenever it receives a transaction or a message.
Contracts are stateful in the sense that they can maintain data in a local (virtual) memory that
has 2256 entries. A contract when executed can change its local state as well as generate new
transactions.

The contract is executed by the miner that processes an incoming transaction for the contract
as part of the state update function of the Ethereum blockchain. The decision to execute the
contract depends also on the investment made by the transaction that is incoming; contract code
may be expensive to run and thus a miner may refuse to execute the code of the contract if it
is not su�ciently funded. When a contract is executed the code of the contract has access to
various contextual information such as the current block timestamp, the current block number and
so on. Using the current block timestamp, in particular, the contract is able to make time-sensitive
decisions. For instance, in this way, a party may generate a contract that conditionally transfers
some funds to someone that provides a specific type of data in a transaction. The funds may be
locked in the contract while after a certain time the funds in the contract may be withdrawn back
by the entity that initiated the contract.

Implementing Ḡ
ledger

as a smart contract. Next we describe how to implement our Ḡ
ledger

with the special transactions of section 5.2. First we note that Ethereum contracts are not able
to inspect the blockchain when they are executed. It follows that a single conditional transaction
as the one our protocol requires cannot be implemented as a contract. Nevertheless, the whole
Ḡ
ledger

can be implemented as a single smart contract denoted as SC that operates as an ethereum
application32. The SC will use contract storage to maintain account balances for each address that
is associated with a protocol execution. Account balances will also have the feature that they can
have a certain amount of funds from them put on hold. The parties, in order to use SC, will have to
initialize their accounts. This will be accomplished by sending a special initialization transaction
that indicates an internal SC address address to be initialized and the initial amount v in ether
that will fund the account. This transaction will transfer v ether to SC from the sender and the
smart contract will keep the funds in a reserve while it will introduce address in its local state.
The account will be given an initial amount of internal currency that is proportional to v according
to an exchange rate between SC’s internal currency and ether; furthermore, a fee for processing the
initialization transaction may be applied by SC.

Recall the type of transactions required by our ledger,

tx = (B
v,addressi,addressj ,⌃=(⌧�,⌧+),↵,R),aux,�)

To issue such a transaction using SC, a corresponding Ethereum tx

ether transaction will be generated
from the sender directed to the account of the smart contract SC that passes as values txether.data[i],
i = 0, 1, 2, . . ., the transaction elements v, address

i

, address
j

, ⌧�, ⌧+,↵,R, aux,�. The transaction

32For a high-level description of building applications within Ethereum see
https://github.com/ethereum/wiki/wiki/White-Paper
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tx

ether may also transfer some amount of ether to the smart contract as transaction processing fee
(but this is optional). Each incoming transaction tx will be validated (see below) by SC and placed
in a temporary local storage bu↵er (the contract has access to local storage via contract.storage[.]).
The contract SC will also maintain a counter signifying the number of blocks in the internal ledger.
Whenever SC is activated it will check the current time ct (observe that SC has access to current
time via block.timestamp) and if it is found that more than T clock ticks have passed since the
previous block generation it will take all transactions in bu↵er and organize them in a block.

We describe next how transactions are validated and processed. We focus on how processing
transactions takes place. This shows how to implement Blockify however validating transactions can
be simply extracted from the description below as the precondition that is necessary to process the
transaction successfully. Simple transactions, i.e. of the form ⌃ = ((0,1),?,R;), are processed by
SC in a straightforward manner: the internal balance of address

i

is debited by v and the balance
of address

j

is credited provided that the signature � is valid. Time-restricted transactions that
are of the form ⌃ = ((⌧�, ⌧+),↵,R) are stored in the SC local state and SC puts a hold for an
amount equal to v on account address

i

(however no credit or debit is applied); the hold is marked
with the anchor label ↵. When a transaction has no time-restriction but comes with a predicate
R 6= R;, processing for validity by SC requires that the predicate R is true. If a time-unrestricted
transaction for value v from address

0
1 to address

0
2 is given such that ↵ 6= ? and a time-restricted

transaction for time window (⌧�, ⌧+) with the same anchor ↵ and same value v has been previously
issued from address1 to address2, SC processes it as follows: if address2 = address

0
1, it is

checked that ct 2 (⌧�, ⌧+) and provided that otherwise the transaction is valid, the amount v is
removed from hold, debited in address1, and credited to address

0
2. On the other hand, if it holds

address1 = address

0
1, it is checked that ct > ⌧+, and provided that otherwise the transaction is

valid, the amount v is removed from hold and debited in address1, and credited to address

0
2.

The above implementation in conjunction with our protocol provides Q-fairness and robustness,
as defined in Section 4.3, when measured in the internal currency of the smart contract SC. Running
the protocol though mandates interacting with the smart contract that in itself requires issuing
Ethereum transactions that cost ether for paying the miners that implement collectively the virtual
machine (such ether is transformed to gas and is spent when the contract code is executed by the
miners).
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equivocation by loss of bitcoins. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-6, 2015, pages 219–
230, 2015.

[Woo14] Gavin Wood. Ethereum: A secure decentralized transaction ledger. 2014.
http://gavwood.com/paper.pdf.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160–164. IEEE Computer Society Press, November 1982.

A Proofs

A.1 Proof of Lemma 4.2

Proof. The proof idea is similar to that for composition theorem in [CDPW07]. Here we need
to show that for all ppt real world adversary A there exists ppt simulator S so that for all ppt
environment Z, the following holds:

Exec

Ḡ,W
Q,Ḡ(F)

�,S,Z
c⇡ Exec

Ḡ
�

⇡
,A,Z (2)
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By the condition that ⇡ realizes F with QḠ-fairness with respect to global functionality Ḡ, we have:
8A0 9S 0

so that 8Z 0

Exec

Ḡ,W
Q,Ḡ(F)

S0
,Z0

c⇡ Exec

Ḡ
⇡,A0

,Z0 (3)

We next prove the theorem.

We first describe the real execution Exec

Ḡ
�

⇡
,A,Z . Let K be a polynomial upper bound on the

number of instances of ⇡ that are invoked by �, and let ⇡[k] denote the k-th copy of protocol ⇡.
Here let the adversary A =

�A�,A⇡[1],A⇡[2], . . . ,A⇡[K]
�
, where each A⇡[k] is interacting with the

k-th instance of ⇡. Note that, the environment provides inputs to (and receives outputs from) the
“father” protocol �, and the protocol � provides inputs to (and receives outputs from) its own
subroutines ⇡[k]’s. We remark that, here all protocol instances (including the father protocol and
the subroutines) are allowed to access to the global functionality Ḡ.

We then describe the W
Q,Ḡ(F)-hybrid execution Exec

Ḡ,W
Q,Ḡ(F)

�,

eA,Z . Now we let W
Q,Ḡ(F)[k] de-

note the k-th copy of functionality W
Q,Ḡ(F) that invoked by protocol �. Similarly, we define the

adversary eA =
�A�,S⇡[1],S⇡[2], . . . ,S⇡[K]

�
, where each S⇡[k] is interacting with the k-th instance of

W
Q,Ḡ(F). As mentioned before, here the environment provides inputs to protocol �, and protocol

� provides input to its own subroutines, functionality copies W
Q,Ḡ(F)[k]’s; all protocol instances

are allowed to access to the global functionality Ḡ.
Based on the above description, we next show the two worlds ExecḠ

�

⇡
,A,Z and Exec

Ḡ,W
Q,Ḡ(F)

�,

eA,Z
are indistinguishable through a hybrid argument. We define hybrids Hybk as follows:

• Let �k denote the following protocol instances:

– an instance of �;

– k � 1 instances of ⇡, denoted ⇡[1], . . . ,⇡[k � 1];

– K � k + 1 instances of W
Q,Ḡ(F), denoted W

Q,Ḡ(F)[k], . . . ,W
Q,Ḡ(F)[K];

• Let Ak denote the following adversary copies:

– A�;

– k � 1 instances of A⇡, denoted A⇡[1], . . . ,A⇡[k�1];

– K � k + 1 instances of S⇡, denoted S⇡[k], . . . ,S⇡[K];

Define B, which consists ofK copies of adversaries, andK copies of protocol/functionality instances.
Define D, which consists of the k-th copy of adversaryA, and the k-th copy of protocol/functionality
instance ⇡. If A = S⇡[k] and ⇡ = W

Q,Ḡ(F)[k], then B is identical to Hybk. If A = A⇡[k] and

⇡ = ⇡[k], then B is identical to Hybk+1. We next show that adjacent hybrids are indistinguishable.

Claim A.1. For k 2 {1, . . . ,K}, the hybrids Hybk and Hybk+1 are indistinguishable to any ppt

Z.

Proof. By contradiction, assume there is a ppt Z who can tell the di↵erence between Hybk and

Hybk+1. That means, ExecḠ
�

k
,Ak

,Z 6
c⇡ Exec

Ḡ
�

k+1
,Ak+1

,Z . Based on such Z, we can define Zk to

simulate the interaction of all the rest of the network except the k-th place of the subroutine.
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Based on the definition of coercion hybrid Hybk above, we can easily see that Exec
Ḡ,W

Q,Ḡ(F)

S⇡[k]
,Zk

is the representation of ExecḠ
�

k
,Ak

,Z . Similarly, we can easily see that ExecḠ
⇡,A⇡[k]

,Zk is the repre-

sentation of ExecḠ
�

k+1
,Ak+1

,Z .

Based on the assumption that ExecḠ
�

k
,Ak

,Z 6
c⇡ Exec

Ḡ
�

k+1
,Ak+1

,Z , we immediately haveExec
Ḡ,W

Q,Ḡ(F)

S⇡[k]
,Zk 6 c⇡

Exec

Ḡ
⇡,A⇡[k]

,Zk . However, this contradicts to the premise in Equation 3. That means, our assump-

tion that ExecḠ
�

k
,Ak

,Z 6
c⇡ Exec

Ḡ
�

k+1
,Ak+1

,Z is not true. This completes our proof of the claim that

Hybk and Hybk+1 are indistinguishable for k 2 {1, . . . ,K}.

Finally, we note that hybrid Hyb1 is identical to Exec

Ḡ,W
Q,Ḡ(F)

�,

eA,Z , and the hybrid HybK+1 is

identical to Exec

Ḡ
�

⇡
,A,Z . Based on the claim above, we can see that Hyb1 c⇡ Hyb2 c⇡ · · · c⇡

HybK

c⇡ HybK+1. This implies that ExecḠ
�

⇡
,A,Z

c⇡ Exec

Ḡ,W
Q,Ḡ(F)

�,

eA,Z , which completes the proof of

the lemma.

A.2 Proof of Theorem 4.3

Proof. By the condition that ⇡ realizes F with QḠ-fairness with respect to global functionality Ḡ,
we have: 8A0 9S 0

so that 8Z 0

Exec

Ḡ,W
Q,Ḡ(F)

S0
,Z0

c⇡ Exec

Ḡ
⇡,A0

,Z0 (4)

By the condition that � realizes H with Q

0̄
G-fairness with respect to global functionality Ḡ, in the

W
Q,Ḡ(F)-hybrid world, we have: 8A0 9S 0 so that 8Z 0,

Exec

Ḡ,W
Q

0,Ḡ(H)

S0
,Z0

c⇡ Exec

Ḡ,W
Q,Ḡ(F)

�,A0
,Z0 (5)

Using the transitivity of indistinguishability, we have for all ppt real world adversary A there exists
ppt simulator S so that for all ppt environment Z, the following holds:

Exec

Ḡ,W
Q

0,Ḡ(H)

S,Z
c⇡ Exec

Ḡ
�

⇡
,A,Z (6)

A.3 Proof of Theorem 4.4

Canetti and Fischlin [CF01] show the impossibility of realizing F
com

in the plain model. Roughly
speaking, if a protocol ⇡ UC-realizes F

com

, then an ideal world simulator S should be able to be
constructed and satisfy the following properties:

• When the committer is corrupted, S must be able to “extract” the committed value once the
commitment phase is done. That is, S has to come up with a value x such that the committer
will almost never be able to successfully decommit to any x0 6= x. This is so since in the ideal
process S has to explicitly provide F

com

with a committed value.
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• When the receiver is corrupted, S has to be able to simulate a fake commitment phase and yet
can be opened to any value at the time of opening. This is so since S has to provide adversary
A and environment Z with the simulated commitment c before the value committed to is
known. All this needs to be done without rewinding the environment Z.

Intuitively, these requirements look impossible to meet: a simulator that has the above abilities
can be used by a dishonest receiver to “extract” the committed value from an honest committer.
This intuition can indeed be formalized to show that in the plain model it is impossible to UC-
realize F

com

by any two-party protocol. This idea extends to the Ḡ
ledger

hybrid world for realizing
commitment functionality with Q fairness.

Proof. Suppose, for contradiction, that there exists protocol ⇡ that realizes F
com

in the Ḡ
ledger

hybrid world with Q fairness. WLOG, we can consider a special Q predicate that it is never
triggered. Assume at the end of the commitment phase, receiver acknowledges the committer
by a receipt message. Consider an execution of ⇡ by an adversarial committer A

C

and an honest
receiver R, and WLOG we assume that the adversary merely forwards the communication messages
between the environment Z

C

and the honest receiver R (Note that this adversarial behavior is
implementable by an adversary as the adversary does not need to apply any transformation on the
state and merely forwards it). Here Z

C

privately chooses a random bit b at the beginning and then
runs the protocol of the honest committer based on input bit b and R’s answers, and then in the
name of the committer sends the generated messages to R. Once Z

C

received a receipt message
from R at the end of committing stage, it starts running the honest opening protocol in the name
of the committer, and receives bit b0 from R at the end of opening stage. Finally, Z

C

outputs 1
i↵ b0 = b. We know that if both committer and receiver are honest in an execution of ⇡, then in
the opening phase the receiver always outputs the bit committed to by the committer, i.e., b0 = b
always holds. By assumption that ⇡ realizes F

com

in the Ḡ
ledger

hybrid world with Q fairness, there
should exist an ideal world simulator S that interacts with F

com

as well as Ḡ
ledger

and generates a
view for Z

C

that is indistinguishable from a real execution with ⇡ in the Ḡ
ledger

hybrid world. We
note that, S must make sure b = b0 almost always, where b0 is the bit that S sends to F

com

. This
means that the simulator S must be able to generate the correct bit b before the opening phase.

Next based on this S, we are able to construct another environment, Z
R

, and a corrupted
receiver A

R

, such that Z
R

successfully distinguishes between an execution of ⇡ and an interaction
with F

com

for any simulator S
R

. Z
R

and A
R

proceed as follows: Z
R

chooses a random bit b and
hands b as input to the honest committer C; A

R

simply runs S and forwards all interaction between
the committer and S, and between Ḡ and S (again this strategy is implementable by an adversary
as the adversary does not need to apply any transformation on the state); once A

R

receives a bit
b0, it is passed to Z

R

who then outputs 1 i↵. b = b0.
Note that S can extract the committed bit b almost always, without rewinding or any additional

information. In contrast, when Z
R

interacts with F
com

, the S
R

’s view is independent of b, and
thus b = b0 with probability exactly one half. Therefore, Z

R

can tell the di↵erence between its
interaction with the Ḡ hybrid world or with F

com

and ideal world for any S
R

.

A.4 Proof of Theorem 5.2

To prove the theorem, we need to construct a simulator S so that for all ppt adversary A and
ppt environment Z, the execution in the Ḡ = (Ḡ

ledger

, Ḡ
clock

) and FD
corr

hybrid world and the
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simulated execution in the ideal world are indistinguishable. We give the construction of the
simulator S as follows.

The simulator emulates a copy of the adversary A internally, and also needs to provide an
emulated view for A. First, the simulator emulates A’s communication with the environment Z.
Note that the simulator interacts with the external global functionalities Ḡ

ledger

and Ḡ
clock

, and
also with the external wrapper functionality W = WḠ,Q(F).

Now the simulator internally emulates a copy of FD
corr

; more concretely, the simulator chooses
random strings {�

i

}, and then uses such {�
i

} to compute ({Rpriv
i

}
i2[n], Rpub). Note that in the

ideal world, when the environment Z activates a dummy party P
i

, expecting some resource-setup
as response, the dummy party P

i

sends (alocate, sid) to W, and the wrapper functionality W
sends (Coins, sid, P

i

) to S; and now S returns W with (Coins, sid, P
i

, �
i

); note that the wrapper
functionality then run Gen(1; �

i

) to compute the response for the dummy P
i

.
Internally, the simulator S now emulates a copy of P̃

i

with R
priv
i

and Rpub, and instructs the

wrapper functionality W to return (deliver, sid, Rpub, P
i

) to dummy P
i

. We remark that, Rpriv
i

will be P
i

’s private component (including all random coins he needs to run the protocol, along with
his signing key sk

i

) of the setup and Rpub is the public component (the same for every party P
j

)
which includes a vector of public (verification) keys (vk1, . . . , vkn) corresponding to the signing keys
(sk1, . . . , skn) and other information.

In the ideal world, when Z activates a dummy party P
i

with (input, sid, x), the dummy party
forwards this to the wrapper functionality W. Now the wrapper functionality sends read to
Ḡ
ledger

, obtains the response trans from Ḡ
ledger

; if ¬QInit(Rpub, trans), i.e., some party has no
su�cient amount funds for participating in the protocol, the wrapper functionality W will simulta-
neously deliver ? to all parties and the simulator S. Now the simulator S instructs the internally
simulated P̃

i

to broadcast ?, and every internally simulated party aborts with output ?.
If all parties have su�cient amount funds, then the wrapper functionalityW forwards (input, sid, x)

to F as input for P
i

. When (input, sid, P
i

) is sent to the simulator S, now the simulator uses the
simulator S

⇡

+1
Mal

which is guaranteed to exist from the security of ⇡+1
Mal to decide which messages to

embed in the transactions of honest parties (the messages corresponding to corrupted parties are
provided by the adversary). Note that the simulator S is aware of Rpriv

i

, and such R
priv
i

can be
used for embedding ⇡+1

Mal messages into the ledger transactions.
If S

⇡

+1
Mal

does not abort, QDlv will be triggered; now S interacts the wrapper functionality to

fair-delivery the output messages to parties. The soundness of the simulation of S
⇡

+1
Mal

ensures

that the output of the parties and the contents of the ledger in the real and the ideal world are
indistinguishable.

Now if S
⇡

+1
Mal

would abort, QAbt will be triggered; now S interacts the wrapper functionality to

abort and continues by claiming back all the committed transactions to the honest parties’ wallets,
as the protocol would. The soundness of the simulation of S

⇡

+1
Mal

ensures that the output of the

parties and the contents of the ledger in the real and the ideal world are indistinguishable.
To complete the proof, we need to argue that the protocol terminates given su�cient rounds of

activating every party (i.e., in the terminology of Definition 4.5, given a su�ciently high threshold
T ) and that when it does the following properties are satisfied which will ensure that the simulator
is able to complete its simulation and deliver the (possibly aborting) outputs: (1) when the protocol
does not abort, every honest party has a non-negative balance, and (2) when the protocol aborts,
then honest parties have a positive balance of at least c coins as required by predicate Q.

The fact that the protocol will eventual terminate given su�cient rounds of activating every
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party (i.e., in the terminology of Definition 4.5, given a su�ciently high threshold T ) follows by
inspection of the protocol: in each round every party needs at most a (fixed) polynomial number
of activations to post the transactions corresponding to his current-round message-vector. (In fact,
the polynomial is only needed in the initial committing-transactions round and from that point on
it is linear).

The properties are argued as follows:

Property (1): The parties that are not in the honest parties’ islands cannot claim any transac-
tion that honest parties make towards them as the ledger will see they as not in the island and
reject them. Thus by the last round every honest party will have re-claimed all transactions
towards parties not in his island. As far as parties in the honest island are concerned, if no
abort occurs then every party will claim all the transactions from parties in his island, and
therefore his balance will be 0.

Property (2): Assume that the protocol aborts because some (corrupted) P
i

broadcasts an
inconsistent message in some round ⇢. By inspection of the protocol one can verify that honest
parties will be able to claim all transaction-commitments done to them up to round ⇢ (as they
honestly execute their protocol) plus all committed transactions that they made for rounds
⇢+1 . . . , ⇢c. Additionally, because P

i

broadcasts an inconsistent message in round ⇢, he will be
unable to claim transactions of honest parties done from round ⇢ and on; these bitcoins will be
reclaimed by the honest parties, thus giving their wallets a positive balance of at least c coins.
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